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Abstract- This paper presents kinematic control problem of In this paper we propose to treat SSMR a as system
skid-steering mobile robot using practical smooth and time- subjected to non ideal nonintegrable constraint. Next, we
varying stabilizer. The stability result is proved using Lyapunov formulate kinematic control law based on tunable oscillator
analysis and takes into account both input signal saturation and
uncertainty of kinematics. In order to ensure stable motion of [4] and transverse functions [5] which is robust to uncertain
the robot the condition of permissible velocities is formulated bounded kinematic parameter. Taking into account the part of
according to dynamic model and wheel-surface interaction. dynamics we give a condition of stable motion with respect
Theoretical considerations are illustrated by simulation results. to position of instantaneous center of rotation.

Here we consider control problem assuming that linear
and angular velocity can be treated as control input and

Considering ground wheeled vehicles one can distinguish neglect the task of enforcing this velocities by actuators. Such
two main categories, i.e. vehicles for which non-slip and approach is used for dividing control tasks onto two levels, i.e
pure-rolling conditions may be assumed [3] and vehicles for kinematic and dynamic and can be relatively easy used in real
which skid phenomena is used for proper operation. Although applications.
skidding effect between wheels and surface may be observed The paper is organized as follows. In Section II kinematic
for all vehicles, only for the second group known as skid- and dynamic model of SSMR is presented and condition of
steering vehicles it is necessary to change their heading. stable motion is formulated. In the next section the control law

Skid-steering structure is commonly used in robotics that is using tunable oscillator is developed with respect to limited
due to its simplicity and mechanical robustness. In particular kinematic uncertainty and formal proof of stability is given.
skid-steering mobile robots (SSMRs) are quite similar to In order to limit robot velocity scaling algorithm is proposed.
robots equipped with two-wheeled differential driving system In Section IV simulation results are presented. Concluding
(i.e. unicycle-like robots). However, there is an important remarks are given in Section V.
difference between them, namely for SSMR ground-wheels
interaction and skidding effect play an important role within II. MODEL OF SSMR ROBOT
high range of velocities and accelerations (in contrast for
other vehicles skidding is usually noticeable only for higher A. Kinematics
linear and angular velocities). Since ground reaction forces Consider a Four Wheel Drive (4-WD) SSMR placed on the
are very difficult to calculate and measure the model of plane (Fig. 1) with inertial frame X.Yg and define a local
SSMR dynamics is not accurate. Moreover, in spite of that f a^ ~~~~frame xy,V attached to itS center of mass (COM). Let q=fact that skidding is necessary to change robot's orientation, [X Y Q] x S denotes generalized coordinates describing
extensive skidding causes the motion to be unstable - hence robot's position, X and Y, in the inertial frame and orientation,
it is necessary to limit velocity of the vehicle.~,it is ecessay to lmit veocity f the ehicle 0, of the local frame with respect to the inertial one.

Control problem for SSMR is quite challenging mainly 0ofth lalsme withe reset to theiertial oe.Next, assume that the robot moves with velocity vector q.because of two facts. Firstly, SSMR is an underactuacted sys- In the local frame one can describe robot motion using vector
tem and secondly, its mathematical model is highly uncertain. A[vx v0 Te R3, where vx, v and w denotes longitu-
In the robotics literature not much has been written about a v y

controlling of SSMR using formal mathematical approach and
stability analysis. In some papers (see [2] and [8]) for control From Fig. 1 one can easily find the following tangent map
purposes authors assumed an ideal nonholonomic constraint rB=J (q) qji (1)
which cannot be enforced in practice. Additionally, linear
techniques presented in [2] do not allow to solve stabilization A FR70) 01 saJcba arxwt 0
problem because of Brockett's obstruction [1] and to control whr J1o i
orientation directly (only position tracking is considered). $O (2).
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Y i It should be noted that determination of F (q) is quite diffi-
IC - = cult since it results from complicated wheel-ground interaction

phenomena. In this paper in order to describe reactive lateral
3 - forces Fri (i = 1, 2, 3, 4) (see Fig. 2) we use the following

Y L _------- >Nvsy<<s7_v3 Coulomb friction model:

Fri (vyi) A iNi sgnvy, (4)
where pwi and vyi determine friction coefficient and lateral

. velocity of the point Pi where i-th wheel touches surface (see
../p4v4y1 .........Fig.1) and Ni is wheel ground contact force which result

Ix from gravity.
For control purpose it is convenient to rewrite dynamic

g equation (3) using kinematic relationship (1) in the following
form

Fig. 1. Kinematics of SSMR M) + CTI + F = BTr, (5)

where
Taking into account position of instantaneous center o rota- M F [0 Fr Mr] ,

tion (ICR) one can find the following important relationship 0 -Tn o- I f (6)
VX VY C= Tm o 0O , B= o O

vx - ~~~~~w,~~(2)YICR XICR(2L° ° -C C

where XICR and YICR are coordinates of ICR expressed in with
the local frame. Fr Z,1 Fri (Vyi)

Mr (q) =-a Ei=1,4Fli (vYi) + b i=2,3 Fli (vYi)
B. Dynamics

and r = ri (it is supposed that radius of each wheel is the
The dynamics of SSMR can be modeled using the following same).

equation (for details see [8])
C. Stable motion analysis

M (q) q + F (q) B (q) -r, (3) Skidding effect for SSMR is a necessary condition for
where M R3X3 denotes the constant, positive definite changing its orientation. However, extensive skidding results
inertia matrix, F (q) C R3 is vector of resultant reactive in unstable motion. In order to describe skidding effect we
forces and torque, B (q) E R3 X 2 denotes input matrix, consider SSMR dynamics.
-r = [TL TR]T C IR2 is an input vector determining torques Firstly let us rewrite dynamic equation (5) in the more
produced by pairs of wheels on the left and right side of detailed form
the vehicle, respectively. For simplicity we assume that mas Tnvx yO O r (TL + TR)
distribution of the vehicle is homogeneous - hence, inertia 'Mivy + mvxwl + Fr [c1 (7)
matrix takes the following form: M = diag {m, m, I}, while [I 0 [Mr (-TL + TR)_
ml I represents the mass and inertia, respectively. From (7) one can see that variables vx and w can be

controlled by torque signals relatively easy but vy is not
YgF directly related to input. Notice that lateral velocity is related

Yi F to ground-wheel interaction and product of longitudinal and
\;:XI :. v x1angular velocities of the robot.

FF 2X Now we will give necessary condition to limit vy in order
FC3 to decrease skidding magnitude. Calculating reactive force Fr

':_CO 3 F3 and velocities vyi using position of ICR one can obtain that

F4 Fr = [-(uiNj + 1i4N4) sgn (XICR + a) + (8)
+ (1i2N2 + 1i3N3) sgn (-XICR + b)] sgn(wo).

Notice that Fr is strictly related to x-cooridinate of ICR
___________________________position. Next we introduce the following sets

xg Xin -{xICReCPR: -a <SIcR <b},
XOUt1 - {XICR C X:ICR < -a}, (9)

Fig. 2. Active and reactive forces X0UL2 - {XICR C X:ICR > b}
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and calculate the resultant reactive force as III. CONTROL DEVELOPMENT

A for XICR C Xoutl A. Kinematic model reformulation
|FB for XICR -a Recalling kinematic equation (1) one can write that

1n FD for XICR -Xi (10) Cos 0 1 -sin01
FE for XICR CXout2 sin 0 +CgLos 0 Y (I9)

where Accordingly SSMR kinematics can be approximated by kine-

FA Y,41¾N1 FR zi2,3 1INi, matics of nonholonomic unicycle-like vehicle perturbed by
FA --i=1 iN4 iNB+ :i=2,3 iNi (11) skidding effect introduced by vy term. In this paper we assumeF -i 4l,E-- E4= 1PiNi- that magnitude of vy is bounded by scalar function p, such that

Next recalling (7) one may write For control purpose the following tracking error is defined

Fr 4 = [41 2 43] q-q, (20)
vy + vx + - = °. (12)

m where q, denotes reference position Xr, Yr and orientation
From relationship (2) it is easy to conclude that for wo 0, w C Or, Next, taking the time derivative of (20), using (1) and
LOO and XICR C L,0 imply that vy is bounded. As a result we coordinates transformation introduced by Dixon et al. [4]
may verified boundnesses of xICR instead of vy. Accordingly, 1T FX*T X X, (21)
calculating vy from (2) and taking the time derivative of it we X [xl X2 X3 [ 3 V 0)
have where

iVy = -WICR - WICR, (13) [0 0 1
P(,o) cos0 sin0 0 (22)

which leads to the following linear differential equation with Pii P12 0]
time-varying coefficients

with P11 =-0 cos 0 + 2 sin 0, P12 -0 sin0 - 2 cos 0 lead

WICR + XICR =Vx + Fr (14) to the following auxiliary system
F±1 [ 1 i 0 1

In order to consider evolution of XICR during the robot's I2 U2 1+ 0 I: (23)
movement we simplify analysis assuming that angular velocity [32 [X*TJJ [f +dJ
is constant (b = 0). Then one can easily find the solution of
(14) as follows where J A [ j is a skew-symmetric matrix, f (q, qr) A

IICR (t) =XICR (tO) + j
v
( Fla))( d. (15) 2 sin 0Xr + cos QYr + 0rX2) is the drift caused by refer-

Jto\ Sm / ence time-varying signals and d A -2vy is the disturbance
Next using the result (15) and taking into account that Fr introduced by skidding. Notice that in the case of regulation
magnitude achieves maximum if XICR is in the set Xout, or considered in this paper, when q= const, one has f 0.
Xo0t2 (notice from (11) that FA > Fc and FE < FC) one B. Kinematic control law robust to the limited skidding
may formulate the following proposition.

Proposition 1: Assuming that linear and angular velocities The kinematic control problem considered here can by
of the vehicle satisfy defined as follows.

Definition 1: Find bounded controls vx(t), w (t) for kine-
1 4 matics (1) such, that for initial condition q(0) C I3 the

wvv <- piNi (16) Euclidean norm of the error q(t) tends to some constant E > 0
i=1 as T -> oo:

the motion of the vehicle is stable in the sense that x- lirn (t) < (24)
coordinate of ICR is bounded as

where E is an assumed error envelope, which can be made
-a < SIJR < b. (17) arbitrary small.

Then define a maximum magnitude of product of longitudinal Fisty fo oto einw osie i ru
and angular velocities which satisfies (16)wihasotgruopain[6

r̂lxaxanvzI.(18) aob-a+ [b3+a*TJb*] (25)
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for any a, b C 9. It is straightforward to verify that operation Calculating the term xfTJzi and using (33) yield
(25) is a left invariant operation for the system (23), i.e.

(X (t)) 91 (X0o X)U1 + 92 (X0o X)U2, (26) V1 3k2z3- P +dz3 (37)dt ' pz3~+8E3
where xo C , gi (x) [1 0 x2] and gi (x) Assuming that upper bound of d is known one can write that
[O 1 -xi] are vector field generators.
Next taking into account (25), we introduce a new state Vl <-k2Z2 + £3 (38)

vector
z X 0Xd C g (27) from which it can be concluded that

where Xd= [Xdl Xd2 0] denotesanauxiliarytime-varying 1 3
signal and Zd a Zd1 0. Similarly to [4] it is supposed that Z3 3 (0) exp (-2k2t) + (1- exp (-2k2t)). (39)
x* is generated by linear tunable oscillator as follows

ACdii, (28) Next, taking into account evolution of z* and using (32) inXd
(3 1) one can easily write the following equation of closed-loop

where 'L L 01)] is positive definite gain matrix, c R22 subsystem

is the solution of the following differential equation -k1z, (40)

:=-J (29) which leads to
with u, denoting instantaneous frequency.

Considering (27) one can prove that (compare [6]) Z* (t) z* (0) exp (-kit). (41)

Z + *TJ*] (30) In order to consider overall system (30) we define Lyapunov
L3 td candidate function

Taking the time derivative of (30) and using (23) we have the V= zTZ. (42)
following dynamical system 2

Ju + *J*
Ks ] =[0(xT + f) - Xd d (31) Using the results given by (38) and (40) it is clear that

In order to stabilize it in the neighborhood of the origin the V< -klz*Tz - k2z2 + 83, (43)
following proposition can be given.

Proposition 2: Assuming that Idl < p C R+, f C L, the and it straightforward leads to the stability result given by (34).
control law C

u =-kiz* + id (32) In order to tune the controller we assume that matrix 'L is

and time varying with &b and 02 satisfying

(k2 + p Z3 ,) z3 + T T J + 2kXd*TJx* + f <i (T) = &io exp (- aiT) + Ei, for i 1,2, (44)
(33) where &io > 0, ai > 0 and &j > 0 are scalar coefficients

with gains kl, k2 > 0 and positive constant 83 ensures that determining initial and limit value of functions Oi and their
tracking error signal z is global ultimately uniformly bounded convergence rate, respectively. Using such gain scheduling one
in the sense that can prove taking into account results (39) and (41) that in the

steady-state elements of x are bounded as
(t)l . lz (0)1 exp (-2At) + 5, [1 - exp (-2At)],(t) ~~~~~~~2A 8

(34) rlim x1 < 81, rlin X2 < 82, liM 1 3 < (45)
where A min {kl, k2} t*OQ - 2k2

Proof: Consider Lyapunov function candidate with re- Then, using inverse transformation (22) and (45) it can be
spect to Z3:

I
shown that errors in task space become

Vl 2z (35)

Next, taking the time derivative of(35) and substituting control q K (£ + 1) 82 + 28182 22 + 4 2k2 (46)
(32) in (31) one has Iq .1

Vl = Z3 (-ki (*T +x)JZV+= J +f3+d)
(36) where 2 [q2 q3]-
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C. Control input saturation Without lack of generality we assume that absolute value
The condition of stable motion formulated by (16) de- of linear and angular velocity is not limited (it can be easily

termines set of maximum values of velocities for which included during calculation of scaling function i). Instead of
XICR C Xin. Taking into account this limitation we assume it only limitation of |vxgw has been considered.
that kinematic control signal rj is scaled as Numerical simulations have been conducted within the time

horizon of th = 10[s] and for the following initial conditions:
t7s { if <1 (47) x(0) = 0, y(0) = 1, 0 (0) = 0.

s 4 s > , In the first case it is assumed that F = 40. This assumption
where clearly does not satisfy the condition of stable movement

A V.W (48) given by (16). The results of regulation can be observed from
r Fig. 3(a)-3(d). According to the path depicted in Fig. 3(a) with

For controller considered here the procedure given by (47) stroboscopic view one can conclude that in the beginning of
is not sufficient and according to Lyapunov analysis it is regulation, when velocities are relatively high, orientation of
necessary to scale also frequency signal u, and time varying the robot is significantly different to the direction of the vector
gain matrix T. In order to do that we introduce time-scaling tangent to the path. It means that nonholonomic constraint is
method and define scaled time as follows violated significantly. This observation can be confirmed as

T shows x-coordinate of ICR (see Fig. 3(c)) which goes out from
Ts j Kdt, (49) the set Xin. Hence, magnitude of lateral velocity is quite high

with respect to angular velocity (compare Fig. 3(d)) that means
Aherer\( 1 for s < 1 excessive skidding. Notice that condition 2 vy < p during

1 for s (50) regulation holds - as a result performance of the controller is
relatively good and control purpose is achieved. From Fig. 3(b)

Next original variables u, and T become one can see that errors have been bounded to the assumed
A

Uws 1-,ua, (51) neighborhood of the origin.
For the second simulation experiment condition (16) has

and been satisfied using F = 8. The results are presented in
IF s (T) A IL (Ts). (52) Figs. 4(a)-4(d). Considering Fig. 4(a) one can easily observe

Now using these new variables in the controller with control that robot's movement is less extensive and the vehicle is

vs and assuming that f = 0 (i.e. regulation problem is con- almost oriented along the path. In comparison to previous
sidered) and ld is low enough (since vy is linearly dependent case where limitation of velocities were lower, position and

on w according t( orientatlon errors (see Fig. 4(b)) converge to the desired

signal) is quite easy to achieve the similar stability result as in neighborhood of the origin slower as the control signalsthenalcasquitewhere ptosaturationv nthsimtakninto aount (34) achieve smaller magnitudes (see Fig. 4(d)). Notice that XICR
depicted in Fig. 4(c) remains in the set Xin - hence skidding

IV. SIMULATION VERIFICATION effect is highly limited (see value of vy).
In order to show the effectiveness of presented control algo-

rithm in the task of point stabilizations numerical simulation V. SUMMARY
in Matlab/Simulink environment have been conducted. The In this paper full-state regulation problem with respect to
model of SSMR used here is based on kinematic equation skid-steering mobile robot has been investigated. The proposed
(1) and takes into account the part of the dynamics related controller is based on tuned oscillator (see also [4] and
to reactive lateral force (8). The control is considered at [5]) which provides sinusoidal-like signals with time-varying
kinematic level since it is assumed that the input are linear amplitude, which are tracked by the transformed state vector.
and angular velocity of the robot's body. The parameters of In order to limit skidding effect control scaling algorithm
the model have been chosen to correspond to the parameters has been proposed and next illustrated by simulations. In
of the real small experimental mobile robot MiniTracker 4WD comparison to previous solutions (see [2], [8]) no virtual
(see [7] and [9]) as follows: nonholonomic constraint has been assumed. Instead, lateral

a = b = 0.039 [in], m 1I [kg], g = 9.81 [m/s 2]. velocity of the robot has been treated as a disturbance which
has been considered during control law development.

Additionally it was assumed that friction coefficients for rear Future works will be devoted to prove stability of the control
and front wheels satisfy: ,u=i U 1 and p93 = J4 = system also for trajectory tracking task and to extend formally
0.8, respectively. For numerical reasons function sgn has been this approach to dynamic level.
approximated as follows: sgn ('y) tanh (10%t).
The parameters of the controller have been selected as VI. ACKNOWLEDGEMENT
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Fig. 3. Result of stabilization for ivws 40 Fig. 4. Result of stabilization forv) w < 8
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