
 

 

 
 

PAC-MAN 
 

EECE 474 – Team 1 
 

July 24, 2002 



 

 
 
 
 

PAC-MAN 
 
 

 
 
 
 
 
 
 

Submitted to: 
Dr. W.G. Dunford 

 
July 24, 2002 

 
 

Submitted by: 
Pauline Pham (#44064988) 

Carol Tai (#78264991) 
Johnson Bao (#64704984) 

Christopher Chou (#82812991) 
Jimmy Huang (#4798998) 

 



 

Table of Contents 
  
 
List of Tables .................................................................................................................... iii 
List of Figures................................................................................................................... iii 
Abstract............................................................................................................................. iii 
1.0 Introduction........................................................................................................... 1 
2.0 Chassis.................................................................................................................... 2 

2.1 Motor Mounts.............................................................................................. 2 
2.2 PCB Mounts ................................................................................................ 3 
2.3 Body ............................................................................................................ 3 

3.0 Motors .................................................................................................................... 6 
3.1 Motor Selection ........................................................................................... 6 
3.2 Motor Control.............................................................................................. 7 

4.0 Radio Frequency Application .............................................................................. 9 
4.1 RF Considerations................................................................................................. 9 

4.2 Wireless Input Controller ............................................................................ 9 
4.2.1 Encoding scheme logic.................................................................. 10 
4.2.2 Encoder and Decoder .................................................................... 11 

4.2.2.1 Error detection and filtering .......................................... 12 
4.2.3 RF Modules ................................................................................... 13 

5.0 Sensors.................................................................................................................. 16 
5.1 Wall detection ........................................................................................... 16 
5.2 Dot Counting Sensor ................................................................................. 18 
5.3 Pac-Man Tracking ..................................................................................... 19 
5.4 Contact Sensor........................................................................................... 21 
5.5 LCD display .............................................................................................. 21 

6.0 Microcontroller and Software............................................................................ 23 
6.1 Pac-Man Robot.......................................................................................... 23 

6.1.1 Obstacle Sensors ........................................................................... 25 
6.1.2 LCD Display ................................................................................. 26 
6.1.3 RF Receiver................................................................................... 26 
6.1.4........................................................................................................... 27 
Stepper Motors .......................................................................................... 27 
6.1.5 Ghost Contact Sensor .................................................................... 29 
6.1.6 Maze Dot Sensor ........................................................................... 29 

6.2 Ghost Robot............................................................................................... 30 
6.2.1 Beacon Sensor ............................................................................... 31 

7.0 Maze ..................................................................................................................... 35 
7.1 Physical Dimension................................................................................... 35 
7.2 Dots ........................................................................................................... 36 

8.0 Power.................................................................................................................... 38 
8.1 Motor......................................................................................................... 38 
8.2 Controller .................................................................................................. 38 
8.3 Maze .......................................................................................................... 38 
8.4 Regulators.................................................................................................. 39 



 

9.0 Recommendations ............................................................................................... 41 
10.0 Conclusion............................................................................................................ 43 
 
APPENDICES 
 

APPENDIX A: Photo Gallery 
APPENDIX B: PCB Layouts 
APPENDIX C: Expense Report 
APPENDIX D: Gantt Chart 
APPENDIX E: Source Code 

 
 



 iii 

List of Tables 
 
Table 1. Encoding scheme ................................................................................................ 11 
Table 2. RF signal format for Pac-Man movement .......................................................... 27 
Table 3. List of parameters needed to control motor speed.............................................. 27 
Table 4. Truth table of the Memory Device ..................................................................... 37 
 

 
List of Figures 

 
Figure 1.  Aluminum Corner…………………………………………………………....... 2 
Figure 2.  Wheel……………….......................................................................................... 2 
Figure 3.  Motor Mounts..................................................................................................... 3 
Figure 4.  PCB Mount......................................................................................................... 3 
Figure 5.  Chassis Body ...................................................................................................... 4 
Figure 6.  Pac-Man South-west view..   ………………………….………………………4 
Figure 7.  Front view………………… ……...................................................................... 4 
Figure 8.  Top view…    ..................................................................................................... 5 
Figure 9.  Side view... ......................................................................................................... 5 
Figure 10. 55M048B2U 12VDC Unipolar Stepper Motor ................................................. 7 
Figure 11. Pin Assignments and internal circuitry of UCN5804........................................ 8 
Figure 12. Wireless Input Controller ................................................................................ 10 
Figure 13. Encoding scheme logic.................................................................................... 10 
Figure 14. MC145026 Encoder Block Diagram............................................................... 11 
Figure 15. MC145027 Decoder Block Diagram............................................................... 12 
Figure 16. Encoder and Decoder transmission protocol................................................... 13 
Figure 17. Transmitter Module ......................................................................................... 14 
Figure 18. Receiver Module ............................................................................................. 14 
Figure 19. Transmitter Block Diagram............................................................................. 14 
Figure 20. Receiver Block Diagram ................................................................................. 15 
Figure 21. GP2D12 ........................................................................................................... 17 
Figure 22. Wall Sensor… ................................................................................................. 17 
Figure 23. Wall Sensor Circuit ......................................................................................... 17 
Figure 24.  Dot Counting Circuit ...................................................................................... 18 
Figure 25. PNA4612…. ................................................................................................... 20   
Figure 26. Beacon Receiver Circuit.................................................................................. 20 
Figure 27. IR Beacon Circuit. ........................................................................................... 20 
Figure 28. Contact Sensor................................................................................................. 21 
Figure 29. LCD display..................................................................................................... 22 
Figure 30. Architectural model of Pac-Man software ...................................................... 24 
Figure 31. Pin assignments for Pac-Man .......................................................................... 25 
Figure 32. Model of interface between PIC and obstacle sensors .................................... 26 
Figure 33. Model of interface between PIC and LCD display ......................................... 26 
Figure 34. Model of interface between PIC and RF receiver ........................................... 27 
Figure 35. Sketch of wheel dimensions ............................................................................ 28 
Figure 36. Model of interface between PIC and stepper motor drivers............................ 29 



 iv 

Figure 37. Model of interface between PIC and Ghost contact sensor............................. 29 
Figure 38. Model of interface between PIC and maze dot sensor .................................... 29 
Figure 39. Architectural model of Pac-Man software ...................................................... 30 
Figure 40. Pin assignments for the Ghost ......................................................................... 31 
Figure 41. Model of interface between PIC and beacon sensors ...................................... 31 
Figure 42. Front beacon measurements of Pac-Man position........................................... 32 
Figure 43. Left beacon measurements of Pac-Man position............................................. 32 
Figure 44. Example of the maze fast flooding algorithm ................................................. 34 
Figure 45. Maze Design.................................................................................................... 35 
Figure 46. Dot Circuitry for the Maze (for one dot) ......................................................... 36 
Figure 47. Timing diagram of the Switch (including CD4066, resistor, and capacitor) .. 37 
Figure 48. LM2575 Circuit Schematic ............................................................................. 39 
Figure 49. LM2575 Circuit Block Diagram ..................................................................... 39 
 
 



 

Abstract 
 
 
The EECE474 Pac-Man project is a robotic counterpart of the computer game, Pac-Man.  
As in the original Pac-Man game, the Pac-Man robot, controlled by a player via a RF 
link, moves around the maze collecting LED “dots” while avoiding contact with the 
Ghost, which is an autonomous robot capable of tracking Pac-Man’s location in the 
maze.  The microcontrollers onboard the robots are responsible for reading the wall 
sensors and controlling the stepper motors to perform precision turning and stopping.  To 
simulate the dots being “eaten” by Pac-Man, the maze dot modules, equipped with light 
sensors are capable of turning off the LEDs once Pac-Man passes through.  The number 
of dots collected by Pac-Man is shown on the LCD display.  The tracking mechanism is 
achieved by mounting IR receivers onto the Ghost to detect Pac-Man’s IR beacon 
signature and using such information to compute the shortest path to reach Pac-Man in 
the maze.  Contact sensors are also used to detect collisions between Ghost and Pac-Man.  



 1 

1.0 Introduction 
 
 
The objective of our EECE474 project is to design a Pac-Man game involving a remote 
control system that is suitable for children who are six years old and above.  The idea of 
this project comes from the computer game Pac-Man.  The rules and the features of our 
project are similar to the computer game.    
 
Our goals are to implement two wireless and motor running robots and to set up a game 
setting, while maintaining the same features as in the computer game.  The features 
include the fact that Pac-Man keeps score of the number of dots collected, the Ghost 
traces Pac-Man and finds the shortest path to it, and that the Ghost travel at a speed faster 
than Pac-Man.   
 
The project involves two robots – Pac-Man and Ghost.  In general, the objective of the 
game is for players to control Pac-Man’s movements within the maze with a wireless 
controller.  Pac-Man must eat all the dots on the maze and avoid contact with the Ghost at 
the same time.  Pac-Man is given three lives.  If Pac-Man comes into contact with the 
Ghost three times before eating all the dots, the game is pronounced over.   
 
Our Pac-Man robot consists of the following systems:  

1) an RF system that receives directional instructions from users 
2) a wall detection system 
3) a score keeping system 
4) a motor system 
5) a contact sensor that detect contacts with the Ghost.   
 

The Ghost is an autonomous robot that is:  
1) able to detect walls 
2) to automatically traverse the maze 
3) to locate and catch Pac-Man  
4) to detect contact with Pac-Man.    

 
Our project is divided into two main components – hardware and software.  Both the 
hardware and the software are further broken down into several individual subsystems.  
Each subsystem is tested and implemented separately, and integrated together to 
construct our final project.  The testing results and the design processes of each 
subsystem are discussed in detail in the following sections.  In addition, problems 
encountered and the solutions are described. 
 
 
 
 
 
 
 



 2 

 2.0 Chassis 
 
 

The design objective of the chassis is to enable Pac-Man and the Ghost to 
maneuver easily in the maze.  Since most of the robots weight comes from the 
batteries and motors, in order to keep the weight to a minimum, the chassis was 
designed to be as lightweight and small as possible.  Therefore, 16-gauge sheet 
aluminum was chosen to be the main building material for the chassis.  The 
chassis is designed to have three modules: motor mounts, PCB mounts, and the 
body.  This design makes the robot easy to assemble and disassemble.  The detail 
design of each module is described in the following sections. 
 
2.1 Motor Mounts 
 
The robot is designed to accomplish standing 90 degree or 180 degree turns in the 
maze.  In order to do this, the two motors are positioned in the middle of each side 
of the robot, so simply rotating the two motors in opposite directions achieves the 
standing turn.  To mount the motors on to the chassis body, we made a L-shape 
aluminum plate (a corner) to attach the motors to the chassis (see Figure 1). 

  
Figure 1.  Aluminum Corner    Figure 2.  Wheel 

 
The wheels we used, shown in Figure 2, are plastic disks made by the machinist 
according to the specified dimension.  The dimensions of the wheels were chosen 
so it gives the motor and the dot-counting sensor just enough clearance off the 
ground.  The wheel clamps straight on to the shaft of the motor using a setscrew, 
so it has a one to one gear ratio.  This is why the wheels have to be made just 
right, otherwise the robot would be moving faster than the desired speed. 



 3 

 
Figure 3.  Motor Mounts 

 
2.2 PCB Mounts 
 
In the original design, the PCBs were to be mounted in layers using screws and 
spacers at each corner.  However, after looking at the design carefully, we found 
this mounting method to be inconvenient in terms of accessing and debugging the 
PCBs. Therefore, we decided to switch to the wooden slots that we are currently 
using.  This mounting mechanism enables us to slide each of the layers in and out 
individually for debugging.  Just like the motors, the wooden PCB mounts are 
attached to the main body using an aluminum corner.  (See Figure 4) 

 
Figure 4.  PCB Mount 

 
2.3 Body 
 
The chassis body, as shown in Figure 5, is actually quite simple; it consists of a 
10cm x 10cm aluminum plate, two standing casters in the front, and two ball 



 4 

casters in the back.  For any two wheel robot, casters are needed to keep the robot 
in balance, but usually only one ball caster is needed in the back.  For Pac-Man 
and the Ghost, because the LED dots are planted at the center of each lane, the 
casters were moved away from the center in order to accommodate the LEDs and 
sensors.  Moreover, having only one caster placed off center may cause an uneven 
drag and affect the movement of the robot.  Therefore, we placed two ball casters 
in the back to keep the robot balanced.  The front standing casters are there to 
prevent the robot from tilting forward on the brake. 

 
Figure 5.  Chassis Body 

 
 

       
 

Figure 6.  Pac-Man South-west view   Figure 7.  Front view 

 
 



 5 

              
 

Figure 8.  Top view            Figure 9.  Side view 

 



 6 

3.0 Motors 
 
 
In order to have Pac-Man and the Ghost traverse through the maze efficiently, the 
movements of the robot need to be precise and easy to control. Our design requires the 
robots to make near perfect 90 degree and 180 degree turns on a touch button command. 
Therefore, it is critical to have the right motors for the purpose and a control mechanism, 
which makes it easy for the microprocessor. 

  
3.1 Motor Selection 

 
For the robots’ drive motor, we had to choose from three types of motors: DC, 
servo, and stepper motors.  DC motors are capable of providing high speed and 
torque for the robot, but they require the proper gearboxes and shaft encoders to 
achieve the desirable control.  As for the servomotors, they have a much simpler 
control mechanism, but their speed is limited, and in most cases, they are not 
capable of the full rotation needed for driving purposes. 
 
As a result, we decided to settle with stepper motors.  Stepper motors are easy to 
control with the help of proper translation logic and it can be used to drive the 
robot without any modifications.  However, there is one disadvantage that we did 
not find out until we started working with them. Although the stepper motors are 
capable of full rotation, in most cases, they are not designed to provide enough 
torque for driving small robots.  Fortunately, there are special high torque stepper 
motors that are designed for driving applications.  For our robots, we decided to 
use 12VDC unipolar stepper motors, the 55M048B2U from Thomson Industries 
Inc.; Figure 10 below shows the dimension of the motor. 
  
 



 7 

 
Figure 10.  55M048B2U 12VDC Unipolar Stepper Motor 

 
3.2 Motor Control 

 
Opposite from DC motors, stepper motors have an armature built out of 
permanent magnets, and surrounded by sets electromagnets that are activated on 
demand.  By activating different sets of coils in a particular sequence, we can 
move the armature from one position to the next to create the rotation required.  
The activation sequence can be generated by programming the microprocessor or 
by logic devices, such as the L297 stepper motor controller, which translates 
direction and clock signal into corresponding sequences.  

 
Both Pac-Man and the Ghost are driven by two motors (left and right), which is 
controlled by the UCN5804 unipolar stepper-motor translator/driver from Allegro 
Microsystems Inc. Figure 11 below shows the pin assignment and internal 
circuitry of the UCN5804. 



 8 

 
Figure 11.  Pin Assignments and internal circuitry of UCN5804 

 
The motors we used can be controlled by combining the L297 with a Darlington 
transistor array.  However, the UCN5804 not only integrated the translation logic 
with the Darlington transistors, it is also capable of sinking twice as much current 
(1.25A) than regular Darlington arrays (600mA).  Therefore, we chose the 
UCN5804 as our motor controller to eliminate extra circuitry and to lighten the 
load on the microprocessor. 



 9 

4.0 Radio Frequency Application 
 
 
Since one of the goals in this project is to implement a user controlled Pac-Man, it was 
essential to have the Pac-Man robot move freely through the maze without having 
communication wires from the controller suspending from it.  Therefore, radio frequency 
was introduced into our project in order to make the communication between Pac-Man 
and its user controller wireless.  When dealing with radio frequency applications, the 
transmission protocol and noise factors were key issues taken into consideration in our 
equipment selection and design.  
 

4.1 RF Considerations 
 

We initially considered a two-way communication link between Pac-Man and the 
controller.  This would have allowed us to control Pac-Man from the PC on the 
downlink and it would allow Pac-Man to send useful information to the PC (such 
as data for dot counting and counting lives) on the uplink.  We also considered a 
wireless communication link between Pac-Man and the Ghost.  This would have 
allowed us to send Pac-Man’s position coordinates to the Ghost so that the Ghost 
can track Pac-Man down.  However, due to budget restraints and in order to avoid 
additional programming and synchronization issues between the transmitter and 
the receiver modules, we decided to use one-way communication between the 
controller and Pac-Man only and implement the hardware required to count dots 
and lives on Pac-Man.  By simplifying our RF requirements, we were able to 
design a controller without having to interface it with the PC or a separate 
microcontroller. 
 
4.2 Wireless Input Controller 
 
A wireless input controller was designed to specifically control the movements of 
Pac-Man.  The controller consists of three subsystems: the encoding scheme 
logic, the encoder and decoder, and the RF modules.  Four momentary SPDT 
(single-pole-double-throw) pushbuttons were selected as the control buttons such 
that each time a user pushes a button, the output would go high, else it remains 
low at all times.  From there, an algorithm was devised to encode the output into a 
specific scheme.  This output is then sent to the encoder where it is sent serially to 
the RF transmitter module.  The RF transmitter module sends the data off at 
418MHz to the receiver module on Pac-Man.  The data is then transferred to the 
decoder and outputted through three pins to the microcontroller.  The following 
diagram describes the operation of the wireless controller. 
 
 
 
 
 
 
 



 10 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 12. Wireless Input Controller 

 
4.2.1 Encoding scheme logic 
 
There are four movements required to control Pac-Man in the maze: up, 
down, right, and left.  The following logic was designed to meet these 
specifications.   

 
+V
5V

U1D

DOWN

RIGHT

LEFT

UP

U1C

U1B

U1A

 
Figure 13.  Encoding scheme logic 

 
As each button is pressed, the following outputs are sent to the encoder 
chip. 

 
 
 

MSB 

LSB 

4 to 1 bit 
encoder 

RF Transmitter 
Module

Logic 

RF Receiver 
Module 

4 to 1 bit 
decoder 

Micro-
controller 

To Pac-Man 

Wireless Input Controller 

Pac-Man 

SPDT Pushbuttons 

From controller 



 11 

Table 1. Encoding scheme 

Up 100 
Left 101 

Right 110 
Down 111 

 
The most significant bit was selected to act as an interrupt signal for the 
micro-controller so that it goes high each time a button is pushed.   
 
4.2.2 Encoder and Decoder 
 
The encoder and decoder chip used in this project is Motorola’s 
MC145026 encoder and MC145027 decoder chips.  See Figure 14 and 
Figure 15 for their block diagrams.  Since more than one 474 group was 
using RF modules at 418MHz, these chips were selected for our 
application because they performed the necessary error checking and 
filtering required.  In addition, they provided parallel-to-serial and serial-
to-parallel data conversion, which was a requirement for the RF modules 
(the RF modules transmit and receive serial data only).   

 
 

Figure 14. MC145026 Encoder Block Diagram 



 12 

 
Figure 15. MC145027 Decoder Block Diagram 

 
4.2.2.1 Error detection and filtering 
 
The encoder chip contains nine bits of information.  The first five 
bits contain the address of the encoder and the other remaining 
four bits contain the data bits.  These nine bits of information are 
sent serially to the RF transmitter module.  The RF transmitter 
module then sends the serial data asynchronously at 418MHz to 
the receiver module.  For this project, only three out of the four 
data bits were used.  The fourth bit was left opened.  The decoder 
receives the serial data via the RF receiver module, unscrambles 
the data and checks to see if two consecutive addresses are 
matched to the local address of the decoder.  Secondly, it checks to 
see if the four data bits match the last valid data received.  If both 
conditions are met, the data bits are outputted to the 
microcontroller.   
 
Both encoder and decoder chip contain an internal RC oscillator.  
Since the RF modules were tested and found to operate best for 
input frequencies up to 2kHz, the encoder and decoder clock 
frequencies were set to approximately 1.7kHz.  This resulted in an 
output frequency of approximately 420Hz to the RF modules.  As 
seen in the figure below, each data bit generated from the encoder 



 13 

is held for several clock cycles and each transition period amounts 
to half a clock cycle.  Since both chips were set to operate with the 
same clock frequency, the decoder is able to unscramble and 
synchronize the data received to its own internal clock.  Figure 16 
illustrates how the data is unscrambled at the decoder.  Note that 
VT (valid transmission) only goes high once two sets of words 
have been received from the encoder. 

 
 

Figure 16. Encoder and Decoder transmission protocol 

 
4.2.3 RF Modules 
 
The RF module was selected based on reliability, size, and easiness of 
implementation.  RF modules made by Abacom, Melex, Ming 
Microsystems, Ramsey, Linx and RF solutions were researched, however, 
the modules produced by Linx Technologies was chosen based on 
previous project success and because it required the least amount of 
external circuitry.  In addition, since our controller’s case had a size 
restraint, the Linx transmitter module was ideal due to its small packaging.  
See Figure 17 and Figure 18 for their schematics. 
 
 
 



 14 

 
 

Figure 17. Transmitter Module 

 
 

Figure 18. Receiver Module 

 
The Linx modules use precision SAW (Surface Acoustic Wave) 
techniques and FM/FSK (Frequency Modulation/Frequency Shift Keying) 
modulation.  Figure 19 and Figure 20 show the internal operation of the 
RF modules.  As mentioned before, the Linx modules require no external 
circuitry other than an external antenna.  A 418MHz ¼ wave whip antenna 
was selected as it was recommended to work best with these modules.  In 
addition, the modules recommended that a slow data rate be selected since 
it increases the performance of the RF modules.  As mentioned above, we 
chose to send a 420Hz signal to the RF transmitter module. 

 

 
 

Figure 19. Transmitter Block Diagram 

 
 

 



 15 

 
Figure 20. Receiver Block Diagram 

 
The Linx modules have the capability of sending analog or digital data at 
distances greater than 500 ft.  We tested these modules by sending a signal 
from the function generator from one end of the 474 room to the other 
end.  The modules received the signal instantaneously and mirrored the 
signal exactly as we varied the frequency.  We chose not to test the 
modules at greater distances since it was unnecessary to do so for our 
specific application. 

 



 16 

5.0 Sensors 
 
 
Several different types of sensors are used to achieve the following functionalities in the 
Pac-Man project: 
 

1) Wall detection – Pac-Man and Ghost should be able to maneuver around the 
maze without hitting or scraping the walls, and meanwhile detect openings in the 
maze. Given the configuration of the robots and the maze, this functionality 
requires distance sensors that have good resolution within a 15 cm range.    
 
2) Dot counting – The “Dots” in the Pac-Man game is realized by the floor 
mounted LEDs in the maze.  Pac-Man should be able to distinguish between the 
bare floor and an LED light source as it passes over them even when it is not 
centered within the track.  As in the computer game, the dots disappear after eaten 
by Pac-Man. Our LEDs should also turn off immediately after it has been 
detected.   
 
3) Pac-Man location tracking – Ghost should be able to locate Pac-Man from a 
give distance within the maze.  This functionality requires sensors that have a 
wide detection angle (approximately 45 degrees) and a long detection range 
(approximately 120 cm).  
 
4) Contact  - When Pac-Man and Ghost physically make contact, both robots 
should be able to detect the event.  

 
Given the above functional requirements, the following sensor designs are investigated as 
possible solutions. 

 
5.1 Wall detection 

 
We first considered the Sharp GP2d12 IR ranger module (Figure 21), which is 
equipped with an infrared transmitter and receiver pair. Several features makes 
GP2D12 an attractive candidate – 1) Small packaging (0.75in x 0.5in) which 
helps keep the size of our robot under control, 2) GP2D12’s analog output (0.25V 
to 2.45V) is easily interfaced with the PIC microcontroller’s internal A-D 
converter, and 3) high immunity to ambient light. 

 
 
 



 17 

 
 

Figure 21. GP2D12 

 
However, it also has a significant drawback.  The accurate sensing range is 
between 80cm to 10cm with the output gradually increasing as the obstacle gets 
closer.  Once the distance is closer than 10cm, the output begins to drop. This 
poses a serious problem since our robot will not be able to distinguish between a 
straightaway (wall beyond 10 cm), and a wall 1cm away. 

 
After extensive research, we decided that a sensor design using a pair of CdS 
photo-resistor and a LED is best suited for our needs.  Figure 22 illustrates its 
operation and Figure 23 is the circuit drawing for the sensor. 
 

      

Output  

LEDpower
+V

V1
5V

D1
LED1

CdS
10k 40%

R2
47k

R1
100

Output  

LEDpower
+V

V1
5V

D1
LED1

CdS
10k 40%

R2
47k

R1
100

 
 

Figure 22. Wall Sensor   Figure 23. Wall Sensor Circuit 

 
The resistance of the CdS photoresistor is inversely related to the surrounding 
light intensity.  As the light intensity increases, the resistance of the CdS resistor 
drops.  We therefore incorporate the photoresistor in a voltage divider, creating a 
varying voltage level at the output node as shown in Figure 23.  As the sensor 
approaches the wall, the LED lights up the wall surface.  Depending on the 
amount of light reflected into the CdS cell, the output voltage gradually increases 
as the sensor moves closer to the wall.  

 



 18 

Initial testing of the Figure 22 set-up showed promising results: the voltage output 
varied from 2.5V when sensor was right in front of the wall to around 1.2V when 
there was no wall in front of it.  However upon further testing, we discovered that 
varying ambient light intensity on the maze wall resulted in a 0.5V output 
deviation at the desired stopping distance (wall clearance) of 3 cm. To reduce the 
interference from the ambient light, we decided to replace the original red LED 
with a super white LED which has a much greater intensity.  Testing revealed that 
at the desired stopping distance the sensor output already reached 3V, which 
means that the ambient light now contributes to much less of the overall reflected 
intensity.  Testing also showed that although the output is now consistent with 
different wall lighting, the output at the desired range still varies around 0.3V 
from one sensor to another due to the slight differences in the photoresistors.  In 
order to make the sensing distance more accurate across all sensors, software 
calibration is performed before each round of the game.  To reduce the current 
consumption of the LEDs we decided to modify the circuit to allow modulation to 
the LED power supply.  Instead of leaving the LEDs on all the time, the 
microcontroller only turns them on right before it polls the sensor data. 
 
5.2 Dot Counting Sensor 

 
Dot counting is an important feature for the Pac-Man game.  It allows Pac-Man to 
detect the dots, which are red LEDs, on the maze and to keep score of the number 
of dots that it has collected.  The circuit is simple and consists of one sensor, 
which is a photoresistor, three resistors and an op-amp as shown in Figure 24 in 
the following.  

 
Figure 24.  Dot Counting Circuit 

 
The sensor placed at the bottom of Pac-Man, approximately 3cm away from the 
floor of the maze.  When there is no light, the voltage measured across the 
positive terminal is around 0.6V (see connection diagram above).  When a red 
LED shines to the sensor, the measured voltage is approximately 1.1V.  
Therefore, the reference voltage is set to 0.96V by connecting a 20kΩ resistor and 
a 4.7kΩ resistor as shown in the diagram above.  Since the LEDs emit a narrow 
beam of light, the sensor in the center of Pac-Man sometimes cannot detect the 



 19 

red LED on the maze.  Therefore, the dot counting circuit is improved by placing 
two sensors side by side.   

 
The dot counting system should output a high signal if either one of the sensors or 
both sensors detect the LED.  Therefore, the outputs of both sensors are sent 
through an OR-gate.  The output signal from the OR-gate is then sent to the 
microcontroller. 

  
5.3 Pac-Man Tracking 

 
As Pac-Man roams round the maze, Ghost should be able to detect Pac-Man’s 
presence when they are within close proximity. Several implementations were 
considered including radio frequency for transmitting absolute position data, 
overhead camera for image processing, and sonar for detecting the rebounded 
signal from Pac-Man. However, we decided that the best way to implement this 
functionality is to mount an infrared beacon on Pac-Man, and wide-angle infrared 
receivers on Ghost. 
 
The basic concept is simple: Pac-Man transmits an infrared signal in 360-degree 
coverage.  Depending on the varying signal intensity of the infrared receivers, 
Ghost should be able to determine the general direction and distance of Pac-Man. 
 
The receiver modules we use are PNA4612 (Figure 25), which detects IR signal 
modulated at 38kHz.  Not only is PNA4612 sensitive to a specific transmitter 
frequency, but also it is sensitive to an emitter wavelength at around 960nm. 
These features make PNA4612 particularly attractive since it effectively blocks 
off IR interference.  The beacon detector on Ghost consists of four receiver 
modules arranged to detect signals from front, left, right and back. Testing results 
show that PNA4612’s detection range is well beyond the120cm requirement. 
Upon further testing, however, we discovered an unfavorable output 
characteristic.  The active low output signal becomes an aperiodic pulse train 
when the IR source is around a 90cm range. The length of the on-period of such a 
pulsing output is inversely related to the distance between 80cm and 100cm until 
the output becomes a flat 5V beyond 120cm. In order to convert such an irregular 
output into a usable signal, we fed the output to a low-pass filter to turn the pulse 
signal into a smooth analog voltage level, which can be easily interfaced with the 
microcontroller’s A/D converter.  (See Figure 26) 



 20 

    

Output  
C1

220nF

R9
1M

+V

V3
10VJ1

 
Figure 25. PNA4612    Figure 26. Beacon Receiver Circuit 

 
The IR beacon module on Pac-Man, as shown in Figure 27, consists of a 555 
timer used to produce a 38kHz square wave and IR emitters with a maximum 
output wavelength at 960nm.  The resister and capacitor values chosen were 
calculated by the following formula where T1 is the On period, and T2 is the Off 
period of the square wave. The duty circle is set at 60%: 

 
T1 = 0.6*(1/38000) 
T2 = 0.4*(1/38000) 
T1 = 0.693*( RA + RB)*C 
T2 = 0.693*RB*C 

 

Gnd
Trg
Out
Rst Ctl

Thr
Dis
Vcc

U1
555

+V

V2
5V

C
1nF10nF

RA
7.784k 40%

R8
680

RB
15K

R3
680

R7
680

R6
680

R5
680

R4
680

 
 

Figure 27. IR Beacon Circuit. 

 



 21 

Since the beacon signal needs to cover 360 degrees but each emitter only has a 
60-degree transmission angle, we arranged 6 emitters into a circle to form the IR 
beacon.  Both IR beacon and IR receivers are positioned on the top of the robots 
above the wall, so they are not obstructed as the robots move around the maze. 

   
5.4 Contact Sensor 
 
The contact sensor on both Pac-Man and Ghost uses a simple pull-down circuit to 
notify the microprocessor upon collision of the two robots.  The circuitry is as 
shown below in Figure 28.  The contact sensor is designed to be a ring 
surrounding the base of the robots. The circular shape was chosen to provide an 
all-around, large surface area for contact.  The ring is constructed with a flexible 
plastic support with brass strips mounted on it.  The conductive strips on the two 
rings are designed to be offset, so the contact would be detected by both robots. 
The contact sensor is shown below in Figure 28. 

 

 
Figure 28.  Contact Sensor 

 
5.5 LCD display 
 
The number of dots collected, as well as the number of times contacts are made 
are shown on the top layer of Pac-Man by an LCD display. Each time a dot is 
collected, the microcontroller will increment the dot count on the LCD display.  
The last two digits belong to the dot count, and the first digit is the contact count. 

 
Originally we intended to use LED 7-segment displays; however, due to current 
consideration, we changed our design to the less current intensive LCD 
technology.  Upon testing, we discovered that the segments on the LCD display 
fades quickly if we simply supply DC power to the segment pin.  The solution is 
to use a square wave to drive the display segments allowing the LCD to discharge 
during the off period.  Testing also shows that the frequency of the square wave 



 22 

affects the quality of the display.  At frequencies lower than 10Hz, the display 
flickers and at frequencies higher than 300Hz, the display begins to fade. As 
shown in Figure 29, we constructed another 555 timer to supply a square wave at 
around 100 Hz.  Meanwhile, CD4026, a decade counter with 7-segment outputs, 
are used for each digit displayed. The 100Hz square wave is connected to the 
output enable pin of CD4026, to produce a square wave output that drives the 
LCD pins. 

 

display

display

display

R14
2.7k

RB1

8.2k

10nF
C2
1nF

+V

V7
5V

Gnd
Trg
Out
Rst Ctl

Thr
Dis
Vcc

U2
555

R13

1k

R12
1k

R11
1k

+V

V6
5V

+V

V5
5V

+V

V4
5VR10

1k

life_in 

count_in

Reset   

P1
P2
P3
P4
P5
P6
P7
P8 P9

P10
P11
P12
P13
P14
P15
P16

CD4026

P1
P2
P3
P4
P5
P6
P7
P8 P9

P10
P11
P12
P13
P14
P15
P16

CD4026

P1
P2
P3
P4
P5
P6
P7
P8 P9

P10
P11
P12
P13
P14
P15
P16

CD4026

 
 

Figure 29. LCD display  
 
 
 
 



 23 

 
6.0 Microcontroller and Software 
 
 
Our microcontroller of choice was the Microchip PIC16F877.  MicroCore-11 
microcontrollers using the Motorola HC11 are provided by the lab but upon further 
consideration, they were rejected for a number of reasons.  The project consists of two 
robots, each of which requires a microcontroller.  One MicroCore-11 costs around $100 
and using two would already consume half of our budget constraint of $400. 
 
Financial issues aside, its functionality were also inadequate for our purposes.  
Interfacing with RF requires at least 3 pins to decode the four direction signals: up, down, 
left, and right, and also to indicate the presence of an RF signal.  Two stepper motors are 
used on each robot and each stepper motor driver chip requires 2 pins for stepping and 
direction, for a total of 4 pins.  An LCD display uses 3 pins for counting lives, score, and 
reset.  Ghost contact and maze-dot counting require 1 pin each for a total of 2.  Obstacle 
sensors use LEDs and this requires a minimum of 1 pin to power if we power them all 
together.  This already totals to a requirement of 13 pins, which exceeds the 12 digital 
pins available on the MicroCore-11. 
 
While searching for a microcontroller with a high pin count and minimal cost, we came 
across the Microchip PICmicro MCU series, with up to 32 I/O pins in the 40-pin package 
and a retail price of around $10, one-tenth of the price of a MicroCore-11.  Of the 
PICmicro series, we picked the PIC16F877 based on its popularity (a large amount of 
information and support from hobbyists were found on the Internet) and because it had 
the largest flash memory size of its class. 
 
Drawbacks of the PIC16F877 are that its memory size is slightly small at 8K x 14 words, 
(although it is expandable externally) and because it is not packaged in a module like the 
MicroCore-11.  Some of the external circuitry required on the PIC16F877 was a clock 
oscillator, which we chose to be at 4 MHz and a programmer to write to the flash 
memory.  The advantages, however, outweigh the drawbacks for our purposes even 
though we may start off more slowly because the programming could not begin until we 
built the programmer. 
 
There are essentially two software designs in the Pac-Man project—one for the Pac-Man 
robot and one for the Ghost.  Though they are very different in functionality and as a 
result, in implementation, they both play the central role in system integration.  Each 
robot also interfaces to different hardware modules and so these modules are discussed as 
separate software functions below. 
 

6.1 Pac-Man Robot 
 
The goal of the Pac-Man robot is to receive from the user wireless control signals 
to move it around the maze.  Obstacle sensors guide its navigation. As it traverses 
through the maze, it collects and counts the dots on the floor and displays it on an 



 24 

LCD.  If it comes in contact with the Ghost robot, it will freeze in shock for a few 
seconds before recovering. 
 
Six modules are identified in the Pac-Man robot that help it achieve its above 
goal. 

• Obstacle sensors (front, left, right) prevent Pac-Man from running into 
maze walls and help straighten itself if it is off-centred. 

• An LCD display shows the number of dots Pac-Man has collected and the 
number of times it has been caught by the Ghost. 

• RF controls the direction of movement of Pac-Man around the maze. 
• Stepper motors perform the actual movement of the robot. 
• The maze-dot sensor looks for the LEDs on the floor that it will “collect.” 
• The Ghost contact sensor notifies the event of being caught by the Ghost. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 30. Architectural model of Pac-Man software 

 
Given these modules, the pin assignments they require are laid out as follows.  
Note that the RF signal, Ghost contact, and maze-dot sensor are events that can 
happen at any point during the game so the pin assignments are chosen on pins 
38-40 such that they are handled by an interrupt service routine.  Also, pins 2-9 
are analog inputs so that right, left, and front obstacle sensors can estimate the 
distance from a wall as a function of the voltage input.  

PIC16F877 
Microcontroller 

RF Receiver 

Obstacle Sensors 
(front, left, right) 

LCD display 

Stepper Motors Ghost Contact 
Sensor Maze Dot Sensor 



 25 

 
Figure 31. Pin assignments for Pac-Man 

 
6.1.1 Obstacle Sensors  
 
We decided to control the power to the obstacle sensors with the PIC to 
reduce current consumption instead of having the sensor LEDs constantly 
power from our battery supply.  When the sensors are powered on, the left, 
right, and front obstacle sensors readings are valid. 

 
How the sensors readings represent the proximity to the maze walls is 
determined in the manual calibration stage when the robot is first turned 
on.  When the robot is being calibrated, measurements are taking to 
establish whether a signal represents the presence of a wall or not.  Also 
measured is the nearest acceptable distance to a sidewall before some 
adjustments are made for being off-centred. 
 
Voltage increases as a sensor approaches a wall so by establishing a 
threshold for the presence of a wall, any reading that is lower than this 
threshold assumes that there is no presence of a wall. 



 26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 32. Model of interface between PIC and obstacle sensors 

 
6.1.2 LCD Display 
 
The PIC sends three types of signals to the LCD depending on the event.  
In the case of a Ghost contact, the PIC sends an LCD lives signal 
indicating the number of times it has been hit.  When Pac-Man runs over a 
maze dot, it sends an LCD point signal indicating the number of dots it has 
collected.  Finally, an LCD reset signal is for initializing the display when 
a new game begins. 

 
 
 
 

 

Figure 33. Model of interface between PIC and LCD display 

 
6.1.3 RF Receiver 
 
The RF receiver interfaces with the PIC’s interrupt service routine because 
the user can press any button on the controller at any point in the game.  
This scenario was chosen because it was vital that the PIC did not miss 
any of the control signals, which may have resulted if the RF signals were 
received through polling. 

 
Three bits are used to communicate the four different directions.  The 
format is listed below. 
 

 

Obstacle Sensors 
Power 

PIC16F877 
Microcontroller 

Front Obstacle 
Sensor 

Right Obstacle 
Sensor 

Left Obstacle 
Sensor 

LCD display PIC16F877 
Microcontroller 



 27 

 

Table 2. RF signal format for Pac-Man movement 

 RF Interrupt RF Bit 1 RF Bit 0 
No signal 0 0 0 
North 1 0 0 
East 1 0 1 
West 1 1 0 
South 1 1 1 

 
 
 
 
 

Figure 34. Model of interface between PIC and RF receiver 

 
6.1.4 Stepper Motors 
 
The PIC controls each stepper motor through two pins to the stepper motor 
driver chip.  One pin controls the stepping pulse to the motor, hence 
controlling the speed, and the other controls the direction of the rotation, 
used in making stationary turns. 
 
The pulsing code is done through a timer interrupt routine, whose 16-bit 
timer counts at a rate of 1 MHz (one-quarter of our clock speed).  When 
the interrupt is called, we toggle the stepping pulse pin value from high to 
low or from low to high to simulate a square wave output. 
 
An interrupt is triggered when this 16-bit timer overflows from 0xFFFF to 
0x0000.  Hence, an interrupt is by default called at a rate of 

second
interrupts26.15

interrupt
counts2/

second
counts101 166 =× . However, we can increase 

the interrupt rate by setting the timer value to some number greater than 
0x0000 at every interrupt so that it counts from that number up to 0xFFFF 
instead of 0x0000 every time. 
 
Our target speed for Pac-Man is 20 cm/s.  To determine the rate of 
interrupts, we required some information about the physical robot 
dimensions.  They are summarized in the table below. 

Table 3. List of parameters needed to control motor speed 

Separation distance of wheels 11.5 cm 
Diameter of wheels 6 cm 
Degrees per step of stepper motor 7.5 

 

RF Receiver PIC16F877 
Microcontroller 



 
 
  
 
 
 
 

Figure 35. Sketch

To make a 90-degree turn, t
determined.  Since the dista
distance travelled by the arc

calculated.  Therefore, = rl

 
 
 
 
 
 
 
 
 
 
 

To make a stationary turn, t
between the two wheels as 
One wheel will turn 45 deg

backward.  Therefore, each 

To find the number of stepp
degrees, we calculate the nu

 

 1cm6
rotation 1  cm 

8
23 ××

π
π

Because our target speed is 
second required as 

rot 1
36

cm 6
rotation 1

second
cm 20 ××

π
 
To achieve a speed of 20 cm
51 Hz.  That means we need
ms or in other words, gener
 

6 cm

 

θ

  11.5 cm
 28 

 

 of wheel dimensions 

he distance travelled by one wheel was 
nce between the wheels is 11.5 cm, the 
 length l when θ is 90 degrees can be 

( ) ππθ
4
23

2
5.11 =





= cm. 

he distance l to be travelled is distributed 
2l  because each wheel will turn 45 degrees.  

rees forward, and the other will turn 45 degrees 

wheel travels π
8
23

2
1

4
23 =× cm. 

er pulses needed to turn each wheel 45 
mber of pulses as 

pulses 23
7.5
pulse 1

rotation
360 =

°
×°  

 
20 cm/s, we calculate the number of pulses per 

pulse
ms 6.19

second
pulses 51

7.5
pulse 1

ation
0 =≈

°
×°  

/s, we need to create a square wave of about 
 to toggle the stepper output twice every 19.6 

ate interrupts to toggle at 19.6 / 2 = 9.817 ms. 

l 

  11.5 cm 



 29 

We know that the timer counts at 1 MHz so that in 9.817 ms, the timer 
will do counts 9817  ms 9.817 MHz 1 =× .  If we set the timer value to be 
0xFFFF – 9817 = 55718 = 0xD9A6 at every interrupt, the timer will 
overflow every 9.817 ms, creating an interrupt in which we will toggle the 
stepper output to create a 51 Hz square wave.   
 

 
 
 
 
 
 
  

 

Figure 36. Model of interface between PIC and stepper motor drivers 
 

The diagram above shows how the PIC interfaces to the stepper motors. 
 

6.1.5 Ghost Contact Sensor 
 
The Ghost contact sensor is connected to an interrupt pin on the PIC 
because the Ghost can catch Pac-Man at any point during the game.  This 
prevents polling which is susceptible to missing the signal and holds up 
CPU time.  The following diagram models how the Ghost contact sensor 
is connected to the PIC. 

 
 
 
 
 

Figure 37. Model of interface between PIC and Ghost contact sensor 

 
6.1.6 Maze Dot Sensor 
 
The maze-dot sensor is connected to an interrupt pin on the PIC for the 
same reasons as the Ghost contact sensor. The following diagram models 
how the Maze dot sensor is connected to the PIC. 

 
 
 
 

 

Figure 38. Model of interface between PIC and maze dot sensor 

Left Stepper 
Motor Driver PIC16F877 

Microcontroller 
Right Stepper 
Motor Driver 

Maze Dot Sensor 
PIC16F877 

Microcontroller 

Ghost Contact 
Sensor 

PIC16F877 
Microcontroller 



 30 

6.2 Ghost Robot 
 
The goal of the Ghost robot is to roam the maze reading its beacon signal to 
estimate the current location of Pac-Man.  Having knowledge of the maze in 
advance, the Ghost solves for the shortest path to reach Pac-Man and moves to the 
estimated position.  It constantly does this until it contacts Pac-Man at which 
point it will freeze for a few seconds to allow Pac-Man to escape. 
  
Four modules are identified in the Ghost robot that help it achieve its above goal. 

• Obstacle sensors (front, left, right) prevent the Ghost from running into 
maze walls and help straighten itself if it is off-centred. 

• The beacon sensor reads a broadcast signal from Pac-Man and uses it to 
estimate the current position of Pac-Man 

• Stepper motors perform the actual movement of the robot. 
• The Pac-Man contact sensor notifies the event of having caught Pac-Man. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 39. Architectural model of Pac-Man software 

 
Pin assignments for the Ghost are similar to that of Pac-Man except for the 
modules that the Ghost do not have and the beacon sensor.  There are four beacon 
sensors, one to detect each of the four directions Pac-Man may be away from the 
Ghost.  They use analog pins 7, 8, 9, and 10. 

PIC16F877 
Microcontroller 

Pac-Man 
Beacon Sensor 

Obstacle Sensors 
(front, left, right) 

Stepper Motors Pac-Man 
Contact Sensor 



 31 

 
Figure 40. Pin assignments for the Ghost 

 
Because the obstacle sensor, stepper motors, and Pac-Man contact sensor are 
identical to that of Pac-Man’s, they require no repeat explanation here.  We will 
discuss the only thing unique to the Ghost in this section, the beacon sensor. 
 

6.2.1 Beacon Sensor 
 
The PIC receives four different beacon readings from the Pac-Man beacon 
broadcast signal, one for each of its four directions.  It uses these readings 
to estimate the position of Pac-Man.  The interface for these sensors to the 
PIC is modelled below. 
 

 
 
 
 
 
 
 
 

 

 
Figure 41. Model of interface between PIC and beacon sensors 

 

PIC16F877 
Microcontroller 

Front Beacon 
Sensor 

Left Beacon 
Sensor Right Beacon 

Sensor 

Back Beacon 
Sensor 



 32 

The beacon signal strength is a negative, non-linear function of Pac-Man’s 
distance from the Ghost.  For a 6x6 maze, we measure and plot the signal 
strength of the four beacon signals as follows. 
 

 

4.6 V 4.6 V 4.6 V 4.6 V 4.6 V 4.6 V 

4.6 V 4.6 V 4.6 V 4.6 V 4.6 V 3.55 
V 

4.6 V 4.6 V 4.6 V 4.6 V 4.5 V 0.19 
V 

4.6 V 4.6 V 4.6 V 4.6 V 0.33 
V 

0.05 
V 

4.6 V 4.53 
V 4.6 V 4.6 V 0.6 V 0.05 

V 

4.6 V 4.6 V 4.6 V 4.6 V 4.6 V 
Ghost 

 

Figure 42. Front beacon measurements of Pac-Man position 

 

4.6 V 4.6 V 4.6 V 4.6 V 4.6 V 4.6 V 

4.6 V 4.6 V 4.6 V 4.6 V 4.6 V 4.6 V 

4.6 V 4.6 V 4.6 V 2.6 V 4.6 V 4.6 V 

4.6 V 4.6 V 4.6 V 4.6 V 4.6 V 4.6 V 

4.6 V 4.53 
V 3.2 V 0.07 

V 0.6 V 4.3 V 

4.6 V 4.4 V 2.6 V 0.04 
V 

0.04 
V 

Ghost 

 

Figure 43. Left beacon measurements of Pac-Man position 

 



 33 

The measurements for the right and back are similar to that of the right and front 
and so we will rely on the above two measurements to determine Pac-Man’s 
position.  The measurements are very crude because the non-linear signal changes 
very fast for distances of Pac-Man between 2 and 3 cells away but we can 
generalize a few things about beacon sensors. 

• For readings from 0 V to 0.08 V on one sensor and 4.6 V on the other 
three, we will assume Pac-Man is in direct line-of-sight and is 1 or 2 cells 
away in the direction of that sensor.  We will assume 2 cells away unless 
that would place it beyond the boundaries of the maze. 

• For readings from 0.08 V to 3.8 V on one sensor and 4.6 V on the other 
three, we will assume Pac-Man is in direct line-of-sight and is 3 cells away 
in the direction of that sensor. 

• For readings from 3.8 V to 4.5 V on one sensor and 4.6 V on the other 
three, we will assume Pac-Man is in direct line-of-sight and is 4 cells away 
in the direction of that sensor. 

 
We will discard diagonal signal readings because of the added complexity to the 
estimation algorithm and justify it by reasoning that because Pac-Man is almost 
always constantly moving, it will cross the Ghost’s direct line-of-sight frequently 
enough for the estimation to be valid. 
 
From the estimation of Pac-Man’s position, the Ghost solves for the shortest route 
to Pac-Man’s position from its own current position using an algorithm called fast 
flooding, based on the Micromouse Information Centre at 
http://micromouse.cannock.ac.uk/maze/fastfloodsolver.htm. This algorithm marks 
the target goal, in this case Pac-Man’s estimated position, with a flag, and fills 
accessible neighbours with ascending numbers until all the cells have a number 
associated with it.  The Ghost then retrieves the number associated with its current 
position and moves to adjacent cells only if they have a lower number associated 
with it. 
 
The example below illustrates the algorithm.  It was taken from the Micromouse 
Information Centre in the above noted link.  In this example, G is the destination 
goal or in our case, Pac-Man’s estimated position, and S is the starting cell or in 
our case, Ghost’s current position.  Note how accessible adjacent neighbours are 
filled with increasing numbers.  From this, the robot will move to adjacent cells of 
decreasing numbers. 

http://micromouse.cannock.ac.uk/maze/fastfloodsolver.htm


 34 

 

    

    

    

  

  

Figure 44. Example of the maze fast flooding algorithm 



 35 

7.0 Maze 
 
 

The maze is the area in which Pac-Man and the Ghost travel.  There are 24 dots, 
represented by red LEDs, and 24 photoresistors on the floor of the maze.  Each dot is 
turned off after Pac-Man travels across it.     

 
Like the computer Pac-Man game, we wanted to create a setting in which Pac-Man can 
“eat dots.”  We came up with two approaches.  One was a mechanical design, which 
composes of a gate on the maze and a switching system under the floor.  The gate would 
be pushed open when Pac-Man travels across the gate.  Then, the switch that is connected 
to the gate will be opened and the “dot” will be turned off.  However, this design has 
many limitations.  For example, users need to manually set the gates back to the original 
position to reset.  Moreover, building the gate on the maze takes too much time, adds 
clutter to the maze and is unreliable.  Therefore, we decided to go with the second 
approach, which uses sensors to detect Pac-Man and turn off the LEDs.  The details of 
this design are discussed below. 
 

7.1 Physical Dimension 
 
We had two choices in the type of material to use for the maze: cardboard or 
wood.  We decided to go with wood since it was readily available from the 
machine shop.  The walls are painted white, since they work best for the obstacle 
detectors and the ground black.  The dimension of the maze is 122cm x 122 cm 
and is evenly divided into 36 squares – 6 rows and 6 columns.  The thickness of 
the walls is 2 cm; the positions of the walls are designed so that there are straight 
lanes and 90 degree turns in the maze (see Figure 45 below).  The width of each 
lane is 18.5 cm with 1- 2 mm tolerance.  

 

 
Figure 45. Maze Design 

 
The height of the outer walls is 22cm and the inner walls are 16cm high.  The 
outer walls were designed to be higher than the robots in order to avoid 
interferences, such as visible light and infrared, outside of the maze.  The inner 
walls are shorter than the robots so that the Ghost is able to locate Pac-Man 
throughout the maze with a beacon sensor.   



 36 

7.2 Dots 
 
The dots on the maze are implemented with CMOS chips and a simple circuit.  
The following is the connection diagram for one dot on the maze.  In general, a 
red LED is ‘ON’ at the beginning and after being reset.  Then, it is turned off 
when a sensor corresponded to the red LED senses a super bright white LED that 
is placed at the bottom off the Pac-Man robot.   

 
 

Figure 46. Dot Circuitry for the Maze (for one dot) 

   
The first part of the dot circuit is a comparator.  The comparator outputs low when 
light with certain intensity is sensed; otherwise, it outputs high.  As shown in the 
above diagram, the reference voltage is connected to the positive terminal and the 
photoresistor along with a 4.7k resistor, is connected to the negative terminal.  
When the sensor senses light, its resistance decreases.  As a result, the voltage to 
the negative terminal increases.  When the negative terminal voltage is higher 
than the positive terminal voltage, the comparator outputs zero. 

Rsk
RsV

+
=−

7.4
 

The voltage measured across the negative terminal is around 2.4V under the 
condition that all the lights in the room are turned on.  When a super bright white 
LED is located on top of the photoresistor, the measured negative terminal 
voltage is in a range from 3.8V-4.1V.  Therefore, the reference voltage that is 
connected to the positive terminal is set to 3.62V.  The design is good because it 
is sensitive only to the light emitted by the super bright white LEDs and it is 
stable. 
 
The second part of the dot circuit is a memory device.  After a light is sensed, it 
turns off a dot on the maze and saves the “OFF” stage until users reset the dot.  A 
NAND R/S latch (CD4044) is chosen.  The following is the truth table for the 
memory device. 

 



 37 

Table 4. Truth table of the Memory Device 
 S R Q 
Start 1 1 0 
No light 1 1 0 
Light 0 1 1 
No light 1 1 1 
Light 0 1 1 
Reset 0 0!1 0 
Start 0 1 1 
No light  1 1 1 
Reset 1 0!1 0 

 
The output from the comparator is connected to ‘S’ and a dipswitch is connected 
to ‘R’.  ‘R’ must be high while operating.  When ‘R’ is switched to low, all the 
red LEDs on the maze will be turn on again.  
  
The last part of the dot circuit is a switch.  CD4066, a bilateral switch is chosen.  
The output of the memory device is connected to ‘Control’ in the CD4066.  When 
‘Control’ is low, the dot is ‘ON’; when ‘Control’ is high, the dot is ‘OFF’ (see 
Figure 47 below). 

 
Figure 47. Timing diagram of the Switch (including CD4066, resistor, and capacitor) 

 
As shown in the above diagram, when ‘Control’ is low, the output of switch is 
equal to VDD.  However, when ‘Control’ is high, the output voltage never 
reaches 0V yet the output voltage is low enough to turn off the red LED.    
 
The dots on the maze are powered by a power supply in the lab.  In order to make 
the LEDs brighter, we inputted 12V to the dot circuit.   



 38 

8.0 Power 
 
 
8.1 Motor 
 
Our stepper motors require an output voltage of 12V to operate.  Since this was 
our highest voltage requirement, we used 12V as our base voltage and used 
regulators to supply power to the rest of the circuits.  Luckily, we were able to use 
one regulator to power all of the circuits since they all required the same input 
voltage of 5V. 
 
For our battery selection, we decided to use a rechargeable 12V Lead-Acid 
battery with a rating of 1200mA⋅h on Pac-Man and 10 rechargeable 1.2V Nickel-
Hydride AA batteries with a rating of 1600mA⋅h on the Ghost.  We recommend in 
the future that the AA batteries be used since they have a longer life and are 
lighter in weight in comparison to the Lead-Acid battery.  (The AA batteries were 
not used on both robots due to our budget restraints.) 
 
While testing the motors at low frequencies, we found that it was essential to have 
a well-regulated voltage from the battery source.  In order to ensure proper 
operation, we placed a decoupling capacitor across the 5V power and ground pins 
of the motor driver chips and across the 12V battery terminals.   
 
8.2 Controller 
 
The transmitter module for the controller circuit required a clean and well-
regulated voltage to operate efficiently.  A low pass filter was added to the 
transmitter module and a bypass capacitor to the logic ICs in cases when the 
quality of the power supply is poor.  Due to the transmitter’s low power 
consumption (6mA), we were able to use a rechargeable 9V Nickel-Hydride 
battery to power the module and the LM7805 5V regulator to power the other 
various components in the controller.  The total amount of current consumed by 
the controller is 10mA, which is well below the battery rating of 150mAh.  We 
found that this was enough to power the controller for several hours.   
 
8.3 Maze 
 
The LEDs and sensors placed on the maze are powered off the power supply since 
we opted that it would not be necessary to power them off a battery.  The voltage 
supplied to the LEDs, sensors and ICs were set to the maximum voltage rating of 
15V.  We wanted to maximize the voltage because we found that the brighter the 
LEDs on the maze, the easier it was for Pac-Man to detect it. 
 
 
 
 



 39 

8.4 Regulators 
 
Regulators were added to provide a constant output voltage to the variable load on 
both robots.  On Pac-Man, we used a LM7805 5V regulator to power all the 
circuitry.  This included the RF receiver module, the obstacle sensors, contact 
sensor, micro-controller, stepper motor driver chips, the LCD, and the beacon 
circuit.  The total amount of current consumed by all circuits is less than 1A, 
which was enough to meet the regulator’s specifications. 
 
On the Ghost, we decided to experiment with a 5V switching voltage regulator to 
send power to the micro-controller, obstacle sensor, contact sensor and beacon 
circuits.  See Figure 48 for the circuit set-up.  The switching regulator contains a 
52kHz internal frequency oscillator that allows it to output the input power as a 
pulse.  The regulator controls the pulse duration by using feedback as shown in 
Figure 49.  The width of the pulse changes based on the amount of output power 
required.  When the output power is small, the pulse duration is narrow and when 
the output power is large, the pulse duration is wider.   
 

 
 

Figure 48. LM2575 Circuit Schematic 

 

 
 

Figure 49. LM2575 Circuit Block Diagram 

 
 



 40 

Due to its switching operation, a switching regulator has higher efficiency than 
three pin regulators (used on Pac-Man).  A three pin regulator has lower 
efficiency because its input power is equal to its output power at all times whereas 
for a switching regulator, the output power is usually less than the input power 
since the amount sent out is determined by the amount of power required by the 
external circuits.  We recommend using a switching regulator on both robots in 
order to obtain higher efficiency for future considerations.  A switching regulator 
was not implemented on Pac-Man due to time constraints and limited resources.  



 41 

9.0 Recommendations 
 
 

RF 
 
In order to remove as much circuitry on Pac-Man as possible, we recommend 
designing a two-way communication link between the controller and Pac-Man.  
The LCD displaying the score and lives of Pac-Man could be displayed elsewhere 
in order to reduce the circuitry on Pac-Man, in addition to conserving power on 
the robot.   
 
Wall sensors  
 
A plastic casing can be built to improve the stability and consistency of the 
sensors. 
 
Beacon 
 
Currently there are four IR receivers on Ghost allowing it to detect Pac-Man in 
four directions.  For added tracking capability, two more receivers can be added 
to achieve 360-degree detection. 
  
LCD  
 
The LCD display used in our Pac-Man project is a simple 3-digit numeric display.  
For more display options, full-featured LCD modules are available at a reasonable 
price around $20.  
 
Microcontroller  
 
Having designed an on-board programming interface directly on the PCB instead 
of having to take the PIC in and out of the socket would have made 
reprogramming the PIC with new code easier and faster, and also reduce physical 
damage to the PIC itself.  This is supported through the In-Circuit Serial 
Programming (ICSP) interface specified by Microchip. 
 
Also, by modulating the obstacle sensor output and filtering the output from 60 
Hz, electrical line noise could have reduced the unpredictable interference from 
ambient room light, and made sensor readings and navigation more reliable.   
 
Finally, putting the obstacle and beacon sensor output through a properly 
designed non-linear amplifier could have made the sensor output reading more 
linearly proportional to the distance instead of how we have it dropping inverse 
square (or cube) to the distance. 



 42 

Motor 
 
When it comes to choosing motors for your robot, the most important factor is the 
torque.  Therefore, it is best to have estimated how much torque your robot will 
require before deciding on which motor to use.  The required torque can be 
calculated easily through Newton’s second law, F = ma, in combination with your 
desired wheel size.  Torque is typically specified using the following three units: 
g-cm (gram-centimeter), oz-in (ounce-inch), and mNm (milli-Newton-meter). 
 
Power 
 
As mentioned in the report, a switching regulator should be used on both robots in 
place of the three-pin regulator to increase the efficiency of the power used.  In 
addition, we recommend that a separate battery be used to power the logic circuits 
and RF modules since these devices, especially the RF, are sensitive to any 
glitches in the power supply. 

 



 43 

10.0 Conclusion 
  
 
The design and implementation of a Pac-Man game proved to be a challenging and 
rewarding experience.  While keeping the objectives of the EECE474 course in mind, we 
were able to successfully complete the integration of two robots – Pac-Man and Ghost - 
using wireless communication, sensors, motors, software, power and circuit design.   
 
After completing numerous tests and enhancements on our designs, the robot Pac-Man is 
able to traverse the maze following directional signals sent from a wireless user controller 
while the Ghost is able to automatically track Pac-Man down to the shortest path from 
one location to another in the maze.  Both robots are capable of aligning themselves to 
the middle of a lane and complete 90 degree and 180 degree turns while avoiding contact 
from walls.  Moreover, Pac-Man successfully is able to count and keep score of the 
number of dots it has collected and turn the dots off on the maze once they have been 
“eaten”.   
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES



 

APPENDIX A: Photo Gallery 
 

    
 

Pac-Man       Ghost 
 
 

  
 

Wireless Controller 



 

 
 

The game setting 



 

APPENDIX B:  PCB Layouts 
 
Pac-Man 
 
Bottom Layer (PIC, motor, contact sensor) 
 

 
 
 



 

Middle Layer (RF module, obstacle sensors, dot counting) 
 

 
 
Top Layer (beacon, LCD) 
 

 



 

Ghost 
 
Bottom Layer (PIC, motor, contact sensor) 
 

 
 
Top Layer (obstacle sensors, beacon) 
 

 



 

Controller 
 
RF module 
 

 
 
Encoder and Logic IC 
 

 
 



 

Maze  
 
LEDs and sensor circuit 
 

 



 

APPENDIX C: Expense Report 
 
 
Quantity Part  Source  Price Amount 

2 ¼ Wave Whip 418MHz Antenna DigiKey $3.29 $6.58 
1 RF Transmitter 418MHz DigiKey $36.41 $36.41 
1 RF Receiver 418MHz DigiKey $59.46 $59.46 
4 Stepper Motor 12VDC DigiKey $32.15 $128.60 
1 LM2575T-5.0 Switch Regulator DigiKey $4.27 $4.27 
6 Photo IC infrared 38kHz  DigiKey $2.93 $17.58 
4 SPDT Momentary Switches Active Electronics $7.49 $29.96 
2 PIC16F877 Active Electronics $10.79 $21.58 
4 UCN5804B Stepper Motor 

Driver 
HVW Technologies Inc. $10.00 $40.00 

1 12V Lead Acid Battery RadioShack $10.05 $10.05 
9 LEDs Lee's Electronic Components $3.42 $30.78 
30 Photoresistors Lee's Electronic Components $1.00 $30.00 
* Passive components EE Department  $40.00 
** Active components EE Department  $30.00 

TOTAL    $485.27 
     

10 AA 1.2V Batteries Donated  $40.00 
2 2 castors Donated  $15.00 

  TOTAL         $55.00 
    
 GRAND TOTAL  $540.27 
    
* resistors,capacitors,inductors,diodes,LEDs   
** MC145026, MC145027, LM555, CD4071, LM324,LM7805, CD4044, CD4066 

 
 
 
-Cost of donated items were estimated



 

APPENDIX D: Gantt chart   
 Week 1 

(May 6-
11) 

Week 2 
(May 12-18) 

Week 3 
(May 19-25) 

Week 4 
(May 26-
June 1) 

Week 5 
(June 2-8) 

Week 6 
(June 9-15) 

Week 7 
(June 16-22) 

Week 8 
(June 23-
June 29) 

Week 9 
(June 30-
July 5) 

Week 10 
(July 6-12) 

Week 11-12 
(July 13-26) 

Project Proposal            

Component 
research/selection  

           

Psuedo code write-up            
Obstacle sensor testing            

Dot sensor design/testing            

RF/encoder/decoder 
testing/integration 

           

DC motor testing            

RF controller integration 
with PIC 

           

Obstacle sensor integration 
with PIC 

           

Stepper motor testing            
Contact sensor design             
Beacon design/testing            
PCB layout II  
(due June 11) 

           

Chasis design/construction            

RF PCB testing            

RF/motor/obstacle 
integration with PIC 

           

Design maze layout            

Acquire/sand/paint ¾” wood 
for maze walls 

           

Acquire/test 5V switching 
regulator 

           

Acquire/test new stepper 
motors 

           

PCB board layout  
III (due June 25) 

           

PCB testing 
(PIC,motor,RF,obstacle 
sensors) 

           

System Integration/Testing            

PCB board layout  
IV (due July 9) 

           

Videotaping/final report            



 

APPENDIX E: Source Code 
 
Pac-Man Header File 
 
/************************************************************************/ 
/* EECE 474 Summer Semester 2002                                        */ 
/************************************************************************/ 
/*                                                                      */ 
/* Team 1 Pac-Man Microcontroller Code                                   */ 
/* ==================================                                   */ 
/*                                                                      */ 
/* Pac-Man code header file                                              */ 
/*                                                                      */ 
/************************************************************************/ 
 
// RF Constants 
#define RF_0   PIN_B0 // RF LSB pin 
#define RF_1   PIN_B1 // RF MSB pin 
#define RF_ON   PIN_B7 // RF incoming signal interrupt pin 
 
// Obstacle Sensor Constants 
// Note: higher sensor readings mean closer obstacle 
#define SENSOR_LED   PIN_D7 // input pin powering sensor LEDs 
#define SENSOR_VALID_DELAY  10 // time in ms for sensor read valid from sensor LED on 
#define OBSTACLE_LEFT  1 // analog channel AN0 
#define OBSTACLE_RIGHT  0 // analog channel AN1 
#define OBSTACLE_FRONT  2 // analog channel AN2 
 
// Other Sensor Constants 
#define CONTACT   PIN_B6 // Ghost contact sensor pin 
#define DOT_COUNT   PIN_B5 // maze dot eating/counting sensor pin 
 
// Motor Control Constants 
#define R_WHEEL   PIN_C1 // right wheel motor stepping pin 
#define L_WHEEL   PIN_C2 // left wheel motor stepping pin 
#define RIGHT_ANGLE_TURN  43 // number of pulses on one wheel to turn 90 degrees 
#define BACK_TURN   84 
#define L_WHEEL_DIR   PIN_D2 // left wheel direction pin 
#define R_WHEEL_DIR   PIN_D0 // right wheel direction pin 
#define L_FORWARD   1 // left wheel direction pin low is forward 
#define L_BACKWARD   0 // left wheel direction pin high is backward 
#define R_FORWARD   0 // right wheel direction pin high is forward 
#define R_BACKWARD   1 // right wheel direction pin low is backward 
#define ADJUST_AMT   1 // number of pulses to slow wheel down by when adjusting for off-
centre 
 
// LCD Constants 
#define LCD_RESET   PIN_D4 
#define LCD_LIVES   PIN_D6 
#define LCD_POINTS   PIN_D5 
#define DOT_COUNT_EXPIRE   20000 
 
#define CELL_SIZE           102     // number of pulses to traverse one step 
 
enum direction { N, E, S, W }; 
enum turn { RIGHT, LEFT, BACK, NONE }; 
 
// Function Prototypes 
void turn_right(); 
void turn_left(); 
void turn_backwards(); 
void stepper_timer(); 
void signal_change(); 
void read_obstacles( int &left, int &front, int &right ); 



 

Pac-Man Source Code 
 
/************************************************************************/ 
/* EECE 474 Summer Semester 2002                                        */ 
/************************************************************************/ 
/*                                                                      */ 
/* Team 1 Pac-Man Microcontroller Code                                   */ 
/* ==================================                                   */ 
/*                                                                      */ 
/* This program is for controlling the Pac-Man robot.  It is designed    */ 
/* for a Microchip PIC16F877 running with an oscillator frequency of 4  */ 
/* MHz.  It interfaces with the obstacle, Ghost contact, and dot-eating */ 
/* sensors, and radio frequency control to control the robot's stepper  */ 
/* motors for movement and the LCD display for user inteface.           */ 
/*                                                                      */ 
/************************************************************************/ 
 
#include <16F877.h> 
#include "Pac-Man.h" 
 
//#device adc=10 
#use delay (clock=4000000) 
#fuses XT, NOWDT, NOPROTECT 
 
int ob_left, ob_right, ob_front;  
short rf_enable = 0; 
short turn_enable = 0; 
int turn_counter = 0; 
short turn_180 = 0; 
short stop = 0; 
int adjust_counter = 0; 
short adjust_left = 0, adjust_right = 0; 
short dot_count_timer = 0; 
int dot_count_counter = 0; 
direction current_orient = N; 
short initial_start = 0; 
int cell_counter = 0; 
short turn_ready = 0; //used for pre-signaled turns 
int turn_delay_count = 0; // used to delay pre-signaled turns 
turn next_turn = NONE; 
 
int calibration_stage = 0; 
int FRONT_OBSTACLE = 105; 
int MAX_RIGHT = 0; 
int MAX_LEFT = 0; 
int MIN_RIGHT = 0; 
int MIN_LEFT = 0; 
int MIDDLE_RIGHT = 0; 
int MIDDLE_LEFT = 0; 
#define NUM_AVERAGES 1 
 
void read_obstacles( int &left, int &front, int &right ) 
{ 
 // turn on sensor LEDs 
 output_bit(SENSOR_LED, 1); 
 delay_ms(SENSOR_VALID_DELAY); 
 
 set_adc_channel( OBSTACLE_LEFT ); 
 delay_us(10); 
 left = read_adc(); 
 
 set_adc_channel( OBSTACLE_RIGHT ); 
 delay_us(10); 
 right = read_adc(); 
 
 set_adc_channel( OBSTACLE_FRONT ); 
 delay_us(10); 
 front = read_adc(); 
 
 // turn off sensor LEDs 
 output_bit(SENSOR_LED, 0); 
} 
 
void turn_right() 
{ 
 turn_enable = 1; 
 turn_180 = 0; 
 turn_counter = 0; 
 output_bit(L_WHEEL_DIR, L_FORWARD); 
 output_bit(R_WHEEL_DIR, R_BACKWARD); 
} 
 
void turn_left() 
{ 
 turn_enable = 1; 
 turn_180 = 0; 
 turn_counter = 0; 
 output_bit(L_WHEEL_DIR, L_BACKWARD); 
 output_bit(R_WHEEL_DIR, R_FORWARD); 
} 
 
void turn_backwards() 
{ 
 turn_counter = 0; 



 

 turn_enable = 1; 
 turn_180 = 1; 
 output_bit(L_WHEEL_DIR, L_BACKWARD); 
 output_bit(R_WHEEL_DIR, R_FORWARD); 
} 
 
short left_wheel = 0, right_wheel = 0; 
 
#INT_TIMER1 
void stepper_timer() 
{ 
 if (initial_start) 
 { 
  set_timer1(0xD9A6);                       // sets timer to interrupt in 9.8ms (for 20cm/s) 
   
  output_bit(L_WHEEL, left_wheel); 
  output_bit(R_WHEEL, right_wheel); 
   
  if (!turn_enable) 
  { 
   output_bit(L_WHEEL_DIR, L_FORWARD); 
   output_bit(R_WHEEL_DIR, R_FORWARD); 
    
   if ( (stop == 0) && (turn_ready == 1) ) // turn-delay in progress 
   { 
    turn_delay_count++; 
   } 
    
   if( !(turn_ready) )  
   {     
    if ((ob_right < MIN_RIGHT) && (next_turn == RIGHT)) //right side is open and a 
right turn is registered 
    { 
     turn_delay_count = 0; 
     turn_ready = 1; 
    } 
    else if ((ob_left < MIN_LEFT) && (next_turn == LEFT)) //left side is open and a 
left turn is registered 
    { 
     turn_delay_count = 0; 
     turn_ready = 1; 
    } 
   } 
   else  
   { 
    if( turn_delay_count == 75) 
    { 
     stop = 1; 
     turn_delay_count = 0; 
    } 
   } 
 
   if ( stop ) 
   { 
    switch (next_turn) 
    { 
    case LEFT: 
     turn_left(); 
     break; 
    case RIGHT: 
     turn_right(); 
     break; 
    case BACK: 
     turn_backwards(); 
     break; 
    } 
   } 
   else if (next_turn == BACK) 
   { 
    turn_backwards(); 
   } 
  } 
  else 
  { 
   turn_counter++; 
   if (!turn_180) 
   { 
    if (turn_counter == RIGHT_ANGLE_TURN) 
    { 
     turn_enable = 0; 
     turn_180 = 0; 
     turn_counter = 0; 
     next_turn = NONE; 
     turn_ready = 0; 
    } 
   } 
   else 
   { 
    if (turn_counter == BACK_TURN) 
    { 
     turn_enable = 0; 
     turn_180 = 0; 
      
      
     turn_counter = 0; 



 

     next_turn = NONE; 
     turn_ready = 0; 
    } 
   } 
  } 
   
  if ((!stop || turn_enable) && initial_start) 
  { 
   if (!adjust_left) 
   { 
    if(left_wheel) 
     left_wheel = 0; 
    else 
     left_wheel = 1; 
   } 
   else 
   { 
    adjust_counter++; 
    if (adjust_counter == ADJUST_AMT) 
    { 
     adjust_left = 0; 
     adjust_counter = 0; 
    } 
   } 
    
   if (!adjust_right) 
   { 
    if(right_wheel) 
     right_wheel = 0; 
    else 
     right_wheel = 1; 
   } 
   else 
   { 
    adjust_counter++; 
    if (adjust_counter == ADJUST_AMT) 
    { 
     adjust_right = 0; 
     adjust_counter = 0; 
    } 
   } 
  } 
  else 
  { 
   left_wheel = 0; 
   right_wheel = 0; 
  } 
   
 
  if ( input(DOT_COUNT) ) 
  { 
   output_bit(LCD_POINTS, 1); 
   dot_count_timer = 1; 
  } 
 
  if (dot_count_timer) 
  { 
   dot_count_counter++; 
   if (dot_count_counter == DOT_COUNT_EXPIRE) 
   { 
    output_bit(LCD_POINTS, 0); 
    dot_count_timer = 0; 
    dot_count_counter = 0; 
   } 
  } 
 } 
} 
 
#INT_RB 
void signal_change() 
{ 
 short rf1, rf0; 
 int i; 
 if ( input(RF_ON) ) 
 { 
  if( !initial_start ) 
  { 
   // calibration mode 
   if (calibration_stage == 0) // move robot in front of wall 
   { 
    // calibrate nearest front sensor distance 
    FRONT_OBSTACLE = 0; 
    for ( i = 0; i < NUM_AVERAGES; i++ ) 
    { 
     output_bit(SENSOR_LED, 1); 
     delay_ms(SENSOR_VALID_DELAY*10);     
     set_adc_channel( OBSTACLE_FRONT ); 
     delay_us(10); 
     FRONT_OBSTACLE += read_adc(); 
     output_bit(SENSOR_LED, 0); 
    } 
 
    FRONT_OBSTACLE /= NUM_AVERAGES; 
    calibration_stage++; 
   } 



 

 
   else if (calibration_stage == 1) 
   { 
    // calibrate nearest acceptable left and farthest acceptable right 
    // (before off-centre adjustment takes effect) 
     
    MAX_LEFT = 0; 
    MIDDLE_RIGHT = 0; 
 
    for ( i = 0; i < NUM_AVERAGES; i++ ) 
    { 
     output_bit(SENSOR_LED, 1); 
     delay_ms(SENSOR_VALID_DELAY*10);     
 
     set_adc_channel( OBSTACLE_LEFT ); 
     delay_us(10); 
     MAX_LEFT += read_adc(); 
 
     set_adc_channel( OBSTACLE_RIGHT ); 
     delay_us(10); 
     MIDDLE_RIGHT += read_adc(); 
 
     output_bit(SENSOR_LED, 0); 
    } 
 
    MAX_LEFT /= NUM_AVERAGES; 
    MIDDLE_RIGHT /= NUM_AVERAGES; 
 
    calibration_stage++; 
   } 
 
   else if (calibration_stage == 2) 
   { 
    // calibrate nearest acceptable right (before off-centre adjustment takes 
effect) 
    MAX_RIGHT = 0; 
    MIDDLE_LEFT = 0; 
 
    for ( i = 0; i < NUM_AVERAGES; i++ ) 
    { 
     output_bit(SENSOR_LED, 1); 
     delay_ms(SENSOR_VALID_DELAY*10);     
 
     set_adc_channel( OBSTACLE_RIGHT ); 
     delay_us(10); 
     MAX_RIGHT += read_adc(); 
 
     set_adc_channel( OBSTACLE_LEFT ); 
     delay_us(10); 
     MIDDLE_LEFT += read_adc(); 
 
     output_bit(SENSOR_LED, 0); 
    } 
 
    MAX_RIGHT /= NUM_AVERAGES; 
    MIDDLE_LEFT /= NUM_AVERAGES; 
 
    calibration_stage++; 
 
   } 
 
   else if (calibration_stage == 3) 
   { 
    // calibrate far left (no wall on left sensor) 
    MIN_LEFT = 0; 
 
    for ( i = 0; i < NUM_AVERAGES; i++ ) 
    { 
     output_bit(SENSOR_LED, 1); 
     delay_ms(SENSOR_VALID_DELAY*10);     
 
     set_adc_channel( OBSTACLE_LEFT ); 
     delay_us(10); 
     MIN_LEFT += read_adc(); 
 
     output_bit(SENSOR_LED, 0); 
    } 
  
    calibration_stage++; 
 
   } 
 
   else if (calibration_stage == 4) 
   { 
    // calibrate far right (no wall on right sensor) 
 
    MIN_RIGHT = 0; 
 
    for ( i = 0; i < NUM_AVERAGES; i++ ) 
    { 
     output_bit(SENSOR_LED, 1); 
     delay_ms(SENSOR_VALID_DELAY*10);     
 
     set_adc_channel( OBSTACLE_RIGHT ); 
     delay_us(10); 



 

     MIN_RIGHT += read_adc(); 
 
     output_bit(SENSOR_LED, 0); 
    } 
  
     calibration_stage++; 
   } 
   else if ( calibration_stage == 5) 
   { 
    initial_start = 1 ; //facing north initially 
 
    rf1 = input(RF_1); 
    rf0 = input(RF_0); 
 
    if ( !rf1 && !rf0 ) // north 
    { 
     next_turn = NONE; 
    } 
    else if ( rf1 && !rf0 ) // east 
    {  
     next_turn = RIGHT; 
    } 
    else if ( !rf1 && rf0 ) // west 
    { 
     next_turn = LEFT; 
    } 
    else // south 
    { 
     next_turn = BACK; 
    } 
   } 
  } 
  else 
  { 
   rf_enable = 1; 
 
   rf1 = input(RF_1); 
   rf0 = input(RF_0); 
 
   if ( !rf1 && !rf0 ) // north 
   { 
    switch (current_orient) 
    { 
    case N: 
     // move forward 
     next_turn = NONE; 
     break; 
    case E: 
     // turn left 
     next_turn = LEFT; 
     break; 
    case S: 
     // turn_backwards 
     next_turn = BACK; 
     break; 
    case W: 
     // turn right 
     next_turn = RIGHT; 
     break; 
    } 
    current_orient = N; 
   } 
   else if ( rf1 && !rf0 ) // west 
   { 
    switch (current_orient) 
    { 
    case N: 
     // turn left 
     next_turn = LEFT; 
     break; 
    case E: 
     // turn backwards 
     next_turn = BACK; 
     break; 
    case S: 
     // turn right 
     next_turn = RIGHT; 
     break; 
    case W: 
     // move forward 
     next_turn = NONE; 
     break; 
    } 
    current_orient = W; 
   } 
   else if ( !rf1 && rf0 ) // east 
   { 
   // stop = 1; 
    switch (current_orient) 
    { 
    case N: 
     // turn right 
     next_turn = RIGHT; 
     break; 
    case E: 



 

     // move forward 
     next_turn = NONE; 
     break; 
    case S: 
     // turn left 
     next_turn = LEFT; 
     break; 
    case W: 
     // turn backwards 
     next_turn = BACK; 
     break; 
    } 
    current_orient = E; 
   } 
   else // south 
   { 
    switch (current_orient) 
    { 
    case N: 
     // turn backwards 
     next_turn = BACK; 
     break; 
    case E: 
     // turn right 
     next_turn = RIGHT; 
     break; 
    case S: 
     // move forward 
     next_turn = NONE; 
     break; 
    case W: 
     // turn left 
     next_turn = LEFT; 
     break; 
    } 
    current_orient = S; 
   } 
  } 
 } 
 else 
 { 
  rf_enable = 0; 
 } 
 
 if ( input(CONTACT) ) 
  stop = 1; 
 else 
  stop = 0; 
 
 if ( input(DOT_COUNT) ) 
 { 
  output_bit(LCD_POINTS, 1); 
  dot_count_timer = 1; 
 } 
 
} 
 
main() 
{ 
 output_bit(LCD_RESET, 1); 
 delay_ms(1); 
 output_bit(LCD_RESET, 0); 
 
 setup_timer_1(T1_INTERNAL|T1_DIV_BY_1);   // setup interrupts 
 
 enable_interrupts(INT_TIMER1); 
 enable_interrupts(INT_RB); 
 enable_interrupts(GLOBAL); 
 
 setup_port_a(ALL_ANALOG); 
 setup_adc(adc_clock_internal); 
 
 output_bit(L_WHEEL_DIR, L_FORWARD);  // initial direction forward 
 output_bit(R_WHEEL_DIR, R_FORWARD);  // initial direction forward 
 
 output_bit(SENSOR_LED, 0); 
 
 while( initial_start == 0 ); 
 
 for( ; ; ) 
 { 
  read_obstacles( ob_left, ob_front, ob_right ); 
 
  if (ob_front > FRONT_OBSTACLE) 
  { 
   stop = 1; 
  // cell_counter = CELL_SIZE; 
  } 
  else 
  { 
   stop = 0; 
  } 
 
  if ( !turn_enable ) 
  { 



 

   if ( (ob_left > MAX_LEFT) || (ob_right > MAX_RIGHT) ) 
   { 
    if( ((signed int)(ob_left - MAX_LEFT)) < ((signed int)(ob_right - MAX_RIGHT)) ) 
    { 
     // adjust to right 
     adjust_right = 1; 
     adjust_left = 0; 
 
    } 
    else  // closer to right 
    { 
     // adjust to left 
     adjust_left = 1; 
     adjust_right = 0; 
    } 
   } 
   else 
   { 
    adjust_right = 0; 
    adjust_left = 0; 
   } 
  } 
 } 
} 



 

Ghost Header File 
 
/************************************************************************/ 
/* EECE 474 Summer Semester 2002                                        */ 
/************************************************************************/ 
/*                                                                      */ 
/* Team 1 Pac-Man Microcontroller Code                                   */ 
/* ==================================                                   */ 
/*                                                                      */ 
/* Ghost code header file                                               */ 
/*                                                                      */ 
/************************************************************************/ 
 
// Obstacle Sensor Constants 
// Note: higher sensor readings mean closer obstacle 
#define SENSOR_LED   PIN_D7 
#define SENSOR_VALID_DELAY 10  // time in ms for sensor read valid from sensor LED on 
 
#define OBSTACLE_LEFT  1  // analog channel for left sensor 
#define OBSTACLE_FRONT  2  // analog channel for front sensor 
#define OBSTACLE_RIGHT  0  // analog channel for right sensor 
 
// Other Sensor Constants 
#define CONTACT    PIN_B6 
 
// Motor Control Constants 
#define R_WHEEL    PIN_C1 
#define L_WHEEL    PIN_C2 
#define RIGHT_ANGLE_TURN 43  // number of pulses on one wheel to turn 90 degrees 
#define BACK_TURN   92 
#define L_WHEEL_DIR   PIN_D2 // left wheel direction pin 
#define R_WHEEL_DIR   PIN_D0 // right wheel direction pin 
#define L_FORWARD   1  // left wheel direction pin low is forward 
#define L_BACKWARD   0  // left wheel direction pin high is backward 
#define R_FORWARD   0  // right wheel direction pin high is forward 
#define R_BACKWARD   1  // right wheel direction pin low is backward 
#define ADJUST_AMT   1  // number of pulses to slow wheel down by when adjusting for 
off-centre 
 
// Beacon Sensor Constants 
#define BEACON_FRONT  4  // analog channel AN4 
#define BEACON_LEFT   5  // analog channel AN5 
#define BEACON_BACK   6  // analog channel AN6 
#define BEACON_RIGHT  7  // analog channel AN7 
 
// Maze Constants 
#define CELL_SIZE           102     // number of pulses to traverse one cell 
 
//temp 
//#define CELL_SIZE           2     // number of pulses to traverse one cell 
 
#define NUM_CELLS   36  // number of cells in maze 
#define NUM_X_CELLS   6  // number of cells in east-west direction 
#define NUM_Y_CELLS   6  // number of cells in north-south direction 
#define NORTH    0x01 
#define EAST    0x02 
#define SOUTH    0x04 
#define WEST    0x08 
#define INITIAL_X_POS  2  // startup x coordinate for Ghost 
#define INITIAL_Y_POS  2  // startup y coordinate for Ghost 
 
#define CALIBRATION_POWER PIN_B7 
#define CALIBRATION_GND  PIN_B1 
#define CALIBRATION_BUTTON PIN_B0 
 
enum direction { N, E, S, W }; 
 
// Beacon Constants 
enum Pac-Man_dir { PACFRONT, PACBACK, PACLEFT, PACRIGHT }; 
#define NEAR    4 
#define MIDDLE    179 
#define FAR     214 
 
// Function Prototypes 
void estimate_Pac-Man( signed int &x, signed int &y, int front, int back, int left, int right ); 
void solve( int x, int y ); // calculates shortest way to reach (x,y)  
                            // from current position and writes list  
                            // of moves in memory bank 3 starting with offset 0 
void go_forward(); 
void turn_right(); 
void turn_left(); 
void turn_backwards(); 
void stepper_timer(); 
void signal_change(); 
void read_obstacles( int &left, int &front, int &right ); 
void read_beacon( int &front, int &left, int &back, int &right ); 
void move( direction dir ); 
short wall_exists( int x, int y, direction dir ); 
short is_neighbour( int x, int y, direction dir ); 
int point_to_cell_number( signed int x, signed int y ); 
int beacon_minval( int front, int left, int back, int right ); 



 

Ghost Source Code 
 
/************************************************************************/ 
/* EECE 474 Summer Semester 2002                                        */ 
/************************************************************************/ 
/*                                                                      */ 
/* Team 1 Ghost Microcontroller Code                                    */ 
/* =================================                                    */ 
/*                                                                      */ 
/* This program is for controlling the Ghost robot.  It is designed for */ 
/* a Microchip PIC16F877 running with an oscillator frequency of 4 MHz */ 
/* It interfaces with the obstacle, Pac-Man contact, and Pac-Man beacon-  */ 
/* finding sensors.  The Ghost estimates the position of Pac-Man using   */ 
/* the beacon-finding sensors and with knowledge of its current         */ 
/* position, uses a flood-filling maze-solving algorithm to find the    */ 
/* shortest path to get to Pac-Man.                                      */ 
/*                                                                      */ 
/************************************************************************/ 
 
#include <16F877.h> 
#include "Ghost.h" 
 
#device PIC16F877 *=16 
//#device adc=10 
#use delay (clock=4000000) 
#fuses XT, NOWDT, NOPROTECT 
 
int turn_counter = 0; 
int cell_step_counter = 0; 
int adjust_counter = 0; 
direction current_orient = N; 
 
short next_move_ready = 1; 
short turn_enable = 0; 
short turn_180 = 0; 
short stop = 1; 
short adjust_left = 0, adjust_right = 0; 
short backturn_dir = 0; 
short initial_start = 0; 
 
int calibration_stage = 0; 
int FRONT_OBSTACLE = 245; 
int MAX_RIGHT = 0; 
int MAX_LEFT = 0; 
int MIN_RIGHT = 0; 
int MIN_LEFT = 0; 
int MIDDLE_RIGHT = 0; 
int MIDDLE_LEFT = 0; 
 
short pacpos_unknown = 0; 
 
int maze[NUM_CELLS] = 
 { 
  NORTH | WEST,  
  NORTH | SOUTH, 
  NORTH, 
  NORTH | SOUTH, 
  NORTH | SOUTH, 
  NORTH | EAST, 
  WEST | EAST, 
  WEST | NORTH, 
  SOUTH, 
  NORTH | SOUTH, 
  NORTH | EAST, 
  WEST | EAST, 
  WEST | EAST, 
  WEST | EAST, 
  NORTH | WEST | SOUTH, 
  NORTH, 
  0, 
  EAST, 
  SOUTH, 
  SOUTH, 
  NORTH, 
  EAST | SOUTH, 
  WEST | EAST, 
  WEST | EAST, 
  NORTH | WEST, 
  NORTH | SOUTH, 
  0, 
  NORTH | SOUTH, 
  EAST | SOUTH, 
  WEST | EAST, 
  WEST | SOUTH, 
  NORTH | SOUTH, 
  SOUTH, 
  NORTH | SOUTH, 
  NORTH | SOUTH, 
  EAST | SOUTH 
 }; 
 
//  _ _ _ _ _ _  --> increasing x 
// |  _   _ _  | 
// | |  _ _  | | 



 

// | | |_      | 
// |_ _   _| | | 
// |  _   _ _| | 
// |_ _ _ _ _ _| 
// 
// || 
// \/ 
// increasing y 
 
int current_x_pos = INITIAL_X_POS; 
int current_y_pos = INITIAL_Y_POS; 
 
short wall_exists( int x, int y, direction dir ) 
{ 
 int cell_no, cell_walls; 
 cell_no = (y*NUM_X_CELLS) + x; 
 
 if ((maze[cell_no] | NORTH) && (dir == N)) 
  return 1; 
 else if ((maze[cell_no] | EAST) && (dir == E)) 
  return 1; 
 else if ((maze[cell_no] | SOUTH) && (dir == S)) 
  return 1; 
 else if ((maze[cell_no] | WEST) && (dir == W)) 
  return 1; 
 return 0; 
} 
 
void move( direction dir ) // move direction one cell 
{ 
 switch (dir) 
 { 
 case N: 
  switch (current_orient) 
  { 
  case N: 
   // move forward 
   go_forward(); 
   break; 
  case E: 
   // turn left 
   turn_left(); 
   break; 
  case S: 
   // turn_backwards 
   turn_backwards(); 
   break; 
  case W: 
   // turn right 
   turn_right(); 
   break; 
  } 
  current_orient = N; 
  break; 
 
 case E: 
  switch (current_orient) 
  { 
  case N: 
   // turn right 
   turn_right(); 
   break; 
  case E: 
   // move forward 
   go_forward(); 
   break; 
  case S: 
   // turn left 
   turn_left(); 
   break; 
  case W: 
   // turn backwards 
   turn_backwards(); 
   break; 
  } 
  current_orient = E; 
  break; 
 
 case W: 
  switch (current_orient) 
  { 
  case N: 
   // turn left 
   turn_left(); 
   break; 
  case E: 
   // turn backwards 
   turn_backwards(); 
   break; 
  case S: 
   // turn right 
   turn_right(); 
   break; 
  case W: 
   // move forward 



 

   go_forward(); 
   break; 
  } 
  current_orient = W; 
  break; 
 
 case S: 
  switch (current_orient) 
  { 
  case N: 
   // turn backwards 
   turn_backwards(); 
   break; 
  case E: 
   // turn right 
   turn_right(); 
   break; 
  case S: 
   // move forward 
   go_forward(); 
   break; 
  case W: 
   // turn left 
   turn_left(); 
   break; 
  } 
  current_orient = S; 
  break; 
 } 
} 
 
void estimate_Pac-Man( signed int &x, signed int &y, int front, int back, int left, int right ) 
{ 
 
 Pac-Man_dir pacdir; 
 int minvalue; 
 int cells_away = 0; 
 int random; 
 
 pacdir = PACFRONT; 
 minvalue = front; 
  
 if ( minvalue > back ) 
 { 
  minvalue = back; 
  pacdir = PACBACK; 
 } 
 if ( minvalue > left ) 
 { 
  minvalue = left; 
  pacdir = PACLEFT; 
 } 
 if ( minvalue > right ) 
 { 
  minvalue = right; 
  pacdir = PACRIGHT; 
 } 
 
 if ( minvalue < FAR ) 
 { 
  if ( minvalue <= NEAR ) 
   cells_away = 2; 
  else if ( minvalue <= MIDDLE ) 
   cells_away = 3; 
  else if ( minvalue <= FAR ) 
   cells_away = 4; 
   
  switch( pacdir ) 
  { 
  case PACFRONT: 
   switch( current_orient ) 
   { 
   case N: 
    x = current_x_pos; 
    y = current_y_pos - cells_away; 
    break; 
   case S: 
    x = current_x_pos; 
    y = current_y_pos + cells_away; 
    break; 
   case E: 
    x = current_x_pos + cells_away; 
    y = current_y_pos; 
    break; 
   case W: 
    x = current_x_pos - cells_away; 
    y = current_y_pos; 
    break; 
   } 
   break; 
 
  case PACLEFT: 
   switch( current_orient ) 
   { 
   case N: 



 

    x = current_x_pos - cells_away; 
    y = current_y_pos; 
    break; 
   case S: 
    x = current_x_pos + cells_away; 
    y = current_y_pos; 
    break; 
   case E: 
    x = current_x_pos; 
    y = current_y_pos - cells_away; 
    break; 
   case W: 
    x = current_x_pos; 
    y = current_y_pos + cells_away; 
    break; 
   } 
   break; 
    
  case PACRIGHT: 
   switch( current_orient ) 
   { 
   case N: 
    x = current_x_pos + cells_away; 
    y = current_y_pos; 
    break; 
   case S: 
    x = current_x_pos - cells_away; 
    y = current_y_pos; 
    break; 
   case E: 
    x = current_x_pos; 
    y = current_y_pos + cells_away; 
    break; 
   case W: 
    x = current_x_pos; 
    y = current_y_pos - cells_away; 
    break; 
   } 
   break; 
   
  case PACBACK: 
   switch( current_orient ) 
   { 
   case N: 
    x = current_x_pos; 
    y = current_y_pos - cells_away; 
    break; 
   case S: 
    x = current_x_pos; 
    y = current_y_pos + cells_away ; 
    break; 
   case E: 
    x = current_x_pos - cells_away; 
    y = current_y_pos; 
    break; 
   case W: 
    x = current_x_pos + cells_away; 
    y = current_y_pos; 
    break; 
   } 
   break; 
  }   
 } 
 else 
 { 
  random = get_timer1(); 
  x = (random/10)%6; 
  y = random%6; 
  // random Pac-Man position estimate 
 } 
} 
 
short is_neighbour( int x, int y, direction dir ) 
{ 
 int walls; 
 walls = maze[point_to_cell_number(x,y)]; 
  
 if ( dir == N ) 
 { 
  if ( walls & NORTH ) 
   return 0; 
  else 
   return 1; 
 } 
  
 else if ( dir == E ) 
 { 
  if ( walls & EAST ) 
   return 0; 
  else 
   return 1; 
 } 
 
 else if ( dir == S ) 
 { 



 

  if ( walls & SOUTH ) 
   return 0; 
  else 
   return 1; 
 } 
 
 else // dir == W 
 { 
  if ( walls & WEST ) 
   return 0; 
  else 
   return 1; 
 } 
  
} 
 
void solve( int x, int y ) 
{ 
 // maze solving algorithm to get to point pos from current position with fast flooding 
 int queue_x[NUM_CELLS], queue_y[NUM_CELLS]; // holds queue of cells to calculate distance 
 int goal_distance[NUM_CELLS]; // holds each cell's distance from point pos 
 int neigh_cell_x, neigh_cell_y; 
 int queue_count = 0, queue_index = 0, curr_cell_dist = 0; // for solving maze 
 int i; 
 int curr_pos_dist, neigh_pos_dist; // for creating roadmap 
 int curr_cell_x, curr_cell_y; 
 
 // initialize frontier array 
 for ( i = 0; i < NUM_CELLS; i++ ) 
 { 
  goal_distance[i] = 0xFF; 
 } 
 goal_distance[point_to_cell_number(x,y)] = curr_cell_dist; 
 
 // add target point pos to queue 
 queue_x[0] = x; 
 queue_y[0] = y; 
 queue_count++; 
 
 while(queue_count > 0) 
 { 
        queue_count--; 
  curr_cell_x = queue_x[queue_index]; 
  curr_cell_y = queue_y[queue_index]; 
  curr_cell_dist = goal_distance[point_to_cell_number(curr_cell_x, curr_cell_y)]; 
  queue_index++; 
 
  if ( curr_cell_dist != 0xFF ) 
  { 
   // check all neighbours for accessibility 
   if ( is_neighbour(curr_cell_x, curr_cell_y, N) ) 
   { 
    neigh_cell_x = curr_cell_x; 
    neigh_cell_y = curr_cell_y - 1; 
     
    if ( goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] == 0xFF ) 
    { 
     goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] = 
curr_cell_dist + 1; 
     queue_x[queue_index + queue_count] = neigh_cell_x; 
     queue_y[queue_index + queue_count] = neigh_cell_y; 
     queue_count++; 
    }     
   } 
    
   if ( is_neighbour(curr_cell_x, curr_cell_y, E) ) 
   { 
    neigh_cell_x = curr_cell_x + 1; 
    neigh_cell_y = curr_cell_y; 
     
    if ( goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] == 0xFF ) 
    { 
     goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] = 
curr_cell_dist + 1; 
     queue_x[queue_index + queue_count] = neigh_cell_x; 
     queue_y[queue_index + queue_count] = neigh_cell_y; 
     queue_count++; 
    }     
   } 
    
   if ( is_neighbour(curr_cell_x, curr_cell_y, S) ) 
   { 
    neigh_cell_x = curr_cell_x; 
    neigh_cell_y = curr_cell_y + 1; 
     
    if ( goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] == 0xFF ) 
    { 
     goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] = 
curr_cell_dist + 1; 
     queue_x[queue_index + queue_count] = neigh_cell_x; 
     queue_y[queue_index + queue_count] = neigh_cell_y; 
     queue_count++; 
    }     
   } 
    



 

   if ( is_neighbour(curr_cell_x, curr_cell_y, W) ) 
   { 
    neigh_cell_x = curr_cell_x - 1; 
    neigh_cell_y = curr_cell_y; 
     
    if ( goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] == 0xFF ) 
    { 
     goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] = 
curr_cell_dist + 1; 
     queue_x[queue_index + queue_count] = neigh_cell_x; 
     queue_y[queue_index + queue_count] = neigh_cell_y; 
     queue_count++; 
    }     
   } 
  } 
 } 
 
 // create roadmap 
  curr_pos_dist = goal_distance[point_to_cell_number(current_x_pos, current_y_pos)]; 
 curr_cell_x = current_x_pos; 
 curr_cell_y = current_y_pos; 
 
 for ( i= 0; curr_pos_dist > 0; i++ ) 
 { 
  // check north 
  neigh_cell_x = curr_cell_x; 
  neigh_cell_y = curr_cell_y - 1; 
 
  if ( (neigh_cell_x < NUM_X_CELLS) && (neigh_cell_y < NUM_Y_CELLS) ) 
  { 
   if ( goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] < curr_pos_dist ) 
   { 
    // add to roadmap 
    curr_pos_dist = goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)]; 
    write_bank(3, i, NORTH); 
    curr_cell_x = neigh_cell_x; 
    curr_cell_y = neigh_cell_y; 
    continue; 
   } 
  } 
 
  // check east 
  neigh_cell_x = curr_cell_x + 1; 
  neigh_cell_y = curr_cell_y; 
   
  if ( (neigh_cell_x < NUM_X_CELLS) && (neigh_cell_y < NUM_Y_CELLS) ) 
  { 
   if ( goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] < curr_pos_dist ) 
   { 
    // add to roadmap 
    curr_pos_dist = goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)]; 
    write_bank(3, i, EAST); 
    curr_cell_x = neigh_cell_x; 
    curr_cell_y = neigh_cell_y; 
    continue; 
   } 
  } 
 
  // check south 
  neigh_cell_x = curr_cell_x; 
  neigh_cell_y = curr_cell_y + 1; 
   
  if ( (neigh_cell_x < NUM_X_CELLS) && (neigh_cell_y < NUM_Y_CELLS) ) 
  { 
   if ( goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] < curr_pos_dist ) 
   { 
    // add to roadmap 
    curr_pos_dist = goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)]; 
    write_bank(3, i, SOUTH); 
    curr_cell_x = neigh_cell_x; 
    curr_cell_y = neigh_cell_y; 
    continue; 
   } 
  } 
 
  // check west 
  neigh_cell_x = curr_cell_x - 1; 
  neigh_cell_y = curr_cell_y; 
   
  if ( (neigh_cell_x < NUM_X_CELLS) && (neigh_cell_y < NUM_Y_CELLS) ) 
  { 
   if ( goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)] < curr_pos_dist ) 
   { 
    // add to roadmap 
    curr_pos_dist = goal_distance[point_to_cell_number(neigh_cell_x, neigh_cell_y)]; 
    write_bank(3, i, WEST); 
    curr_cell_x = neigh_cell_x; 
    curr_cell_y = neigh_cell_y; 
    continue; 
   } 
  } 
 } 
 write_bank(3, i, 0); 
 
 // clean up 



 

 queue_count = 0, queue_index = 0, curr_cell_dist = 0; 
} 
 
int point_to_cell_number( signed int x, signed int y ) 
{ 
 int pos_y; 
 int pos_x; 
 
 pos_y = y; 
 pos_x = x; 
 
 if (x > 5) 
  pos_x = 5; 
 else if (x < 0) 
  pos_x = 0; 
 
 if (y > 5) 
  pos_y = 5; 
 else if (y < 0) 
  pos_y = 0; 
 
 return (pos_y*NUM_X_CELLS) + pos_x; 
} 
 
void read_obstacles( int &left, int &front, int &right ) 
{ 
 // turn on sensor LEDs 
 output_bit(SENSOR_LED, 1); 
 delay_ms(SENSOR_VALID_DELAY); 
 
 set_adc_channel( OBSTACLE_LEFT ); 
 delay_us(10); 
 left = read_adc(); 
 
 set_adc_channel( OBSTACLE_FRONT ); 
 delay_us(10); 
 front = read_adc(); 
  
 set_adc_channel( OBSTACLE_RIGHT ); 
 delay_us(10); 
 right = read_adc(); 
 
 // turn off sensor LEDs 
 output_bit(SENSOR_LED, 0); 
} 
 
void read_beacon( int &front, int &left, int &back, int &right ) 
{ 
 set_adc_channel( BEACON_FRONT ); 
 delay_us(10); 
 front = read_adc(); 
 
 set_adc_channel( BEACON_LEFT ); 
 delay_us(10); 
 left = read_adc(); 
  
 set_adc_channel( BEACON_BACK ); 
 delay_us(10); 
 back = read_adc(); 
 
 set_adc_channel( BEACON_RIGHT ); 
 delay_us(10); 
 right = read_adc(); 
} 
 
void go_forward() 
{ 
 cell_step_counter = 0; 
 stop = 0; 
 next_move_ready = 0; 
 turn_enable = 0; 
 turn_180 = 0; 
 turn_counter = 0; 
 
 output_bit(L_WHEEL_DIR, L_FORWARD); 
 output_bit(R_WHEEL_DIR, R_FORWARD); 
} 
 
void turn_right() 
{ 
 cell_step_counter = 0; 
 stop = 0; 
 next_move_ready = 0; 
 turn_enable = 1; 
 turn_180 = 0; 
 turn_counter = 0; 
 
 output_bit(L_WHEEL_DIR, L_FORWARD); 
 output_bit(R_WHEEL_DIR, R_BACKWARD); 
} 
 
void turn_left() 
{ 
 cell_step_counter = 0; 
 stop = 0; 



 

 next_move_ready = 0; 
 turn_enable = 1; 
 turn_180 = 0; 
 turn_counter = 0; 
 
 output_bit(L_WHEEL_DIR, L_BACKWARD); 
 output_bit(R_WHEEL_DIR, R_FORWARD); 
} 
 
void turn_backwards() 
{ 
 cell_step_counter = 0; 
 stop = 0; 
 next_move_ready = 0; 
 turn_enable = 1; 
 turn_180 = 1; 
 turn_counter = 0; 
 
 if (backturn_dir) 
 { 
  backturn_dir = 0; 
  output_bit(L_WHEEL_DIR, L_BACKWARD); 
  output_bit(R_WHEEL_DIR, R_FORWARD); 
 } 
 else 
 { 
  backturn_dir = 1; 
  output_bit(L_WHEEL_DIR, L_FORWARD); 
  output_bit(R_WHEEL_DIR, R_BACKWARD); 
 } 
} 
 
short left_wheel = 0, right_wheel = 0; 
 
int beacon_minval( int front, int left, int back, int right ) 
{ 
 int minvalue; 
 minvalue = front; 
 
 if( left < minvalue ) 
 { 
  minvalue = left; 
 } 
  
 if( back < minvalue ) 
 { 
  minvalue = back; 
 } 
  
 if( right < minvalue ) 
 { 
  minvalue = right; 
 } 
 
 return minvalue; 
} 
 
#INT_TIMER1 
void stepper_timer() 
{ 
 if (initial_start) 
 { 
  set_timer1(0xE152);                       // sets timer to interrupt in 7.853981634ms (for 64 Hz 
wave) 
   
  output_bit(L_WHEEL, left_wheel); 
  output_bit(R_WHEEL, right_wheel); 
   
  if (!turn_enable && !next_move_ready) 
  { 
   if ( cell_step_counter++ >= CELL_SIZE ) 
   { 
    cell_step_counter = 0; 
    next_move_ready = 1; 
    stop = 1; 
   } 
   output_bit(L_WHEEL_DIR, L_FORWARD); 
   output_bit(R_WHEEL_DIR, R_FORWARD); 
  } 
  else if (turn_enable) 
  { 
   turn_counter++; 
   if (!turn_180) 
   { 
    if (turn_counter == RIGHT_ANGLE_TURN) 
    { 
     turn_enable = 0; 
     turn_180 = 0; 
     turn_counter = 0; 
    } 
   } 
   else 
   { 
    if (turn_counter == BACK_TURN) 
    { 



 

     turn_enable = 0; 
     turn_180 = 0;                                                                                   
     turn_counter = 0; 
    } 
   } 
  } 
   
  if (!stop || turn_enable) 
  { 
   if (!adjust_left || turn_enable) 
   { 
    if(left_wheel) 
     left_wheel = 0; 
    else 
     left_wheel = 1; 
   } 
   else 
   { 
    adjust_counter++; 
    if (adjust_counter == ADJUST_AMT) 
    { 
     adjust_left = 0; 
     adjust_counter = 0; 
    } 
   } 
    
   if (!adjust_right || turn_enable ) 
   { 
    if(right_wheel) 
     right_wheel = 0; 
    else 
     right_wheel = 1; 
   } 
   else 
   { 
    adjust_counter++; 
    if (adjust_counter == ADJUST_AMT) 
    { 
     adjust_right = 0; 
     adjust_counter = 0; 
    } 
   } 
  } 
  else 
  { 
   left_wheel = 0; 
   right_wheel = 0; 
  } 
 } 
} 
 
#INT_RB 
void signal_change() 
{ 
 if ( input(CONTACT) ) 
  stop = 1; 
 else 
  stop = 0; 
} 
 
main() 
{ 
 int i; 
 int ob_left, ob_right, ob_front; 
 int beacon_l, beacon_f, beacon_r, beacon_b; 
    signed int Pac-Man_pos_x, Pac-Man_pos_y; 
 int next_move; 
 
 write_bank(3, 0, 0); // initializing memory bank 3 which will hold list of moves calculated from solve 
 
 output_bit(SENSOR_LED, 0); 
 
 setup_timer_1(T1_INTERNAL|T1_DIV_BY_1); // setup interrupts 
 
 output_bit(CALIBRATION_POWER, 1); 
 output_bit(CALIBRATION_GND, 0); 
 
 enable_interrupts(INT_TIMER1); 
 enable_interrupts(INT_RB); 
 enable_interrupts(GLOBAL); 
 
 setup_port_a(ALL_ANALOG); 
 setup_adc(adc_clock_internal); 
 
 output_bit(L_WHEEL_DIR, L_FORWARD); // initial direction forward 
 output_bit(R_WHEEL_DIR, R_FORWARD); // initial direction forward 
 
 while( initial_start == 0 ) 
 { 
  if ( input(CALIBRATION_BUTTON) ) 
  { 
   while (input(CALIBRATION_BUTTON)); 
 
   // calibration mode 
   if (calibration_stage == 0) // move robot in front of wall 



 

   { 
    // calibrate nearest front sensor distance 
    FRONT_OBSTACLE = 0; 
    output_bit(SENSOR_LED, 1); 
    delay_ms(SENSOR_VALID_DELAY*10); 
    set_adc_channel( OBSTACLE_FRONT ); 
    delay_us(10); 
    FRONT_OBSTACLE += read_adc(); 
    output_bit(SENSOR_LED, 0); 
     
    calibration_stage++; 
   } 
    
   else if (calibration_stage == 1) 
   { 
    // calibrate nearest acceptable left and farthest acceptable right 
    // (before off-centre adjustment takes effect) 
    MAX_LEFT = 0; 
     
    output_bit(SENSOR_LED, 1); 
    delay_ms(SENSOR_VALID_DELAY*10); 
 
    set_adc_channel( OBSTACLE_LEFT ); 
    delay_us(10); 
    MAX_LEFT += read_adc(); 
     
    output_bit(SENSOR_LED, 0); 
     
    calibration_stage++; 
   } 
    
   else if (calibration_stage == 2) 
   { 
    // calibrate nearest acceptable right (before off-centre adjustment takes 
effect) 
    MAX_RIGHT = 0; 
    MIDDLE_LEFT = 0; 
     
    output_bit(SENSOR_LED, 1); 
    delay_ms(SENSOR_VALID_DELAY*10); 
     
    set_adc_channel( OBSTACLE_RIGHT ); 
    delay_us(10); 
    MAX_RIGHT += read_adc(); 
     
    output_bit(SENSOR_LED, 0); 
     
    calibration_stage++; 
     
   } 
    
   else if (calibration_stage == 3) 
   { 
    // calibrate far left (no wall on left sensor) 
    MIN_LEFT = 0; 
     
    output_bit(SENSOR_LED, 1); 
    delay_ms(SENSOR_VALID_DELAY*10); 
     
    set_adc_channel( OBSTACLE_LEFT ); 
    delay_us(10); 
    MIN_LEFT += read_adc(); 
     
    output_bit(SENSOR_LED, 0); 
     
    calibration_stage++; 
   } 
    
   else if (calibration_stage == 4) 
   { 
    // calibrate far right (no wall on right sensor) 
    MIN_RIGHT = 0; 
     
    output_bit(SENSOR_LED, 1); 
    delay_ms(SENSOR_VALID_DELAY*10); 
     
    set_adc_channel( OBSTACLE_RIGHT ); 
    delay_us(10); 
    MIN_RIGHT += read_adc(); 
     
    output_bit(SENSOR_LED, 0); 
   
    calibration_stage++; 
   } 
 
   else if (calibration_stage == 5) 
   { 
    initial_start = 1; 
   } 
  } 
 } 
 
 delay_ms(5000); 
 
 for( ; ; ) 



 

 { 
  // Look for Pac-Man's beacon signal 
  read_beacon( beacon_f, beacon_l, beacon_b, beacon_r ); 
   
  if (beacon_minval(beacon_f, beacon_l, beacon_b, beacon_r) > FAR) 
   pacpos_unknown = 1; 
 
  estimate_Pac-Man(Pac-Man_pos_x, Pac-Man_pos_y, beacon_f, beacon_b, beacon_l, beacon_r); 
  solve(Pac-Man_pos_x, Pac-Man_pos_y); 
   
  next_move = read_bank(3, 0); 
  for ( i = 0; next_move != 0; i++ ) 
  { 
   if (pacpos_unknown) 
   { 
    read_beacon( beacon_f, beacon_l, beacon_b, beacon_r ); 
    if (beacon_minval(beacon_f, beacon_l, beacon_b, beacon_r) < FAR) 
     break; 
   } 
 
   next_move = read_bank(3, i); 
   if (next_move == NORTH) 
   { 
    current_y_pos--; 
    move( N ); 
   } 
   else if (next_move == EAST) 
   { 
    current_x_pos++; 
    move( E ); 
   } 
   else if (next_move == SOUTH) 
   { 
    current_y_pos++; 
    move( S ); 
   } 
   else if (next_move == WEST) 
   { 
    current_x_pos--; 
    move( W ); 
   } 
    
   while (!next_move_ready) // while not ready, adjust position (make all below inside the 
while loop) 
   { 
    read_obstacles( ob_left, ob_front, ob_right ); 
     
    if (ob_front > FRONT_OBSTACLE) 
    { 
     stop = 1; 
    } 
    else 
     stop = 0; 
     
    if ( !turn_enable ) 
    { 
     if ( (ob_left > MAX_LEFT) || (ob_right > MAX_RIGHT) ) 
     { 
      if( ((signed int)(ob_left - MAX_LEFT)) < ((signed 
int)(ob_right - MAX_RIGHT)) ) 
      { 
       // adjust to right 
       adjust_right = 1; 
       adjust_left = 0; 
      } 
      else  // closer to right 
      { 
       // adjust to left 
       adjust_left = 1; 
       adjust_right = 0; 
      } 
     } 
    } 
   } 
    
   // recalibrate Ghost's known position if currently facing a wall 
   if ( wall_exists(current_x_pos, current_y_pos, current_orient) ) 
   { 
    while ( ob_front < FRONT_OBSTACLE ) // if no front wall found when there should 
be one 
    { 
     // move forward until there is a front obstacle 
     read_obstacles( ob_left, ob_front, ob_right ); 
     go_forward(); 
    } 
    stop = 1; 
   } 
  } 
  stop = 1; 
 } 
} 

 


	APPENDIX A: Photo Gallery
	APPENDIX B: PCB Layouts
	APPENDIX C: Expense Report
	L
	List of Tables
	List of Figures
	Abstract
	1.0	Introduction
	2.0	Chassis
	2.1	Motor Mounts
	2.2	PCB Mounts
	2.3	Body

	3.0	Motors
	3.1	Motor Selection
	3.2	Motor Control

	4.0	Radio Frequency Application
	RF Considerations
	4.2	Wireless Input Controller
	4.2.1	Encoding scheme logic
	4.2.2	Encoder and Decoder
	4.2.2.1	Error detection and filtering

	4.2.3	RF Modules


	5.0	Sensors
	5.1	Wall detection
	5.2	Dot Counting Sensor
	5.3	Pac-Man Tracking
	5.4	Contact Sensor
	5.5	LCD display

	6.0	Microcontroller and Software
	6.1	Pac-Man Robot
	6.1.1	Obstacle Sensors
	6.1.2	LCD Display
	6.1.3	RF Receiver
	6.1.4	Stepper Motors
	6.1.4	Stepper Motors
	6.1.5	Ghost Contact Sensor
	6.1.6	Maze Dot Sensor

	6.2	Ghost Robot
	6.2.1	Beacon Sensor


	7.0	Maze
	7.1	Physical Dimension
	7.2	Dots

	8.0	Power
	8.1	Motor
	8.2	Controller
	8.3	Maze
	8.4	Regulators

	9.0	Recommendations
	
	
	
	RF
	Beacon
	LCD
	Microcontroller
	Motor
	Power




	10.0	Conclusion
	
	
	
	
	APPENDIX A: Photo Gallery





	A
	
	
	
	
	APPENDIX B:  PCB Layouts
	Pac-Man




	Ghost
	Controller
	Maze

	APPENDIX D: Gantt chart

