

Kilobot: A Low Cost Scalable Robot System for

Collective Behaviors

Michael Rubenstein
Nicholas Hoff

and
Radhika Nagpal

TR-06-11

Computer Science Group
Harvard University

Cambridge, Massachusetts

Kilobot: A Low Cost Scalable Robot System for
Collective Behaviors

Michael Rubenstein, Nicholas Hoff, Radhika Nagpal

Abstract—In current robotics research there is a vast body
of work on algorithms and control methods for groups of
decentralized cooperating robots, called a swarm or collective.
These algorithms are generally meant to control collectives of
hundreds or even thousands of robots; however, for reasons
of cost, time, or complexity, they are generally validated in
simulation only, or on a group of a few 10s of robots. To address
this issue, this paper presents Kilobot, a low-cost robot designed
to make testing collective algorithms on hundreds or thousands of
robots accessible to robotics researchers. To enable the possibility
of large Kilobot collectives where the number of robots is an
order of magnitude larger than the largest that exist today, each
robot is made with only $14 worth of parts and takes 5 minutes
to assemble. Furthermore, the robot design allows a single user
to easily oversee the operation of a large Kilobot collective, such
as programming, powering on, and charging all robots, which
would be difficult or impossible to do with many existing robotic
systems. We demonstrate the capabilities of the Kilobot as a
collective robot, using a 25 robot test collective to implement
three popular swarm behaviors: foraging, formation control, and
synchronization.

I. INTRODUCTION

A large group of decentralized closely cooperating entities,
commonly called a collective or swarm, can work together
to complete a task that is beyond the capabilities of any
of its individuals. Many such examples can be found in
nature: army ants and honeybee colonies effectively forage
over large areas many kilometers wide; desert ant groups can
collectively transport large irregular objects 50 times their
collective weight; termite colonies construct mounds meters
tall even though individuals are only a few millimeters tall
themselves. These examples from nature have inspired long-
standing research in collective robotics to achieve the kind
of parallelism, robustness and collective capability of these
natural systems.

Within robotics, there is a wide range of active research
topics that explore algorithms to control these robotic collec-
tives, such as self-assembly [1, 21, 19], collective construction
[5, 9], and exploration [8, 24], to name a few. Researchers
commonly envision these algorithms to operate on collectives
of hundreds [5], thousands [21, 19], or more [1, 15], robots;
however, for reasons of cost, time, or complexity, they are
generally validated in simulation only [1, 19], or on a group of
a few 10s of robots or fewer [6, 20]. When using a simulation
to validate an algorithm for a collective of robots, it is difficult
to accurately model robots’ interaction with each other, such
as communication and sensing, and with the environment,
such as movement and collisions. This modeling difficulty
can lead to disparities in algorithm behavior when operating

on a simulated collective versus a real robotic collective.
Additionally, operating an algorithm designed for a large
collective of robots on just a few may hide scaling issues
within the algorithm that can only be uncovered in a much
larger collective. To better understand and validate both current
and future collective control algorithms, it would be useful
for these algorithms to be tested on a larger collective of real
robots.

Other research groups have also recognized the importance
of a collective of robots for testing and validating algorithms;
however, for various reasons, most operate collectives of a
few 10s of robots [12, 6, 3] or at the very most a few
hundred robots [2, 14]. These collective sizes are primarily
limited by robot cost and operational complexity. The cost of
an individual robot is perhaps the largest limiting factor for
collective size; for a fixed budget, the lower the robot price,
the larger the size of the collective. For example, a popular
commercially available robot, the e-puck [3], equipped with
an infrared communication ring for collective operations, costs
over $1300, and as a result, is usually operated in collectives
of about 10 robots. A robot more oriented towards large scale
multi-robot research is the Jasmine robot [14]. This robot costs
about $130 in parts and has been operated in collectives of 150
robots; however, the robot is not available for purchase.

In addition to cost, the complexity of operating the robots,
such as turning the robots on/off, charging, controlling, and
programming the collective, also plays a role in limiting the
size of the collective. For example, a common way to control
the power of a robot is to have a switch on each robot to turn
the robot on and off [3, 12]. If this switch takes three seconds
per robot to find and flip, then it would take a single person 50
minutes to turn on a collective of 1000 robots. Furthermore,
if the collective is large enough, the first robot to turn on may
actually run out of power before the last robot is turned on.
This manual power switch as well as other design decisions
can prevent the size of the collective from scaling to large
numbers.

To make a robot scalable to large collective sizes, as de-
scribed in [10], all the operations of the robot must work on the
collective as a whole, and not require any individual attention
to the robot, such as pushing a switch or plugging in a charging
cable for each robot. In other words, all collective operations
must be scalable. An example of a scalable operation on a
robotic collective is the programming of the I-Swarm robots
[18]. In these robots, instead of plugging in a programming
cable to each robot in order to update its program, each can
receive a program via an infrared communication channel.

This allows an overhead infrared transmitter to program all
the robots in the collective in a fixed amount of time, inde-
pendent of the number of robots. Another example of scalable
operations is found in [10, 14], where instead of manually
plugging in each robot to a charger for battery charging,
they use an automatic charging dock that allows the robots
to charge themselves without human help, thus making the
robot charging scalable. An example of a scalable operation
regarding power control is found on the Robomote [20], and in
sensor networks. Instead of powering off the robot, the robot
is always on, but in a low power sleep state, ready to turn
on if the appropriate command is received. As a result, a
Robomote never has to be turned on or off manually, and the
entire collective can be turned “on” in a fixed time independent
of the number of robots. These sorts of scalable operations are
essential for collective operations, but at the same time, they
should not dramatically change the robots’ capabilities, cost,
or ease of manufacturing.

The rest of this paper introduces a new robot, the Kilobot,
which is a low cost robot with fully scalable operations.
This robot is designed to make testing collective algorithms
on hundreds or thousands of robots accessible to robotics
researchers. First we describe the hardware design of a Kilobot
robot, where its low cost ($14 worth of parts) and ease of
assembly (5 min to assemble) enable large numbers to be
produced easily. While these robots are low-cost, they still
have abilities similar to other collective robots. These abilities
include: differential drive locomotion, on-board computation
power, neighbor-to-neighbor communication, and neighbor-to-
neighbor distance sensing. These abilities are achieved at low
cost mainly through the use of vibration based locomotion
and a simple range only sensor. Next, we discuss how the
operations of a Kilobot, such as programming, turning power
on and off, battery charging, and starting/stopping programs,
do not require any individual attention by a person, and
therefore a large collective can be easily overseen by a single
operator. Finally we will demonstrate that the Kilobot can be
used for implementing and testing collective behaviors. These
demonstrations use a 25 Kilobot test collective to implement
the popular collective behaviors of foraging, formation control,
and synchronization. A video showing these demonstrations is
available at http://tinyurl.com/kilobot

II. KILOBOT DESIGN

Two competing factors were considered when designing the
Kilobot robot: the cost, and the functionality. The Kilobot
needs enough functionality to allow it to perform a wide
variety of collective behaviors, while at the same time, it
must be simple enough to keep the cost low. The chosen
functionality for Kilobot is that it must move within its
environment, run a user defined program, communicate with
its neighbors, measure distance to those neighbors, display
some internal state to assist with debugging, and allow for
scalable operations. While these are not the minimum set of
functions needed for a collective robot, they strike a balance
between what behaviors a collective of robots is capable of,

Fig. 1. Four views of a Kilobot robot (clockwise from top left: the
top, bottom, side, and front views). Some key features are: (A) Vibration
motors, (B) Lithium-Ion battery, (C) Rigid supporting legs, (D) Infrared
transmitter/receiver, and (E) Three-color (RGB) LED. Note the 1cm line for
scale.

Fig. 2. Picture of the Kilobot arena, including overhead controller (A),
control station (B), 25 robot test collective (C), and charging station (D).

and the cost of that collective. This section describes the design
of the Kilobot hardware which has the functionality needed,
while also keeping the price low. A general overview of the
Kilobot robot is given in Fig. 1. The environment, called the
“arena”, that these robots are intended to operate in, consists
of a smooth, level, reflective table (e.g. a standard dry erase
surface) which can be seen in Fig. 2.

A. Locomotion

One important capability of the Kilobot is that it must
be able to move in its environment. The most common
locomotion strategy for swarm robots is to use a two-wheeled
differential drive, where each wheel is powered by an electric
gear motor. While this conventional wheeled locomotion is
quite effective, it is relatively expensive, as even a low-cost

gear motor and wheel is about the same price as an entire
Kilobot! To keep the cost down, Kilobot uses two sealed
coin shaped vibration motors for locomotion. When one of
these motors is activated, the centripetal forces generated
by the vibrating motor are converted to a forward force on
the Kilobot located at the motor’s mounting location. The
principle of converting the motor vibration to a forward force
can be explained using the slip-stick principle, the details
of which can be found in [22]. The Slip-stick locomotion
of a Kilobot was confirmed using high-speed video of the
robot’s movement. Due to the off-center mounting of the two
vibration motors, as shown in Fig. 1, the vibration of one motor
alone will cause a rotation of the Kilobot about its vertical
axis, while the vibration of the other motor will cause an
opposite rotation. By controlling the magnitude of vibration for
the two motors independently in a differential drive manner,
the robot can move in a continuous range from clockwise
rotation, to straight forward, to counterclockwise rotation. This
enables the Kilobot to move approximately 1 cm/sec and rotate
approximately 45 degrees/sec.

One major drawback to using this low-cost slip-stick based
locomotion, as opposed to wheels with encoders, is that there
is no real form of odometry. This makes moving precisely over
long distances or for a long time difficult. One way to address
this difficulty, which harnesses the power of a collective, is to
use the measured distances between neighbors as feedback to
correct errors in the robot’s movement. As is shown in section
II-F, this allows the robot to achieve fairly accurate motion
control when aided by other robots. Another limitation to this
locomotion is that it can not move over rougher surfaces,
requiring a smooth surface such as a dry erase surface to
work. While this does limit the environments that Kilobot can
operate in, it dramatically reduces its cost, and still allows for
the demonstration of many interesting collective behaviors.

B. Communication and Sensing

A vast majority of collective robot algorithms use robot-
to-robot communication and sensing, such as distance and
bearing to neighbors, as the main information to drive the
behaviors of individual robots. Therefore, it is critical that
Kilobot also be able to communicate with its neighbors and
sense some information about its physical relation to its
neighbors. In order to keep the robot cost down, the sensing of
neighbors only includes distance sensing, not bearing sensing.
While bearing sensing is often used with collective robots, for
example [11], distance-only sensing [19] is still sufficient for
interesting collective behaviors, as section IV shows.

To communicate with neighboring robots, each Kilobot has
an infrared LED transmitter and infrared photodiode receiver,
which are located in the center of the PCB and are pointed
directly downwards at the table the Kilobot is standing on as
shown in Fig. 1. Both the transmitter and receiver have an
isotropic emission or reception pattern, which allow the robot
to receive messages equally from all directions. Additionally,
both the receiver and transmitter are wide-angle, with an angle
of half power of 60◦ from the robot’s downward pointing

Fig. 3. Picture showing the reflection path of robot communication.

vertical axis. When the transmitter is active, any nearby robot
can receive the light emitted by the transmitting robot after it is
reflected off the table, as shown in Fig. 3. Messages are trans-
mitted by pulsing the transmitter according to standard line
coding technique. Using this simple communication method,
a Kilobot can communicate at rates up to 30 kb/s with robots
up to 10cm (about 6 robot radii) away.

With all robots using the same infrared channel for commu-
nication, there is the possibility that two or more robots may
try to transmit at the same time. To mitigate this problem a
standard carrier sense multiple access with collision avoidance
(CSMA/CA) method is used. Even with CSMA/CA, environ-
ments with many nearby robots will experience a reduction
of the channel bandwidth due to collisions. In an experiment
with 25 robots, configured as shown in Fig. 2, the channel
could support on average 240 five-byte packets/second, a 32%
channel usage.

During any communication between robots, the receiving
robot also measures the intensity of the incoming infrared
light. This incoming light intensity is a monotonically de-
creasing function of the distance between the transmitter and
the receiver; therefore the distance to the transmitter can be
calculated by the receiver. In practice, the incoming intensity
of light is also affected by noise and manufacturing variances,
which leads to sensing accuracy of ±2 mm, and precision
under 1 mm.

C. Controller

The controller for the robot serves two functions. Firstly, it
interfaces with all the low-level electronics such as motors,
communication, power circuitry, and the RGB LED (used
for displaying information to the operator, seen in Fig. 1).
Secondly, it runs a user-defined robot behavior program. The
controller used is an Atmega328 microprocessor, which runs
at 8 Mhz and has 32K of memory. Some key features of
this controller used in the Kilobot are: two pulse width
modulation (PWM) channels used for controlling the speed
of the vibrating motors, 10-bit analog-to-digital converters
used for measuring the incoming infrared light intensity, self-
programmable memory used to update the robot’s program
(described in section III-C), and a low-power sleep mode (see
section III-A). The program for the robot is written in C,
which allows researchers to quickly and easily develop robot
behaviors.

TABLE I
A SUMMARY OF KILOBOT PARTS COST. PART COSTS ARE BULK PRICES AT

QUANTITIES FOR 1000 ROBOTS.

Category Cost
Locomotion $3.12

Power $3.61
Communication/Sensing $2.20

Control $2.83
Structure $1.55

Miscellaneous $0.74
Total Parts $14.05

D. Power System

To power the entire robot, each Kilobot has a 3.4 V
160 mAh lithium-ion battery, shown in Fig. 1. This battery
can power the robot for 3-10 hours depending on the robot’s
activity level. Connected to this battery are three voltage
regulators and a battery charger. Two of the voltage regulators
provide power to the motors and the communication system.
Both of these regulators can be switched on and off by the
microcontroller, enabling shutdown of the motors and the
communication system to conserve power consumption. The
third voltage regulator continuously provides power to the
microcontroller, and during low-power states (described in
section III-A) only draws 50 µA. When the battery charger
receives 6 Vdc (described in section III-B), the charger will
begin charging the onboard battery; when the battery is
charged, the charging will stop.

E. Cost

To allow for large Kilobot collectives, it is critical that
each robot be as low-cost as possible. The Kilobot design
as described uses about $14 worth of parts, which is at least
10 times less than the lowest cost of currently used collective
robots [11]. The cost of each Kilobot can be broken down into
six categories: locomotion, power, communication/sensing,
control, structure (includes PCB and battery holder), and
miscellaneous (all other parts, such as the RGB LED). Table I
gives a summary of the cost of these six categories of Kilobot
parts.

The assembly time of a robot can also affect the price of
a robot if it is pre-assembled; if not, it can make building
a collective difficult and time-consuming. Either way, it is
important for the robot to be able to be assembled quickly. To
aid in a quick assembly time, most of the robot’s components
are surface-mount, and are placed using a pick-and-place
manufacturing robot. The remaining parts to be assembled are:
the battery holder, the legs, the motors and the infrared receiver
and transmitter. The battery holder and the infrared receiver
and transmitter can be assembled by hand. For the remaining
parts, custom-made assembly rigs allow for quick and precise
alignment and attachment of the motors and the legs. This
entire assembly process takes less than five minutes.

Fig. 4. The path of a Kilobot (black marker) orbiting five times around
a second stationary Kilobot (green marker) (A). “U” shaped path following
robot (marked with black) and the three stationary beacon robots (marked
with green). The path of the moving robot during 5 attempts at following the
desired path is shown (B). The path of a single Kilobot attempting to circle
without assistance from other robots (C).

F. Robot Capability Demonstrations

To demonstrate Kilobot capabilities, this section shows two
demonstrations that provide evidence for the robot’s basic
functionality: the ability to move within its environment, run
a controller, communicate with its neighbors, and measure
distance to those neighbors. Additionally, these demonstra-
tions show that when Kilobots sense and communicate with
neighbors, they can improve their capabilities beyond what is
directly available to them in hardware. In these demonstra-
tions, the improved capabilities shown are position sensing
and bearing sensing.

1) Orbit Demonstration: In the first demonstration, a single
robot is tasked to travel on a circular path. Lacking odometry,
this task is not possible for a single Kilobot, as shown in Fig.
4(C). However, with the assistance of a stationary neighboring
Kilobot acting as a marker for the center of the orbit, orbiting
is possible, as shown in Fig. 4(A). This stationary robot
sends out a message at 1/10th of a second intervals, which
is received by the orbiting Kilobot. These messages allow
the orbiting Kilobot to compute its current distance to the
stationary robot, which is also its distance to the center of its
desired orbital path. These distance measurements allow the
onboard controller to compute the robot’s deviation from the
ideal orbit, and using a PD controller, adjust the intensity of
both motors’ vibrations to correct for it, keeping the robot
close to the ideal path.

2) Path Following Demonstration: A second demonstration
shows a Kilobot following a more complicated path, in this
case a “U” shaped path. This path is defined in Cartesian
coordinates as a polygon in which the robot is allowed to
move. If the robot is inside the polygon, it moves straight, if
not, it turns back towards the interior of the polygon. To enable

this behavior, three stationary robots are set in the environment
in a triangle shape, as shown in Fig. 4(B). These three robots
know their position in a coordinate system and communicate
that position to the moving robot 10 times a second. The
moving robot uses the communicated positions of the three
stationary robots, as well as its measured distance to those
robots, to trilaterate its own position in the coordinate system.
Once the moving robot knows its position in the coordinate
system, it can compute if it is located inside the polygon or
not. If not, it can also compute which direction to turn in order
to move back into the polygon. The position of the moving
robot during five attempts at following the path is shown in
Fig. 4(B).

III. A SCALABLE COLLECTIVE

With a large collective of robots, it can become tedious
or even impossible to work with it if the robots require a
human operator to interact with each of the robots one at
a time. Some of these individual interactions could include
pushing the robot’s power switch on or off, plugging in a
cable to program or charge the robot, and pausing, starting,
or stopping the program running on the robot. The following
section explains how a Kilobot does not require any individual
attention for normal collective operations; i.e., it is a scalable
robot. To allow a single user to scalably operate the collective,
the setup for Kilobot testing and operations has an overhead
infrared controller, as shown in Fig. 2. This controller can send
infrared messages, using the same methods as in II-B, to all the
Kilobots on the testing arena at once. The overhead controller
is in turn controlled by an operator sitting at a computer-based
control station.

A. Power

To avoid a physical switch to turn the robots “on” or “off”,
Kilobots use a power control scheme similar to some sensor
networks and the Robomote [20]. This power control scheme
works by replacing the standard “off” state of the robot, where
the battery is disconnected from the robot, with a low-power
sleep mode. While in this mode, the battery stays connected
to the robot, but the robot powers down most of its electronics
and the microprocessor goes into a sleep state for one minute.
During this time, the power drawn from the battery by the
Kilobot is approximately 170 µW. After one minute, the
microprocessor wakes up, turns on the infrared sensor, and
for 10 ms it checks if it receives a wake-up message from
the overhead controller. To ensure that a message is received
during this 10ms window, the overhead controller transmits the
wake-up message every 3ms for over a minute. If a wake-up
message is received by the robot, it switches to the standard
“on” mode. If no-wake up message is received, then the robot
will go back to the low power sleep mode, repeating this cycle
until a wake-up message is received. If the robot is in the “on”
mode, a sleep message sent from the overhead controller will
switch it to the low-power sleep mode.

Using this power control scheme, the robot can remain in the
low-power sleep mode, waiting to switch to the “on” mode, for

Fig. 5. Connecting to charger input (A); manually pushing robots towards
charger (B); a side view of a group of Kilobots charging (C).

more than 3 months on a single battery charge. Furthermore,
the entire collective can be switched from the low power sleep
mode to the “on” mode in under one minute, and from the “on”
mode to the low-power sleep mode in a few seconds.

B. Charging

As described in section II-D, when 6 Vdc is applied to the
input of a Kilobot’s battery charger, it will charge the on board
battery until the battery is full. To apply this potential to the
charger input, the top of the robot is connected to an electrical
ground, and the bottom legs are connected to 6Vdc, as shown
in Fig. 5(A). This enables an entire collective to be charged by
first placing it onto a conductive surface, which can easily be
done by pushing the whole group with a long stick as shown
in Fig. 5(B). Next, a conducting board, such as a poster board
coated with metallic tape, is placed on top of the collective.
Finally 6Vdc is applied across the bottom conductive surface
and the top conducting board, connecting the input of all the
chargers to the required voltage. Fig. 5(C) shows a group of
Kilobots in this charging configuration which does not require
any attention to the individual robots.

C. Programming

To change the program running on the Kilobot’s microcon-
troller, the self-programming feature of the Atmega328 is used.
This feature allows the main program code, located in the
primary sector of memory, to be overwritten by a program
written in a separate “bootloader” sector in memory. In this
bootloader sector of memory, Kilobot has a program that
receives infrared messages from the overhead controller which
contain portions of the new desired main program code. It
then writes these portions of code to the appropriate location
in the primary sector of memory. The bootloader program
has error-checking to ensure that the program placed in the
primary sector is complete and error-free. Once the complete
replacement program has been received, the bootloader code

resets the microprocessor, and the newly loaded main program
code begins execution. When the operator desires to put a new
program in all of the Kilobots, the operator transmits a “jump
to bootloader” message from the overhead controller. When
this message is received by the main program code, it moves
the program counter to the bootloader section of code, causing
the bootloader program to execute. This scalable programming
scheme allows all the Kilobots present in the testing arena to
load a new program in under one minute. To validate this, a test
collective of 25 robots were programmed using this method
in 35 seconds.

D. Other Control

In addition to programming and power control, the overhead
controller is also useful in other aspects of Kilobot operations
such as querying a robot’s battery voltage, and starting,
restarting, and pausing the robot’s programs. For example, it
may be useful for the operator to know the battery voltage
of the robots in the collective to determine if they need to
be recharged. To do this, the operator sends a message to all
the robots via the overhead controller to display voltage. Each
robot then displays a color on its RGB LED based on the
measured voltage of its battery, displaying green if the battery
has more than 90% charge remaining, blue if between 90%
and 40% is remaining, and red if less than 40% is remaining.
With all robots displaying their charge status, the operator can
then look at the collective and determine its overall charge
status. In addition, the operator can control the execution of
the main program in all Kilobots by issuing commands via
the overhead controller to pause, start, stop or restart the main
program.

IV. COLLECTIVE BEHAVIOR DEMONSTRATIONS

While designed to be low cost and simple, Kilobot is still ca-
pable of interesting collective behaviors. To demonstrate this,
a test collective of 25 robots was built and used to implement
three popular collective behaviors. These behaviors are: ant-
inspired foraging, formation control, and synchronization.

A. Foraging

Foraging is a popular biologically inspired task in col-
lective robotics, for example [23, 13]. The task generally
involves robots exploring the environment to find a “food”
goal, and delivering it to the “nest”. In this demonstration,
the foraging algorithm from [7] is implemented directly on
a Kilobot collective. Two immobile Kilobots with specialized
programs are placed as markers in the environment, as shown
in Fig. 6, symbolizing the nest and food locations. These
markers constantly transmit a message that tells any robots
within communication range that the marker is the nest or
food. For food to be delivered to the nest, a robot must pass
close to the food marker, where it “picks up” a unit of food
from the food marker, and then the same robot must then pass
close to the nest marker, where it “drops off” the food.

In this foraging algorithm, some of the robots can take on
the role of a “beacon”. The goal of this beacon is to aid the

Fig. 6. Initial start of foraging demo, note food (green marker) and nest
(red marker) (A). Ant algorithm after finding food; note beacons (RGB LED
on) and walkers (RGB LED off) (B). The path of a single walker from the
food, to the nest, and back to the food (C). Note: the other walkers in (c)
have been digitally removed for clarity.

remaining robots, the “walkers”, in navigating between the
nest and the food. The beacons do this by maintaining two
variables, food gradient, and nest gradient. If any beacon sees
the food or the nest, it sets its corresponding gradient value
to one. Otherwise, the beacon sets its gradient value to be the
value of the lowest corresponding gradient it receives from
neighboring beacons, plus one. This allows any walker robot
to listen to the nearby beacons and determine which beacon
is closest to the nest or the food. If the walker does not have
food, it moves towards the beacon that is closest to the food.
If the walker does have food, it moves towards the beacon that
is closest to the nest. A walker can move closer to a desired
beacon by sensing its distance to that beacon, and then moving
to reduce that distance. While moving, a walker also needs to
avoid collisions with other robots. This is done by detecting
if any neighbors are less than 1cm away, and if so, turning
away until it no longer is. This overall movement strategy of
moving towards the desired beacon while avoiding collisions
allows the walkers to travel from the nest to the food and back.

Initially, as shown in Fig. 6(A), all the robots are placed
next to the nest marker and have no information about the
location of the food marker. They all start in the walker role
and spread out from the nest. As they spread out and explore
the environment, some walkers choose to become beacons.

Fig. 7. Screenshots of Kilobots following the leader is shown on the left. The starting frame is on top, ending frame is on bottom. The leader is marked
with green. On the right, the paths of five Kilobots following the leader (black line is the leader’s path) are shown. Starting locations are marked as circles,
ending locations marked as squares.

These beacons are created to provide a connection between
the exploring walkers and the nest. If, as shown in Fig. 6(B),
one or more beacons see the food, then the remaining walkers
will be capable of navigating to the food and nest, as shown in
Fig. 6(C). For a more detailed explanation of this algorithm,
please see [7].

B. Formation Control

Formation control, another biologically inspired behavior, is
often applied to robotic collectives, particularly in the control
of unmanned vehicles. This demonstration shows “follow-the-
leader”, a popular formation control behavior often applied
to robot collectives [16], and implements it on 6 Kilobots.
In this demonstration, the Kilobots start lined up facing the
leader. The leader then moves in its forward direction, and
all the followers follow along approximately the same path.
Note that as seen in Fig. 7, without positional information, the
leader does not always move precisely forward; however, the
other Kilobots still follow the leader.

To initialize the Kilobot collective for follow the leader,
each robot is assigned an ID, where the ID of the leader robot
is 1. The ID of the remaining robots is one greater than the
robot immediately in front of it. This allows the robots to
know the ID of the robot immediately in front and behind it.
Additionally, the front robot knows that it is the leader (its ID
is 1), and the last robot, the tail, knows that it has no robots
behind it (it sees no ID greater than its own). All robots can
operate in two states, move and wait. Initially, if the robot has
an even ID, it starts in the wait state, and if its ID is odd, it
starts in the move state. During the entire demonstration, each
robot will constantly communicate this state and its ID to its
neighbors. A robot in the wait state will stay stationary and
wait until the robot immediately in front of and behind it are
also in the wait state. When this condition is met, the robot will
then switch to the follow state. The leader and tail robots only
wait for the robot in back or in front of it respectively. During
the follow state, each robot will measure the distance to the
robot directly in front of it, and move to reduce this distance.

Once this distance is less than one cm, the robot will stop
moving and switch to the wait state. Since the leader has no
robots in front of it, when it is in the follow state, it moves
forward until it is four cm away from the robot directly behind
it, then switches to the wait state. There are some additional
nuanced rules for switching states to prevent premature state
changes, but for the sake of brevity, these will not be discussed
here. These two behaviors allow robots to move towards the
leader robot, while at the same time not move so fast as to
break communications with the robot directly behind it. The
result is that the collective of Kilobots follow the leader, as
shown in Fig. 7.

Fig. 8. The number of robots that flashed its LED during 0.5 second
increments. Initially the robots flash at random times, but over a period of
one minute they become synchronized.

C. Synchronization

Synchronization is often used when coordinating simulta-
neous actions between many entities, such as robots or sensor
networks. A popular method for synchronization [17] is based

on how fireflies synchronize their periodic light emissions in
nature. In this work, each entity maintains a periodic clock
that when it reaches its maximum value, the clock resets, and
the entity sends a signal to its neighbors. Whenever a neighbor
receives a signal, it adjusts its local clock according to when
it was received. This adjustment is enough to eventually
synchronize all the entities. A modification of this approach
[4] is intended to operate on systems that use a communication
channel where contention and delays are possible, which
is true for the Kilobot system. This demonstration uses an
approach closely related to [4] to synchronize the flashes of
the RGB LED on 25 Kilobots. Fig. 8 shows the number of
flashes for the whole collective during 0.5 second increments,
demonstrating that the initially unsynchronized collective does
become synchronized.

V. CONCLUSION

In this paper, we have presented the Kilobot robot, a $14
robot designed specifically for operation in a large collective.
While the Kilobot is a relatively simple and low cost robot,
we have shown it to be a viable collective robotic system by
demonstrating three popular collective multi-robot behaviors
using a 25 Kilobot test collective. The robot design and
collective operations are carefully considered in order to make
it easy to manufacture and operate a large collective of
Kilobots. To keep the robot cost low, its design uses an unusual
locomotion technique (vibration-based) and relatively simple
sensing (distance but no bearing), both of which dramatically
reduce the robot cost without sacrificing its functionality. As
the range of collective behaviors is expanded, it may be useful
to modify this choice in the robot design by adding other
sensors, for example a bump sensor or an ambient light sensor.
In the future, we hope to make both the Kilobot hardware
designs and software openly available for others to use and
to extend. Additionally, we plan on building a 1024 Kilobot
collective and applying it to additional collective behaviors
such as self-healing and collective transport.

REFERENCES

[1] D. Arbuckle and A. Requicha. Self-assembly and self-
repair of arbitrary shapes by a swarm of reactive robots:
algorithms and simulations. Autonomous Robots, 28(2):
197–211, 2010.

[2] G. Caprari, P. Balmer, R. Piguet, and R. Siegwart. The
autonomous micro robot “alice”: a platform for scientific
and commercial applications. In Proc. of the Ninth Int.
Symp. on Micromechatronics and Human Science, 1998.

[3] F. Mondada, et al. The e-puck, a robot designed for
education in engineering. In Proc. of the 9th Conf. on
Autonomous Robot Systems and Competitions, 2009.

[4] G. Werner-Allen, et al. Firefly-inspired sensor network
synchronicity with realistic radio effects. In SenSys,
2005.

[5] K. Galloway, R. Jois, and M. Yim. Factory floor: A
robotically re-configurable construction platform. ICRA,
2010.

[6] K. Gilpin, A. Knaian, and D. Rus. Robot pebbles: One
centimeter modules for programmable matter through
self-disassembly. In ICRA, 2010.

[7] N. Hoff, A. Sagoff, R. Wood, and R. Nagpal. Two
foraging algorithms for robot swarms using only local
communication. In IEEE International Conference on
Robotics and Biomimetics (ROBIO), 2010.

[8] A. Howard, L. Parker, and G. Sukhatme. Experiments
with large heterogeneous mobile robot team: Exploration,
mapping, deployment and detection. International Jour-
nal of Robotics Research, 25(5):431–447, 2006.

[9] J. Everist, et al. A system for in-space assembly. IROS,
2004.

[10] J. McLurkin, et al. Speaking swarmish: Human-Robot
interface design for large swarms of autonomous mobile
robots. In AAAI Spring Symposia, March 2006.

[11] J. McLurkin, et al. A low-cost multi-robot system for
research, teaching, and outreach. In DARS, 2010.

[12] M. Jørgensen, E. Østergaard, and H. Lund. Modular
atron: Modules for a self-reconfigurable robot. In IROS,
2004.

[13] K. OHara, et al. Physical path planning using the gnats.
In ICRA, 2005.

[14] S. Kernbach, R. Thenius, O. Kernbach, and T. Schmickl.
Reembodiment of honeybee aggregation behavior in ar-
tificial microrobotic system. Adaptive Behavior, 17(3):
237–259, 2009.

[15] M. DeRosa, et al. Scalable shape sculpting via hole
motion: Motion planning in lattice-constrained modular
robots. In ICRA, 2006.

[16] M. Gupta, et al. Collective transport of robots: Emergent
flocking from minimalist multi-robot leader-following. In
IROS, 2009.

[17] R. Mirollo and S. Strogatz. Synchronization of pulse-
coupled biological oscillators. SIAM Journal on Applied
Mathematics, 50(6):1645–1662, 1990.

[18] R. Casanova, et al. Enabling swarm behavior in mm3-
sized robots with specific designed integrated electronics.
In IROS, 2007.

[19] M. Rubenstein and W. Shen. Automatic scalable size
selection for the shape of a distributed robotic collective.
In IROS, 2010.

[20] G. Sibley, M. Rahimi, and G. Sukhatme. Robomote:
A tiny mobile robot platform for large-scale sensor
networks. In ICRA, 2002.

[21] K. Støy and R. Nagpal. Self-repair through scale inde-
pendent self-reconfiguration. In IROS, 2004.

[22] P. Vartholomeos and E. Papadopoulos. Analysis, de-
sign and control of a planar micro-robot driven by two
centripetal-force actuators. In ICRA, 2006.

[23] R. Vaughan, K. Støy, G. Sukhatme, and M. Matarić.
Whistling in the dark: Cooperative trail following in
uncertain localization space. In AAMAS, 2000.

[24] W. Burgard, et al. Collaborative multi-robot exploration.
In ICRA, 2000.

	Introduction
	Kilobot Design
	Locomotion
	Communication and Sensing
	Controller
	Power System
	Cost
	Robot Capability Demonstrations
	Orbit Demonstration
	Path Following Demonstration

	A Scalable Collective
	Power
	Charging
	Programming
	Other Control

	Collective Behavior Demonstrations
	Foraging
	Formation Control
	Synchronization

	Conclusion

