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Series Introduction

Many textbooks have been written on control engineering, describing new
techniques for controlling systems, or new and better ways of mathematically
formulating existing methods to solve the ever-increasing complex problems
faced by practicing engineers. However, few of these books fully address the
applications aspects of control engineering. It is the intention of this new
series to redress this situation.

The series will stress applications issues, and not just the mathematics of
control engineering. It will provide texts that present not only both new and
well-established techniques, but also detailed examples of the application of
these methods to the solution of real-world problems. The authors will be
drawn from both the academic world and the relevant applications sectors.

There are already many exciting examples of the application of control
techniques in the established fields of electrical, mechanical (including
aerospace), and chemical engineering. We have only to look around in today’s
highly automated society to see the use of advanced robotics techniques in
the manufacturing industries; the use of automated control and navigation
systems in air and surface transport systems; the increasing use of intelligent
control systems in the many artifacts available to the domestic consumer
market; and the reliable supply of water, gas, and electrical power to the
domestic consumer and to industry. However, there are currently many
challenging problems that could benefit from wider exposure to the
applicability of control methodologies, and the systematic systems-oriented
basis inherent in the application of control techniques.

This series presents books that draw on expertise from both the academic
world and the applications domains, and will be useful not only as
academically recommended course texts but also as handbooks for
practitioners in many applications domains. Nonlinear Control Systems is
another outstanding entry in Dekker’s Control Engineering series.
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Preface

The word ‘robot’ was introduced by the Czech playwright Karel Capek in
his 1920 play Rossum’s Universal Robots. The word ‘robota’ in Czech
means simply ‘work’. In spite of such practical beginnings, science fiction
writers and early Hollywood movies have given us a romantic notion of
robots. The anthropomorphic nature of these machines seems to have
introduced into the notion of robot some element of man’s search for his
own identity.

The word ‘automation’ was introduced in the 1940’s at the Ford Motor
Company, a contraction for ‘automatic motivation’. The single term
‘automation’ brings together two ideas: the notion of special purpose robotic
machines designed to mechanically perform tasks, and the notion of an
automatic control system to direct them.

The history of automatic control systems has deep roots. Most of the
feedback controllers of the Greeks and Arabs regulated water clocks for the
accurate telling of time; these were made obsolete by the invention of the
mechanical clock in Switzerland in the fourteenth century. Automatic control
systems only came into their own three hundred years later during the
industrial revolution with the advent of machines sophisticated enough to
require advanced controllers; we have in mind especially the windmill and
the steam engine. On the other hand, though invented by others (e.g.
T.Newcomen in 1712) the credit for the steam engine is usually assigned to
James Watt, who in 1769 produced his engine which combined mechanical
innovations with a control system that allowed automatic regulation. That
is, modern complex machines are not useful unless equipped with a suitable
control system.

Watt’s centrifugal fly ball governor in 1788 provided a constant speed
controller, allowing efficient use of the steam engine in industry. The motion
of the flyball governor is clearly visible even to the untrained eye, and its
principle had an exotic flavor that seemed to many to embody the spirit of
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the new age. Consequently the governor quickly became a sensation
throughout Europe.

Master-slave telerobotic mechanisms were used in the mid 1940’s at Oak
Ridge and Argonne National Laboratories for remote handling of radioactive
material. The first commercially available robot was marketed in the late
1950’s by Unimation (nearly coincidentally with Sputnik in 1957-thus the
space age and the age of robots began simultaneously). Like the flyball
governor, the motion of a robot manipulator is evident even for the untrained
eye, so that the potential of robotic devices can capture the imagination.
However, the high hopes of the 1960’s for autonomous robotic automation
in industry and unstructured environments have generally failed to materialize.
This is because robotics today is at the same stage as the steam engine was
shortly after the work of Newcomen in 1712.

Robotics is an interdisciplinary field involving diverse disciplines such as
physics, mechanical design, statics and dynamics, electronics, control theory,
sensors, vision, signal processing, computer programming, artificial
intelligence (AI), and manufacturing. Various specialists study various limited
aspects of robotics, but few engineers are able to confront all these areas
simultaneously. This further contributes to the romanticized nature of
robotics, for the control theorist, for instance, has a quixotic and fanciful
notion of AI.

We might break robotics into five major areas: motion control, sensors
and vision, planning and coordination, AI and decision-making, and
manmachine interface. Without a good control system, a robotic device is
useless. The robot arm plus its control system can be encapsulated as a
generalized data abstraction; that is, robot-plus-controller is considered a
single entity, or ‘agent’, for interaction with the external world.

The capabilities of the robotic agent are determined by the mechanical
precision of motion and force exertion capabilities, the number of degrees of
freedom of the arm, the degree of manipulability of the gripper, the sensors,
and the sophistication and reliability of the controller. The inputs for a robot
arm are simply motor currents and voltages, or hydraulic or pneumatic
pressures; however, the inputs for the robot-plus-controller agent can be
desired trajectories of motion, or desired exerted forces. Thus, the control
system lifts the robot up a level in a hierarchy of abstraction.

This book is intended to provide an in-depth study of control systems
for serial-link robot arms. It is a revised and expended version of our 1993
book. Chapters have been added on commercial robot manipulators and
devices, neural network intelligent control, and implementation of advanced
controllers on actual robotic systems. Chapter 1 places this book in the
context of existing commercial robotic systems by describing the robots
that are available and their limitations and capabilities, sensors, and
controllers.
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We wanted this book to be suitable either for the controls engineer or the
roboticist. Therefore, Appendix A provides a background in robot kine-
matics and Jacobians, and Chapter 2 a background in control theory and
mathematical notions. The intent was to furnish a text for a second course
in robotics at the graduate level, but given the background material it is used
at UTA as a first year graduate course for electrical engineering students.
This course was also listed as part of the undergraduate curriculum, and the
undergraduate students quickly digested the material.

Chapter 3 introduces the robot dynamical equations needed as the basis
for controls design. In Appendix C and examples throughout the book are
given the dynamics of some common arms. Chapter 4 covers the essential
topic of computed-torque control, which gives important insight while also
bringing together in a unified framework several sorts of classical and modern
robot control schemes.

Robust and adaptive control are covered in Chapters 5 and 6 in a parallel
fashion to bring out the similarities and the differences of these two
approaches to control in the face of uncertainties and disturbances. Chapter
7 addresses some advanced techniques including learning control and arms
with flexible joint coupling.

Modern intelligent control techniques based on biological systems have
solved many problems in the control of complex systems, including unknown
non-parametrizable dynamics and unknown disturbances, backlash, friction,
and deadzone. Therefore, we have added a chapter on neural network control
systems as Chapter 8. A robot is only useful if it comes in contact with its
environment, so that force control issues are treated in Chapter 9.

A key to the verification of successful controller design is computer
simulation. Therefore, we address computer simulation of controlled
nonlinear systems and illustrate the procedure in examples throughout the
text. Simulation software is given in Appendix B. Commercially available
packages such as MATLAB make it very easy to simulate robot control
systems.

Having designed a robot control system it is necessary to implement it;
given today’s microprocessors and digital signal processors, it is a short step
from computer simulation to implementation, since the controller subroutines
needed for simulation, and contained in the book, are virtually identical to
those needed in a microprocessor for implementation on an actual arm. In
fact, Chapter 10 shows the techniques for implementing the advanced
controllers developed in this book on actual robotics systems.

All essential information and controls design algorithms are displayed in
tables in the book. This, along with the List of Examples and List of Tables
at the beginning of the book make for convenient reference by the student,
the academician, or the practicing engineer.

We thank Wei Cheng of Milagro Design for her LATEXtypesetting and
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figure preparation as well as her scanning in the contents from the first edition
into electronic format.

F.L.Lewis, Arlington, Texas
D.M.Dawson, Clemson, South Carolina
C.T.Abdallah, Albuquerque, New Mexico
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Chapter 1

Commercial Robot
Manipulators

This chapter sets the stage for this book by providing an overview of
commercially available robotic manipulators, sensors, and controllers. We
make the point that if one desires high performance flexible robotic workcells,
then it is necessary to design advanced control systems for robot manipulators
such as are found in this book.

1.1 Introduction

When studying advanced techniques for robot control, planning, sensors,
and human interfacing, it is important to be aware of the systems that are
commercially available. This allows one to develop new technology in the
context of existing technology, which allows one to implement the new
techniques on existing robotic systems.

A National Association of Manufacturer’s report [NAM 1998] states that
the two most important drivers for US commercial business manufacturing
success in the 1990’s have been reconfigurable manufacturing workcells and
local area networks in the factory. In this chapter we discuss flexible robotic
workcells, commercial robot configurations, commercial robot controllers,
information integration to the internet, and robot workcell sensors. More
information on these topics can be found in the Mechanical Engineering
Handbook [Lewis 1998] and the Computer Science Engineering Handbook
[Lewis and Fitzgerald 1997].

Copyright © 2004 by Marcel Dekker, Inc.
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Flexible Robotic Workcells

In factory automation and elsewhere it was once common to use fixed
layouts built around conveyors or other transportation systems in which
each robot performed a specific task. These assembly lines had distinct
workstations, each performing a dedicated function. Robots have been
used at the workstation level to perform operations such as assembly,
drilling, surface finishing, welding, palletizing, and so on. In the assembly
line, parts are routed sequentially to the workstations by the transport
system. Such systems are very expensive to install, require a cadre of
engineering experts to design and program, and are extremely difficult to
modify or reprogram as needs change. In today’s high-mix low-volume
(HMLV) manufacturing scenario, these characteristics tolled the death knell
for such rigid antiquated designs.

Figure 1.1.1: UTA’s Automation and Robotics Test Cell.

In the assembly line, the robot is restricted by placing it into a rigid
sequential system. Robots are versatile machines with many capabilities,
and their potential can be significantly increased by using them as a basis
for flexible robotic workcells [Decelle 1988], [Jamshidi et al. 1992], [Pugh
1983] such as the UTA Automation and Robotics Test Cell in Figure 1.1.1.
In the flexible robotic workcell, robots are used for part handling, assembly,
and other process operations. By reprogramming the robots one changes the
entire functionality of the workcell. The workcell is designed to make full
use of the workspace of the robots, and components such as milling machines,
drilling machines, vibratory part feeders, and so on are placed within the
robots’ workspaces to allow servicing by the robots. Contrary to the assembly
line, the physical layout does not impose a priori a fixed sequencing of the
operations or jobs. Thus, as product requirements change, all that is required
is to reprogram the workcell in software [Mireles and Lewis 2001]. The
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workcell is ideally suited to emerging HMLV conditions in manufacturing
and elsewhere.

The rising popularity of robotic workcells has taken emphasis away from
hardware design and placed new emphasis on innovative software techniques
and architectures that include planning, coordination, and control (PC&C)
functions. A great deal of research into robot controllers has been required
to give robots the flexibility, precision, and functionality needed in modern
flexible workcells. The remainder of this book details such advanced control
techniques.

1.2 Commercial Robot Configurations and Types

Much of the information in this section was prepared by Mick Fitzgerald,
who was then Manager at UTA’s Automation and Robotics Research Institute
(ARRI).

Robots are highly reliable, dependable and technologically advanced
factory equipment. The majority of the world’s robots are supplied by
established companies using reliable off-the-shelf component technologies.
All commercial industrial robots have two physically separate basic
elements—the manipulator arm and the controller. The basic architecture of
most commercial robots is fundamentally the same, and consists of digital
servocontrolled electrical motor drives on serial-link kinematic machines,
usually with no more than six axes (degrees of freedom). All are supplied
with a proprietary controller. Virtually all robot applications require
significant design and implementation effort by engineers and technicians.
What makes each robot unique is how the components are put together to
achieve performance that yields a competitive product. The most important
considerations in the application of an industrial robot center on two issues:
manipulation and integration.

Manipulator Performance

The combined effects of kinematic structure, axis drive mechanism design,
and real-time motion control determine the major manipulation performance
characteristics: reach and dexterity, pay load, quickness, and precision.
Caution must be used when making decisions and comparisons based on
manufacturers’ published performance specifications because the methods
for measuring and reporting them are not standardized across the industry.
Usually motion testing, simulations, or other analysis techniques are used to
verify performance for each application.

Reach is characterized by measuring the extent of the workspace described
by the robot motion and dexterity by the angular displacement of the

1.2 Commercial Robot Configurations and Types
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individual joints. Some robots will have unusable spaces such as dead zones,
singular poses, and wrist-wrap poses inside of the boundaries of their reach.

Payload weight is specified by the manufacturers of all industrial robots.
Some manufacturers also specify inertial loading for rotational wrist axes. It
is common for the payload to be given for extreme velocity and reach
conditions. Weight and inertia of all tooling, workpieces, cables and hoses
must be included as part of the payload.

Quickness is critical in determining throughput but difficult to determine
from published robot specifications. Most manufacturers will specify a
maximum speed of either individual joints or for a specific kinematic tool
point. However, average speed in a working cycle is the quickness
characteristic of interest.

Precision is usually characterized by measuring repeatability. Virtually
all robot manufacturers specify static position repeatability. Accuracy is
rarely specified, but it is likely to be at least four times larger than
repeatability. Dynamic precision, or the repeatability and accuracy in
tracking position, velocity, and acceleration over a continuous path, is not
usually specified.

Common Kinematic Configurations

All common commercial industrial robots are serial-link manipulators,
usually with no more than six kinematically coupled axes of motion. By
convention, the axes of motion are numbered in sequence as they are
encountered from the base on out to the wrist. The first three axes account
for the spatial positioning motion of the robot; their configuration
determines the shape of the space through which the robot can be positioned.
Any subsequent axes in the kinematic chain generally provide rotational
motions to orient the end of the robot arm and are referred to as wrist
axes. In a robotic wrist, three axes usually intersect to generate true

kinematic analysis of the spherical robot wrist mechanism. Note that in
our 3-dimensional space, one requires three degrees of freedom for fully
independent spatial positioning and three degrees of freedom for fully
independent orientational positioning.

There are two primary types of motion that a robot axis can produce
in its driven link- either revolute or prismatic. Revolute joints are
anthropomorphic (e.g. like human joints) while prismatic joints are able
to extend and retract like a car radio antenna. It is often useful to classify
robots according to the orientation and type of their first three axes.
There are four very common commercial robot configurations:
Articulated, Type I SCARA, Type II SCARA, and Cartesian. Two other
configurations, Cylindrical and Spherical, are now much less common.

Copyright © 2004 by Marcel Dekker, Inc.
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Appendix C contains the dynamics of some common robot manipulators
for use in controls simulation in this book.

Figure 1.2.1: Articulated Arm. Six-axis CRS A465 arm (courtesy of CRS
robotics).

Figure 1.2.2: Type I SCARA Arm. High precision, high speed midsized SCARA I.
(courtesy of Adept Technologies, Inc.).

1.2 Commercial Robot Configurations and Types
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Articulated Arms. The variety of commercial articulated arms, most of

are re volute. The second and third axes are co-planar and work together
to produce motion in a vertical plane. The first axis in the base is vertical
and revolves the arm to sweep out a large work volume. Many different
types of drive mechanisms have been devised to allow wrist and forearm
drive motors and gearboxes to be mounted close to the first and second
axis of rotation, thus minimizing the extended mass of the arm. The
workspace efficiency of well designed articulated arms, which is the degree
of quick dexterous reach with respect to arm size, is unsurpassed by other
arm configurations when five or more degrees of freedom are needed. A
major limiting factor in articulated arm performance is that the second
axis has to work to lift both the subsequent arm structure and the pay
load. Historically, articulated arms have not been capable of achieving
accuracy as high as other arm configurations, as all axes have joint angle
position errors which are multiplied by link radius and accumulated for
the entire arm.

Type I SCARA. The Type I SCARA (selectively compliant assembly robot

in the horizontal plane. The arm structure is weight-bearing but the first and
second axes do no lifting. The third axis of the Type I SCARA provides work
volume by adding a vertical or z axis. A fourth revolute axis will add rotation
about the z axis to control orientation in the horizontal plane. This type of
robot is rarely found with more than four axes. The Type I SCARA is used
extensively in the assembly of electronic components and devices, and it is
used broadly for the assembly of small- and mediumsized mechanical
assemblies.

configuration, differs from Type I in that the first axis is a long vertical
prismatic z stroke which lifts the two parallel revolute axis and their links.
For quickly moving heavier loads (over approximately 75 pounds) over longer
distance (more than about three feet), the Type II SCARA configuration is
more efficient than the Type I.

Cartesian Coordinate Robots. Cartesian coordinate robots use orthogonal
prismatic axes, usually referred to as x, y, and z, to translate their end-effector
or payload through their rectangular workspace. One, two, or three revolute
wrist axes may be added for orientation. Commercial robot companies supply
several types of Cartesian coordinate robots with workspace sizes ranging
from a few cubic inches to tens of thousands of cubic feet, and payloads
ranging to several hundred pounds. Gantry robots, which have an elevated
bridge structure, are the most common Cartesian style and are well suited to

Copyright © 2004 by Marcel Dekker, Inc.
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material handling applications where large areas and/or large loads must be
serviced. They are particularly useful in applications such as arc welding,
waterjet cutting, and inspection of large complex precision parts.

Modular Cartesian robots, see Figure 1.2.4, are also commonly available
from several commercial sources. Each module is a self-contained completely

Figure 1.2.3: Type II SCARA (courtesy of Adept Technologies, Inc.).

Figure 1.2.4: Cartesian Robot. Three-axis robot constructed from modular single-
axis motion modules (courtesy of Adept Technologies, Inc.).

1.2 Commercial Robot Configurations and Types

Copyright © 2004 by Marcel Dekker, Inc.
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functional single-axis actuator; the modules may be custom assembled for
special-purpose applications.

Spherical and Cylindrical Coordinate Robots. The first two axes of the
spherical coordinate robot, Figure 1.2.5, are revolute and orthogonal to
one another, and the third axis provides prismatic radial extension. The
result is a natural spherical coordinate system with a spherical work volume.
The first axis of cylindrical coordinate robots, Figure 1.2.6, is a revolute
base rotation. The second and third are prismatic, resulting in a natural
cylindrical motion. Commercial models of Spherical and Cylindrical robots
were originally very common and popular in machine tending and material
handling applications. Hundreds are still in use but now there are only a
few commercially available models. The decline in use of these two
configurations is attributed to problems arising from use of the prismatic
link for radial extension/retraction motion; a solid boom requires clearance
to fully retract.

Figure 1.2.5: Hydraulic powered spherical robot (courtesy Kohol Systems, Inc.).

Parallel-Link Manipulators. For some special purpose applications, parallel-
link robots are more suitable than serial link robots. These robots generally
have three or six links in parallel, each link attached to a fixed base and to a
moving working platform. See Figure 1.2.7. With proper design, a six-link
parallel-link manipulator can have six degrees of freedom motion of the
working platform. The military Link trainer is a large parallellink robot
moving a pilot’s seat. These robots have greater stiffness and precision than
serial-link robots, where the positioning errors of each link are compounded
as one moves outwards from the base. Thus, lightweight parallel-link robots

Copyright © 2004 by Marcel Dekker, Inc.
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are able to precisely move large loads. These robots have been used for
example in machining and surface finishing of precision industrial and
aerospace components such as bulkheads and air vehicle outer skins.

Figure 1.2.6: Cylindrical arm using scissor mechanism for radial prismatic motion
(courtesy of Yamaha Robotics).

The parallel-link robot is a closed-kinematic-chain system, and as such is
relatively difficult to analyze [Liu and Lewis 1993]. The control system design
problem is more difficult for these robots.

Drive Types of Commercial Robots

The vast majority of commercial industrial robots use electric servo-motor
drives with speed reducing transmissions. Both AC and DC motors are
popular. Some servo-hydraulic articulated arm robots are available now for
painting applications. It is rare to find robots with servo-pneumatic drive
axes. All types of mechanical transmissions are used, but the tendency is
toward low- and zero-backlash type drives. Some robots use direct drive
methods to eliminate the amplification of inertia and mechanical backlash
associated with other drives. Joint angle position sensors, required for real-
time servo-level control, are generally considered an important part of the
drive train. Less often, velocity feedback sensors are provided.

1.2 Commercial Robot Configurations and Types

Copyright © 2004 by Marcel Dekker, Inc.
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1.3 Commercial Robot Controllers

Commercial robot controllers are specialized multiprocessor computing
systems that provide four basic processes allowing integration of the robot
into an automation system: Motion Trajectory Generation and Following,
Motion/Process Integration and Sequencing, Human User integration, and
Information Integration.

Motion Trajectory Generation and Following. There are two important
controller-related aspects of industrial robot motion generation. One is the
extent of manipulation that can be programmed, the other is the ability to
execute controlled programmed motion. A unique aspect of each robot system
is its real-time servo-level motion control. The details of real-time control
are typically not revealed to the user due to safety and proprietary information
secrecy reasons. Each robot controller, through its operating system programs,
converts digital data from higher-level coordinators into coordinated arm
motion through precise computation and high-speed distribution and
communication of the individual axis motion commands which are executed
by individual joint servo-controllers. Most commercial robot controllers
operate at a sample period of 16 msec. The real-time motion controller
invariably uses classical independent-joint proportional-integral-derivative
(PID) control or simple modifications of PID. This makes commercially
available controllers suitable for point-to-point motion, but most are not
suitable for following continuous position/velocity profiles or exerting
prescribed forces without considerable programming effort, if at all.

Recently, more advanced controllers have appeared. The Adept Windows
family of automation controllers (http://www.adept.com) integrates
robotics, motion control, machine vision, force sensing, and manufacturing

Figure 1.2.7: Parallel-link robot (courtesy of ABB Robotics).

Copyright © 2004 by Marcel Dekker, Inc.
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logic in a single control platform compatible with Windows 98 & Windows
NT/2000. Adept motion controllers can be configured to control other
robots and custom mechanisms, and are standard on a variety of systems
from OEMs.

Motion/Process Integration and Sequencing. Motion/process integration
involves coordinating manipulator motion with process sensors or other
process controller devices. The most primitive process integration is through
discrete digital input/output (I/O). For example a machine controller external
to the robot controller might send a one bit signal indicating that it is ready
to be loaded by the robot. The robot controller must have the ability to read
the digital signal and to perform logical operations (if then, wait until, do
until, etc.) using the signal. That is, some robot controllers have some
programmable logic controller (PLC) functions built in. Coordination with
sensors (e.g. vision) is also often provided.

Human Integration. The controller’s human interfaces are critical to the
expeditious setup and programming of robot systems. Most robot controllers
have two types of human interface available: computer style CRT/keyboard
terminals for writing and editing program code off-line, and teach pendants,
which are portable manual input terminals used to command motion in a
telerobotic fashion via touch keys or joy sticks. Teach pendants are usually
the most efficient means available for positioning the robot, and a memory
in the controller makes it possible to play back the taught positions to execute
motion trajectories. With practice, human operators can quickly teach a series
of points which are chained together in playback mode. Most robot
applications currently depend on the integration of human expertise during
the programming phase for the successful planning and coordination of robot
motion. These interface mechanisms are effective in unobstructed workspaces
where no changes occur between programming and execution. They do not
allow human interface during execution or adaptation to changing
environments.

More recent advanced robot interface techniques are based on behavior-
based programming, where various specific behaviors are programmed into
the robot controller at a low level (e.g. pick up piece, insert in machine
chuck). The behaviors are then sequenced and their specific motion
parameters specified by a higher-level machine supervisor as prescribed by
the human operator. Such an approach was used in [Mireles and Lewis
2001].

Information Integration. Information integration is becoming more
important as the trend toward increasing flexibility and agility impacts
robotics. Many commercial robot controllers now support information
integration functions by employing integrated PC interfaces through the

1.3 Commercial Robot Controllers
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communications ports (e.g. RS-232), or in some through direct connections
to the robot controller data bus. Recent integration efforts are making it
possible to interface robotic workcells to the internet to allow remote site
monitoring and control. There are many techniques for this, the most
convenient of which is Lab VIEW 6.1, which doe not require programming
in Java.

1.4 Sensors

Much of the information in this section was prepared by Kok-Meng Lee
[Lewis 1998]. Sensors and actuators [Tzou and Fukuda 1992] function as
transducers, devices through which high-level workcell Planning,
Coordination, and Control systems interface with the hardware components
that make up the workcell. Sensors are a vital element as they convert states
of physical devices into signals appropriate for input to the workcell PC&C
control system; inappropriate sensors can introduce errors that make proper
operation impossible no matter how sophisticated or expensive the PC&C
system, while innovative selection of sensors can make the control and co-
ordination problem much easier.

Sensors are of many different types and have many distinct uses. Having
in mind an analogy with biological systems, proprioceptors are sensors
internal to a device that yield information about the internal state of that
device (e.g. robot arm joint-angle sensors). Exteroceptors yield information
about other hardware external to a device. Sensors yield outputs that are
either analog or digital; digital sensors often provide information about the
status of a machine or resource (gripper open or closed, machine loaded, job
complete). Sensors produce outputs that are required at all levels of the PC&C
hierarchy, including uses for:

• servo-level feedback control (usually analog proprioceptors)
• process monitoring and coordination (often digital exteroceptors or part

inspection sensors such as vision)
• failure and safety monitoring (often digital—e.g. contact sensor,

pneumatic pressure-loss sensor)
• quality control inspection (often vision or scanning laser).

Sensor output data must often be processed to convert it into a form
meaningful for PC&C purposes. The sensor plus required signal processing
is shown as a Virtual Sensor. It functions as a data abstraction—a set of data
plus operations on that data (e.g. camera, plus framegrabber, plus signal
processing algorithms such as image enhancement, edge detection,

Copyright © 2004 by Marcel Dekker, Inc.
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segmentation, etc.). Some sensors, including the proprioceptors needed for
servo-level feedback control, are integral parts of their host devices, and so
processing of sensor data and use of the data occurs within that device; then,
the sensor data is incorporated at the servocontrol level or Machine
Coordination level. Other sensors, often vision systems, rival the robot
manipulator in sophistication and are coordinated by a Job Coordinator,
which treats them as valuable shared resources whose use is assigned to jobs
that need them by some priority assignment (e.g. dispatching) scheme. An
interesting coordination problem is posed by so-called active sensing, where,
e.g., a robot may hold a scanning camera, and the camera effectively takes
charge of the motion coordination problem, directing the robot where to
move to effect the maximum reduction in entropy (increase in information)
with subsequent images.

Types of Sensors

This section summarizes sensors from an operational point of view. More
information on functional and physical principles can be found in [Fraden
1993], [Fu et al. 1987], [Snyder 1985].

Tactile Sensors. Tactile sensors rely on physical contact with external objects.
Digital sensors such as limit switches, microswitches, and vaccuum devices
give binary information on whether contact occurs or not. Sensors are
available to detect the onset of slippage. Analog sensors such as spring-loaded
rods give more information. Tactile sensors based on rubberlike carbon- or
silicon-based elastomers with embedded electrical or mechanical components
can provide very detailed information about part geometry, location, and
more. Elastomers can contain resistive or capacitive elements whose electrical
properties change as the elastomer conmpresses. Designs based on LSI
technology can produce tactile grid pads with, e.g., 64×64 ‘forcel’ points on
a single pad. Such sensors produce ‘tactile images’ that have properties akin
to digital images from a camera and require similar data processing.
Additional tactile sensors fall under the classification of ‘force sensors’
discussed subsequently.

Proximity and Distance Sensors. The noncontact proximity sensors include
devices based on the Hall effect or inductive devices based on the
electromagnetic effect that can detect ferrous materials within about 5 mm.
Such sensors are often digital, yielding binary information about whether or
not an object is near. Capacitance-based sensors detect any nearby solid or
liquid with ranges of about 5mm. Optical and ultrasound sensors have longer
ranges.

1.4 Sensors
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Distance sensors include time-of-flight rangefinder devices such as sonar
and lasers. The commercially available Polaroid sonar offers accuracy of
about 1 in. up to 5 feet, with angular sector accuracy of about 15 deg. For
360 deg. coverage in navigation applications for mobile robots, both scanning
sonars and ring-mounted multiple sonars are available. Sonar is typically
noisy with spurious readings, and requires low-pass filtering and other data
processing aimed at reducing the false alarm rate. The more expensive laser
rangefinders are extremely accurate in distance and have very high angular
resolution.

Position, Velocity, and Acceleration Sensors. Linear position-measuring
devices include linear potentiometers and the sonar and laser rangefinders
just discussed. Linear velocity sensors may be laser- or sonar-based Doppler-
effect devices.

Figure 1.4.1: Optical Encoders, (a) Incremental optical encoder, (b) Absolute optical
encoder with n=4 using Grey code. (Snyder, W.E., 1985. Industrial Robots, Prentice-
Hall, NJ, with permission.)

Joint-angle position and velocity proprioceptors are an important part of
the robot arm servocontrol drive axis. Angular position sensors include
potentiometers, which use dc voltage, and resolvers, which use ac voltage
and have accuracies of 15 min. Optical encoders can provide extreme accuracy
using digital techniques. Incremental optical encoders use three optical sensors
and a single ring of alternating opaque/clear areas, Figure 1.4.1(a), to provide
angular position relative to a reference point and angular velocity information;
commercial devices may have 1200 slots per turn. More expensive absolute
optical encoders, Figure 1.4.1(b), have n concentric rings of alternating
opaque/clear areas and require n optical sensors. They offer increased
accuracy and minimize errors associated with data reading and transmission,
particularly if they employ the Grey code, where only one bit changes between
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two consecutive sectors. Accuracy is 3600/2n with commercial devices having
n=12 or so.

Gyros have good accuracy if repeatability problems associated with drift
are compensated for. Directional gyros have accuracies of about 1.5 deg.
Vertical gyros have accuracies of 0.5 deg and are available to measure
multiaxis motion (e.g. pitch and roll). Rate gyros measure velocities directly
with thresholds of 0.05 deg/sec or so.

Various sorts of accelerometers are available based on strain gauges (next
paragraph), gyros, or crystal properties. Commercial devices are available
to measure accelerations along three axes. A popular new technology involves
microelectromechanical systems (MEMS), which are either surface or bulk
micromachined devices. MEMS accelerometers are very small, inexpensive,
robust, and accurate. MEMS sensors have especially been used in the
automotive industry [Eddy 1998].

Force and Torque Sensors. Various torque sensors are available, though they
are often not required; for instance, the internal torques at the joints of a
robot arm can be computed from the motor armature currents. Torque sensors
on a drilling tool, for instance, can indicate when tools are becoming dull.
Linear force can be measured using load cells or strain gauges. A strain gauge
is an elastic sensor whose resistance is a function of applied strain or
deformation. The piezoelectric effect, the generation of a voltage when a
force is applied, may also be used for force sensing. Other force sensing
techniques are based on vacuum diodes, quartz crystals (whose resonant
frequency changes with applied force), etc.

Robot arm force-torque wrist sensors are extremely useful in dexterous
manipulation tasks. Commercially available devices can measure both force
and torque along three perpendicular axes, providing full information about
the Cartesian force vector F. Standard transformations allow computation
of forces and torques in other coordinates. Six-axis force-torque sensors are
quite expensive.

Photoelectric Sensors. A wide variety of photoelectric sensors are available,
some based on fibreoptic principles. These have speeds of response in the
neighborhood of 50 microsec with ranges up to about 45 mm, and are useful
for detecting parts and labeling, scanning optical bar codes, confirming part
passage in sorting tasks, etc.

Other Sensors. Various sensors are available for measuring pressure,
temperature, fluid flow, etc. These are useful in closed-loop servo-control
applications for some processes such as welding, and in job coordination
and/or safety interrupt routines in others.

1.4 Sensors
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Sensor Data Processing

Before any sensor can be used in a robotic workcell, it must be calibrated.
Depending on the sensor, this could involve significant effort in
experimentation, computation, and tuning after installation. Manufacturers
often provide calibration procedures though in some cases, including vision,
such procedures may not be obvious, requiring reference to the published
scientific literature. Time-consuming recalibration may be needed after any
modifications to the system.

Figure 1.4.2: Signal Processing using FSM for Optical Encoders (a) Phase relations in
incremental optical encoder output, (b) Finite state machine to decode encoder output
into angular position. (Snyder 1985).

Figure 1.4.3: Hardware design from FSM. (a) FSM for sonar transducer control on a
mobile robot, (b) Sonar driver control system from FSM.

Particularly for more complex sensors such as optical encoders, significant
sensor signal conditioning and processing is required. This might include
amplification of signals, noise rejection, conversion of data from analog to
digital or from digital to analog, and so on. Hardware is usually provided
for such purposes by the manufacturer and should be considered as part of
the sensor package for robot workcell design. The sensor, along with its
signal processing hardware and software algorithms may be considered as a
data abstraction and is called the ‘virtual sensor’.

Copyright © 2004 by Marcel Dekker, Inc.
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If signal processing does need to be addressed, it is often very useful to use
finite state machine (FSM) design. A typical signal from an incremental optical
encoder is shown in Figure 1.4.2(a); a FSM for decoding this into the angular
position is given in Figure 1.4.2(b). FSM are very easy to convert directly to
hardware in terms of logical gates. A FSM for sequencing a sonar is given in
Figure 1.4.3(a); the sonar driver hardware derived from this FSM is shown
in Figure 1.4.3(b).

A particular problem is obtaining angular velocity from angular position
measurements. All too often the position measurements are simply differenced
using a small sample period to compute velocity. This is guaranteed to lead
to problems if there is any noise in the signal. It is almost always necessary to
employ a low-pass-filtered derivative where velocity samples vk are computed
from position measurement samples pk using, e.g.,

 

where T is the sample period and � is a small filtering coefficient. A similar
approach is needed to compute acceleration.

Vision Systems, Cameras, and Illumination. Typical commercially available
vision systems conform to the RS-170 standard of the 1950’s, so that frames
are acquired through a framegrabber board at a rate of 30 frames/sec. Images
are scanned; in a popular US standard, each complete scan or frame consists
of 525 lines of which 480 contain image information. This sample rate and
image resolutions of this order are adequate for most applications with the
exception of vision-based robot arm servoing. Robot vision system cameras
are usually TV cameras—either the solid-state charge-coupled device (CCD),
which is responsive to wavelengths of light from below 350nm (ultraviolet)
to 1100nm (near infrared) and has peak response at approximately 800nm,
or the charge injection device (CID), which offers a similar spectral response
and has a peak response at approximately 650nm. Both line-scan CCD
cameras, having resolutions ranging between 256 and 2048 elements, and
area-scan CCD cameras are available. Medium-resolution area-scan cameras
yield images of 256×256, though high-resolution devices of 1024×1024 are
by now available. Line-scan cameras are suitable for applications where parts
move past the camera, e.g., on conveyor belts. Framegrabbers often support
multiple cameras, with a common number being four, and may support black-
and-white or color images.

If left to chance, illumination of the robotic workcell will probably result
in severe problems in operations. Common problems include low-contrast
images, specular reflections, shadows, and extraneuos details. Such prob-
lems can be corrected by overly sophisticated image processing, but all of

1.4 Sensors
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this can be avoided by some proper attention to details at the work-cell design
stage. Illumination techniques include spectral filtering, selection of suitable
spectral characteristics of the illumination source, diffuse-lighting techniques,
backlighting (which produces easily processed silhouettes), structured-lighting
(which provides additional depth information and simplifies object detection
and interpretation), and directional lighting.

Copyright © 2004 by Marcel Dekker, Inc.
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Chapter 2

Introduction to Control
Theory

In this chapter we review various control theory concepts that are used in
the control of robots. We first review the state-space formulation for both
linear and nonlinear systems and present the stability concepts needed in the
sequel. The chapter is intended to introduce modern control concepts, but
even readers with a background in control theory may wish to consult it for
notation and convenience.

2.1 Introduction

The control of robotic manipulators is a mature yet fruitful area for research,
development, and manufacturing. Industrial robots are basically positioning
and handling devices. Therefore, a useful robot is one that is able to control
its movement and the interactive forces and torques between the robot and
its environment. This book is concerned with the control aspect of robotic
manipulators. To control usually requires the availability of a mathematical
model and of some sort of intelligence to act on the model. The mathematical
model of a robot is obtained from the basic physical laws governing its
movement. Intelligence, on the other hand, requires sensory capabilities and
means for acting and reacting to the sensed variables. These actions and
reactions of the robot are the result of controller design.

In this chapter we review the concepts of control theory that are needed
in this book. All proofs are omitted, but references are made to more
specialized books and papers where proofs are provided. Once a satisfactory
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automatic control concepts presented in the current chapter may be used to
modify the actions and reactions of the robot to different stimuli. Subsequent
chapters will therefore deal with the application of control principles to the
robot equations. The particular controller used will depend on the complexity
of the mathematical model, the application at hand, the available resources,
and a host of other criteria.

We begin the chapter in section 2.2 with a review of the state-space
description for linear, continuous- and discrete-time systems. A similar review
of nonlinear systems is presented in section 2.3. The Equilibria of nonlinear
systems is reviewed in section 2.4, while concepts of vector spaces is presented
in section 2.5. Stability theory is presented in section 2.6, which constitutes
the bulk of the chapter. In Section 2.7, Lyapunov stability results are presented
while input-output stability concepts are presented in section 2.8. Advanced
stability concepts are compiled to make later developments more concise in
section 2.9. In section 2.10 we review some useful theorems and lemmas. In
section 2.11 we the basic linear controller designs from a state-space point
of view, and the chapter is concluded in Section 2.12.

2.2 Linear State-Variable Systems

Many physical systems such as the robots considered in this book are
described by differential or difference equations. These describing equations,
which are usually obtained from fundamental physical laws, provide the
starting point for the analysis and control of systems. There are, of course,
some systems which are so complicated that describing differential (or
difference) equations are not available. We do not consider those systems in
this book.

In this section we study the state-space model of physical systems that are
linear. We limit ourselves to systems described by ordinary differential
equations which will lead to a finite-dimensional state space. Partial
differential equations, leading to infinite-dimensional systems, are needed to
study flexible robotic manipulators, but those are not considered in this
textbook. We stress that the material of this chapter is intended as a quick
introduction to these topics and will not be comprehensive. The readers are
referred to [Kailath 1980], [Antsaklis and Michel 1997] for more rigorous
presentations of linear control systems.

Continuous-Time Systems

A continuous-time system is said to be linear if it obeys the principle of
superposition] that is, if the output y1(t) results from the input u1(t) and the
output y2(t) results from the input u2(t), then the output resulting from
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u(t)=α1u1(t)+α2u2(t) is given by y(t)=α1y1(t)+α2y2(t), where α1 and α2 are scalar
constants. Linear, single-input/single-output (SISO), continuous-time, time-
invariant systems are described by linear, scalar, constant-coefficient ordinary
differential equations such as

(2.2.1)

where ai, bi, i=0,…,n are scalar constants, y(t) is a scalar output and u(t) is a
scalar input. Moreover, we are given for some time t0 the initial conditions,

 

Note that the input u(t) is differentiated at most as many times as the output
y(t). Otherwise, the system is said to be non-dynamic.

State-Space Realization

The state of the system is defined as a sufficient set of variables, which when
specified at time t0 along with the input u(t), t≥t0, is sufficient to completely
determine the behavior of the system for all t≥t0 [Kailath 1980]. The state
vector then contains all necessary variables needed to determine the future
behavior of any signal in the system. By definition, such a state vector x(t) is
not unique, a feature that will be exploited later. In fact, if x is a state vector
then so is any (t)=Tx(t), where T is any n×n invertible matrix. For the

continuous-time system described in (2.2.1), the following choice of a state

vector is possible:
where , i=1,2,…, n. The input-output equation then reduces to

(2.2.3)

(2.2.2)
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This particular state-space representation is known as the controllable
canonical form [Kailath 1980], [Antsaklis and Michel 1997]. In general, a
linear, time-invariant, continuous-time system will have more than one input
and one output. In fact, u(t) is an m×1 vector and y(t) is a p×1 vector. The
differential equations relating u(t) to y(t) will not be presented here, but the
state-space representation of the multi-input/multi-output (MIMO) system
becomes

(2.2.6)

where A is n×n, B is n×m, C is p×n, and D is p×m. For the specific forms of
A, B, C, and D, the reader is again referred to [Kailath 1980], [Antsaklis and
Michel 1997]. A block diagram of (2.2.6) is shown in Figure 2.2.1a. Note
that the minimal number of states is equal to the required number of initial
conditions in order to find a unique solution to the set of differential
equations.

A more compact formulation of 2.2.2 and 2.2.3 is given by

(2.2.4)

where

(2.2.5)

Copyright © 2004 by Marcel Dekker, Inc.
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EXAMPLE 2.2–1: Double Integrator

Consider a SISO system described by

ÿ(t)=u(t)  

This system is known as the double integrator and represents a wide variety
of physical systems described by Newton’s Law. In order to obtain a state-
space description, let

 

so

 

Figure 2.2.1: (a) State-space block diagram of (2.2.6); (b) Transfer function block
diagram of (2.2.6)

�
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EXAMPLE 2.2–2: Two-Platform System

a 2 platform system used to isolate experiments from external disturbances.
There are 2 inputs to the system given by u2 which causes the ground to move
and u1 which causes the platform m1 to move. The system also has 2 outputs,
namely the motion y1 of platform m1 and the motion y2 of platform m2. The
experiments will be conducted on top of platform m1 and therefore, one would
like to minimize the size of y1. The differential equations describing this system
are obtained using Newton’s second law: 

A state-space formulation of this system can be obtained by choosing

Transfer Functions

Another equivalent representation of linear, time-invariant, continuous-time
systems is given by their transfer function, which relates the input of the
system u(t) to its output y(t) in the Laplace variable s or in the frequency
domain. It is important to note that the transfer function description has no

�
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Consider the MIMO mechanical system shown in Figure 2.2.2 which represents
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information about the initial conditions of the system and, as such, will not
provide a unique output to a particular input unless all initial conditions are
zero [Antsaklis and Michel 1997], [Kailath 1980]. The transfer function
formalism, however, is important in practice, since many engineers are familiar
with frequency-domain specifications. In addition, the identification of many
systems may be effectively performed in the frequency domain [Ljung 1999].
It is therefore imperative that one should be able to move between the state-
space (or modern) description and the transfer function (or classical)
description.

Let us consider the system described by (2.2.6) and take its Laplace
transform,

(2.2.7)

where X(s), U(s), and Y(s) are the Laplace transforms of x(t), u(t), and y(t)
respectively. The initial state vector is x(0). By eliminating X(s) between the
two equations in (2.2.7), we find the following relation:

Figure 2.2.2: Two-platform system

Copyright © 2004 by Marcel Dekker, Inc.
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Y(s)=[C(sI-A)-1B+D] U(s)+C(sI-A)-1x(0) (2.2.8)

As mentioned previously, the transfer function is obtained as the relationship
between the input U(s) and the output Y(s) when x(0)=0, that is,

Y(s)=[C(sI-A)-1B+D] U(s). (2.2.9)

The transfer function of this particular linear, time-invariant system is given
by

P(s)=C(sI-A)-1B+D (2.2.10)

Y(s)=P(s)U(s) (2.2.11)

EXAMPLE 2.2–3: Transfer Function of Double Integrator

Consider the system of Example 2.2.1. It is easy to see that the transfer
function  is

 

Discrete-Time Systems

In the discrete-time case, a difference equation is used to described the system
as follows:

(2.2.12)

where ai, bi, i=0,…,n are scalar constants, y(k) is the output, and u(k) is the
input at time k. Note that the output at time k+n depends on the input at
time k+n but not on later inputs; otherwise, the system would be non-
causal.

�
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The input-output equation then reduces to

y(k)=b0x1(k)+b1x2(k)+…+ bn-1xn(k)+u(k) (2.2.14)

A more compact formulation of (2.2.7) and (2.2.8) is given by

(2.2.15)

where

State-Space Representation

In a similar fashion to the continuous-time case, the following state-vector is
defined:

(2.2.13)

(2.2.16)
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The MIMO case is similar to the continuous-time case and is given by

(2.2.17)

where A is n×n, B is n×m, C is p×n, and D is p×m.
In many practical cases, such as in the control of robots, the system is a

continuous-time system, but the controller is implemented using digital
hardware. This will require the designer to translate between continuous-
and discrete-time systems. There are many different approaches to
“discretizing” a continuous-time system, some of which are discussed in

problem is referred to [Åström and Wittenmark 1996], [Franklin et al.
1997].

EXAMPLE 2.2–4: Double Integrator in Discrete Time

Recall Example 2.2.1 which presented a model of the double integrator or
Newton’s system. One discrete-time version of the differential equation is
given by the following difference equation

 

where T is the sampling period in seconds. If we choose x1(k)=y(k) and
x2(k)=x1(k+1), we obtain the state-space description

 

Transfer Function Representation

In a similar fashion to the continuous-time case, a linear, time-invariant,
discrete-time system given by (2.2.17) may be described in the Z-transform
domain, from input U(z) to output Y(z) by its transfer function P(z) such
that

Y(z)=P(z)U(z)  

�
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Chapter 3. The interested reader in this very important aspect of the control
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where

P(z)=C(zI-A)-1B+D  

Note that the Z transform is used in the discrete-time case versus the Laplace
transform in the continuous-time case.

EXAMPLE 2.2–5: Tranfer Function of Discrete-Tiem Double Integrator

The transfer function of the Example 2.2.4 is given by

 

2.3 Nonlinear State-Variable Systems

In many cases, the underlying physical behavior may not be described using
linear state-variable equations. This is the case of robotic manipulators where
the interaction between the different links is described by nonlinear differential

capable of handling these systems, while the transfer function and frequency-
domain methods fail. In this section we deal with the nonlinear variant of
the preceding section and stress the classical approach to nonlinear systems
as studied in [Khalil 2001], [Vidyasagar 1992] and in [Verhulst 1997], [LaSale
and Lefschetz 1961], [Hahn 1967].

Continuous-Time Systems

A nonlinear, scalar, continuous-time, time-invariant system is described by a
nonlinear, scalar, constant-coefficient differential equation such as

(2.3.1)

where y(t) is the output and u(t) is the input to the system under consideration.
As with the linear case, we define the state vector x by its components as
follows:

�
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equations, as shown in Chapter 3. The state-variable formulation is still
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The output equation then reduces to:

y(t)=x1(t) (2.3.3)

A more compact formulation of (2.3.2) and (2.3.3) is given by

(2.3.4)

where

U(t)=[u(t) u(1)(t)…u(n-1) (t)]T 

and

c=[1 0 0…0]. (2.3.5)

EXAMPLE 2.3–1: Nonlinear Systems

We present 2 examples illustrating such concepts:

1. Consider the damped pendulum equation

 

A state-space description is obtained by choosing x1=y, x2=y, leading to

 

(2.3.2)

Copyright © 2004 by Marcel Dekker, Inc.

The time history of y(t) is shown in Figure 2.3.1.
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2. A classical nonlinear system is the Van der Pol oscillator which is described
by

 

or in state-space with 

 

The time history of y(t) and the phase-plane plot (i.e. x2 versus x1) is shown

EXAMPLE 2.3–2: Rigid Robot Dynamics

A rigid robot is described by the following equations

 

where M(q) is an n×n Inertia matrix, q and its derivatives are n×1 vectors of
generalized coordinates, V(q, q), G(q) and τ are n×1 vectors containing
velocity-dependent torques, gravity torques, and input torques respectively.

Figure 2.3.1: Damped pendulum trajectory.

�
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in Figure 2.3.2.
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In this example, we will concentrate on writing the n coupled differential
equations into a state-space form. In fact, let a state vector x be

 

and the input vector be u=τ and suppose the output vector is y= q. Due to

Figure 2.3.2: Van der Pol Oscillator Time Trajectories: (a) Time history, (b) phase
plane.

Copyright © 2004 by Marcel Dekker, Inc.

some special properties of rigid robots (see Chapter 2), the matrix M(q) is
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known to be invertible so that

 

or

(1)

where

 

Discrete-Time Systems

A nonlinear, scalar, discrete-time, time-invariant system is described by a
nonlinear, scalar, constant-coefficient difference equation such as,

where y(.) and u are as defined before. A simple choice of state variables will
lead to

�

(2.3.6)

or, more compactly, as

(2.3.7)

2.3 Nonlinear State-Variable Systems
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where U(k) and c are defined similarly to those given in equation (2.3.4).

EXAMPLE 2.3–3: Logistics Equation

Consider the scalar system

 

which leads to the state-space representation

We will not emphasize the study of discrete nonlinear systems since robots

robot controllers are usually implemented using digital controllers. It will
therefore be advantageous to be able to translate between continuous-and
discrete-time description of nonlinear dynamical systems as discussed in
[åAström and Wittenmark 1995], [Franklin et al. 1997].

2.4 Nonlinear Systems and Equilibrium Points

In this section, we concentrate on systems described by (2.2.15) with the
additional requirement that u(t) is specified as a function of the state x(t),
i.e.

(2.4.1)

This will allow us to concentrate on the Analysis problem. We require a
few definitions which we shall now introduce.

�

(2.3.8)

Copyright © 2004 by Marcel Dekker, Inc.

are described by differential equations. However, as discussed in Chapter 4,
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DEFINITION 2.4–1 The system (2.4.1) is said to be autonomous if f[t, x(t)]
is not explicitly dependent on time, i.e.

(1)

EXAMPLE 2.4–1: Nonautonomous System

Both systems introduced in Example 2.3.1 are autonomous while the system
described by

 

is not.

DEFINITION 2.4–2 A vector xe∈�
n is a fixed or equilibrium point of (2.4.1)

at time t0 if

(1)

EXAMPLE 2.4–2: Equilibrium Point of Autonomous System

The system described by

 

is autonomous and it has an equilibrium point at the origin of �n.

Note that:

• If a system is autonomous, then an equilibrium point at time t0 is also an
equilibrium point at all other times.

�

�

�

�
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• If xe is an equilibrium point at time t0 of the non-autonomous system
(2.4.1), then xe is an equilibrium point of (2.4.1) for all t1≥t0.

EXAMPLE 2.4–3: Equilibrium Point of Nonautonomous System

Consider the system

 

which is non-autonomous. It has NO EQUILIBRIUM POINTS. Although it
might seem that it has 2 equilibrium points xe1=-1 and xe2=1 at time t0=1.
However, these are not equilibrium points for times since at times t≥1 the
conditions of equilibrium does not hold.

Some books also used the terms stationary or singular points to denote
equilibrium points.

EXAMPLE 2.4–4: Damped Pendulum

Recall the pendulum in Example 2.3.1 and let us try to find its equilibrium
points. Note first that the system is autonomous so that we do not need to
specify the particular time t0 and then note that the pendulum is at equilibrium
if both

x2=0 and sin(x1)=0  

Therefore the equilibrium points are at

 

It is obvious that the pendulum is at equilibrium when it is hanging straight
up or straight down with zero velocity.

DEFINITION 2.4–3 An equilibrium point xe at t0 of (2.4.1) is said to be
isolated if there is a neighborhood N of xe which contains no other equilibrium
points besides xe.

�

�

�
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EXAMPLE 2.4–5: Equilibrium Points of Pendulum

The equilibrium points of the pendulum are isolated. On the other hand, a
system described by =0 has for equilibrium points any point in R and
therefore, none of its equilibrium points is isolated.

2.5 Vector Spaces, Norms, and Inner Products

In this section, we will discuss some properties of nonlinear differential
equations and their solutions. We will need many concepts such as vector
spaces and norms which we will introduce briefly. The reader is referred to
[Boyd and Barratt], [Desoer and Vidyasagar 1975], [Khalil 2001] for proofs
and details.

Linear Vector Spaces

In most of our applications, we need to deal with (linear) real and complex
vector spaces which are defined subsequently.

DEFINITION 2.5–1 A real linear vector space (resp. complex linear vector
space is a set V, equipped with 2 binary operations: the addition (+) and the
scalar multiplication (.) such that

�

2.5 Vector Spaces, Norms, and Inner Products
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8. For each x∈V, we have 1.x=x where 1 is the unity in � (resp. in ).

EXAMPLE 2.5–1: Vector Spaces

The following are linear vector spaces with the associated scalar fields: ��

with �, and n with .

DEFINITION 2.5–2 A subset M of a vector space V is a subspace if it is a
linear vector space in its own right. One necessary condition for M to be a
subspace is that it contains the zero vector.

We can equip a vector space with many functions. One of which is the
inner product which takes two vectors in V to a scalar either in � or in the
other one is the norm of a vector which takes a vector in V to a positive
value in �. The following section discusses the norms of vectors which is
then followed by a section on inner products.

Norms of Signals and Systems

A norm is a generalization of the ideas of distance and length. As stability
theory is usually concerned with the size of some vectors and matrices, we
give here a brief description of some norms that will be used in this book. We
will consider first the norms of vectors defined on a vector space X with the
associated scalar field of real numbers � then introduce the matrix induced
norms, the function norms and finally the system-induced norms or operator
gains.

Vector Norms

We start our discussion of norms by reviewing the most familiar normed
spaces, that is the spaces of vectors with constant entries. In the following,
||a|| denotes the absolute value of a for a real a or the magnitude of a if a is
complex.

DEFINITION 2.5–3 A norm ||·|| of a vector x is a real-valued function defined
on the vector space X such that

1. ||x||>0 for all x∈X, with ||x||=0 if and only if x=0.

2. ||αx||=|α|||x|| for all x∈X and any scalar α.

�

�

�
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3. ||x+y||≤||x||+|y|| for all x,y ∈X,

EXAMPLE 2.5–2: Vector Norms (1)

The following are common norms in X=�n where �n is the set of n×1 vectors
with real components.

1. 1-norm: 

2. 2-norm:  also known as the Euclidean norm

3. p-norm: 

4. 8-norm: 

EXAMPLE 2.5–3: Vector Norms (2)

Consider the vector

 

Then, ||x||1=5, ||x||2=2 and ||x||∞=2.

We now present an important property of norms of vectors �n in which will
be useful in the sequel.

LEMMA 2.5–1: Let ||x||a and ||x||b be any two norms of a vector x∈��. Then
there exists finite positive constants k1 and k2 such that

 

The two norms in the lemma are said to be equivalent and this particular
property will hold for any two norms on ��.

�

�

�

�
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EXAMPLE 2.5–4: Equivalent Vector Norms

1. It can be shown that for 

 

2. Consider again the vector of Example 2.5.3. Then we can check that

 

Matrix Norms

In systems applications, a particular vector x may be operated on by a matrix
A to obtain another vector y=Ax. In order to relate the sizes of x and Ax we
define the induced matrix norm as follows.

DEFINITION 2.5–4 Let ||x|| be a given norm of x∈��. Then each m×n matrix
A, has an induced norm defined by

 

where sup stands for the supremum.
It is always imperative to check that the proposed norms verify the

conditions of Definition 2.5.3. The newly defined matrix norm may also be
shown to satisfy

||AB||i ≤ ||A||i ||B||i  

for all n×m matrices A and all m×p matrices B.

�

�
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EXAMPLE 2.5–5: Induced Matrix Norms

Consider the ∞ induced matrix norm, the 1 induced matrix norm and the 2
induced matrix norm,

 

where �max is the maximum eigenvalue. As an illustration, consider the matrix

 

Then, ||A||i1=max(4, 4, 5)=5, ||A||i2=4.4576, and ||A||i∞= max(4, 7, 2)=7.

Function Norms

Next, we review the norms of time-dependent functions and vectors of
functions. These constitute an important class of signals which will be
encountered in controlling robots.

DEFINITION 2.5–5 Let f(.): [0, ∞)→R be a uniformly continuous function.
A function f is uniformly continuous if for any �>0, there is a �(�) such that

 

Then, f is said to belong to Lp if for p∈[1, ∞),

 

f is said to belong to L∞ if it is bounded i.e. if 
where  sup f(t) denotes the supremum of f9t) i.e. the smallest number that is

2.5 Vector Spaces, Norms, and Inner Products

�
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larger than or equal to the maximum value of f(t). L1 denotes the set of signals
with finite absolute area, while L2 denotes the set of signals with finite total
energy.

The following definition of the norms of vector functions is not unique. A
discussion of these norms is found in [Boyd and Barratt].

DEFINITION 2.5–6 Let  denote the set of n×1 vectors of functions fi,
each of which belonging to Lp. The norm of  is

 

for p� [1, ∞) and

 

Some common norms of scalar signals u(t) that are persistent (i.e. limt→ ∞
u(t)≠0) are the following:

1.  which is valid for signals with
finite steady-state power.

2. ||u||∞=supt≥0 |u(t) which is valid for bounded signals but is dependent on
outliers.

3.  which measures the steady-state average
resource consumption.

For vector signals, we obtain:

1.

2.

3.

Note that 

On the other hand, if signals do not persist, we may find their L2 or L1

norms as follows:

1.  which measures the total resource consumption

�

�
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2.  which measures the

total energy.

EXAMPLE 2.5–6: Function Norms

1. The function f(t)=e-t belongs to L1. In fact, ||e-t||1=1. The function
 belongs to L2. The sinusoid f(t)=2sint belongs to L∞ since its

magnitude is bounded by 2 and ||2sint||∞= 2.

2. Suppose the vector function x(t) has continuous and real-valued
components, i.e.

where [a, b] is a closed-interval on the real line R. We denote the set of such
functions x by n[a, b]. Then, let us define the real-valued function

 

where ||x(t)|| is any previously defined norm of x(t) for a fixed t. It can be
verified that ||x(.)|| is a norm on the set n[a, b] and may be used to compare
the size of such functions [Desoer and Vidyasagar 1975]. In fact, it is very
important to distinguish between ||x(t)|| and ||x(.)||. The first is the norm of a
fixed vector for a particular time t while the second is the norm of a time-
dependent vector. It is this second norm (which was introduced in definition
2.5.6) that we shall use when studying the stability of systems.

3. The vector f(t)=[e-t-e-t-(1+t)-2]T is a member of . On the other hand,
f(t)=[e-t-e-t-(1+t)-1]T is a member of  and .

In some cases, we would like to deal with signals that are bounded for finite
times but may become unbounded as time goes to infinity. This leads us to
define the extended Lp spaces. Thus consider the function

(2.5.1)

then, the extended Lp space is defined by

�
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where T<∞. We also define the norm on Lpe as

 

Similar definitions are available for  and the interested reader is referred to
[Boyd and Barratt], [Desoer and Vidyasagar 1975].

EXAMPLE 2.5–7: Extended Lp Spaces

The function f(t)=t belongs to Lpe for any p∈[1, ∞] but not to Lp.

System Norms

We would like next to study the effect of a multi-input-multi-output (MIMO)
system on a multidimensional signal. In other words, what happens to a
time-varying vector u(t) as it passes through a MIMO system H? Let H be a
system with m inputs and l outputs, so that its output to the input u(t) is
given by

y(t)=(Hu)(t)  

We say that H is Lp stable if Hu belongs to  whenever u belongs to  and
there exists finite constants �>0 and b such that

 

If p=∞, the system is said to be bounded-input-bounded-output (BIBO) stable.

DEFINITION 2.5–7 The Lp gain of the system H is denoted by �p(H) and is
the smallest � such that a finite b exists to verify the equation.

 

Therefore, the gain �p characterizes the amplification of the input signal as
it passes through the system. The following lemma characterizes the gains of
linear systems and may be found in [Boyd and Barratt].

LEMMA 2.5–2: Given the linear system H such that an input u(t) results in
an output  and suppose H is BIBO
stable, then

�

�
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1.

2.

3.

EXAMPLE 2.5–8: System Norms

1. Consider the system

 

so that the impulse response is

(1)

Note that H(s) is BIBO stable. Then

 

2. Consider the system

 

where kv and kp are positive constants. The system is therefore BIBO stable.
Then

 

where e=2.7183 is the base of natural logarithms.

�
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This concludes our brief review of norms as they will be used in this book.

Inner Products

An inner product is an operation between two vectors of a vector space which
will allow us to define geometric concepts such as orthogonality and Fourier
series, etc. The following defines an inner product.

DEFINITION 2.5–8 An inner product defined over a vector space V is a
function <.,.> defined from V to F where F is either � or  such that �x, y,
z, ∈V

1. <x, y>=<y, x>* where the <.,.>* denotes the complex conjugate.

2. <x, y+z>=<x, y>+<x, z>

3. ,

4. <x, x>≥0 where the 0 occurs only for x=0V

EXAMPLE 2.5–9: Inner Products

The usual dot product in �n is an inner product.

We can define a norm for any inner product by

(2.5.2)

Therefore a norm is a more general concept: A vector space may have a norm
associated with it but not an inner product. The reverse however is not true.
Now, with the norm defined from the inner product, a complete vector space
in this norm (i.e. one in which every Cauchy sequence converges) is known as
a Hilbert Space

Matrix Properties

Some matrix properties play an important role in the study of the stability of
dynamical systems. The properties needed in this book are collected in this
section. We will assume that the readers are familiar with elementary

�

�

�
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DEFINITION 2.5–9 All matrices in this definition are square and real.

• Positive Definite: A real n×n matrix A is positive definite if xT Ax>0 for
all , x≠0.

• Positive Semidefinite: A real n×n matrix A is positive semidefinite if xT

Ax≥0 for all .

• Negative Definite: A real n×n matrix A is negative definite if xT Ax<0 for
all , x≠0.

• Negative Semidefinite: A real n×n matrix A is negative semidefinite if xT

Ax≤0 for all .

• Indefinite: A is indefinite if xT Ax>0 for some  and xT Ax<0 for
other .

Note that

 

where As is the symmetric part of A. Therefore, the test for the definiteness
of a matrix may be done by considering only the symmetric part of A.

THEOREM 2.5–1: Let A=[aij] be a symmetric n×n real matrix. As a result,
all eigenvalues of A are real. We then have the following

• Positive Definite: A real n×n matrix A is positive definite if all its
eigenvalues are positive.

• Positive semidefinite: A real n×n matrix A is positive definite if all its
eigenvalues are nonnegative.

• Negative Definite: A real n×n matrix A is negative definite if all its
eigenvalues are negative.

• Negative Semidefinite: A real n×n matrix A is negative semidefinite if all
its eigenvalues are non-positive.

• Indefinite: A real n×n matrix A is indefinite if some of its eigenvalues are
positive and some are negative.

�

�

2.5 Vector Spaces, Norms, and Inner Products

Copyright © 2004 by Marcel Dekker, Inc.



Introduction to Control Theory50

THEOREM 2.5–2: Rayleigh-Ritz Let A be a real, symmetric n×n positive-
definite matrix. Let �min be the minimum eigenvalue and �max be the maximum
eigenvalue of A. Then, for any ,

 

THEOREM 2.5–3: Gerschgorin Let A=[aij] be a symmetric n×n real matrix.
Suppose that

 

If all the diagonal elements are positive, i.e. aii>0, then the matrix A is positive
definite.

EXAMPLE 2.5–10: Positive Definite Matrics

Consider the matrix

(1)

Its symmetric part is given by

(2)

This matrix is positive-definite since its eigenvalues are both positive (1.8377,
8.1623). Of course, Gershgorin’s theorem could have been used since the
diagonal elements of As are all positive and

 

On the other hand, consider a vector x=[x1 x2]T and its 2-norm, then

�

�
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as a result of Rayleigh-Ritz theorem.
�

2.6 Stability Theory

The first stability concept we study, concerns the behavior of free systems, or
equivalently, that of forced systems with a given input. In other words, we
study the stability of an equilibrium point with respect to changes in the
initial conditions of the system. Before doing so however, we review some
basic definitions. These definitions will be stated in terms of continuous,
nonlinear systems with the understanding that discrete, nonlinear systems
admit similar results and linear systems are but a special case of nonlinear
systems.

Let xe be an equilibrium (or fixed) state of the free continuous-time, possibly
time-varying nonlinear system

(2.6.1)

i.e. f(xe, t)=0, where x, f are n×1 vectors.
We will first review the stability of an equilibrium point xe with the

understanding that the stability of the state x(t) can always be obtained with
a translation of variables as discussed later. The stability definitions we use
can be found in [Khalil 2001], [Vidyasagar 1992].

DEFINITION 2.6–1 In all parts of this definition xe is an equilibrium point
at time t0, and ||.|| denote any function norm previously defined.

1. Stability: xe is stable in the sense of Lyapunov (SL) at t0, if starting
close enough to xe at t0, the state will always stay close to xe at later
times. More precisely, xe is SL at t0, if for any given �>0, there exists
a positive �(�, t0) such that if

 

then

2.6 Stability Theory
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xe is stable in the sense of Lyapunov if it is stable for any given t0.
See Figure 2.6.1a.

2. Instability: xe is unstable in the sense of Lyapunov (UL), if no matter
how close to xe the state starts, it will not be confined to the vicinity
of xe at some later time. In other words, xe is unstable if it is not
stable at t0. See Figure 2.6.1b for an illustration.

3. Convergence: xe is convergent (C) at t0, if states starting close to xe

will eventually converge to xe. In other words, xe is convergent at t0

if for any positive there exists a positive �1(t0) and a positive T(�1, x0,
t0) such that if

 

then

 

Figure 2.6.1: (a) Stability of xe at t0; (b) Instability of xe at t0.
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xe is convergent, if it is convergent for any t0. See Figure 2.6.2 for
illustration.

Figure 2.6.2: Convergence of xe at t0

4. Asymptotic Stability: xe is asymptotically stable (AS) at t0 if states
starting sufficiently close to xe will stay close and will eventually
converge to it. More precisely, xe is AS at t0 if it is both convergent
and stable at t0. xe is AS if it is AS for any t0. An illustration of an AS
equilibrium point is shown in Figure 2.6.3.

Figure 2.6.3: Asymptotic stability of xe at t0

5. Global Asymptotic Stability: xe is globally asymptotically stable
(GAS) at t0 if any initial state will stay close to xe and will eventually
converge to it. In other words, xe is GAS if it is stable at t0, and if
every x(t) converges to xe as time goes to infinity. xe is GAS if it is

2.6 Stability Theory
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GAS for any t0 and the system is said to be GAS in this case, since it
can only have one equilibrium point xe. See Figure 2.6.4.

�

EXAMPLE 2.6–1: Stability of Various Systems

1. Consider the scalar time-varying system given by

 

the solution of this equation for all t�t0 is

 

The equilibrium point is located at xe=ye=0. Let us use the 1-norm
given by |y| and suppose that our aim is to keep |y(t)|<� for all t�t0.
It can be seen that our objective is achieved if

 

The origin is therefore a stable equilibrium point of this system.
This is further illustrated in Figure 2.6.5

2. The damped pendulum system has many equilibrium points as
described in Example 2.3.1. It can be shown that the equilibrium
point located at the origin of the state-space is unstable. This is
illustrated in Figure 2.6.6 where it is seen that no matter how close
to the origin the initial state is, the norm of x(t) can not be pre-
specified. On the other hand, note that the two equilibrium points
at [�, 0] are stable.

Figure 2.6.4: Global asymptotic stability of xe at t0
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3. The origin is an equilibrium point of the Van der Pol oscillator.
However, and as shown in Figure 2.6.7, it is an unstable equilibrium
point. In fact, suppose the following norm is used per definition
2.5.6, and let �≠1.Therefore, we would like

 

for all t>t0. As can be seen from Figure 2.6.7, no matter how close to
the origin x0 is, i.e. no matter how small � is, the trajectory will
eventually leave the ball of radius �=1.

4. The origin is a stable equilibrium point of the robot described in
Example 2.3.1 whenever the following choices are made

Kv=diag(kvi); Kp=diag(kpi) 

where kvi>0 and kpi>0 for all i=1,…n.
�

EXAMPLE 2.6–2: Stability versus Convergence

Consider the following system

 

Figure 2.6.5: Time history for 

2.6 Stability Theory
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Figure 2.6.6: Damped pendulum: (a)time history; (b) phase plane

There are 2 equilibrium points located at (0, 0) and (1, 0), both of which
are unstable (check!). On the other hand, (1, 0) is convergent since all
trajectories will eventually converge to it after some time T. Before T however,
there is no guarantee that a trajectory will stay within some � of (1, 0) no
matter how close the initial state is to (1, 0). In fact, suppose the system
starts at x(0), then the state-vector is given at any t�0 by
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See Figure 2.6.8 for illustration of the behavior of the state vector.
�

Note that stability and asymptotic stability are local concepts in the
sense that, if the initial perturbation � is too large, the subsequent states
x(t) may stray arbitrarily far from xe. There exists, therefore, a region

Figure 2.6.7: Van der Pol oscillator: (a) time history; (b) phase plane

2.6 Stability Theory
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centered at xe and given by  such that
both stability and asymptotic stability will result for any state starting in

 but not for states starting outside of it. This region is called the
domain of attraction of xe. The equilibrium state xe is GAS if  .

Note also that all previous stability definitions depended on the initial
time t0, so that the region of attraction may vary with varying initial times. If
the system (2.6.1) were independent of time (or autonomous), then the
stability concepts in definition 2.6.1 are indeed independent of t0 and they

Figure 2.6.8: Example 2.6.2 (a)time history; (b) phase plane
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will be equivalent to the stability concepts defined next. On the other hand,
and even though the system (2.6.1) is time-dependent, we would like to have
its stability properties not depend on t0 since that would later provide us
with a desired degree of robustness. This leads us to define the uniform
stability concepts [Khalil 2001].

DEFINITION 2.6–2 In all parts of this definition, xe is an equilibrium point
at time t0.

1. Uniform Stability: xe is uniformly stable (US) over [t0, ∞) if δ(�, t0)in
definition 2.6.1 is independent of t0.

2. Uniform Convergence: xe is uniformly convergent (UC) over [t0, ∞) if
δ1(t0) and T(�1,x0, t0) of definition 2.6.1 can be chosen independent of
t0.

3. Uniform Asymptotic Stability: xe is uniformly, asymptotically stable (UAS)
over [t0, ∞), if it is both US and UC.

4. Global Uniform Asymptotic Stability: xe is globally, uniformly,
asymptotically stable (GUAS) if it is US, and UC.

5. Global Exponential Stability: xe is globally exponentially stable (GES) if
there exists α>0, and ß 0 such that for all x0∈ℜn,

 

�

Note that GES implies GUAS, and see Figure 2.6.9 for an illustration of
uniform stability concepts.

EXAMPLE 2.6–3: Uniform stability

1. Consider the damped Mathieu equation,

 

The origin is a US equilibrium point as shown in Figure 2.6.10

2. The scalar system

 

has an equilibrium point at the origin which is UC.

2.6 Stability Theory
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3. The origin is a UAS equilibrium point for

 

4. The system

 

has an equilibrium point xe=0 which is GUAS.

5. Consider the system

 

the origin is then a GES equilibrium point since the solution is given by

Figure 2.6.9: (a) Uniform Stability of xe; (b) uniform convergence of xe; (c) uniform
asymptotic stability of xe; (d) global uniform asymptotic stability of xe
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so that

|x(t)|≤|x0|e-t 

See Figure 2.6.11, for an illustration of the time history of x(t).

Figure 2.6.10: Damped Mathieu equation: (a)time history; (b) phase plane

�

2.6 Stability Theory
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In many cases, a bound on the size of the state is all that is required in terms
of stability. This is a less stringent requirement than Lyapunov stability. It is
instructive to study the subtle difference between the definition of
Boundedness below and that of Lyapunov stability in Definition 2.6.1.

DEFINITION 2.6–3

1. Boundedness: xe is bounded (B) at t0 if states starting close to xe will
never get too far. In other words, xe is bounded at t0 if for each δ>0 such
that

||x0-xe||<δ  

there exists a positive �(r, t
0
)<∞ such that for all t�t0

 

xe is bounded if it is bounded for any t0.

2. Uniform Boundedness: xe is uniformly bounded (UB) over [t0, ∞) if
�(r, t0) can be made independent of t0.

3. Uniform Ultimate Boundedness: xe is said to be uniformly, ultimately
bounded (UUB), if states starting close to xe will eventually become

Figure 2.6.11: Example 2.6.3e: (a)time history; (b) phase plane
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bounded. More precisely, xe is UUB if for any δ>0, �>0, there exists a
finite time T(�,δ) such that whenever ||x0-xe||<δ, the following is
satisfied

 

for all t�T(�,δ).

4. Global Uniform Ultimate Boundedness: xe is said to be globally, uniformly,
ultimately bounded (GUUB) if for �>0, there exists a finite time T(�)
such that

 

for all t�T(�) See Figure 2.6.12 for an illustration of the boundedness
stability concepts.

EXAMPLE 2.6–4: Boundedness

1. The second-order system given by

 

has a uniformly bounded equilibrium point at the origin as shown in
Figure 2.6.13.

2. The second-order system given by

 

has an UUB equilibrium point at xe=0, as shown in Figure 2.6.14.

Note that in general, we are interested in the stability of the motion x(t)
when the system is perturbed from its trajectory. In other words, how far
does x(t) get from its nominal trajectory if the initial state is perturbed?
This problem can always be reduced to the stability of the origin of a non-

�

�

2.6 Stability Theory
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autonomous system by letting

z=xe-x(t)  

and

 

and studying the stability of the equilibrium point ze=0.

Figure 2.6.12: (a) Boundedness of xe at t0; (b) uniform boundedness of xe; (c) uniform
ultimate boundedness of xe; (d) global uniform boundedness of xe.
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EXAMPLE 2.6–5: Stability of the Origin

1. Consider the damped pendulum of Example 2.3.1a. Its equilibrium points
are at [nπ 0]T, n=0, ±1,…. The stability of these points can be studied
from the stability of the origin of the system

 

2. Consider the rigid robot equations of Example 2.3.2, and assume

Figure 2.6.13: Example 2.6.4-a: (a)x1(0)=x2(0)=1 (b) x1(0)=x2(0)=0.1

2.6 Stability Theory
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that a desired trajectory is specified by

 

Therefore, we can define the new system by choosing z=xd-x so that

Figure 2.6.14: Example 2.6.4-b: (a)x1(0)=x2(0)=1 (b) x1(0)=x2(0)=1
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and verify that ze=0 is the desired equilibrium point of the modified system if
xe=xd is the desired equilibrium trajectory of the robot.

�

2.7 Lyapunov Stability Theorems

Lyapunov stability theory deals with the behavior of unforced nonlinear
systems described by the differential equations

(2.7.1)

where without loss of generality, the origin is an equilibrium point of (2.7.1).
It may seem to the reader that such a theory is not needed since all we had
to do in the examples of the previous section is to solve the differential
equations, and study the time evolution of a norm of the state vector. There
are at least two reasons why Lyapunov theory is needed. The first is that
Lyapunov theory will allow us to determine the stability of a particular
equilibrium point without actually solving the differential equations. This,
as is well known to any student of nonlinear differential equations, is a
large saving. The second and related reason for using Lyapunov theory is
that it provides us with qualitative results to the stability questions, which
may be used in designing stabilizing controllers of nonlinear dynamical
systems.

We shall first assume that any necessary conditions for (2.7.1) to have a
unique solution are satisfied [Khalil 2001], [Vidyasagar 1992]. The unique
solution corresponding to x(t0)=x0 is x(t, t0, x0) and will be denoted simply as
x(t). Before we actually introduce Lyapunov’s theorems, we review certain
classes of functions which will simplify the statement of Lyapunov theorems.

Functions of Class K

Consider a continuous function α:ℜ→ℜ

DEFINITION 2.7–1 We say that a belongs to class K, if

1. α(0)=0
2. α(x)>0, for all x>0
3. α is nondecreasing, i.e. α(x1)�α(x2) for all x1>x2.

�

2.7 Lyapunov Stability Theorems
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EXAMPLE 2.7–1: Class K Functions

The function α(x)=x2 is a class K function. The function α(x)=x2+1 is not a
class K function because (1) fails. On the other hand, α(x)=-x2 is not a class
K function because (2) and (3) fail.

�

DEFINITION 2.7–2 In the following, ℜ+=[0,∞).

1. Locally Positive Definite: A continuous function V:ℜ+×ℜn→R is locally
positive definite (l.p.d) if there exists a class K function a(.) and a
neighborhood N of the origin of ℜn such that

V(t, x)�α(||x||)  

for all t�0, and all x∈N.

2. Positive Definite: The function V is said to be positive definite (p.d) if
N=ℜn.

3. Negative and Local Negative Definite: We say that V is (locally) negative
definite (n.d) if -V is (locally) positive definite.

�

EXAMPLE 2.7–2: Locally Positive Definite Functions

[Vidyasagar 1992] The function  is l.p.d but not
p.d, since V(t, x)=0 at x=(0, π/2). On the other hand, 
is not even l.p.d because V(t, x)→0 as t→∞ for any x. The function

 is p.d.
�

DEFINITION 2.7–3

In the following, 

1. Locally Decrescent: A continuous function  is locally
decrescent if There exists a class K function ß(.) and a neighborhood N
of the origin of  such that

V(t, x)�ß(||x||)  

for all t�0 and all x∈Ν.
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2. Decrescent: We say that V is decrescent if N=ℜn.
�

EXAMPLE 2.7–3: Decrescent Functions

[Vidyasagar 1992] The function  is locally but
not globally decrescent. On the other hand,  is globally
decrescent.

�

DEFINITION 2.7–4 Given a continuously differentiate function V: ℜ+×ℜn→
R together with a system of differential equations (2.7.1), the derivative of V
along (2.7.1) is defined as a function V: ℜ+×ℜn→R given by

 

�

EXAMPLE 2.7–4: Lyapunov Functions

Consider the function  of Example 2.7.3 and assume
given a system

 

Then, the derivative of V(t, x) along this system is

 

�

Lyapunov Theorems

We are now ready to state Lyapunov Theorems, which we group in Theorem
2.7.1. For the proof, see [Khalil 2001], [Vidyasagar 1992].

THEOREM 2.7–1: Lyapunov

Given the nonlinear system

 

2.7 Lyapunov Stability Theorems
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with an equilibrium point at the origin, i.e. f(t, 0)=0, and let N be a
neighborhood of the origin of size � i. e.

 

Then

1. Stability: The origin is stable in the sense of Lyapunov, if for x∈Ν, there
exists a scalar function V(t, x) with continuous partial derivative such
that

(a) V(t, x) is positive definite
(b) V is negative semi-definite

2. Uniform Stability: The origin is uniformly stable if in addition to (a) and
(b) V(t, x) is decrescent for x∈Ν.

3. Asymptotic Stability: The origin is asymptotically stable if V(t, x) satisfies
(a) and is negative definite for x∈Ν.

4. Global Asymptotic Stability: The origin is globally, asymptotically stable
if V(t, x) verifies (a), and V(t, x) is negative definite for all x∈ℜn i.e. if
N=ℜn.

5. Uniform Asymptotic Stability: The origin is UAS if V(t, x) satisfies (a),
V(t, x) is decrescent, and V(t,x) is negative definite for x∈Ν.

6. Global Uniform Asymptotic Stability: The origin is GUAS if N=ℜn, and
if V(t, x) satisfies (a), V(t,x) is decrescent, V(t,x) is negative definite and
V(t, x) is radially unbounded, i.e. if it goes to infinity uniformly in time
as ||x||→∞.

7. Exponential Stability: The origin is exponentially stable if there exists
positive constants α, ß, γ such that

 

8. Global Exponential Stability: The origin is globally exponential stable if
it is exponentially stable for all x∈ℜn.

�

The function V(t, x) in the theorem is called a Lyapunov function. Note that
the theorem provides sufficient conditions for the stability of the origin and
that the inability to provide a Lyapunov function candidate has no indication
on the stability of the origin for a particular system.
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EXAMPLE 2.7–5: Stability via Lyapunov Functions

1. Consider the system described by

 

and choose a Lyapunov function candidate

 

Then the origin may be shown to be a stable equilibrium point.

2. Consider the Mathieu equation described in Example 2.6.3. Let the
Lyapunov function candidate be given by

 

The origin is then shown to be a US equilibrium point.

3. The system given in Example 2.6.3–5, has a GES equilibrium point at
the origin. This may be shown by considering a Lyapunov function
candidate

V(x)=x2  

which leads to

 

Then,

0.5x2�V(x)�2x2  

and

 

The above inequalities hold for any x∈ℜn.

2.7 Lyapunov Stability Theorems
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4. Let

 

and pick a Lyapunov function candidate

 

so that

 

so that the origin is SL.
�

Lyapunov Theorems may be used to design controllers that will stabilize a
nonlinear system such as a robot. In fact, if one chooses a Lyapunov function
candidate V(t, x), then finding its total derivative V(t, x) will exhibit an
explicit dependence on the control signal. By choosing the control signal to
make V(t, x) negative definite, stability of the closed-loop system is
guaranteed. Unfortunately, it is not always easy to guarantee the global
asymptotic stability of an equilibrium point using Lyapunov Theorem. This
is due to the fact, that V(t, x) may be shown to be negative but not necessarily
negative-definite. If the open-loop system were autonomous, Lyapunov theory
is greatly simplified as shown in the next section.

The Autonomous Case

Suppose the open-loop system is not autonomous, i.e. is not explicitly
dependent on t, then a time-independent Lyapunov function candidate V(x)
may be obtained and the positive definite conditions are greatly simplified as
described next.

LEMMA 2.7–1: A time invariant continuous function V(x) is positive definite
if V(0)=0 and V(x)>0 for x≠0. It is locally positive definite if the above holds
in a neighborhood of the origin �

Note that the condition that V(0)=0 is not necessary and that as long as
V(0) is bounded above the Lyapunov results hold without modification.
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With the above simplification, the Lyapunov results hold except that no
distinction is made between uniform and regular stability results.

EXAMPLE 2.7–6: Uniform Stability via Lyapunov Functions

Consider again the damped pendulum described by

 

and obtain a state-space by choosing x1=θ and  then a Lyapunov
function candidate is

 

so that  and the origin is SL and actually USL.

�

EXAMPLE 2.7–7: Uniform Stability via Lyapunov Functions

This example illustrates the local asymptotic, uniform stability of the origin
for the system

(1)

Choose  then

 

which is strictly less than zero for all 
�

Sometimes, and although V(x) is only non-positive, LaSalle’s theorem
[LaSale and Lefschetz 1961], [Khalil 2001] may be used to guarantee the
global asymptotic stability of the equilibrium point as described in the
next theorem.

2.7 Lyapunov Stability Theorems
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THEOREM 2.7–2: LaSalle
Given the autonomous nonlinear system

 

and let the origin be an equilibrium point. Then,

1. Asymptotic Stability: Suppose a Lyapunov function V(x) has been found
such that for , V(x)>0 and  Then the origin is
asymptotically stable if and only if  only at x=0.

2. Global Asymptotic Stability: The origin is GAS if  above and
V(x) is radially unbounded.

�

Unfortunately, in many applications with time-varying trajectories, the open-
loop systems are not autonomous, and more advanced results such as the
ones described later will be called upon to show global asymptotic stability.

EXAMPLE 2.7–8: LaSalle Theorem

Consider the autonomous system

 

The origin is an equilibrium point. Moreover, consider a Lyapunov function
candidate

 

Leading to

 

Since  for all x1=x2, we need to check whether the origin is the only
point where  It can be seen from the state equation that x1=x2 can
only happen at the origin, therefore the origin is GAS.

�
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Note that LaSalle’s theorem is actually more general than we have
described. In fact, it can be used to ascertain the stability of sets rather than
just an equilibrium point. The basic idea is that since V(x) is lower bounded
V(x)>c, then the derivative V has to gradually vanish, and that the trajectory
is eventually confined to the set where V=0. The following definitions is
useful in explaining the more general LaSalle’s theorem.

DEFINITION 2.7–5 A set G is said to be an invariant set of a dynamical
system if every trajectory which starts in G remains in G. �

As examples of invariant sets, we can give the whole state-space, an
equilibrium point and a limit cycle. By using this concept, LaSalle was able
to describe the convergence to sets rather than to just equilibrium points.
For example, we can use this result to show that the limit cycle is a stable
attracting set of the Van der Pol oscillator.

The Linear Time-Invariant Case

In the case where the system under consideration is linear and time-invariant,
Lyapunov theory is well developed and the choice of a Lyapunov function is
simple. In fact, in this case, the various stability concepts in definitions 2.6.1
are identical. Lyapunov theory then provides necessary as well as sufficient
conditions for stability as discussed in this section. For the proofs consult
[Khalil 2001].

THEOREM 2.7–3: Given a linear time-invariant system

 

The system is stable if and only if there exists a positive definite solution P to
the equation

ATP+PA=-Q  

where Q is an arbitrary positive-definite matrix. �

Note that the stability of the whole system was obtained in the last theorem
since in this case, the origin is the unique equilibrium point and its stability is
equivalent to the system being stable. In addition, no reference was made to
what kind of stability is implied since all stability concepts are equivalent in
the very special case of linear, time-invariant systems [Khalil 2001]. Also
note that this result is equivalent to testing that all eigenvalues of A have
negative real parts [Kailath 1980]. In the following, we include a table
summarizing Lyapunov Stability theorems.

2.7 Lyapunov Stability Theorems
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Lyapunov Stability Theorems

1. Autonomous Systems: , such that

• The origin is an equilibrium point.
• The set .
• There exists V(x) continuous, continuously differentiate, V(0)=0

2. Non-autonomous Systems: x=f(t, x), such that
• The origin is an equilibrium point at t=t0.
• The set .

• There exists V(t, x) continuous, continuously differentiate in t and
x, V(t, 0)=0

• α(||x||), ß(||x||), and γ(||x||) class K functions.

Lyapunov Theorems may be used to design controllers that can stabilize
linear time-invariant systems as described in the next example.
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EXAMPLE 2.7–9: Stability of PD Controllers for Rigid Robots

Consider the rigid robot example and the torque input of Example 2.3.2.
The resulting linear system is given by

 

The equilibrium point is xe=[0T 0T]T. It is then easy to find Kp and Kv to
stabilize the equilibrium point. In fact, let Q=I and consider the Lyapunov
equation of theorem 2.7.3

ATP+PA=-I  

which reduces to

 

where

 

The solution of these equations will provide a stabilizing controller for the
robot. In particular, the choices of Kp and Kv of Example 2.6.3(part 5) will
make the origin a GES equilibrium.

�

Convergence Rate

Although Lyapunov stability theory does not directly give an indication of
the transient behavior of the system, it may actually be used to estimate the
convergence rate for linear systems. In order to see this, consider the following
inequalities which are a result of Rayleigh-Ritz theorem 2.5.2,

xTλmin(P)x�xT Px�xT λmax(P)x (2.7.2)

2.7 Lyapunov Stability Theorems
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then, note

(2.7.3)

Now, we can show by separation of variables and integrating that

xT�min(P)x�V(t)�V(0)e-�t (2.7.4)

or that

(2.7.5)

Therefore, x(t) is approaching the origin at rate faster than �/2. In fact, it
can be shown that the fastest convergence rate estimate is obtained when
Q=I.

Krasovskii Theorem

There are some cases when a Lyapunov function for autonomous nonlinear
systems is easily obtained using Krasovkii’s theorem stated below.

THEOREM 2.7–4: Consider the autonomous nonlinear system x=f(x) with
the origin being an equilibrium point. Let A(x)=∂f/∂x. Then, a sufficient
condition for the origin to be AS is that there exists 2 symmetric positive-
definite matrices, P and Q such that for all x≠0, the matrix

F(x)=A(x)TP+PA(x)+Q (1)

is �0 in some ball B about the origin. The function V(x)=f(x)TPf(x) is then a
Lyapunov function for the system. If B=  and if V(x) is radially unbounded
then the system is GAS.
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EXAMPLE 2.7–10: Krasovkii’s Theorem

Consider the nonlinear system described by

 

where f(0)=g(0)=0. Let us find the Jacobian matrix

 

Let P=I, Q=�I and check the conditions on the system which would look
like

 

which should be �0.
�

On the other hand, suppose we have the linear time-invariant system

 

The transfer function is then given by

P(s)=C(sI-A)-1B  

Note that P(s) is strictly-proper. The following stability result then holds
[Desoer and Vidyasagar 1975].

THEOREM 2.7–5: Suppose P(s) is a stable transfer function then

1. If u(t)∈L∞ i.e. u(t) is bounded, then so is y(t) and .
2. If limt→∞ u(t)=0 then limt→∞ y(t)=0.

2.7 Lyapunov Stability Theorems

Copyright © 2004 by Marcel Dekker, Inc.



Introduction to Control Theory80

3. If u(t)∈L2, then  .
�

EXAMPLE 2.7–11: Input/Output Stability of Rigid Robots

Consider the closed-loop robot of Example 2.7.9. Its input/output behavior
is described by a set of n decoupled differential equations

 

If . Then the transfer function between each
Ui(s) and Qi(s) is

 

Note that all Pi(s) are stable if kvi and kpi are both positive. Assume for the
purposes of illustration that kvi=3 and kpi=2, and that ui=sin (t). Note that ui

is bounded and let us find the output yi(t).

yi(t)=-0.2e-2t+0.5e-t-0.32 cos(t+0.32)  

which is bounded above by 0.62 and below by -0.02. The derivative of y(t)
is also bounded. On the other hand, suppose the input is ui(t)=e-3t then the
output is

yi(t)=0.5e-t-e-2t+0.5e-3t  

Since limt→∞ ui(t)=0, then so is limt→∞ yi(t)=0.
�

2.8 Input/Output Stability

When dealing with nonlinear systems, stability in the sense of Lyapunov
does not necessarily imply that a bounded input will result in a bounded
output. This fact is shown in the next example.
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EXAMPLE 2.8–1: Input/Output Versus Lyapunov Stability

Consider the time-varying system

 

The system is asymptotically stable with a single equilibrium point at ye=0.
On the other hand, a unit step input (which is definitely bounded) starting at
t=0 will lead to the response

 

which grows unbounded as t increases.
�

Therefore, we need to discuss the conditions under which a bounded input
will result in a bounded output [Boyd and Barratt], [Desoer and Vidyasagar
1975]. This was actually presented when discussing the system-induced
norms (see Definition 2.5.7) and the current discussion should serve to
contrast these concepts with Lyapunov stability. Consider the nonlinear
system

(2.8.1)

y(t)=g[x(t), t, u(t)] (2.8.2)

DEFINITION 2.8–1 The dynamical system (2.8.1) is bounded-input-
bounded-output (BIBO) stable if for any

||u(t)||�M<8  

there exist finite γ>0 and b such that

||y(t)||�γM+b

� 

Note that BIBO stability implies the uniform boundedness of all equilibrium
states.

2.8 Input/Output Stability
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EXAMPLE 2.8–2: BIBO Stability

Consider the system

y(t)=u2(t)  

It is BIBO stable since for any input u(t) such that |u(t)|<M<∞, the output is
bounded by M2.

�

2.9 Advanced Stability Results

In this section we review some advanced stability concepts. These results
will be used in showing the closed-loop stability of systems when robust or
adaptive controllers are used. If the reader is only interested in implementing
these controllers, this section may be skipped. On the other hand, anyone
interested in designing new controllers should be aware of the results presented
here.

Passive Systems

Given a nonlinear system shown in Figure 2.9.1, we are interested in studying
the stability of such a system based on input-output measurements only.
Motivated by energy concepts in network theory, such as

 [Stored Energy]=[External Power Input]+[Internal power Generation]

One can study the internal stability of all kinds of systems. In general,
the external power input is the scalar product yTu of an input effort or
flow u and an output flow or effort y. The last equation then takes on the
form

(2.9.1)

In many cases (e.g. isolated system) g(t)=0 and one can use the stored
Energy

(2.9.2)
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as a Lyapunov function candidate.
The passivity of nonlinear systems was defined as follows [Narendra and

Taylor 1973], [Ortega et al. 1998].

DEFINITION 2.9–1 Consider the system shown in Figure 2.9.1 and assume
that it has the same number of inputs and outputs i.e. u(t) and y(t) have the
same dimension.

1. Passivity: The system is said to be passive if

 

for all finite T>0 and some γ>-∞.

2. Strict Passivity: The system is said to be strictly passive if there exists a
δ>0 and γ>-∞ such that

 

for all finite T>0.
�

EXAMPLE 2.9–1: Passivity of Rigid Robots

Consider again the robot equation

 

Figure 2.9.1: Input-output description of nonlinear system

2.9 Advanced Stability Results
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Suppose the robot is representing a system whose input is � and whose
output is the joint velocity q. Let the sum of the kinetic energy and potential
energy of the robot be denote by the Hamiltonian H and recall [Ortega and
Spong 1988]

 

then

 

which proves that from � to q, the rigid robot is a passive system.
�

A passive system is in effect one that does not create energy.

Positive-Real Systems

If the system under consideration is linear and time-invariant, then passivity
is equivalent to positivity and may be tested in the frequency domain
[Narendra and Taylor 1973]. In fact, let us describe positive-real systems
and discuss some of their properties. Consider the multi-input-multi-output
linear time-invariant system

 

where x is an n vector, u is an m vector, y is a p vector, A, B, C, and D are of
the appropriate dimensions. The corresponding transfer function matrix is

P(s)=C(sI-A)-1B+D  

We will assume that the system has an equal number of inputs and outputs,
i.e. p=m. To simplify our notation we will denote the Hermitian part of a
real, rational transfer matrix T(s) by  where s*
is the complex conjugate of s. A number of definitions have been given for
SPR functions and matrices [Narendra and Taylor 1973]. It appears that the
most useful definition for control applications is the following.

DEFINITION 2.9–2 An m×m matrix T(s) of proper real rational functions
which is not identically zero is positive-real or PR if
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1. All elements of T(s) have no poles in the region Re(s)>0,
2. Any poles of T(s) on the jw axis are simple with positive-definite residues,

and
3. The matrix He[T(s)] is positive semidefinite for Re(s)>0.

�

EXAMPLE 2.9–2: PR Matrices

Consider the matrix

 

This matrix is PR as can be checked.

DEFINITION 2.9–3 An m×m matrix T(s) of proper real rational functions
which is not identically zero is strictly-positive-real or SPR if

1. All elements of T(s) have no poles in the region Re(s)�0, and
2. The matrix He[T(s)] is positive definite for Re(s)>0.

�

EXAMPLE 2.9–3: SPR Matrices

Consider the matrix

 

This matrix is SPR as can be checked.
�

Lure’s Problem

Consider the following feedback interconnected system

(2.9.3)

2.9 Advanced Stability Results
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where φ is continuous in both arguments. Lure then stated the following
Absolute Stability problem which became known as Lure’s Problem: Suppose
the system described by the above equations is given where:

1. All eigenvalues of A have negative real parts or that A has one eigen-
value at the origin while the rest of them is in the open left-half plane
(OLHP), and

2. (A, b) is controllable, and
3. (c, A) is observable, and
4. The nonlinearity φ(.,.) satisfies

(a) φ(t,0)=0;	t�0 and
(b)

Then, find conditions on the linear system (A, B, C, D) such that x=0 is a
GAS equilibrium point of the closed-loop system.

Note that sometimes when we know more about the nonlinearity φ, the
last condition above is replaced by the following:

 

where k2�k1�0 are constants. We then say that φ belongs to the sector
[k1, k2].

The first attempt to solve this problem was made by Aizerman in what is
now known as Aizerman’s conjecture [Vidyasagar 1992] followed by the
efforts of Kalman [Vidyasagar 1992]. The correct solution however, was not
available until the

In order to present the correct results, we need to present the KY and
MKY lemmas.

The MKY Lemma

The following lemmas are versions of the Meyer-Kalman-Yakubovich
(MKY) lemma which appears in [Narendra and Taylor 1973], [Khalil 2001]
amongst other places, and will be useful in designing adaptive controllers
for robots.

LEMMA 2.9–1: Meyer-Kalman-Yakubovitch Let the system (2.9.3) with
D=0 be controllable. Then the transfer function c(sI-A)-1b is SPR if and
only if
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1. For any symmetric, positive-definite Q, there exists a symmetric, positive-
definite P solution of the Lyapunov equation

ATP+PA=-Q  

2. The matrices B and C satisfy

C=BTP

�

The MKY Lemma gives conditions under which a transfer matrix has a
degree of robustness. Note that the conditions depend on both the input and
output matrices and thus a particular system may be SPR for a certain choice
of input/output pairs and not SPR for others. A modified version of the KY
lemma which relaxes the condition of controllability is given next.

LEMMA 2.9–2: Meyer-Kalman-Yakubovitch Given vector b, an
asymptotically stable A, a real vector v, scalars γ�0 and �>0, and a positive-
definite matrix Q, then, there exist a vector q and a symmetric positive definite
P such that

1.

2.

 

if and only if

1. is small enough and,

2. the transfer function γ/2+vT(sI-A)-1b is SPR
�

In most of our applications, q=0. These lemmas find many applications in
nonlinear systems. It is usually possible to divide a nonlinear system into a
linear feed-forward subsystem, and a nonlinear, passive feedback. The
challenge is then to make the linear subsystem SPR so that the stability of the
combined system is guaranteed.

2.9 Advanced Stability Results
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2.10 Useful Theorems and Lemmas

Consider the block diagram shown in Figure 2.9.2. The blocks labelled H1

and H2 represent two systems (linear or nonlinear) which operate on the
inputs e1 and e2 as follows

y1=H1e1=H1(u1-y2)  

y2=H2e2-H2(u2+y1)  

Let H1 be an m×p matrix function, and H2 be a p×m matrix function.
Therefore, u1 and y2 are p×11 vectors, while u2 and y1 are m×11 vectors. The
first theorem gives sufficient conditions to guarantee that the closed-loop
system shown in Figure 2.9.2 is BIBO stable and is given in [Desoer and
Vidyasagar 1975].

Small-Gain Theorem

THEOREM 2.10–1: Small gain Theorem Let H1:  and H2:
. Therefore H1 and H2 satisfy the inequalities

 

for all T� [0,∞) and suppose that . If

 

Figure 2.9.2: Feedback interconnection of two nonlinear systems.
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Then e1, y2,  and y1, . �

Basically, the small-gain theorem states that a feedback interconnection
of two systems is BIBO stable if the loop-gain is less than unity. In other
words, if a signal traverses the feedback-loop and decreases in magnitude
then the closed-loop system can not go unstable.

EXAMPLE 2.10–1: Applications of Small-Gain Theorem

Let the feedback connection of Figure 2.9.2 be such that

 

Then, we can show that

γ1=0.5; ß1=0  

γ2=1; ß2=1.  

Since γ1γ2=0.5<1, the feedback connection is BIBO stable.
�

The next theorem provides a test for the stability of a nonlinear system based
on the stability of its linear part. In fact, a certain degree of robustness is
achieved if the linear system is exponentially stable as described in [Anderson
et al. 1986].

Total Stability Theorem

THEOREM 2.10–2: Total Stability Consider the state-space system
described by

 

where

1. The system  is exponentially stable i.e. there are some a>0
and K�1, such that

||x(t)||� Ke-at; t�0  

2.10 Useful Theorems and Lemmas
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2. f(t, 0)=0 i.e. the origin is an equilibrium point of f(t, x)

3. || f(t, x1)-f(t, x2)||�ß1||x1-x2||, for some ß1>0

4. ||g(t, x1)||�ß2r, for some ß2>0

5. ||g(t, x1)-g(t, x2)�ß2 ||x1-x2||

6.

Then, there exists a unique solution x(t) to 1.5.5 and

 

�

The total stability theorem will be used to design controllers that will
make the linear part of the system exponentially stable. In effect, this
theorem guarantees that if the linear part of the system is “very” stable
(exponentially stable), the destabilizing effect of the bounded
nonlinearities may not be sufficient to destabilize the system and the state
will remain bounded.

EXAMPLE 2.10–2: Total Stability

Consider the nonlinear system

 

Let |x0|<1, and note the following

K=1; a=2; ß1=0.5; ß2=1.  

Note first that all conditions of the theorem are satisfied, then there exists a
unique solution x(t) which is bounded by

�

A version of the Bellman-Gronwall lemma is proved in [Sastry and Bodson
1989] and is presented next.
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LEMMA 2.10–1: Bellman-Gronwall Let x(.), a(.), b(.): [0, 8) → [0, 8), and
T�0. Suppose that for all t� [0,T], the following inequality holds

 

Then for all t� [0,T]

 

If b(t) is further a constant, the following holds

�

EXAMPLE 2.10–3: Bellman-Gronwall Lemma Example

Consider a LTI system given by

 

and assume that A is a stable matrix. Then the solution of the state equation
is given by

 

or

 

which, when taking the norm of each side becomes

 

We can then use the Bellman-Gronwall lemma by letting 
  to obtain

2.10 Useful Theorems and Lemmas
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or finally

�

The next Lemma may be used in the case of non-autonomous systems and
leads to results similar to LaSalle’s theorem. For a proof see for example
[Khalil 2001]

LEMMA 2.10–2: Barbalat Let f(t) be a differentiate function of t.

• First Version: If  is uniformly continuous and
, then 

• Second Version: If f(t)�0,  and  bounded, then

�

EXAMPLE 2.10–4: Barbalat Lemma Example

1. Consider f(t)=e-t+1, then dot f(t)=-e-t which is uniformly continuous. On
the other hand limt→∞(e-t+1)=1 therefore .

2. As a second example, consider f(t)=1/(1+t), with t>0. Using the second
version of Barbalat’s lemma, we can show that .

�

LEMMA 2.10–3: Consider the quadratic equation

 

where a, b, and c are positive constants. Then P(x)<0 if

 

for all x1<x<x2 where

 

Copyright © 2004 by Marcel Dekker, Inc.



93

�

THEOREM 2.10–3: Let V(x) be a Lyapunov function of a continuous-time
system that satisfies the following properties:

 

then x(t) is uniformlt bounded �

THEOREM 2.10–4: Let V(x) be a Lyapunov function of a continuous-time
system that satisfies the following properties:

 

where η is a positive constant, γ1 and γ2 are continuous, strictly increasing
functions, and γ3 is a continuous, nondecreasing function. Then, if

 

x(t) is uniformly ultimately bounded. In addition, if x(0)=0, x(t) is uniformly
bounded.

2.11 Linear Controller Design

The purpose of control design is to make the robot respond in a predictable
and desirable fashion to a set of input signals. In this section we review how
a linear controller may be designed in order that the behavior of the robot-
controller combination is acceptable. It seems obvious that the firs requirement
on the robot-controller is its stability. Therefore, the first function of the
controller is to stabilize the robot when it is moving in space. In fact, we can
now pose the problem we wish to solve:

�

2.11 Linear Controller Design
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Linear Control Design Problem: Consider a LTI system. Design a feedback
controller that operates on the output y(t) without differentiation, and
generates an input u(t) so that the system goes from any initial state x(0) to
a specified desired final state xd in some finite time. This problem has 2 parts
to it:

1. Controllability: Can the problem be solved if y=x?
2. Observability: If so, how do I get x from y?

In the next section we introduce these concepts and find tests that will allow
us to answer the questions posed. Given is a MIMO LTI system

(2.11.1)

where , ,  and A, B, C, D are of the appropriate
dimensions.

DEFINITION 2.11–1 A state x0 is controllable if there exists an input u(t),
for 0�t�t1 such that x(t1)=0, for some finite t1. The system itself is said to be
controllable if all  are controllable.

Note that the input u(t) is not a feedback function of the state x(t). Let us
recall the solution of the differential equation given by

 

and evaluate it at t1 assuming that x0 is controllable so that x(t1)=0 to
obtain

(2.11.2)

Therefore, if x0 is controllable, it has to satisfy the last equation. This however
is not an easy test. Fortunately, we have a much simpler test given in the
following theorem.

THEOREM 2.11–1: A necessary and sufficient condition for the complete
controllability of the LTI systems is that, The n×nm matrix

�

Copyright © 2004 by Marcel Dekker, Inc.



95

(1)

is full rank, i. e. rankC=n
�

Next, We show that controllability is sufficient to stabilize the system
(2.11.1) by placing the eigenvalues of the A matrix

THEOREM 2.11–2: Let (A, b) be controllable. Then, there exists a constant
gain matrix K such that u=-Kx+v will place the eigenvalues of A-bk anywhere
in the s plane.

The state-feedback gain needed to place the eigenvalues may be found in
the single-input case using Ackermann’s formula (see for example [Antsaklis
and Michel 1997]). Assume the desired closed-loop eigenvalues are specified
as the roots of the equation

(2.11.3)

Then, the state-feedback controller is given by

(2.11.4)

where C is the controllability matrix of (2.11.1), and φ(Α) is the matrix
obtained by evaluating φ(s) at A, i.e.

 (2.11.5)

EXAMPLE 2.11–1: Control Design for Double Integrator
Consider the double integrator system

 

Suppose that the desired closed-loop poles are the roots of the equation

�

2.11 Linear Controller Design
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Then by Ackermann’s formula

(1)

�

Next, we introduce the concept of observability and find an observability
test.

DEFINITION 2.11–2 The state x(0)=x0 is said to be observable if knowledge
of u(t), y(t); 0�t1 is enough to uniquely determine x0. Note that once x(0) is
known, so is x(t) for t�0. The system is said to be completely observable if
every initial state is observable.

This problem is a dual problem to the controllability problem as will
become obvious in the following.

THEOREM 2.11–3: A necessary and sufficient condition for the complete
observability of the LTI systems is that The np×n matrix

(1)

is full rank, i.e. �

EXAMPLE 2.11–2: Observer-Controller Design

Consider the system

 

�
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then

 

Therefore, this system is controllable but not observable. On the other hand,
the system

 

then

 

so this one is observable but not controllable. The trouble is that both of
these realizations have the same transfer function H(s)=c(sI-A)-1b= s/s2=s!.

�

Suppose we have 2 realizations of the transfer function H(s) related by a
state-space transformation,

(2.11.6)

and

 

2.11 Linear Controller Design
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Then, let us find the controllability matrix  of Σ-

(2.11.7)

Therefore, rankC=rank , and controllability is therefore preserved under
state-space transformation.

By combining the concepts of observability and controllability, we can
design compensators that solve the Linear Control Design problem. In fact,
the following theorem summarizes linear control design.

THEOREM 2.11–4: The Linear Control Design problem is solvable for a
system 2.11.1, if and only if the state-space realization is both observable
and controllable. �

These compensators are known as the observer-controller compensators and
are shown for example in Figure 2.11.1. In the SISO case, a transfer function
admits a state-space realization which is completely observable and
controllable if and only if no pole-zero cancellations occur [Kailath 1980],
[Antsaklis and Michel 1997]. The next example shows an observer-controller
compensator chosen to obtain desired closed-loop poles.

Figure 2.11.1

EXAMPLE 2.11–3: Observer-Controller Design

Consider again the double integrator system. It is easily verified that it is a
controllable and observable system. Suppose that the desired closed-loop
poles are the roots of the equation
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This can be achieved using the structure of Figure 2.11.1 using the gain
 found in Example 2.11.1 �

The double integrator system being both controllable and observable, also’
lends itself to the most general controller design technique for linear systems,
namely the two-degree -f freedom (2-DOF) design. This allows the
controlled closed-loop system to match any desired model as descried in
[Kailath 1980]. This approach goes beyond the pole or eigenvalue placement
designs, as one can now move both poles and zeros, a goal not achievable
with the observer-controller compensators. This design is illustrated in the
following example.

EXAMPLE 2.11–4: Two DOF Design

Consider again the double integrator system, and assume the desired closed-
loop transfer function is given by

 

where a, b, kv, and kp are given constants. Then using the model-following
configuration in Figure 2.11.2, and simplifying terms, we obtain

Figure 2.11.2

2.11 Linear Controller Design
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or

(s2+kvs+kp)Q(s)=(as+b)[s2R(s)+S(s)].  

At this stage, we may choose for example R(s)=1 and suppose for the
purpose of illustration that a=b=kp=1 and that kv=9. Then we solve for S(s)=9s
and Q(s)=s. Note that in this case, the feedback block S(s)/R(s) is improper
but this does not cause any problems in cases (such as robot control) where
velocity measurements are available.

�

The question addressed next is to find conditions on (2.11.1) so that a
static-output feedback controller will render the closed-loop system SPR.
We will consider the SISO case only since this is the only case encountered
in this book.

(2.11.8)

or in the frequency-domain

(2.11.9)

We present a simple frequency domain result to show the existence of K and
γ that will render the closed-loop system SPR. The result first appeared in
[Gu 1988].

THEOREM 2.11–5: Let system (2.2.11) have no common poles and zeros.
Then there exists a nonsingular K and a positive scalar γ such that the closed-
loop system (2.11.8, 2.11.9) is SPR, if and only if P(s) has no zeros in the
right half plane and if P(s) has n poles and n - 1 zeros. In fact, one such K is
given by

K=P(CB)-1  

where P is any symmetric, positive-definite matrix. �
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EXAMPLE 2.11-5: SPR Design

Consider the double integrator system

 

where c2≠0 and c1, c2 are of the same sign. The open-loop transfer function is
then

 

which has relative degree 1 and is minimum phase. Note that CB=c2 which is
invertible. The gain K is chosen to be

 

where p>0. The closed-loop system is then

 

which is stable for any choice of γ>0 and is SPR if γ>c1/(pc2 (check!).
�

2.12 Summary and Notes

This chapter is meant to be a review of various control theory concepts that
will be used in the remainder of the book. The emphasis has been to include
enough material so that readers with little or no background in control theory
are able to follow the design of robot controllers. Simplifications were often
made to concentrate on the systems studied in this book, namely, mechanical
systems and systems described by the Lagrange-Euler equations. In particular,
the double integrator system was illustrated in detail, since it will result from
applying a preliminary nonlinear feedback on mechanical manipulators. In

2.12 Summary and Notes
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manipulators, and in subsequent chapters, the control concepts reviewed in
this chapter will be implemented on those manipulators.

Most of the results reviewed here can be found in greater details in the
books by [Kailath 1980], [Antsaklis and Michel 1997] for the linear systems
case, and in [Khalil 2001], [Vidyasagar 1992] in the nonlinear systems case.
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Chapter 3

Robot Dynamics

This chapter provides the background required for the study of robot
manipulator control The arm dynamical equations are derived both in the
second-order differential equation formulation and several state-variable
formulations. Some important properties of the dynamics are introduced. We
show how to include the dynamics of the arm actuators, which may be electric
or hydraulic motors.

3.1 Introduction

Robotics is a complex field involving many diverse disciplines, such as physics,
properties of materials, statics and dynamics, electronics, control theory, vision,
signal processing, computer programming, and manufacturing. In this book
our main interest is control of robot manipulators. The purpose of this chapter
is to study the dynamical equations needed for the study of robot control.

For those desiring a background in control theory, Chapter 2 is provided.
For those desiring a background in the basics of robot manipulators, in Appendix
A we examine the geometric structure of robot manipulators, covering basic
manipulator configurations, kinematics, and inverse kinematics. There we
review as well the manipulator Jacobian, which is essential for control in
Cartesian or workspace coordinates, where the desired trajectories of the arm
are usually specified to begin with.

The robot dynamics are derived in Section 3.2. Lagrangian mechanics are
used in this derivation. In Section 3.3 we review some fundamental properties
of the arm dynamical equation that are essential in subsequent chapters for

which is referred to throughout the text.
The arm dynamics in Section 3.2 are in the form of a second-order vector

Copyright © 2004 by Marcel Dekker, Inc.
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differential equation. In Section 3.4 we show several ways to convert this
formulation to a state-variable description. The state-variable description is a
first-order vector differential equation that is extremely useful for developing
many arm control schemes. Feedback linearization techniques and Hamiltonian
mechanics are used in this section.

The robot arm dynamics in Section 3.2 are given in joint-space coordinates.
In Section 3.5 we show a very general approach to obtaining the arm
dynamical description in any desired coordinates, including Cartesian or
workspace coordinates and the coordinates of a camera frame or reference.

In Section 3.6 we analyze the electrical or hydraulic actuators that perform
the work required to move the links of a robot arm. It is shown how to
incorporate dynamical models for the actuators into the arm dynamics to
provide a complete dynamical description of the arm-plus-actuator system.
This finally leaves us in a position to move on to the next chapters, where
robot manipulator control design is discussed.

3.2 Lagrange-Euler Dynamics

For control design purposes, it is necessary to have a mathematical model
that reveals the dynamical behavior of a system. Therefore, in this section we
derive the dynamical equations of motion for a robot manipulator. Our
approach is to derive the kinetic and potential energy of the manipulator and
then use Lagrange’s equations of motion.

In this section we ignore the dynamics of the electric or hydraulic motors
that drive the robot arm; actuator dynamics is covered in Section 3.6.

Force, Inertia, and Energy

Let us review some basic concepts from physics that will enable us to better
understand the arm dynamics [Marion 1965]. In this subsection we use boldface
to denote vectors and normal type to denote their magnitudes.

The centripetal force of a mass m orbiting a point at a radius r and angular
velocity ω is given by

(3.2.1)

v=w×r, (3.2.2)

which in this case means simply that v=ωr.

Copyright © 2004 by Marcel Dekker, Inc.

See Figure 3.2.1. The linear velocity is given by



109

Imagine a sphere (i.e., the earth) rotating about its center with an angular
velocity of ω0. See Figure 3.2.2. The Coriolis force on a body of mass m
moving with velocity v on the surface of the sphere is given by

Fcor=-2mω0×v (3.2.3)

Using the right-handed screw rule (i.e., if the fingers rotate ω0 into v, the
thumb points in the direction of ω0×v, we see that, in the figure, the Coriolis
force acts to deflect m to the right.

In a low-pressure weather system, the air mass moves toward the center
of the low. The Coriolis force is responsible for deflecting the air mass to the
right and so causing a counterclockwise circulation known as cyclonic flow.
The result is the swirling motion in a hurricane. A brief examination of
Figure 3.2.2 reveals that in the southern hemisphere Fcor deflects a moving
mass to the left, so that a low-pressure system would have a clockwise wind
motion.

Since  and  we may write

(3.2.4)

It is important to note that the centripetal force involves the square of a
single angular velocity, while the Coriolis force involves the product of two
distinct angular velocities.

The kinetic energy of a mass moving with a linear velocity of v is

Figure 3.2.1: Centripetal force.

3.2 Lagrange-Euler Dynamics
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(3.2.5)

The rotational kinetic energy of the mass in Figure 3.2.1 is given by

(3.2.6)

where the moment of inertia is

(3.2.7)

with ρ(r) the mass distribution at radius r in a volume. In the simple case
shown where m is a point mass, this becomes

Figure 3.2.2: Coriolis force.

Copyright © 2004 by Marcel Dekker, Inc.
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I=mr2. (3.2.8)
Therefore,

(3.2.9)

The potential energy of a mass m at a height h in a gravitational field with
constant g is given by

P=mgh. (3.2.10)

The origin, corresponding to zero potential energy, may be selected arbitrarily
since only differences in potential energy are meaningful in terms of physical
forces.

The momentum of a mass m moving with velocity v is given by

p=mv. (3.2.11)

The angular momentum of a mass m with respect to an origin from which
the mass has distance r is

Pang=r×p. (3.2.12)

The torque or moment of a force F with respect to the same origin is defined
to be

N=r×F. (3.2.13)

Lagrange’s Equations of Motion

Lagrange’s equation of motion for a conservative system are given by [Marion
1965]

(3.2.14)

where q is an n-vector of generalized coordinates qi, � is an n-vector of
generalized forces �i, and the Lagrangian is the difference between the kinetic
and potential energies

L=K-P. (3.2.15)

In our usage, q will be the joint-variable vector, consisting of joint angles θi;
(in degrees or radians) and joint offsets di (in meters). Then τ is a vector that
has components ni of torque (newton-meters) corresponding to the joint
angles, and fi of force (newtons) corresponding to the joint offsets. Note that
we denote the scalar components of τ by lowercase letters.

3.2 Lagrange-Euler Dynamics
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We shall use Lagrange’s equation to derive the general robot arm dynamics.
Let us first get a feel for what is going on by considering some examples.

EXAMPLE 3.2–1: Dynamics of a Two-Link Polar Arm

The kinematics for a two-link planar revolute/prismatic (RP) arm are
given in Example A.2–3. To determine its dynamics examine Figure 3.2.3,
where the joint-variable and joint-velocity vectors are

(1)

The corresponding generalized force vector is

(2)

Figure 3.2.3: Two-link planar RP arm.
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with n a torque and fa force. The torque n and force f may be provided by
either motors or hydraulic actuators. We discuss the dynamics of actuators in
Section 3.6.

To determine the arm dynamics, we must now compute the quantities
required for the Lagrange equation.

a. Kinetic and Potential Energy

The total kinetic energy due to the angular motion  and the linear motion
 is

(3)

and the potential energy is

(4)

b. Lagrange’s Equation

The Lagrangian is

(5)

Now we obtain

(6)

(7)

(8)

Therefore, (3.2.14) shows that the arm dynamical equations are

(9)

(10)

This is a set of coupled nonlinear differential equations which describe the
motion q(t)=[θ(t) r(t)]T given the control input torque n(t) and force f(t). We

3.2 Lagrange-Euler Dynamics
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shall show how to determine q(t) given the control inputs n(t) and f(t) by
computer simulation in Chapter 4.

Given our discussion on forces and inertias it is easy to identify the terms
in the dynamical equations. The first terms in each equation are acceleration
terms involving masses and inertias. The second term in (9) is a Coriolis
term, while the second term in (10) is a centripetal term. The third terms are
gravity terms.

c. Manipulator Dynamics

By using vectors, the arm equations may be written in a convenient form.
Indeed, note that

(11)

We symbolize this vector equation as

(12)

Note that, indeed, the inertia matrix M(q) is a function of q (i.e., of θ and r),
the Coriolis/centripetal vector V(q, ) is a function of q and , and the gravity
vector G(q) is a function of q.

EXAMPLE 3.2–2: Dynamics of a Two-Link Planar Elbow Arm

In Example A.2–2 are given the kinematics for a two-link planar RR
arm. To determine its dynamics, examine Figure 3.2.4, where we have
assumed that the link masses are concentrated at the ends of the links.
The joint variable is

q=[θ1 θ2]T (1)

and the generalized force vector is

(2)
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with τ1, and τ2 torques supplied by the actuators.

a. Kinetic and Potential Energy

For link 1 the kinetic and potential energies are

(3)

(4)

For link 2 we have

(5)

(6)

(7)

(8)

so that the velocity squared is

(9)

Figure 3.2.4: Two-link planar RR arm.

3.2 Lagrange-Euler Dynamics
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Therefore, the kinetic energy for link 2 is

(10)

The potential energy for link 2 is

P2=m2gy2=m2g[a1 sin θ1+a2 sin(θ1+θ2)]. (11)

b. Lagrange’s Equation

The Lagrangian for the entire arm is

(12)

The terms needed for (3.2.14) are
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Finally, according to Lagrange’s equation, the arm dynamics are given by the
two coupled nonlinear differential equations

(14)

c. Manipulator Dynamics

Writing the arm dynamics in vector form yields

(13)

3.2 Lagrange-Euler Dynamics
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where

These manipulator dynamics are in the standard form

(17)

with M(q) the inertia matrix, V(q, ) the Coriolis/centripetal vector, and G(q)
the gravity vector. Note that M(q) is symmetric.

EXERCISE 3.2–3: Dynamics of a Three-Link Cylindrical Arm

We study the kinematics of a three-link cylindrical arm in Example A.2–
1. In Figure 3.2.5 the joint variable vector is

q=[θ h r]T (1)

Show that the manipulator dynamics are given by

(15)

(16)
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with J the inertia of the base link and the force vector

(3)

(2)

Figure 3.2.5: Three-link cylindrical arm.

Derivation of Manipulator Dynamics

We have shown in several examples how to apply Lagrange’s equation to
compute the dynamical equations of any given robot manipulator. In the
examples the dynamics we found always had the special form

(3.2.16)

3.2 Lagrange-Euler Dynamics
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with q the joint-variable vector and τ the generalized force/torque vector. In
this subsection we derive the dynamics for a general robot manipulator. They
will be of this same form.

To obtain the general robot arm dynamical equation, we determine the
arm kinetic and potential energies, then the Lagrangian, and then substitute
into Lagrange’s Equation (3.2.14) to obtain the final result [Paul 1981, Lee
et al. 1983, Asada and Slotine 1986, Spong and Vidyasagar 1989].

Arm Kinetic Energy. Given a point on link i with coordinates of ir with respect
to frame i attached to that link, the base coordinates of the point are

(3.2.17)

where Ti is the 4×4 homogeneous transformation defined in Appendix A.
Note that Ti is a function of joint variables q1, q2,…, qi. Consequently, the
velocity of the point in base coordinates is

(3.2.18)

Since ∂Ti/∂qj=0, j>i, we may replace the upper summation limit by n, the
number of links. The 4×4 matrices ∂Ti/∂qj may be computed if the arm matrices
Ti are known.

The kinetic energy of an infinitesimal mass dm at ir that has a velocity of
v=[vx vy vz]T is

(3.2.19)

Thus the total kinetic energy for link i is given by

 

Substituting for dKi from (3.2.19), we may move the integral inside the
summations. Then, defining the 4×4 pseudo-inertia matrix for link i as

(3.2.20)
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we may write the kinetic energy of link i as

(3.2.21)

Let us briefly discuss the pseudo-inertia matrix before proceeding to find the
arm total kinetic energy. Let

ir=[x y z 1]T  

be the coordinates in frame i of the infinitesimal mass dm. Then, expanding
(3.2.20) yields

(3.2.22)

where the integrals are taken over the volume of link i. This is a constant
matrix that is evaluated once for each link. It depends on the geometry and
mass distribution of link i. In fact, in terms of the link i moments of inertia

(3.2.23)

cross-products of inertia

(3.2.24)

and first moments

3.2 Lagrange-Euler Dynamics
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(3.2.25)

with m the total mass of link i, and

(3.2.26)

the coordinates in frame i of the center of gravity of link i, we may write

(3.2.27)

These quantities are either tabulated in the arm manufacturer’s specifications
or may be computed from quantities tabulated there.

Returning now to our development, the total arm kinetic energy may be
written as

(3.2.28)

Since the trace of a sum of matrices is the sum of the individual traces, we
may interchange summations and the trace operator to obtain

 

or
(3.2.29)

where the n×n arm inertia matrix M(q) has elements defined as

(3.2.30)
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Since ∂Ti/∂qj=0 for j>i, we may write this more efficiently as

(3.2.31)

Equation (3.2.29) is what we have been seeking; it provides a convenient
expression for the arm kinetic energy in terms of known quantities and the
joint variables q. Since mjk=mkj, the inertia matrix M(q) is symmetric. Since
the kinetic energy is positive, vanishing only when the generalized velocity 
equal zero, the inertia matrix M(q) is also positive definite. Note that the
kinetic energy depends on q and .

Arm Potential Energy. If link i has a mass mi and a center of gravity 
expressed in the coordinates of its frame i, the potential energy of the link is
given by

(3.2.32)

where the gravity vector is expressed in base coordinates as

(3.2.33)

If the arm is level, at sea level, and the base z-axis is directed vertically
upward, then

(3.2.34)

with units of m/s2.
The total arm potential energy, therefore, is

(3.2.35)

Note that P depends only on the joint variables q, not on the joint velocities
.
Noting that  is the last column of the link i pseudo-inertia matrix Ti,

we may write

(3.2.36)

with e4 the last column of the 4×4 identity matrix (i.e., e4=[0 0 0 1]T). Lagrange’s
Equation. The arm Lagrangian is

3.2 Lagrange-Euler Dynamics
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(3.2.37)

It is a fundamental property that the kinetic energy is a quadratic function of
the joint velocity vector and the potential energy is independent of .

The terms required in Lagrange’s Equation (3.2.14) are now given by

(3.2.38)

(3.2.39)

(3.2.40)

Therefore, the arm dynamical equation is

(3.2.41)

Defining the Coriolis/centripetal vector

(3.2.42)

and the gravity vector

(3.2.43)

we may write

(3.2.44)

which is the final form of the robot dynamical equation we have been seeking.
The units of elements of M(q) corresponding to revolute joint variables

qi=θi are kg-m2. The units of the elements of M(q) corresponding to prismatic
joint variables qi=di are kilograms. The units of elements of V(q, )and G(q)
corresponding to revolute joint variables are kg-m2/s2. The units of elements
of V(q, ) and G(q) corresponding to prismatic joint variables are kg-m/s2.

Copyright © 2004 by Marcel Dekker, Inc.
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3.3 Structure and Properties of the Robot Equation

In this section we investigate the detailed structure and properties of the
dynamical arm equations, for this structure should be reflected in the form of
the control law. The controller is simpler and more effective if the known
properties of the arm are incorporated in the design stage.

In reality, a robot arm is always affected by friction and disturbances. Therefore,
we shall generalize the arm model we have just derived by writing the
manipulator dynamics as

(3.3.1)

with q the joint variable n-vector and τ the n-vector of generalized forces.
M(q) is the inertia matrix, V(q, ) the Coriolis/centripetal vector, and G(q)
the gravity vector. We have added a friction term

(3.3.2)

with Fv the coefficient matrix of viscous friction and Fd a dynamic friction
term. Also added is a disturbance τd, which could represent, for instance, any
inaccurately modeled dynamics.

Friction is not an easy term to model, and indeed, may be the most contrary
term to describe in the manipulator dynamics model. Some more discussion
on friction may be found in [Schilling 1990].

We shall sometimes write the arm dynamics as

(3.3.3)

where
(3.3.4)

represents nonlinear terms.
Let us examine the structure and properties of each of the terms in the

robot dynamics equation. This study will offer us a great deal of insight
which we use in deriving robot control schemes in subsequent chapters. A

refer in the remainder of the book. As we develop each property, it will be
worthwhile to refer to Examples 3.2.1 to 3.2.3 in order to verify that the
properties indeed hold there. At the end of this section we illustrate in Example
3.3.1 several of the properties for a two-link planar elbow arm.

3.3 Structure and Properties of the Robot Equation

Copyright © 2004 by Marcel Dekker, Inc.
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Properties of the Inertia Matrix

As we have seen, M(q) is symmetric and positive definite. In fact, the arm

Table 3.3.1: The Robot Equation and Its Properties

Copyright © 2004 by Marcel Dekker, Inc.
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kinetic energy is

(3.3.5)

Some expressions for M are given in the next subsection.
Another vital property of M(q) is that it is bounded above and below. That

is,

µ1I≤M(q)≤µ2I (3.3.6)

with µ1, and µ2 scalars that may be computed for any given arm (see Example
3.3.1). When we say that µ1I≤M(q), for instance, we mean that (M(q)-µ1I) is
positive semidefinite. That is,

xT(M-µ1I)x≥0  

for all xε Rn.
Likewise, the inverse of the inertia matrix is bounded, since

(3.3.7)

If the arm is revolute, the bounds µ1 and µ2 are constants, since q appears only
in M(q) through sin and cos terms, whose magnitudes are bounded by 1 (see
Examples 3.2.2 and 3.3.1). On the other hand, if the arm has prismatic joints,
then µ1 and µ2 may be scalar functions of q. See Example 3.2.1, where M(q) is
bounded above by µ2=mr2 (if r>1).

The boundedness property of the inertia matrix may also be expressed as

m1≤||M(q)||≤m2, (3.3.8)

where any induced matrix norm can be used to define the positive scalars m1

and m2.

Properties of the Coriolis/Centripetal Term

A glance at (3.2.42) reveals a problem that, if not understood, can make the
study of robot dynamics confusing. Simplification of this V(q, ) term would
require taking the derivative of a matrix [i.e., M(q)] with respect to the n-
vector q. However, such derivatives are not matrices, but tensors of order
three-that is, they must be represented by three indices, not two. There are
several ways to get around this problem, involving several definitions of
some new quantities.

3.3 Structure and Properties of the Robot Equation
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Kronecker Product Analysis of V(q, ) Let us first examine the term V(q,
) from the point of view of the Kronecker product [Brewer 1978], defined for

two matrices  as

(3.3.9)

where A has elements aij and [aijB] means the np×mq block matrix composed
of the p×q blocks aijB. Thus, for  we, have

 

For matrices A(q), B(q), with , define the matrix derivative as

(3.3.10)

Then we may prove the product rule

(3.3.11)

with In the n×n identity.
Now we may examine the Coriolis/centripetal vector V(q, )[Koditschek

1984, Gu and Loh 1988]. Using (3.3.11) twice on (3.2.42), we may obtain

(3.3.12)

or

(3.3.13)

where
(3.3.14)

(3.3.15)
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with the matrix coefficient given by

(3.3.16)

To find an equivalent expression for Vm1, note that

(3.3.17)

which may be written as

(3.3.18)

(Note that ∂M/∂qi is symmetric.) Therefore,

(3.3.20)

whence using appropriate definitions we may write

(3.3.21)

It is also possible to write (see the Problems)

(3.3.22)

Since Vv( ) is linear in  it follows that V(q, ) is quadratic in q. In fact, it
can be shown (see the Problems) that

or as

3.3 Structure and Properties of the Robot Equation
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(3.3.23)

for appropriate definition of Vi(q) [Craig 1988]. Indeed, the Vi(q) are symmetric
n×n matrices.

Since V(q, ) is quadratic in , it can be bounded above by a quadratic
function of . That is,

(3.3.24)

with vb(q) a known scalar function and ||·|| any appropriate norm. For a
revolute arm, vb is a constant independent of q. See Examples 3.2.2 and
3.3.1, where the quadratic terms in  are multiplied by sin θ2, whose magnitude
is bounded by 1. On the other hand, for an arm with prismatic joints vb(q)
may be function of q; see Examples 3.2.1 and 3.2.3, where V(q, ) has a term
in r multiplying the quadratic terms .

To assist in determining vb(q) for a given robot arm, note that so that 
 so that

 

where  (q) is defined in (3.3.23). Therefore, for a revolute arm

(3.3.25)

We may note that

(3.3.26)

This is an n2-vector consisting of all possible products of the components of .
This and (3.3.19) allow us to demonstrate that

(3.3.27)

In this proof, we also need the identity

Copyright © 2004 by Marcel Dekker, Inc.
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(3.3.28)

for any matrices A and B. Note: It is not true that 
Now we may use these various identities to show that

(3.3.29)

Thus

(3.3.30)

with

(3.3.31)

Note that, in general, Vm1≠Vm2.
In terms of M and U, the arm dynamics may be written as

(3.3.32)

At this point we may prove an identity that is extremely useful in constructing
advanced control schemes. We call it the skew-symmetric property; it shows
that the derivative of M(q) and the Coriolis vector are related in a very particular
way. In fact,

(3.3.33)

since a matrix minus its transpose is always skew symmetric. This important
identity holds also if Vm1 is used in place of Vm2.

It is important to note that the first equality in (3.3.33) holds because
 multiplies . That is, , so that it is not necessarily true

that (M-2Vm2) itself is skew symmetric. However, it is possible to define a
matrix  such that

(3.3.34)

and
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(3.3.35)

is skew symmetric, so that xT Sx=0 for all x � Rn Indeed, according to (3.3.13),
(3.3.27) we may define

(3.3.36)

for then the skew-symmetric matrix is nothing but

(3.3.37)

This Vm is the standard one used in several modern adaptive and robust
control algorithms, and it is the definition we shall use in the remainder of the
book. Thus we shall write the arm equation either as

(3.3.38)

or

(3.3.39)

Note that it is possible to split V(q, ) into its Coriolis and centripetal
components as

(3.3.40)

where

(3.3.41)

and  is (3.3.26) with all the square terms  removed [Craig 1988] (see
the Problems).

Componentwise Analysis of . An alternative to the Kronecker product
analysis of the Coriolis/centripetal vector is an analysis in terms of the scalar
components of , which yields additional insight.

In terms of the components mkj(q) of the inertia matrix M(q) we may write
(3.2.38)–(3.2.40) componentwise as
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where all sums are over the number of joints n. Now, the Lagrange equation
shows that the arm dynamics are expressed componentwise as

(3.3.45)

with n the number of joints.
By interchanging the order of summation and taking advantage of symmetry,

(3.3.46)

Therefore, we may define

(3.3.47)

and write the arm dynamics as

(3.3.48)

The cyclic symmetry of the vijk is what allows us to derive the important
properties of the Coriolis/centripetal vector V(q, )which corresponds to the
second term in this equation. The quantities vijk are known as Christoffel
symbols (of the first kind) [Borisenko and Tarapov 1968].

The matrix  defined in (3.3.36) has components vkj given by

(3.3.42)

(3.3.43)

(3.3.44)

3.3 Structure and Properties of the Robot Equation
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(3.3.49)

Properties of the Gravity, Friction, and Disturbance

Properties of the Gravity Term G(q). According to (3.2.43) and (3.2.36),

 

whence using (3.3.11) twice reveals

(3.3.50)

A bound on the gravity term may be derived for any given robot arm. Thus

||G(q)||≤gb(q), (3.3.51)

where ||·|| is any appropriate vector norm and gb is a scalar function that may
be determined for any given arm (see Example 3.3.1). For a revolute arm, gb

is a constant independent of the joint vector q, but for an arm with prismatic
links, gb may depend on q. See the examples in Section 3.2 and Example
3.3.1 to verify these claims.

Properties of the Friction Term . The friction in the arm Equation (3.3.1)
is of the form

(3.3.52)

with Fv the coefficient matrix of viscous friction, and Fd a dynamic friction
term. The friction coefficients are among the parameters most difficult to
determine for a given arm and, in fact, (3.3.52) represents only an approximate
mathematical model for their influence. For more discussion, see [Craig 1988,
Schilling 1990].

Since friction is a local effect, we may assume that F ( ) is uncoupled
among the joints, so that
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(3.3.53)

with fi(·) known scalar functions that may be determined for any given arm.
We have defined the vec{·} function for future use.

The viscous friction may often be assumed to have the form

(3.3.54)

with vi known constant coefficients. Then Fv=diag{vi}, a diagonal matrix with
entries vi. The dynamic friction may often be assumed to have the form

(3.3.55)

with ki known constant coefficients and the signum function defined for a
scalar x by

(3.3.56)

Then

(3.3.57)

with Kd=diag{ki} the coefficient matrix of dynamic friction and the signum
function defined for a vector x by

(3.3.58)

A bound on the friction terms may be assumed of the form

(3.3.59)

with v and k known for a specific arm and ||·|| a suitable norm.
Another friction term that may be included in F( )is the static friction,

which has components of the form

(3.3.60)

where ksi is the coefficient of static friction for joint i and � is a small positive
parameter. We shall generally ignore this term.

3.3 Structure and Properties of the Robot Equation
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Properties of the Disturbance Term. The arm Equation (3.3.1) has a disturbance
term τd which could represent inaccurately modeled dynamics, and so on. We
shall assume that it is bounded so that

(3.3.61)

where d is a scalar constant that may be computed for a given arm and ||·|| is
any suitable norm.

Linearity in the Parameters

The robot dynamical equation enjoys one last property that will be of great
use to us in Chapter 5. Namely, it is linear in the parameters, a property first
exploited in [Craig 1988] in adaptive control. This is important, since some
or all of the parameters may be unknown; thus the dynamics are linear in the
unknown terms.

This property may be expressed as

(3.3.62)

with ϕ the parameter vector and W(q, , ) a matrix of robot functions
depending on the joint variables, joint velocities, and joint accelerations.
This matrix may be computed for any given robot arm and so is known.
See Example 3.3.1. Note that the disturbance τd is not included in this
equation.

EXAMPLE 3.3–1: Structure and Bounds for Two-Link Planar
Elbow Arm

The dynamics of a two-link planar arm are given in Example 3.2.2. We
should now like to compute the structural matrices defined in this section,

straightforward, so we do not mention them here. The dynamical matrices
are

Copyright © 2004 by Marcel Dekker, Inc.

as well as the bounds needed in Table 3.3.1. The friction bounds are



137

The selection of a suitable norm in Table 3.3.1 is not always straightforward.
In the control algorithms to be developed in subsequent chapters, we prove
suitable performance in terms of some norm, which can often be any norm
desired. For implementation of the controller, a specific norm must be selected
and the bounds evaluated. This choice often depends simply on which norm
makes it possible to evaluate the bounds in the table. For instance, choosing
the 2—norm for vectors requires the evaluation of the maximum singular
value of M(q), a very difficult task.

Selecting the ∞—norm for vectors means determining at each sampling time
the element [of V(q(t), (t)) for instance] with the largest magnitude. This
requires decision logic, and the norm may not be continuous. Therefore, let
us use the 1—norm in this example. The corresponding matrix induced norm
is then the maximum absolute column sum (Chapter 2).

a. Bounds on the Intertia Matrix

The evaluation of µ1, and µ2 amounts to the determination of the minimum
and maximum eigenvalues of M(q) over all q. This is not an easy affair and
requires the solution of some quadratic equations, although it can be carried
out without too much trouble using software such as Mathematica or Maple.
Thus, let us find m1 and m2.

The induced 1—norm for M(q) is the maximum absolute column sum. In
determining bounds for this norm, it is important to consider the range of
allowed motion of the joint angles. To illustrate, suppose that θ1, and θ2 are
limited by ±π/2. Then the 1—norm is always given in terms of column 1 as

3.3 Structure and Properties of the Robot Equation
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which is bounded above for all θ2 by

 
and below by

 

Since the arm is revolute and cos θ2 is bounded above and below, M2 and M1

are constants. It is important to note that if the arm is revolute/prismatic (RP),
so that the joint variables are (θ1, a2), the bounds are functions of q.

b. Bounds on the Coriolis and Gravity Terms

The bound vb on the Coriolis/centripetal vector is found using

 

whence vb=m2a1a2.
Similarly, for the gravity bound,

Notice that if the arm is RP, then vb and gb are functions of q.

c. Coriolis/Centripetal Structural Matrices

We now list the various structural matrices for V(q, )discussed in this section.
Their computation is left as an exercise (see the Problems).
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The Coriolis/centripetal matrices:

The skew-symmetric matrix S(q, ):

 

The symmetric matrices V1(q, ), V2(q, )

 

The position/velocity decomposition matrices:

 

3.3 Structure and Properties of the Robot Equation
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d. The Robot Function Parameter Matrix W

The robot dynamics are linear in the parameters. For the purposes of adaptive
control, one should select the parameter vector ϕ in Table 3.3.1 so that it
contains the unknown parameters.

The dynamics, including friction, can be written as

The second mass m2 includes the mass of the payload. This and the friction
coefficients are often unknown. Therefore, select

Then the matrix W(q, , ) of known robot functions becomes

 

with
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The reader should verify that with these definitions, the dynamics may be
expressed as τ=Wϕ The matrix W is computed from measured joint positions,
and their velocities and accelerations.

�

Passivity and Conservation of Energy

The “Newtonian” form of the manipulator dynamics given in Table 3.3.1
obscures some important physical properties, which we should like to explore
here [Koditschek 1984], [Ortega and Spong 1988], [Johansson 1990], [Slotine
and Li 1987], [Slotine 1988]. Note that the dynamics can be written in terms
of the skew-symmetric matrix S(q, ) as

(3.3.63)

where friction and τd are ignored. Now, with K the

 

whence (3.3.63) yields

(3.3.64)

or

(3.3.65)

3.3 Structure and Properties of the Robot Equation
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This is a statement of the conservation of energy, with the right-hand side
representing the power input from the net external forces. The skew symmetry
of  is nothing more than a statement that the fictitious forces
S(q, )  do no work. The work done by the external forces is given by

(3.3.66)

Recall at this point the passivity property of the robot arm from τ(t)to (Section
1.5), which merely states that the arm cannot create energy. From a controls
point of view, a passive system cannot go unstable. A problem with some
popular control schemes (e.g., standard computed torque, Section 3.4) is that
they destroy the passivity property, resulting in possible instability if the system
parameters are not exactly known or disturbances are present. Passivity-based
designs ensure that the closed-loop system is passive (see Section 4.3, the
references cited above, and [Anderson 1989]).

This analysis does not include the friction terms. A reasonable assumption
regardless of the form of f ( ) is that friction is dissipative, so that fi(x) lies in
the first and third quadrants only. This is equivalent to

(3.3.67)

Under this assumption, friction does not destroy the passivity of the
manipulator. It is then simple to modify a controller designed for (3.3.63) to
include the friction [Slotine 1988]. The dissipative nature of friction allows
one to increase the system’s bandwidth beyond classical limits.

3.4 State-Variable Representations and Feedback
 Linearization

The robot arm dynamical equation in Table 3.3.1 is

(3.4.1)

with q(t) � Rn the joint variable vector τ(t)and the control input. M(q) is the
inertia matrix, V(q, ) the Coriolis/centripetal vector, Fv( ) the viscous friction,
Fd( ) the dynamic friction, G(q) the gravity, and τd a disturbance. These
terms satisfy the properties shown in Table 3.3.1. We may also write the
dynamics as

(3.4.2)

with the nonlinear terms represented by
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(3.4.3)

In this section we intend to show some equivalent formulations of the arm
dynamical equation.

The nonlinear state-variable representation discussed in Chapter 2,

(3.4.4)

has many properties which are useful from a controls point of view. The
function u(t) is the control input and x(t) is the state vector, which describes
how the energy is stored in a system. We show here how to place (3.4.1) into
such a form. In Chapter 4 we show how to use computers to simulate the
behavior of a robot arm using this nonlinear state-variable form. Throughout
the book we shall use the state-space formulation repeatedly for controls design,
either in the nonlinear form or in the linear form

(3.4.5)

In this section we also present a general approach to feedback linearization
for the nonlinear robot equation, which involves redefining variables in a
methodical way to yield a linear state equation in terms of a dynamical
variable we are interested in. This variable could be, for instance, the joint
variable q(t), a Cartesian position, or the position in a camera frame of
reference.

Hamiltonian Formulation

The arm equation was derived using Lagrangian mechanics. Here, let us use
Hamiltonian mechanics [Marion 1965] to derive a state-variable formulation
of the manipulator dynamics [Arimoto and Miyazaki 1984], [Gu and Loh
1985]. Let us neglect the friction terms  and the

disturbance τd for simplicity; they may easily be added at the end of our
development.

In Section 3.2 we expressed the arm Lagrangian as

(3.4.6)

with q(t) � Rn the joint variable, K the kinetic energy, P the potential energy,
and M(q) the arm inertia matrix. Define the generalized momentum by

(3.4.7)

3.4 State-Variable Representations and Feedback Linearization
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Then we have

(3.4.8)

and the kinetic energy in terms of p(t) is

(3.4.9)

It is worth noting that

(3.4.10)

Defining the manipulator Hamiltonian by

(3. 4.11)

Hamilton’s equations of motion are

(3.4.12)

(3.4.13)

Note that

(3.4.14)

Evaluating (3.4.13) yields

 

which may be expressed (see the Problems) as

(3.4.15)

where G(q) is the gravity vector and ⊗ is the Kronecker product (see Section
3.3).

Defining the state vector as x � R2n as

(3.4.16)

we see that the arm dynamics may be expressed as

(3.4.17)
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with the control input defined by

(3.4.18)

This is a nonlinear state equation of the form (3.4.4). It is important to note
that this dynamical equation is linear in the control input u, which excites
each component of the generalized momentum p(t).

This Hamiltonian state-space formulation was used to derive a PID control,
law using the Lyapunov approach in [Arimoto and Miyazaki 1984] and to
derive a trajectory-following control in [Gu and Loh 1985].

Position/Velocity Formulations

Alternative state-space formulations of the arm dynamics may be obtained by
defining the position/velocity state x � R2n as

(3.4.19)

For simplicity, neglect the disturbance τd and friction Fv +Fd( )and note that
according to (3.4.2), we may write

(3.4.20)

Now, we may directly write the position/velocity state-space representation

(3.4.21)

which is in the form of (3.4.4) with u(t)=τ(t)
An alternative linear state equation of the form (3.4.5) may be written as

(3.4.22)

with control input defined by

(3.4.23)

Both of these position/velocity state-space formulations will prove useful in
later chapters.

Feedback Linearization

Let us now develop a general approach to the determination of linear state-
space representations of the arm dynamics (3.4.1)–(3.4.2). The technique
involves a linearization transformation that removes the manipulator

3.4 State-Variable Representations and Feedback Linearization
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nonlinearities. It is a simplified version of the feedback linearization technique
in [Hunt et al. 1983, Gilbert and Ha 1984]. See also [Kreutz 1989].

The robot dynamics are given by (3.4.2) with q � Rn Let us define a general
sort of output by

(3.4.24)

with h(q) a general predetermined function of the joint variable q � Rn and s(t)
a general predetermined time function. The control problem, then, will be to
select the joint torque and force inputs τ(t) in order to make the output y(t) go
to zero.

The selection of h(q) and s(t) is based on the control objectives we have in
mind. For instance, if h(q)=-q and s(t)=qd(t), the desired joint space trajectory
we would like the arm to follow, then y(t)=qd(t)-q(t)=e(t) the joint space tracking
error. Forcing y(t) to zero in this case would cause the joint variables q(t) to
track their desired values qd(t), resulting in arm trajectory following.

As another example, could represent the Cartesian space
tracking error, with  the position error and e0 � R3 the orientation
error. Controlling y(t) to zero would then result in trajectory following directly
in Cartesian space, which is, after all, where the desired motion is usually
specified.

Finally, -h(q) could represent the nonlinear transformation to a camera
frame of reference and s(t) the desired trajectory in that frame. Then y(t) is the
camera frame tracking error. Forcing y(t) to zero would then result in tracking
motion in camera space.

Feedback Linearizing Transformation. To determine a linear state-variable
model for robot controller design, let us simply differentiate the output y(t)
twice to obtain

(3.4.25)

(3.4.26)

where we have defined the Jacobian

(3.4.27)

If y � R
p
, the Jacobian is a p×n matrix of the form
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(3.4.28)

Given the function h(q), it is straightforward to compute the Jacobian J(q)
associated with h(q). In the special case where represents the Cartesian velocity,
J(q) is the arm Jacobian discussed in Appendix A. Then, if all joints are
revolute, the units of J are those of length.

According to (3.4.2),

(3.4.29)

so that (3.4.26) yields

(3.4.30)

Define the control input function

(3.4.31)

and the disturbance function

(3.4.32)

Now we may define a state x(t) � R2p by

(3.4.33)

and write the robot dynamics as

(3.4.34)

This is a linear state-space system of the form

(3.4.35)

driven both by the control input u(t) and the disturbance v(t). Due to the
special form of A and B, this system is said to be in Brunovsky canonical
form (Chapter 2). The reader should determine the controllability matrix to
verify that it is always controllable from u(t).

Equation (3.4.31) is said to be a linearizing transformation for the robot
dynamical equation. We may invert this transformation to obtain

(3.4.36)

3.4 State-Variable Representations and Feedback Linearization
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where J+ is the Moore-Penrose inverse [Rao and Mitra 1971] of the Jacobian
J(q). If J(q) is square (i.e., p=n) and nonsingular, then J+(q)=J-1(q) and we may
write

(3.4.37)

As we shall see in Chapter 4, feedback linearization provides a powerful
controls design technique. In fact, if we select u(t) so that (3.4.34) is stable
(e.g., a possibility is the PD feedback ), then the control
input torque τ(t) defined by (3.4.36) makes the robot arm move in such a way
that y(t) goes to zero.

In the special case y(t)=q(t), then J=I and (3.4.34) reduces to the linear
position/velocity form (3.4.22).

3.5 Cartesian and Other Dynamics

In Section 3.2 we derived the robot dynamics in terms of the time behavior of
q(t). According to Table 3.3.1,

(3.5.1)

or

(3.5.2)

where the nonlinear terms are

(3.5.3)

We call this the dynamics of the arm formulated in joint space, or simply the
joint-space dynamics.

Cartesian Arm Dynamics

It is often useful to have a description of the dynamical development of variables
other than the joint variable q(t). Consequently, define

(3.5.4)

with h(q) a generally nonlinear transformation. Although y(t) could be any
variable of interest, let us think of it here as the Cartesian or task space
position of the end effector (i.e., position and orientation of the end effector in
base coordinates).
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The derivation of the Cartesian dynamics from the joint-space dynamics is
akin to the feedback linearization in Section 3.4. Differentiating (3.5.4) twice
yields

(3.5.5)

(3.5.6)

where the Jacobian is

(3.5.7)

The Cartesian velocity vector is , with v � R3 the linear
velocity and ω � R3 the angular velocity. Let us assume that the number of
links is n=6, so that J is square. Assuming also that we are away from workspace
singularities so that |J|≠0, according to (3.5.6), we may write

(3.5.8)

which is the “inverse acceleration” transformation. Substituting this into (3.5.2)
yields

 

Recalling now the force transformation τ=JTF, with F the Cartesian force vector
(see Appendix A) we have

(3.5.9)

This may be written as

(3.5.10)

where we have defined the Cartesian inertia matrix, nonlinear terms, and
disturbance by

(3.5.11)

(3.5.12)

(3.5.13)

Equation (3.5.9)–(3.5.10) gives the Cartesian or workspace dynamics of the
robot manipulator.

3.5 Cartesian and Other Dynamics
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Note that , , and fd depend on q and , so that strictly speaking, the
Cartesian dynamics are not completely given in terms of  However.

, and given y(t) we could use the inverse kinematics to determine
q(t), so that , , fd can be computed as functions of y and  using computer
subroutines.

Structure and Properties of the Cartesian Dynamics

It is important to realize that all the properties of the joint-space dynamics
listed in Table 3.3.1 carry over to the Cartesian dynamics as long as J is
nonsingular [Slotine and Li 1987]. Note particularly that  is symmetric
and positive definite. For a revolute arm the Jacobian has units of length and
is bounded. In that case,  is bounded above and below.

Defining

(3.5.14)

it follows that

(3.5.15)

with

(3.5.16)

where Vm was defined in Section 3.3.
It is easy to show that

(3.5.17)

is skew-symmetric. Indeed, use the identity

(3.5.18)

to see that

 

Copyright © 2004 by Marcel Dekker, Inc.



151

which is skew symmetric since  is.
The friction terms in the Cartesian dynamics are

(3.5.19)

and they satisfy bounds like those in Table 3.3.1. Notice that in Cartesian
coordinates the friction effects are not decoupled (e.g., J-TFvJ-1 is not diagonal).
The Cartesian gravity vector

(3.5.20)

is bounded.
The property of linearity in the parameters holds and is expressed as

(3.5.21)

where the known Cartesian function of robot functions is

(3.5.22)

and ϕ is the vector of arm parameters.

EXAMPLE 3.5–1: Cartesian Dynamics for Three-Link Cylindrical Arm

Let us show how to convert the joint space dynamics found in Example
3.2.3 to Cartesian dynamics. From Example A.3–1, the arm Jacobian is

(1)

whence its inverse is

(2)

From Example 3.2.3 the arm inertia matrix is

(3)

3.5 Cartesian and Other Dynamics
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Applying (3.5.11) yields (verify!)

(4)

where .

In a similar fashion, one may compute .

�

3.6 Actuator Dynamics

We have discussed the dynamics of a rigid-robot manipulator in joint space
and Cartesian coordinates. However, the robot needs actuators to move it;
these are generally either electric or hydraulic motors. It is now required,
therefore, to add the actuator dynamics to the arm dynamics to obtain a
complete dynamical description of the arm plus actuators. A good reference
on actuators and sensors is provided by [de Silva 1989].

Dynamics of a Robot Arm with Actuators

We shall consider the case of electric actuators, assuming that the motors are
armature controlled. Hydraulic actuators are described by similar equations.
In this subsection we suppose that the armature inductance is negligible.

The equations of the n—link robot arm from Table 3.3.1 are given by

(3.6.1)

where q � Rn is the arm joint variable. The dynamics or the armature-controlled
do motors that drive the links are given by the n decoupled equations

(3.6.2)

where  with, qMi, the ith rotor position angle and vec{αi}
denoting a vector with components αi. The control input is the motor voltage
vector v � Rn

The actuator coefficient matrices are all constants given by
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The actuator coefficient matrices are all constants given by

(3.6.3)

where the ith motor has inertia JMi, rotor damping constant BMi, back emf
constant Kbi, torque constant KMi, and armature resistance Rai.

The gear ratio of the coupling from the ith motor to the ith arm link is ri,
which we define so that

qi=riqMi or q=RqM. (3.6.4)

If the ith joint is revolute, then ri is a dimensionless constant less than 1. If qi

is prismatic, then ri has units of m/rad.
The actuator friction vector is given by

FM=vec{FMi}  

with FMi the friction of the ith rotor.
Note that capital “M” denotes motor constants and variables, while Vm is

the arm Coriolis/centripetal vector defined in terms of Christoffel symbols.
Using (3.6.4) to eliminate qM in (3.6.2), and then substituting for τ from

(3.6.1) results in the dynamics in terms of joint variables

(3.6.5)

or, by appropriate definition of symbols,

(3.6.6)

Properties of the Complete Arm-Plus-Actuator Dynamics. The complete
dynamics (3.6.6) has the same form as the robot dynamics (3.6.1). It is very
easy to verify that the complete arm-plus-actuator dynamics enjoys the same
properties as the arm dynamics that are listed in Table 3.3.1 (see the Problems).
In particular, V’ is one-half the difference between  and a skew-symmetric
matrix, all the boundedness assumptions hold, and linearity in the parameters
holds. Thus, in future work where we design controllers, we may assume that
the actuators have been included in the arm equation in Table 3.3.1

3.6 Actuator Dynamics
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Independent Joint Dynamics. In many commercial robot arms the gear
ratios ri are very small, providing a large torque advantage in the actuator/
link coupling. This has important ramifications that greatly simplify the design
of robot arm controllers.

To explore this, let us write the complete dynamics by components as

 (3.6.7)

where B≡diag{Bi} and di is a disturbance given by

(3.6.8)

with mij the off-diagonal elements of M’, Vjki the tensor components of 
the friction of the ith link, and Gi the ith gravity component.

This equations reveals that if r i is small, the arm dynamics are
approximately given by n decoupled second-order equations with constant
coefficients. The dynamical effects of joint coupling and gravity appear only
as disturbance terms multiplied by . That is, robot controls design is virtually
the problem of simply controlling the actuator dynamics.

Unfortunately, modern high-performance tasks make the Coriolis and
centripetal terms large, so that di is not small. Moreover, modern high-
performance arms have near-unity gear ratios (e.g., direct drive arms), so
that the nonlinearities must be taken into account in any conscientious controls
design.

Third-Order Arm-Plus-Actuator Dynamics

An alternative model of the complete robot arm is sometimes used in controls
design [Tarn et al. 1991]. It is a third-order differential equation that should
be used when the motor armature inductance is not negligible.

When the armature inductances Li are not negligible, instead of (3.6.2) we
must use the armature-controlled do motor equations

(3.6.9)

(3.6.10)

with I � Rn the vector of armature currents,
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(3.6.11)

It is important to note that T is a matrix of motor electric time constants. In
the preceding subsection, these time constants were assume negligibly small
in comparison to the motor mechanical time constant.

To determine the overall dynamics of the arm plus do motor actuators,
eliminate τ between (3.6.1) and (3.6.10) to obtain an expression for I. Then,
differentiate to expose explicitly . Substitute these expressions into (3.6.9)
(see the Problems) to obtain dynamics of the form

(3.6.12)

The coefficient matrix D is given by

D(q)=TM’(q), (3.6.13)

so that it is negligible when Li are small.

Dynamics with Joint Flexibility

We have assumed that the coupling between between the actuators and the
robot links is provided through rigid gear trains with gear ratios of ri. In
actual practice, the coupling suffers from backlash and gear train flexibility
or elasticity. Here we include the flexibility of the joints in the arm dynamic
model, assuming for simplicity that ri=1.

This is not difficult to do. Indeed, suppose that the coupling flexibility is
modeled as a stiff spring. Then the torque mentioned in Equations (3.6.1),
(3.6.2) is nothing but

(3.6.14)

with Bs=diag{bsi}, Ks=diag{ksi}, and bsi and ksi the damping and spring constants
of the ith gear train. Thus the dynamical equations become

(3.6.15)

(3.6.16)

3.6 Actuator Dynamics
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The structure of these equations is very different from the rigid joint arm
described in Table 3.3.1. We discuss the control of robot manipulators with
joint flexibility in Chapter 6 (see [Spong 1987]). The next example shows the
problems that can occur in controlling flexible joint robots.

EXAMPLE 3.6–1: DC Motor with Flexible Coupling Shaft

To focus on the effects of joint flexibility, let us examine a single armature-
controlled do motor coupled to a load through a shaft that has significant
flexibility. The electrical and mechanical subsystems are shown in Figure
3.6.1.

The motor electrical equation is

(1)

with i(t), u(t) the armature current and voltage, respectively. The back emf
is .

The interaction force exerted by the flexible shaft is given by
f= , where the shaft damping and spring constants
are denoted by b and k. Thus the mechanical equations of motion may be
written down as

(2)

(3)

with subscripts m and L referring, respectively, to motor parameters and
load parameters. The load inertia JL is assumed constant. The definitions
of the remaining symbols may be inferred from the foregoing text.

To place these equations into state-space form, define the state as

(4)

with  the motor and load angular velocities. Then
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(5)

Figure 3.6.1: DC motor with shaft compliance: (a) electrical subsystem; (b) mechanical
subsystem.

3.6 Actuator Dynamics
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a. Rigid Coupling Shaft

If there is no compliance in the coupling shaft, ωm=ωL=ω and the state equations
reduce to (see the Problems)

(6)

where x=[i ω]T, J=Jm+JL. Defining the output as the motor speed gives

 

The transfer function is computed to be

(7)

Using parameter values of Jm=JL=0.1 kg-m2,  L=0.5 H,

bm=0.2 N-m/rad/s, and R=5 Ω yields

(8)

so that there are two real poles at s=-2.3, s=-8.7.
Using Program TRESP in Appendix B to perform a simulation (see Section
3.3) yields the step response for w shown in Figure 3.6.2.

b. Very Flexible Coupling Shaft

Coupling shaft parameters of k=2 N-m/rad and b=0.2 N-m/rad/s correspond
to a very flexible shaft. Using these values, software like PC-MATLAB can be
employed to obtain the two transfer functions

(9)

(10)
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The shaft flexible mode has the poles s=-3.4 ± j5.6, and so has a damping
ration of ζ=0.52 and a natural frequency of ω=6.55 rad/s. Note that the system
is marginally stable, with a pole at s=0. It is BIBO stable due to pole-zero
cancellation.

Program TRESP yielded the step response shown in Figure 3.6.3. Several
points are worthy of note. Initially, the motor speed ωm rises more
quickly than in Figure 3.6.2, since the shaft flexibility means that only
the rotor moment of inertia Jm initially affects the speed. Then, as the
load JL is coupled back to the motor through the shaft, the rate of
increase of ωm slows. Note also that the load speed ωL exhibits a delay

Figure 3.6.2: Step response of dc motor with no shaft flexibility. Motor speed in rad/s.

3.6 Actuator Dynamics
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of approximately 0.1 s due to the flexibility in the shaft.
It is extremely interesting to note that the shaft flexibility has the effect of

speeding up the slowest motor real pole [compare (8) and (9)], so that wL

approaches its steady-state value more quickly than in the rigid-shaft case.
This is due to the “whipping” action of the flexible shaft.

The shaft dynamics make the control of θL, which corresponds in a robot
arm to the joint angle qi, very difficult without some sort of specially designed
controller.

�

Figure 3.6.3: Step response of motor with very flexible shaft.
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3.7 Summary

In this chapter we have laid the foundation for a study of robot control systems.
Using Lagrangian mechanics in Section 3.2, we derived the dynamics of some
robot arms that will be used for demonstration designs throughout the text.
We provided expressions for the general robot arm dynamics for any serial-
link arm.

In Section 3.3 we studied the properties of the robot dynamics such as
boundedness, linearity in the parameters, and skew symmetry that are needed
in controls design. Table 3.3.1 gives a summary of our findings. We used a
Kronecker product approach that yields great insight into the relations between
the terms in the robot equation.

A vital form in modern control systems design is the state-variable
formulation. In Section 3.4 we derived several state-space forms of the arm
dynamics, setting the stage for several design techniques to be provided in
subsequent chapters. The state formulation is also useful in computer simulation
of robot controllers, as we see in Section 3.3.

The dynamics in Cartesian form were given in Section 3.5. The dynamics
of the actuators that drive the robot manipulator links were analyzed and
included in Section 3.6.

3.7 Summary
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PROBLEMS

Section 3.2

3.2–1 Dynamics. Find the dynamics for the spherical wrist in Example
A.2–4.

3.2–2 Dynamics from Derived Equations. In Example 3.2.2 we found the
dynamics of the two-link planar elbow arm from first principles. In
this problem, begin with the expressions for the kinetic and potential
energy in that example and:
(a) Write K in the form (3.2.29) to determine M(q).
(b) Use (3.2.42) and (3.2.43) to determine V(q, ) and G(q).

3.2–3 Dynamics from Derived Equations. Repeat Problem 3.2–2 for the
three-link arm in Example 3.2.3.

Section 3.3

3.3–1 Prove (3.3.22) by finding V
p1(q) and V

v1(q).

3.3–2 Prove (3.3.23) by finding the matrices V
i
(q).

3.3–3 Prove (3.3.27).

3.3–4 Coriolis Term. Find Vcor(q) and Vcen(q) in (3.3.40).

3.3–5 Coriolis Term. Demonstrate that the Coriolis/centripetal term in the
dynamics equation may be expressed [Paul 1981] as V(q, )= vec{V(q,

)}where

 

 with

 

and Ti defined in Appendix A. Compare this to Vm1, Vm2, Vm as
defined in Section 3.2.

3.3–6 Bounds and Structure. Derive in detail the results in Example 3.3.1.
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3.3–7 Bounds and Structure. Derive the bounds and structural matrices for
the two-link polar arm in Example 3.2.1. Use:
(a) The 1—norm.
(b) The 2-norm .
(c) The ∞—norm.

3.3–8 Bounds and Structure. Repeat Problem 3.3–7 for the three-link
cylindrical arm in Exercise 3.2.3.

3.3–9 Bounds Using 2-Norm. Derive the bounds for the two-link planar
elbow arm in Example 3.3.1 using the 2—norm.

Section 3.4
3.4–1 Prove (3.4.15).

3.4–2 Hamiltonian State Formulation. Demonstrate that (3.4.15) is
equivalent to

 

 with the skew-symmetric matrix defined in Section 3.3.

3.4–3 Hamiltonian State Formulation. Use (3.4.17) to derive the
Hamiltonian state-variable formulation for the two-link polar arm
in Example 3.2.1.

3.4–4 Hamiltonian State Formulation. Repeat Problem 3.4–3 for the two-
link planar elbow arm in Example 3.2.2.

Section 3.5
3.5–1 Cartesian Dynamics. Complete Example 3.5.1, computing the

nonlinear terms  in Cartesian coordinates.

3.5–2 Cartesian Dynamics. Find the Cartesian dynamics of the two-link
polar arm in Example 3.2.1.

3.5–3 Cartesian Dynamics. Find the Cartesian dynamics of the two-link
planar elbow arm in Example 3.2.2.

Section 3.6
3.6–1 Actuator Dynamics. Verify that the arm-plus-actuator dynamics (3.6.6)

has the properties listed in Table 3.3.1.
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3.6–2 Actuator Dynamics. Derive the third-order dynamics (3.6.12),
providing explicit expressions for  Verify that they reduce to
(3.6.5) when L

i
 is negligible.

3.6–3 Flexible Coupling Shaft. Verify the state equation for the rigid-shaft
case in Example 3.6.1.
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Chapter 4

Computed-Torque Control

In this chapter we examine some straightforward control schemes for robot
manipulators that fall under the class known as “computed-torque controllers.”
These generally perform well when the robot arm parameters are known
fairly accurately. Some connections are given with classical robot control,
and modern design techniques are provided as well. The effects of digital
implementation of robot controllers are shown. Trajectory generation is
outlined.

4.1 Introduction

A basic problem in controlling robots is to make the manipulator follow a
preplanned desired trajectory. Before the robot can do any useful work, we
must position it in the right place at the right instances. In this chapter we
discuss computed-torque control, which yields a family of easy-to-understand
control schemes that often work well in practice. These schemes involve the
decomposition of the controls design problem into an inner-loop design and
an outer-loop design.

In Section 4.4 we provide connections with classical manipulator control
schemes based on independent joint design using PID control. In Section 4.6
we show how to use some modern design techniques in conjunction with
computed-torque control. Thus this chapter could be considered as a bridge
between classical design techniques of the sort used several years ago in robot
control, and the modern design techniques in the remainder of the book which
are needed to obtain high performance in uncertain environments.

We assume here the robot is moving in free space, having no contact with
its environment. Contact results in the generation of forces. The force control
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problem is dealt with in Chapter 7. We will also assume in this chapter that
the robot is a well-known rigid system, thus designing controllers based on a
fairly well-known model. Control in the presence of uncertainties or unknown
parameters (e.g., friction, payload mass) requires refined approaches. This
problem is dealt with using robust control in Chapter 4 and adaptive control
in Chapter 5.

An actual robot manipulator may have flexibility in its links, or compliance
in its gearing (joint flexibility). In Chapter 6 we cover some aspects of control
with joint flexibility.

Before we can control a robot arm, it is necessary to know the desired path
for performing a task. There are many issues associated with the path planning
problem, such as avoiding obstacles and making sure that the planned path
does not require exceeding the voltage and torque limitations of the actuators.
To reduce the control problem to its basic components, in this chapter we
assume that the ultimate control objective is to move the robot along a
prescribed desired trajectory. We do not concern ourselves with the actual
trajectory-planning problem; we do, however, show how to reconstruct a
continuous desired path from a given table of desired points the end effector
should pass through. This continuous-path generation problem is covered in
Section 4.2.

In most practical situations robot controllers are implemented on
microprocessors, particularly in view of the complex nature of modern control
schemes. Therefore, in Section 4.5 we illustrate some notions of the digital
implementation of robot controllers.

Throughout, we demonstrate how to simulate robot controllers on a
computer. This should be done to verify the effectiveness of any proposed
control scheme prior to actual implementation on a real robot manipulator.

4.2 Path Generation

Throughout the book we assume that there is given a prescribed path qd(t) the
robot arm should follow. We design control schemes that make the manipulator
follow this desired path or trajectory. Trajectory planning involves finding
the prescribed path and is usually considered a separate design problem
involving collision avoidance, concerns about actuator saturation, and so on.
See [Lee et al. 1983].

We do not cover trajectory planning. However, we do cover two aspects of
trajectory generation. First, we show how to convert a given prescribed path
from Cartesian space to joint space. Then, given a table of desired points the
end effector should pass through, we show how to reconstruct a continuous
desired trajectory.
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Converting Cartesian Trajectories to Joint Space

In robotic applications, a desired task is usually specified in the workspace or
Cartesian space, as this is where the motion of the manipulator is easily
described in relation to the external environment and workpiece. However,
trajectory-following control is easily performed in the joint space, as this is
where the arm dynamics are more easily formulated.

Therefore, it is important to be able to find the desired joint space trajectory
qd(t) given the desired Cartesian trajectory. This is accomplished using the
inverse kinematics, as shown in the next example. The example illustrates
that the mapping of Cartesian to joint space trajectories may not be unique-
that is, several joint space trajectories may yield the same Cartesian trajectory
for the end-effector.

EXAMPLE 4.2–1: Mapping a Prescribed Cartesian Trajectory to Joint
Space

In Example A.3–5 are derived the inverse kinematics for the two-link planar
robot arm shown in Figure 4.2.1. Let us use them to convert a path from
Cartesian space to joint space.

Suppose that we want the two-link arm to follow a given workspace or
Cartesian trajectory

p(t)=(x(t), y(t)) (1)

in the (x, y) plane which is a function of time t. Since the arm is moved by
actuators that control its angles �1, �2, it is convenient to convert the specified
Cartesian trajectory (x(t), y(t)) into a joint space trajectory (�1(t), �2(t)) for
control purposes.

This may be achieved by using the inverse kinematics transformations

r2=x2+y2 (2)

(3)

(4)

�2=ATAN2 (D, C) (5)

4.2 Path Generation
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�1=ATAN2(y, x)-ATAN2 (a2 sin �2, a1+a2 cos �2) (6)

Figure 4.2.1: Two-link planar elbow arm.

Figure 4.2.2: Desired Cartesian trajectory.
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Suppose that the end of the arm should repeatedly trace out the circular
workspace path p(t) shown in Figure 4.2.2, which is described by

x(t)=2+½cos t
y(t)=1+½sin t. (7)

By using these expressions for each time t in the inverse kinematics equations,
we obtain the required joint-space trajectories q(t)=(�1(t), �2(t)) given in Figure
4.2.3 that yield the circular Cartesian motion of the end effector (using a1=2,
a2=2).

We have computed the joint variables for the “elbow down” configuration.
Selecting the opposite sign in (4) gives the “elbow up” joint space trajectory
yielding the same Cartesian trajectory.

Polynomial Path Interpolation

Suppose that a desired trajectory for the manipulator motion has been
determined, either in Cartesian space or, using the inverse kinematics, in joint
space. For convenience, we use the joint space variable q(t) for notation. It is
not possible to store the entire trajectory in computer memory, and few
practically useful trajectories have a simple closed-form expression. Therefore,
it is usual to store in computer memory a sequence of points qi(tk) for each
joint variable i that represent the desired values of that variable at the discrete
times tk. Thus q(tk) is a point in Rn that the joint variables should pass through
at time tk.We call these via points.

Most robot control schemes require a continuous desired trajectory. To
convert the table of via points qi(tk) to a continuous desired trajectory qd(t), we
may use many options. Let us discuss here polynomial interpolation.

Suppose that the via points are uniformly spaced in time and define the
sampling period as

T=tk+1-tk. (4.2.1)

For smooth motion, on each time interval [tk, tk+1] we require the desired
position qd(t) and velocity q

.
d(t) to match the tabulated via points. This yields

boundary conditions of

�

4.2 Path Generation
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Figure 4.2.3: Required joint-space trajectories: (a) �1 (deg); (b) �2 (deg).
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(4.2.2)

To match these boundary conditions, it is necessary to use on [tk, tk+1] the
cubic interpolating polynomial

(4.2.3)

which has four free variables. Then

(4.2.4)

(4.2.5)

so that the acceleration is linear on each sample period.
It is easy to solve for the coefficients that guarantee matching of the boundary

conditions. In fact, we see that

(4.2.6)

This is solved to obtain the required interpolating coefficients on each interval
[tk, tk+1].

(4.2.7)

Note that this technique requires storing the desired position and velocity at
each sampling point in tabular form. A variant uses a higher-order polynomial
to ensure continuous position, velocity, and acceleration at each sample
time tk.

4.2 Path Generation
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Although we have used the joint variable notation q(t), it should be
emphasized that trajectory interpolation can also be performed in Cartesian
space.

Linear Function with Parabolic Blends

Using cubic interpolating polynomials, the acceleration on each sample
period is linear. However, in many practical applications there are good
reasons for insisting on constant accelerations within each sample period.
For instance, any real robot has upper limits on the torques that can be
supplied by its actuators. For linear systems (think of Newton’s law) this
translates into constant accelerations. Therefore, constant accelerations are
less likely to saturate the actuators. Besides that, most industrial robot
controllers are programmed to use constant accelerations on each sample
period.

A constant acceleration profile is shown in Figure 4.2.4(a). The associated
velocity and position profiles are shown in Figure 4.2.4(b) and 4.2.4(c). The
position trajectory has three parts: a quadratic or parabolic initial portion,
a linear midsection, and a parabolic final portion. Therefore, let us discuss
interpolation of via points using linear functions with parabolic blends (LFPB).

The time at which the position trajectory switches from parabolic to
linear is known as the blend time tb. A position qdi(t) should be specified for
each joint variable i. The trajectory in Figure 4.2.4(c) can be written for
joint i as

(4.2.8)

The coefficient vi may be interpreted as the maximum velocity allowed for
joint variable i. The design parameters are vi and tb.

It is straightforward to solve for the coefficients on each time interval [tk,
tk+1] that ensure satisfaction of the boundary conditions (4.2.2). The result is

Copyright © 2004 by Marcel Dekker, Inc.



177

(4.2.9)

Figure 4.2.4: LFPB trajectory: (a) acceleration; (b) velocity.

4.2 Path Generation
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Minimum-Time Trajectories

There is an important special class of LFPB trajectories. Suppose the
acceleration is limited by a maximum value of aM and it is desired for the
robot arm to get from one position to another in minimum time. For simplicity
assume that the initial and final velocities are equal to zero. The general case
is covered in [Lewis 1986a] (see the Problems).

A minimum-time trajectory is shown in Figure 4.2.5. To drive joint variable
i from a rest position of q0=qi(t0) to a desired final rest position of qf=qi(tf) in a
minimum time tf, the maximum acceleration aM should be applied until the
switching time ts, after which time the maximum deceleration -aM should be
applied until tf. Note that both ts and tf depend on q0 and qf. We may write

 

Then the velocity equations yield

Figure 4.2.4: (Cont.)(c) position.
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or

ts=(tf+t0)/2. (4.2.10)

That is, the switching from maximum acceleration to maximum deceleration
occurs at the half-time point. Now simple manipulations on the position
equations yield

Figure 4.2.5: Minimum-time trajectory: (a) acceleration; (b) velocity.

4.2 Path Generation
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whence (4.2.10) yields

(4.2.11)

A closed-loop formulation of minimum-time control appears in [Lewis 1986a].
Unfortunately, minimum-time trajectories computed using a constant

maximum acceleration are not directly relevant in robotics. This is due to the
fact that an actual manipulator has a torque limit of τm. Since the robot
equation (see Table 3.3.1) is nonlinear, this does not correlate to a constant
upper bound on the acceleration. For instance, a robot arm has different
maximum accelerations in its fully extended and fully retracted positions. For
more discussion see [Kahn and Roth 1971], [Chen 1989], [Geering 1986],
[Gourdeau and Schwartz 1989], [Jayasuriya and Suh 1985], [Kahn and Roth
1971], [Kim and Shin 1985], [Shin and McKay 1985].

Figure 4.2.5: (Cont.)(c) position.
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4.3 Computer Simulation of Robotic Systems

It is very important to simulate on a digital computer a proposed manipulator
control scheme before actually implementing it on an arm. We show here
how to perform such computer simulations for robotic systems. Since most
robot controllers are actually implemented in a digital fashion (Section 4.5),
we also show how to simulate digital robot arm controllers.

Simulation of Robot Dynamics

There is a variety of software packages for the simulation of nonlinear
dynamical systems, including SIMNON [Åström and Wittenmark 1984],
MATLAB, and others. For convenience, we include in Appendix B some
simulation programs that are quite useful for continuous and digital control.

All simulation programs require the user to write similar subroutines. Time
response simulators that use integration routines such as Runge-Kutta all require
the computation of the state derivative given the current state. In Section 3.4
we saw how to represent the robot arm equation

(4.3.1)

in the nonlinear state-space form

(4.3.2)

with x(t) the state and u(t) the input.
Defining a state as x=[qT q.T]T, we may write the implicit form

(4.3.3)

with τ the arm control torque that is provided by the controller and τd the
disturbance torque. We say that this is an implicit form since the coefficient
matrix of the left-hand side means that  is not given
explicitly in terms of the right-hand side.

Given x(t), it is necessary to provide a subroutine for the integration program
that computes (t). One approach to solving for  is to invert M(q). However,
due to potential numerical problems this is not recommended. Let us represent
(4.3.3) as

(4.3.4)

Note that in this case u(t) is the vector composed of the controls �(t) and the
disturbances �d(t).

4.3 Computer Simulation of Robotic Systems
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A simple time response program, TRESP, is given in Appendix B. Given a
subroutine F(time, x, ) that computes  given x(t) and u(t) using (4.3.4); it
uses a Runge-Kutta integrator to compute the state trajectory x(t). To solve
for   within subroutine F(t, x, )we recommend computing M(q) and N(q, q.)
and, then solving

(4.3.5)

[i.e., the bottom portion of (4.3.3)] by least-squares techniques, which are
more stable numerically than the inversion of M(q). Least-squares equation
solvers are readily available commercially in, for instance [IMSL], [LINPACK],
and elsewhere. For simpler arms, M(q) may be inverted analytically.

Throughout the book we illustrate the simulation of the arm dynamics
using various control schemes.

Simulation of Digital Robot Controllers

While most robot controllers are designed in continuous time, they are
implemented on actual robots digitally. That is, the control signals are only
updated at discrete instants of time using a microprocessor. We discuss the
implementation of digital robot arm controllers in Section 4.5. To verify that
a proposed controller will operate as expected, therefore, it is highly desirable
to simulate it in its digitized or discretized form prior to actual implementation.

Figure 4.3.1: Digital controller.

A digital control scheme is shown in Figure 4.3.1. The plant or system to
be controlled is a continuous-time system, and K(z) is the dynamic digital
controller, where z is the Z-transform variable (i.e., z-1 represents a unit time
delay). The digital controller K(z) is implemented using software code in a
digital signal processor (DSP). The reference input r(t) is the desired trajectory
that y(t) should follow, and ek is the (discrete) tracking error.

The sampler with sample period T is an analog-to-digital (A/D) converter
that takes the samples yk=y(kT) of the output y(t) that are required by the
software controller K(z). The definition of y(t) can vary depending on the
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control scheme. For instance, in robot control, y(t) might represent the 2n—
vector composed of q(t) and q.(t).

Figure 4.3.2: Data reconstruction using a ZOH: (a) discrete control sequence uk; (b)
reconstructed continuous signal u(t).

The hold device in the figure is a digital-to-analog (D/A) converter that
converts the discrete control samples uk computed by the software controller
K(z) into the continuous-time control u(t) required by the plant. It is a data
reconstruction device. The input uk and output u(t) for a zero-order hold (ZOH)
are shown in Figure 4.3.2. Note that u(kT)=uk, with T the sample period, so
that u(t) is continuous from the right. That is, u(t) is updated at times kT. The
ZOH is generally used for controls purposes, as opposed to other higher-order
devices such as the first-order hold, since most commercially available DSPs
have a built-in ZOH.

Once a controller has been designed, it is important to simulate it using a
digital computer before it is implemented to determine if the closed-loop
response is suitable. This is especially true in robotics, since the digital

4.3 Computer Simulation of Robotic Systems
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controller is generally found by designing a continuous-time controller, which
is then digitized using approximation techniques such as Euler’s method. That
is, for nonlinear systems, the controller discretization schemes are generally
not exact. This results in degraded performance. To verify that the controller
performance will be suitable, the simulation should provide the response at
all times, including times between the samples.

To simulate a digital controller we may use the scheme shown in Figure
4.3.3. There, the continuous plant dynamics are contained in the subroutine
F(t, x, ); they are integrated using a Runge-Kutta integrator. The figure
assumes a ZOH; thus the control input u(t) is updated to uk at each time kT,
and then held constant until time (k+1)T Note that two time intervals are
involved; the sampling period T and the Runge-Kutta integration period
TR << T. TR should be selected as an integral divisor of T.

Figure 4.3.3: Digital control simulation scheme.

This simulation technique provides the plant state x(t) as a continuous
function of time, even at values between the sampling instants [in fact, it
provides x(t) at multiples of TR]. This is essential in verifying acceptable
intersample behavior of the closed-loop system prior to implementing the
digital controller on the actual plant.

Program TRESP in Appendix B can be used to implement Figure 4.3.3.
It is written in a modular fashion to apply to a wide variety of situations.
We shall illustrate its use for the purpose of digital control in several
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subsequent examples. The use of such simulation software as SIMNON is
quite similar.

We discuss the implementation of digital robot arm controllers in Section
4.5. Some detailed discussion on digital control, simulation, and DSP
implementation of controllers is given in [Lewis 1992].

4.4 Computed-Torque Control

Through the years there have been proposed many sorts of robot control
schemes. As it happens, most of them can be considered as special cases of the
class of computed-torque controllers. Computed torque, at the same time, is a
special application of feedback linearization of nonlinear systems, which has
gained popularity in modern systems theory [Hunt et al. 1983], [Gilbert and
Ha 1984]. In fact, one way to classify robot control schemes is to divide them
as “computed-torque-like” or “noncomputed-torque-like.” Computed-torque-
like controls appear in robust control, adaptive control, learning control, and
so on.

In the remainder of this chapter we explore this class of robot controllers,
which includes such a broad range of designs. Computed-torque control allows
us to conveniently derive very effective robot controllers, while providing a
framework to bring together classical independent joint control and some
modern design techniques, as well as set the stage for the rest of the book. A
summary of the different computed-torque-like controllers is given at the end
of the section in Table 4.4.1. We shall see that many digital robot controllers
are also computed-torque-like controllers (Section 4.5).

Derivation of Inner Feedforward Loop

The robot arm dynamics are

(4.4.1)

or

(4.4.2)

with the joint variable  the control torque, and �d(t) a
disturbance. If this equation includes motor actuator dynamics (Section 3.6),
then �(t) is an input voltage.

Suppose that a desired trajectory qd(t) has been selected for the arm motion,
according to the discussion in Section 4.2. To ensure trajectory tracking by
the joint variable, define an output or tracking error as

4.4 Computed-Torque Control
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(4.4.3)

To demonstrate the influence of the input �(t)on the tracking error, differe-
ntiate twice to obtain

 

Solving now for  in (4.4.2) and substituting into the last equation yields

(4.4.4)

Defining the control input function

(4.4.5)

and the disturbance function

(4.4.6)

we may define a state  by

(4.4.7)

and write the tracking error dynamics as

(4.4.8)

This is a linear error system in Brunovsky canonical form consisting of n
pairs of double integrators 1/s2, one per joint. It is driven by the control input
u(t) and the disturbance w(t). Note that this derivation is a special case of the
general feedback linearization procedure in Section 3.4.

The feedback linearizing transformation (4.4.5) may be inverted to yield

(4.4.9)

We call this the computed-torque control law. The importance of these
manipulations is as follows. There has been no state-space transformation in
going from (4.4.1) to (4.4.8). Therefore, if we select a control u(t) that stabilizes
(4.4.8) so that e(t) goes to zero, then the nonlinear control input given by
�(t)(4.4.9) will cause trajectory following in the robot arm (4.4.1). In fact,
substituting (4.4.9) into (4.4.2) yields
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or

(4.4.10)

which is exactly (4.4.8).

Figure 4.4.1: Computed-torque control scheme, showing inner and outer loops.

The stabilization of (4.4.8) is not difficult. In fact, the nonlinear
transformation (4.4.5) has converted a complicated nonlinear controls design
problem into a simple design problem for a linear system consisting of n
decoupled subsystems, each obeying Newton’s laws.

The resulting control scheme appears in Figure 4.4.1. It is important to
note that it consists of an inner nonlinear loop plus an outer control signal
u(t). We shall see several ways for selecting u(t). Since u(t) will depend on q(t)
and q.(t), the outer loop will be a feedback loop. In general, we may select a
dynamic compensator H(s) so that

U(s)=H(s)E(s). (4.4.11)

H(s) can be selected for good closed-loop behavior. According to (4.4.10), the
closed-loop error system then has transfer function

T(s)=s2I-H(s). (4.4.12)

4.4 Computed-Torque Control
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It is important to realize that computed-torque depends on the inversion of
the robot dynamics, and indeed is sometimes called inverse dynamics control
In fact, (4.4.9) shows that �(t) is computed by substituting d–u for  in (4.4.2);
that is, by solving the robot inverse dynamics problem. The caveats associated
with system inversion, including the problems resulting when the system has
non-minimum-phase zeros, all apply here. (Note that in the linear case, the
system zeros are the poles of the inverse. Such nonminimum-phase notions
generalize to nonlinear systems.) Fortunately for us, the rigid arm dynamics
are minimum phase.

There are several ways to compute (4.4.9) for implementation purposes.
Formal matrix multiplication at each sample time should be avoided. In some
cases the expression may be worked out analytically. A good way to compute
the torque �(t) is to use the efficient Newton-Euler inverse dynamics formulation
[Craig 1985] with d–u in place of (t).

The outer-loop signal u(t) can be chosen using many approaches, including
robust and adaptive control techniques. In the remainder of this chapter we
explore some choices for u(t) and some variations on computed-torque control.

PD Outer-Loop Design

One way to select the auxiliary control signal u(t) is as the proportional-plus-
derivative (PD) feedback,

(4.4.13)

Then the overall robot arm input becomes

(4.4.14)

This controller is shown in Figure 4.4.6 with Ki=0. The closed-loop error
dynamics are

(4.4.15)

or in state-space form,

(4.4.16)

The closed-loop characteristic polynomial is

(4.4.17)

Choice of PD Gains. It is usual to take the n×n gain matrices diagonal so
that
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(4.4.18)

Then

(4.4.19)

and the error system is asymptotically stable as long as the Kvi and Kpi are
all positive. Therefore, as long as the disturbance w(t) is bounded, so is the
error e(t). In connection with this, examine (4.4.6) and recall from Table
3.3.1 that M-1 is upper bounded. Thus boundedness of w(t) is equivalent to
boundedness of �d(t).

It is important to note that although selecting the PD gain matrices diagonal
results in decoupled control at the outer-loop level, it does not result in a
decoupled joint-control strategy. This is because multiplication by M(q) and
addition of the nonlinear feedforward terms N (q, q.) in the inner loop scrambles
the signal u(t) among all the joints. Thus, information on all joint positions
q(t) and velocities q.(t) is generally needed to compute the control �(t) for any
one given joint.

The standard form for the second-order characteristic polynomial is

(4.4.20)

with � the damping ratio and �n the natural frequency. Therefore, desired
performance in each component of the error e(t) may be achieved by selecting
the PD gains as

(4.4.21)

with �, �n the desired damping ratio and natural frequency for joint error i. It
may be useful to select the desired responses at the end of the arm faster than
near the base, where the masses that must be moved are heavier.

It is undesirable for the robot to exhibit overshoot, since this could cause
impact if, for instance, a desired trajectory terminates at the surface of a
workpiece. Therefore, the PD gains are usually selected for critical damping
�=1. In this case

(4.4.22)

Selection of the Natural Frequency. The natural frequency �n governs the
speed of response in each error component. It should be large for fast responses
and is selected depending on the performance objectives. Thus the desired
trajectories should be taken into account in selecting �n. We discuss now
some additional factors in this choice.

4.4 Computed-Torque Control
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There are some upper limits on the choice for �n [Paul 1981]. Although the
links of most industrial robots are massive, they may have some flexibility.
Suppose that the frequency of the first flexible or resonant mode of link i is

(4.4.23)

with J the link inertia and kr the link stiffness. Then, to avoid exciting the
resonant mode, we should select �n<�r/2. Of course, the link inertia J changes
with the arm configuration, so that its maximum value might be used in
computing �r.

Another upper bound on �n is provided by considerations on actuator
saturation. If the PD gains are too large, the torque τ(t) may reach its upper
limits.

Some more feeling for the choice of the PD gains is provided from error-
boundedness considerations as follows. The transfer function of the closed-
loop error system in (4.4.15) is

(4.4.24)

or if Kv and Kp are diagonal,

(4.4.25)

(4.4.26)

We assume that the disturbance and M-1 are bounded (Table 3.3.1), so that

(4.4.27)

with m— and d
—

 known for a given robot arm. Therefore,

(4.4.28)

(4.4.29)

Now selecting the L2—norm, the operator gain ||H(s)||2 is the maximum
value of the Bode magnitude plot of H(s). For a critically damped system,

(4.4.30)

Therefore,
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(4.4.31)

Moreover (see the Problems),

(4.4.32)

so that

(4.4.33)

Thus, in the case of critical damping, the position error decreases with kpi and
the velocity error decreases with kvi.

EXAMPLE 4.4–1: Simulation of PD Computed-Torque Control

In this example we intend to show the detailed mechanics of simulating a
PD computed-torque controller on a digital computer.

a. Computed-Torque Control Law

In Example 3.2.2 we found the dynamics of the two-link planar elbow arm
shown in Figure 4.2.1 to be

(1)

These are in the standard form

(2)

Take the link masses as 1 kg and their lengths as 1 m.
The PD computed-torque control law is given as

4.4 Computed-Torque Control
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(3)

with the tracking error defined as

e=qd-q. (4)

b. Desired Trajectory

Let the desired trajectory qd(t) have the components

θ1d=g1 sin (2πt/T)
θ2d=g2 cos (2πt/T) (5)

with period T=2 s and amplitudes gi=0.1 rad≈6 deg. For good tracking select
the time constant of the closed-loop system as 0.1 s. For critical damping, this
means that Kv=diag{kv}, KP=diag{kp}, where

(6)

It is important to realize that the selection of controller parameters such as the
PD gains depends on the performance objectives-in this case, the period of the
desired trajectory.

c. Computer Simulation

Let us simulate the computed-torque controller using program TRESP in
Appendix B. Simulation using commercial packages such as MATLAB and
SIMNON is quite similar.

The subroutines needed for TRESP are shown in Figure 4.4.2. They are
worth examining closely. Subroutine SYSINP (ITx, t) is called once per Runge-
Kutta integration period and generates the reference trajectory qd(t), as well
as qd(t), and qd(t). Note that the reference signal should be held constant
during each integration period.
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Subroutine F(time, x, xp) is called by Runge-Kutta and contains the
continuous dynamics. This includes both the controller and the arm dynamics.
The state to be integrated is  and the subroutine should
compute the state derivative x (i.e., xp, which signifies x—prime).

Subroutine CTL(x) contains the controller (3). Note the structure of this
subroutine. First, the tracking error e(t) and its derivative are computed. Then
M(q) and  are computed. Finally, (3) is
manufactured.

Figure 4.4.2: Subroutines for simulation using TRESP.

Figure 4.4.3: Joint angles θ1(t) and θ2(t) (red).

4.4 Computed-Torque Control
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Subroutine ARM(x, xp) contains the robot dynamics. First, M(q) and M-

1(q) are computed, and then N(q,q). The state derivatives are then determined.
The results of the simulation are shown in the figures. Figure 4.4.3 shows

the joint angles. Figure 4.4.4 shows the joint errors. The initial conditions
result in a large initial error that vanishes within 0.6 s. Figure 4.4.5 shows the
control torques; the larger torque corresponds to the inner motor, which must
move two links.

It is interesting to note the ripples in e(t) that appear in Figure 4.4.4. These
are artifacts of the integrator. The Runge-Kutta integration period was TR=0.01
s. When the simulation was repeated using TR=0.001 s, the tracking error was
exactly zero after 0.6 s. It should be zero, since computed-torque, or inverse
dynamics control, is a scheme for canceling the nonlinearities in the dynamics
to yield a second-order linear error system. If all the arm parameters are
exactly known, this cancellation is exact. It is a good exercise to repeat this
simulation using various values for the PD gains (see the Problems).

Figure 4.4.4: Tracking error e1(t), e2(t) (red).
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We have just seen that PD computed-torque control is very effective if all the
arm parameters are known and there is no disturbance �d. However, from
classical control theory we know that in the presence of constant disturbances,
PD control gives a nonzero steady-state error. Consequently, we are motivated
to make the system type I by including an integrator in the feedforward loop-
this can be achieved using the PID computed-torque controller

(4.4.34)

(4.4.35)

which yields the arm control input

(4.4.36)

Figure 4.4.5: Torque inputs (N-m).

4.4 Computed-Torque Control

PID Outer-Loop Design

�
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with e(t) the integral of the tracking error e(t). Thus additional dynamics have
been added to the linear outer-loop compensator.

This control law is conveniently described by defining the state as
x=  and augmenting the error dynamics (4.4.8) with an
integrator, so that

(4.4.37)

A block diagram of the PID computed-torque controller appears in Figure
4.4.6. Then the closed-loop system is

(4.4.38)

The closed-loop characteristic polynomial is

∆c(s)=|s3I+Kvs2+Kps+Ki|. (4.4.39)

Figure 4.4.6: PID computed-torque controller.
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Selecting diagonal control’ gains

(4.4.40)

gives

(4.4.41)

By using the Routh test it can be found that for closed-loop stability we require
that

(4.4.42)

that is, the integral gain should not be too large.

Actuator Saturation and Integrator Windup. It is important to be aware of an
effect in implementing PID control on any actual robot manipulator that can
cause serious problems if not accounted for. Any real robot arm will have
limits on the voltages and torques of its actuators. These limits may or may
not cause a problem with PD control, but are virtually guaranteed to cause
problems with integral control due to a phenomenon known as integrator
windup [Lewis 1992].

Consider the simple case where �=kiε with ε(t) the integrator output. The
torque input �(t) is limited by its maximum and minimum values �max and �min.
If kiε(t) hits �max, there may or not may not be a problem. The problem arises
if the integrator input remains positive, for then the integrator continues to
integrate upwards and kiε(t) may increase well beyond �max. Then, when the
integrator input becomes negative, it may take considerable time for kiε(t) to
decrease below �max. In the meantime � is held at �max, giving an incorrect
control input to the plant.

Integrator windup is easy to correct using antiwindup protection in a digital
controller. This is discussed in Section 4.5. The effects of uncorrected windup
are demonstrated in Example 4.4.4.

The next example shows the usefulness of an integral term when there are
unknown disturbances present.

EXAMPLE 4.4–2: Simulation of PID Computed-Torque Control

In Example 4.4.1 we simulated the PD computed-torque controller for a
two-link planar arm. In this example we add a constant unknown

4.4 Computed-Torque Control
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Figure 4.4.7: Computed-torque controller tracking errors e1(t), e2(t) (red): (a) PD
control; (b) PID control.
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Figure 4.4.8: Computed-torque controller torque inputs (N-m): (a) PD control; (b)
PID control.

4.4 Computed-Torque Control
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disturbance to the arm dynamics and compare PD to PID computed
torque.
Thus let the arm dynamics be

(1)

with �d a constant disturbance with 1 N-m in each component. This could
model unknown dynamics such as friction, and so on. The value of 1 N-m
represents quite a large bias.

Adding 1 to the computation of the nonlinear terms N1 and N2 in
subroutine arm(x, xp) in Figure 4.4.2 and using the PD computed-torque
controller with kp=100, kv=20 yields the error plot in Figure 4.4.7(a).
There is a unacceptable residual bias in the tracking error due to the
unmodeled constant disturbance, which is not accounted for in the
computed-torque law. The largest error is 0.033 rad, somewhat less
than 2 deg.

Adding now an integral-error weighting term with ki=500 yields the
results in Figure 4.4.7(b), which show a zero steady-state error and are
quite good.

The associated control torques are shown in Figure 4.4.8, which shows
that the torque magnitudes are not appreciably increased by using the
integral term.

To simulate the PID control law, it is necessary to add two additional
states to x in subroutine arm(x, xp). It is convenient to call them x(5) and
x(6), so that the lines added to the subroutine are

xp(5)=e(1).
xp(6)=e(2). (2)

Thus it is now necessary to compute e(1) and e(2) in subroutine arm(x, xp)
for integration purposes.

�

Class of Computed-Torque-Like Controllers

An entire class of computed-torque-like controllers can be obtained by
modifying the computed-torque control law to read

(4.4.43)
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The carets denote design choices for the weighting and offset matrices. One
choice is =M(q), =N(q,q). The calculated control input into the robot arm
is �c(t).

In some cases M(q) is not known exactly (e.g., unknown payload mass), or
N(q, ) is not known exactly (e.g., unknown friction terms). Then  and 
could be the best estimate we have for these terms. On the other hand, we
might simply wish to avoid computing M(q) and N(q,q) at each sample time,
or the sample period might be too short to allow this with the available
hardware. From such considerations, we call (4.4.43) an “approximate
computed-torque” controller.

In Table 4.4.1 are given some useful computed-torque-like controllers. As it
turns out, computed torque is quite a good scheme since it has some important
robustness properties. In fact, even if ≠M and ≠N the performance of
controllers based on (4.4.43) can be quite good if the outer-loop gains are selected
large enough. We study robustness formally in Chapter 4.

In the remainder of this chapter we consider various special choices of 
and  that give some special sorts of controllers. We shall present some
theorems and simulation examples that illustrate the robustness properties of
computed-torque control.

Error Dynamics with Approximate Control Law. Let us now derive the error
dynamics if the approximate computed-torque controller (4.4.43) is applied to
the robot arm (4.4.2). Substituting �c(t) into the arm equation for �(t) yields

 

Adding Mqd-Mqd to the left-hand side and Mu-Mu to the right gives

 

or

ë=u-∆u+d, (4.4.44)

where the inertia and nonlinear-term model mismatch terms are

(4.4.45)

(4.4.46)

4.4 Computed-Torque Control
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Table 4.4.1: Computed-Torque-Like Robot Controllers.
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and the disturbance is

(4.4.47)

This reduces to the error system (4.4.10) if exact computed-torque control
is used so that ∆=0, δ=0. Otherwise, the error system is driven by the
desired acceleration and the nonlinear term mismatch δ(t). Thus the tracking
error will never go exactly to zero. Moreover, the auxiliary control u(t) is
multiplied by (I -∆), which can make for a very difficult control problem.

Using outer-loop PD feedback so that u(t)=-Kve-Kpe yields the error system

(4.4.48)

The behavior of such systems is not obvious, even if Kv and Kp are selected for
good stability of the left-hand side. There are two sorts of problems: first, the
disturbance term d(t), and second the function ∆(Kve+Kpe) of the error and its
derivative.

PD-Plus-Gravity Controller

A useful controller in the computed-torque family is the PD-plus-gravity
controller that results when M=I, N=G(q)-qd, with G(q) the gravity term of
the manipulator dynamics. Then, selecting PD feedback for u(t) yields

(4.4.49)

This control law was treated in [Arimoto and Miyazaki 1984], [Schilling
1990]. It is much simpler to implement than the exact computedtorque
controller.

When the arm is at rest, the only nonzero terms in the dynamics (4.4.1)
are the gravity G(q), the disturbance �d, and possibly the control torque �.

The PD-gravity controller �c, includes G(q), so that we should expect good
performance for set-point tracking, that is, when a constant qd is given so
that qd=0. The next result formalizes this. It relies on a Lyapunov proof
(Chapter 1) of the sort that will be of consistent usefulness throughout the
book, drawing especially on the skew-symmetry property in Table 3.3.1.
Thus it is very important to understand the steps in this proof.

4.4 Computed-Torque Control
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THEOREM 4.4–1: Suppose that PD-gravity control is used in the arm
dynamics (4.4.1) and �d=0, qd=0. Then the steady-state tracking error. e=qd-
q is zero.

Proof:
1. Closed-Loop System

Ignoring friction, the robot dynamics are given by

(1)

When qd=0, the proposed control law (4.4.49) yields the closed-loop dynamics

(2)

2. Lyapunov Function
Select now the Lyapunov function

(3)

and differentiate to obtain

(4)

Substituting the closed-loop dynamics (2) yields

(5)

Now, the skew symmetry of the first term gives

(6)

The state is , so that V is positive definite but  only negative
semidefinite. Therefore, we have demonstrated stability in the sense of
Lyapunov, that is, that the error and joint velocity are both bounded.

3. Asymptotic Stability by LaSalle’s Extension
The asymptotic stability of the system may be demonstrated using Barbalat’s

lemma and a variant of LaSalle’s extension [Slotine and Li 1991] (Chapter
2). Thus it is necessary to demonstrate that the only invariant set contained in
the set V=0 is the origin.

Since V is lower bounded by zero and nonpositive, it follows that V
approaches a finite limit, which can be written
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(7)

We now invoke Barbalat’s lemma to show that V goes to zero. For this, it is
necessary to demonstrate the uniform continuity of V. We see that

(8)

The demonstrated stability shows that a and q are bounded, whence (2) and
the boundedness of M-1(q) (see Table 3.3.1) reveal that q is bounded. Therefore,
V is bounded, whence V is uniformly continuous. This guarantees by Barbalat’s
lemma that V goes to zero.

It is now clear that  goes to zero. It remains to show that the tracking
error e(t) vanishes. Note that when q=0, (2) reveals that

(9)

Therefore, a nonzero e(t) results in nonzero  and hence in q≠0, a contradiction.
Therefore, the only invariant set contained in {x(t)|V=0} is x(t)=0. This finally
demonstrates that both e(t) and vanish and concludes the proof. �

Some notes on this proof are warranted. First, note that the Lyapunov
function chosen is a natural one, as it contains the kinetic energy and the
“artificial potential energy” associated with the virtual spring in the control
law [Slotine and Li 1991]. Kp appears in V while Kv appears in V.

The proof of Lyapunov stability is quick and easy. The effort comes about
in showing asymptotic stability. For this, it is required to return to the system
dynamics and study it more carefully, discussing issues such as boundedness
of signals, invariant sets, and so on. The fundamental property of skew
symmetry is used in computing V. The boundedness of M-1(q) is needed in
Barbalat’s lemma.

The next example illustrates the performance of the PD-gravity controller
for trajectory tracking. In general, if qd≠0, then the PD-gravity controller
guarantees bounded tracking errors. The error bound decreases, that is, the
tracking performance improves, as the PD gains become larger. This will be

EXAMPLE 4.4–3: Simulation of PD-Gravity Controller

In Example 4.4.1 we simulated the exact computed-torque control law on
a two link planar manipulator. Here, let us simulate the PD-gravity
controller. We shall take the same arm parameters and desired trajectory.

4.4 Computed-Torque Control
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Assuming identical PD gains for each link, the PD-gravity control law for
the two-link arm is

(1)

This is easily simulated by commenting out several lines of code and making
a few other modifications in subroutine CTL(x) of Figure 4.4.2.

For critical damping, the PD gains are selected as

(2)

The results of the PD-gravity controller simulation for several values of wn

are shown in Figure 4.4.9. As ωn, and hence the PD gains, increases, the
tracking performance improves. However, no matter how large the PD gains,
the tracking error never goes exactly to zero, but is bounded about zero by a
ball whose radius decreases as the gains become larger. The performance for
ωn=50, corresponding to kp=2500, kv=100, would be quite suitable for many
applications.

It quite important to note that the dc value of the errors is equal to zero.
One can consider the gravity terms as the “dc portion” of the computed-
torque control law. If they are included in computing the torques, there will
be no error offset.

The associated control input torques are shown in Figure 4.4.10. It is
extremely interesting to note that the torques are smaller for the higher
gains. This is contrary to popular belief, which assumes that the control
torques always increase with increasing PD gains. It is due to the fact that
larger gains give “tighter” performance, and hence smaller tracking errors.

In view of the fact that the errors in Figure 4.4.9(a) have different magnitudes,
it would probably be more reasonable to take the PD gains larger for the
inner link than the outer link.

�

Classical Joint Control

A simple controller that often gives good results in practice is obtained by
selecting in (4.4.43)

(4.4.50)

Copyright © 2004 by Marcel Dekker, Inc.



209

Figure 4.4.9: PD-gravity tracking error e1(t), e2(t) (red): (a) wn=10 rad/s; (b) wn=25
rad/s.

4.4 Computed-Torque Control
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Then there results

(4.4.51)

By selecting ui to depend only on joint variable i, this describes n decoupled
individual joint controllers and is called independent joint control.
Implementation on an actual robot arm is easy since the control input for
joint i only depends on locally measured variables, not on the variables of the
other joints. Moreover, the computations are easy and do not involve solving
the complicated nonlinear robot inverse dynamics.

During the early days of robotics, independent joint control was popular
[Paul 1981] since it allows a decoupled analysis of the closed-loop system
using single-input/single-output (SISO) classical techniques. It is also called
classical joint control. There are strong arguments even today by several
researchers that this control scheme is always suitable in practical
implementations, and that modern nonlinear control schemes are too
complicated for industrial robotic applications.

A traditional analysis of independent joint control control now follows. It
provides a connection with classical control notions and is important for the

Figure 4.4.9: (Cont.) (c)wn=50 rad/s.
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Figure 4.4.10: PD-gravity torque inputs (N-m): (a) wn=10 rad/s; (b) wn=25 rad/s.

4.4 Computed-Torque Control
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robot controls designer to understand. See [Franklin et al. 1986] for a reference
on classical control theory.

A simplified dynamical model of a robot arm with electric actuators may
be written as (Section 3.6)

(4.4.52)

with Jm the actuator motor inertia, Bm the rotor damping constant, km the
torque constant, kb the back emf constant, R the armature resistance, and ri

the gear ratio for joint i. The motor angle is denoted θi(t). The constant portions
of the diagonal elements of M(q) are denoted mii. The time-varying portions
of these elements, as well as the off-diagonal elements of M(q), the nonlinear
terms N(q, ), and any disturbances �d are all lumped into the disturbance
di(t). Thus di(t) contains the effects on joint i of all the other joints. The control
input is the motor armature voltage vi(t).

Note that predominantly motor parameters appear in this equation. In
fact, if the gear ratio is small, even mii may be neglected. For this reason, if
the gear ratio is small, the robot arm control problem virtually reduces to the
problem of controlling the actuator motors.

Figure 4.4.10: (Cont) (c) wn=50 rad/s.
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Let us denote this simplified linear time-invariant model of manipulator
joint i as

(4.4.53)

where the constant km/R has been incorporated into the definitions of J and B.
According to the properties in Table 3.3.1, the disturbance d(t) is bounded,
although not generally by a constant. The bound may be a function of q(t), (t),
and even (t). This is generally ignored in a classical analysis. The effects of
d(t) are, however, somewhat ameliorated by multiplication by the gear ratio r.
The effects of joint compliance (Chapter 6) are also ignored in classical joint
control design. [For consistency with classical notation, there is a sign change
in this section in the definition of u(t) compared to our previous usage.]

Now, let us consider a few selections for the control input u(t).

PD Control. Selecting the PD control law

u=kve+kpe, (4.4.54)

with e(t)=θdi (t)-θi(t) the tracking error for motor angle i, yields the closed-loop
system shown in Figure 4.4.11. Recall that the motor angle is related to the
joint variable by qi=riθi. Thus θd(t) may be computed from qdi(t). This PD
controller is easily implemented on an actual arm with very little computing
power.

Using Mason’s theorem from classical control, the closed-loop transfer
function for set-point tracking (e.g., with θd=0) is found to be (see the
problems)

Figure 4.4.11: PD independent joint control.

4.4 Computed-Torque Control
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(4.4.55)

with the closed-loop characteristic polynomial

(4.4.56)

The PD gains can be selected to obtain a suitable natural frequency and
damping ratio, as we have seen.

At steady state, the only nonzero contribution to the disturbance d(t) is the
neglected gravity G(q). Table 3.3.1 shows that the gravity vector is bounded
by a known value gb for a given robot arm. Therefore, at steady state,

 

Using the final value theorem, the steady-state tracking error for joint i
using PD control is bounded by

(4.4.57)

Therefore, for set-point tracking where a final value for qd is specified and
 PD control with a large kp might be suitable.

As a matter of fact, the next results show that PD control is often very
suitable even for following a desired trajectory, not only for set-point control.
It is proven in [Dawson 1990].

THEOREM 4.4–2: If the PD control law (4.4.54) is applied to each joint and
e(0)=0, (0)=0, the position and velocity tracking errors are bounded within a
ball whose radius decreases approximately (for large kv)
as .

�

This result gives credence to those who maintain that PD control is often
good enough for practical applications.

Of course, the point is that kv cannot be increased without limit without
hitting the actuator torque limits. Other schemes to be discussed in the book
allow good trajectory following without such large torques.

In [Paul 1981] are discussed several methods for modifying the PD control
law to obtain better performance. These include gravity compensation [which
yields exactly controller (4.4.49)], and acceleration feedforward, which
amounts to using

(4.4.58)
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for each joint. Also mentioned is joint-coupling control, which amounts to
adding back into u(t) some of the neglected terms in M(q) and N(q, )that
describe the interactions between the joints. Thus such corrections involve
using better estimates for  and  in the approximate computed-torque
control (4.4.43).

PID Control. It has been seen that PD independent joint control is often suitable
for tracking control. However, at steady state there is a residual error (4.4.57)
due to gravity. This can be removed using the PID independent joint control
law

(4.4.59)

for each joint. See Figure 4.4.12.

4.4 Computed-Torque Control

Now the transfer function for set-point tracking  is

(4.4.60)

with closed-loop characteristic polynomial

(4.4.61)

Now the final value theorem shows that the steady-state error for set-point
control is zero. The Routh test shows that for stability it is required that

Figure 4.4.12: PID independent joint control.
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Figure 4.4.13: PD classical joint control tracking error e1(t), e2(t) (red):
(a) �n=10 rad/s; (b) �n=25 rad/s.
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(4.4.62)

In using an integral term in the control law, it is important to be aware of
the possibility of integrator windup due to actuator saturation limits, which
was discussed earlier in the section “PID Outer-Loop Design.”

EXAMPLE 4.4–4: Classical Joint Control and Torque Saturation Limits

In Example 4.4.1 we simulated the exact computed-torque control law for
a two-link planar elbow arm. Here we want to show the results of using
PD and PID classical joint control on the same arm (with the same desired
trajectory). We are also interested in demonstrating the effects of torque
saturation limits. To highlight the effects without extraneous details, we
shall use only the arm dynamics and no actuator dynamics or gear ratio.
These may easily be included by making some slight modifications to the
subroutine arm(x, xp) in Figure 4.4.2.

a. PD Independent Joint Control

For the two-link arm, PD independent joint control is simply

Figure 4.4.13 (Cont.) (c) �n=50 rad/s.

4.4 Computed-Torque Control
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Figure 4.4.14: PD classical joint control torque inputs (N-m): (a) �n=10
rad/s; (b) �n=25 rad/s.
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(1)

with the tracking error e(t)=qd(t)-q(t). This control law is very simple and
direct to implement on an actual arm without even using a DSP. It is much
simpler than the control in Example 4.4.1.

The results of using the PD controller on the two-link arm are shown in
Figure 4.4.13 for several values of a closed-loop natural frequency wn. Recall
that the PD gains for critical damping are

(2)

The low-gain results (kp=100, kv=20) in part (a) of the figure are very bad
(note the scale). However, the high-gain results in part (c) are much better.
Even higher gains would cause a further tracking error decrease.

It is important to notice that there is in all cases a do component of the
tracking error. This is due to the fact that the gravity terms are neglected and
should be contrasted with the results of Example 4.4.3.

Figure 4.4.14 (Cont.) (c) �n=50 rad/s.

4.4 Computed-Torque Control
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Adding the gravity terms in the control law, therefore, significantly increases
the tracking performance.

The associated control torques are shown in Figure 4.4.14.

b. PID Independent Joint Control
PID independent joint control for the two-link arm is

(3)

This simple law is easily implemented by adding two states, x(5) and x(6),
to subroutine arm(x, xp) in Figure 4.4.2 to account for the integrators (see
Example 4.4.2).

The simulation in Figure 4.4.13(c) was repeated, but now adding an
integral gain of ki=1000. The result is shown in Figure 4.4.15. After several
iterations of the sinusoidal motion, the do value of the tracking errors goes
to zero, so that the performance is much improved. That is, adding an
integral term can compensate for neglecting the gravity terms in the control

Figure 4.4.15: PD classical joint control: kv=100, kp=2500, ki=1000.
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law. However, it takes awhile for the error to converge to a zero do value,
and the results are still not as good as the PD-gravity controller in Example
4.4.3 for the same PD gains. On the other hand, the integral term can
reject other terms besides gravity (e.g., friction of some sorts). The torque
control input was virtually the same in form as Figure 4.4.14(c).

c. Actuator Saturation Limits
We discussed integrator windup due to actuator saturation limits earlier in
the section “PID Outer-Loop Design.” Here we should like to demonstrate
its deleterious effects.

The control torque in part (b) of this example is similar to the torque in
Figure 4.4.14(c); it is fairly well behaved, except for some frantic action
near time zero, where the maximum positive excursion is 78 N-m.

Suppose now that there are torque limits of tmax=35 N-m, tmin= -35 N-m.
This is easily simulated by modifying subroutine CTL(x) in Figure 4.4.2 to
include a saturation function by adding the lines

Figure 4.4.16: PID classical joint control with torque limits of ±35 N-m. Tracking
error in rads.

4.4 Computed-Torque Control
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(4)

The results of the simulation with these limits are shown in Figure 4.4.16 and
are terrible. The torque is shown in Figure 4.4.17.

In Section 4.5 we show how to ameliorate the effects of actuator
saturation by using antiwindup protection in a digital controller. The
simulation results for PD control with actuator limits are not as bad as the
ones just shown for PID control, since saturation limits have less effect if
no integrator is present.

4.5 Digital Robot Control

Many robot control schemes are complicated and involve a great deal of
computation for the evaluation of nonlinear terms. Therefore, they are
implemented as digital control laws on digital signal processors (DSPs). Certain

Figure 4.4.17: PID classical joint control with torque limits of ±35 N-m. Torque
inputs in N-m.

�
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sorts of digital controllers for robot arms can be considered as members of the
computer-torque-like class (see Table 4.4.1).

One approach to digital robot control is shown in Figure 4.5.1. There, a
sampler is placed on q(t) and q.(t) to define

Figure 4.5.1: Digital robot control scheme.

(4.5.1)

with T the sample period. Sample periods in robotic applications vary from
about 1 to 20 ms. A zero-order hold is used to reconstruct the continuous-time
control input �(t)needed for the actuators from the samples �k. In this section
we use superscripts “d” for the desired trajectory for notational ease.

This digital control law amounts to selecting

(4.5.2)

in the approximate computed-torque controller in Table 4.4.1 and a digital
outer loop control signal uk. Then, with PD outer-loop control, the arm control
input is

(4.5.3)

where the tracking error is e(t)=qd(t)-q(t). There are many variations of this
control scheme. For instance, it is very reasonable to use multirate sampling
and update  and  less frequently than the sampling frequency. That is, the

4.5 Digital Robot Control
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inner nonlinear loop can be sampled more slowly than the outer linear feedback
loop. In view of the robustness properties of computed-torque control, this
works quite well in practice.

Guaranteed Performance on Sampling

It is usual in robot controls to design the controller in continuous time, providing
rigorous proofs of stability and error boundedness. However, when the controller
is implemented, a “small” sample period is selected and the stability is left to
chance and verified by simulation studies. That this “wishful thinking”
approach may not be so unreasonable is suggested by the next theorem. Define

.

THEOREM 4.5–1: Suppose that the PD digital control law (4.5.3) is applied
to the robot arm. Then for every L>0 there exists a TM such that for all
sampling periods T less than TM, each error trajectory which at some time to
satisfies ||e(t0)||�L has ||e(t)||�L+r for all t�t0 and any r>0.

Proof:
Using the digital control law yields the error system (Table 4.4.1)

(1)

where and 

(2)

Defining  this may be written in state-space form as

(3)

Applying now the outer-loop digital control

(4)

yields the closed-loop system

(5)

The feedback K is selected so that (A-BK) is stable; hence
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(6)

for some positive definite P and Q.
Selecting now the Lyapunov function

(7)

(5) and (6) reveal

(8)

Assuming for simplicity that the disturbance �d is zero, note that

(9)

is negative definite at each sample time. [If �d  is nonzero but bounded, then
V(ek) is negative outside some ball, and the discussion may be modified.]

The remainder of the proof follows from a theorem of [LaSalle and Lefschetz
1961] by showing that:

1.
2. V( (t1))<V( (t2)) for all t2�t1�0 when || (t1)||�L and

|| (t2)||>L+r.

At issue is the fact (9) and the continuity of  �

This result shows that good tracking is obtained for all sample periods less
than some maximum sample period TM which depends on the specific robot
arm. A more refined result can show that the errors increase as the maximum
desired acceleration  increases, or equivalently, that smaller sample periods
are required for larger desired accelerations.

We now discuss some issues in discretizing the inner nonlinear loop and
then the outer linear loop.

Discretization of Inner Nonlinear Loop

There is no convenient exact way to discretize nonlinear dynamics. Given
a nonlinear state-space system

(4.5.4)

Euler’s approximation yields

(4.5.5)

4.5 Digital Robot Control
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There do exist “exact” techniques for deriving discrete nonlinear robot
dynamics. They rely on discretizing the robot arm dynamics in such a way
that energy and momentum are conserved at each sampling instant [Neuman
and Tourassis 1985]. See also [Elliott 1990]. Unfortunately, these schemes
result in extremely complicated discrete dynamical equations, even for simple
robot arms. It is very difficult to derive guaranteed digital control laws for
them.

In this section we simply take the discretized inner nonlinear loop as given
by the approximation (4.5.2).

Joint Velocity Estimates from Position Measurements

Throughout this chapter in the examples we have simulated continuous-time
robot controllers assuming that both the joint positions and velocities are
measured exactly. In point of fact, it is usual to measure the joint velocities
using optical encoders, and then estimate the joint velocities from these position
measurements. Simply computing the joint velocities using the Euler
approximation

(4.5.6)

is virtually doomed to failure, since this high-pass filter amplifies the encoder
measurement noise.

Denote the joint velocity estimates by vk. Then a filtered derivative can be
used to compute vk from qk using

(4.5.7)

where ν is a design parameter. If ν is small, it corresponds to a fast pole near
z=0, which provides some high-pass filtering to reject unwanted sensor noise.
Example 4.5.1 will illustrate the use of this joint velocity estimation filter.

The velocity estimation filter design can be optimized for the given encoder
noise statistics by using an alpha-beta tracker to reconstruct vk [Lewis 1986a],
[Lewis 1986b], [Lowe and Lewis 1991]. This is a specialized form of Kalman
filter. It should be noted that the velocity estimates are not only used in the
outer linear loop for computing k; they must be used to compute the inner
nonlinear terms in (4.5.3) as well.

Discretization of Outer PD/PID Control Loop

We have seen that a useful computed-torque outer feedback loop is the PID
controller. Given a continuous-time PID controller, a digital PID controller
for the outer loop may be designed as follows [Lewis 1992].
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A continuous PID controller that only uses joint position measurements q(t)
is given by

(4.5.8)

where k is the proportional gain, T1 is the integration time constant or “reset”
time, TD is the derivative time constant. Rather than use pure differentiation,
a “filtered derivative” is used which has a pole far left in the s-plane at s=-N/
TD. The value for N is often in the range 3 to 10; it is usually fixed by the
manufacturer of the controller [Åström and Wittenmark 1984]. A special case
of the PID controller, of course, is the PD controller, which is therefore also
covered by this discussion.

A common approximate discretization technique for converting continuous-
time controllers Kc(s) to digital controllers K(z) is the bilinear transform (BLT),
where

(4.5.9)

(4.5.10)

This corresponds to approximating integration by the trapezoidal rule. Under
this mapping, stable continuous systems with poles at s are mapped into
stable discrete systems with poles at

(4.5.11)

The finite zeros also map according to this transformation. However, the
zeros at infinity in the s-plane map into zeros at z=-1.

Using the BLT to discretize (4.5.8) yields

(4.5.12)

with the discrete integral and derivative time constants

(4.5.13)

(4.5.14)

4.5 Digital Robot Control
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and the derivative-filtering pole at

(4.5.15)

It is easy to implement this digital outer-loop filter in terms of difference
equations on a DSP. First, write K(z) in terms of z-1, which is the unit delay in
the time domain (i.e., a delay of T seconds), as

(4.5.16)

[Note: There is some abuse in notation in denoting (4.5.16) as K(z-1); this we
shall accept.]

Now suppose that the control input uk is related to the tracking error as

(4.5.17)

Then uk may be computed from past and present values of ek using auxiliary
variables as follows:

(4.5.18)

(4.5.19)

(4.5.20)

The variables  represent the integral and derivative portions of the
digital PID controller, respectively. These difference equations are easily
implemented in software.

Actuator Saturation and Integrator Antiwindup Compensation

Actuator saturation leading to integrator windup is a problem that can occur
in the outer PID loop of a robot controller. In Example 4.4.4 we saw the
deleterious effects of integrator windup. It is easy to implement antiwindup
protection digitally [Åström and Wittenmark 1984], [Lewis 1992]. The
antiwindup protection circuit would be placed into the outer linear feedback
loop of a robot control system, where the integrator (controller memory) is
located.

Suppose that the controller is given in transfer function form

(4.5.21)
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where rk is the reference command and wk is the controller input, composed
generally of the tracking error and the plant measured output. Note that z-1 is
interpreted in the time domain as a unit delay of T seconds. The controller
output vk is passed through a hold device to generate the continuous plant
control input u(t).

We have assumed thus far that the desired plant control input 
computed by the controller can actually be applied to the plant. However, in
practical systems the plant inputs (such as motor voltages, etc.) are limited by
maximum and minimum allowable values. Thus the relation between the
desired plant input vk and the actual plant input uk is given by the sort of
behavior shown in Figure 4.5.2, where uH and uL represent, respectively, the
maximum and minimum control effort allowed by the mechanical actuator.
If there are no control limits, we may set uk=vk.

Figure 4.5.2: Actuator saturation function.

Thus, to describe the actual case in a practical control system with actuator
saturation, we are forced to include nonlinear saturation functions in the
control channels as shown in Figure 4.5.3. Consider the simple case where the
controller is an integrator with input wk and output vk. Then all is well as
long as vk is between uL and uH, for in this region the plant input uk equals vk.
However, if vk exceeds uH, then uk is limited to its maximum value uH—This
in itself may not be a problem. The problem arises if wk remains positive, for
then the integrator continues to integrate and vk may increase well beyond
uH. Then, when wk becomes negative, it may take considerable time for vk to
decrease below uH. In the meantime, uk is held at uH, giving an incorrect
control input to the plant. This effect of integrator saturation is called windup.
It arises because the controllers we design are generally dynamical in nature,

4.5 Digital Robot Control
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which means that they store information or energy. Windup occurs when R(z)
is not a stable polynomial.

To correct integrator windup, it is necessary to limit the state of the controller
so that it is consistent with the saturation effects being experienced by the
plant input uk. This may be accomplished as follows. Select a desired stable
observer polynomial A0(z) and add A0(z-1)uk to both sides to obtain

(4.5.22)

A regulator with antiwindup compensation is then given by

(4.5.23)

(4.5.24)

A special case occurs when A0(z) has all n of its poles at the origin. Then
the regulator displays deadbeat behavior; after n time steps its state remains
limited to an easily computed value dependent on the values of wk and uk (see
the Problems).

EXAMPLE 4.5–1: Simulation of Digital Robot Computed-Torque
Controller

In Example 4.4.1 we simulated a continuous-time PD computed-torque
(CT) controller for the two-link planar elbow arm. In this example some
issues in

Figure 4.5.3: Control system including actuator saturation.

The next example demonstrates some aspects of digital control in robotics.
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discretizing that controller are demonstrated. There are two objectives.
First, we show the effects of sampling on the CT controller. Then a practical
digital controller is designed that uses only joint position measurements
from an encoder, reconstructing the velocities needed for computing the
control law.

Figure 4.5–4: Subroutines for use with TRESP for digital CT control.

4.5 Digital Robot Control
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Figure 4.5.5: Joint tracking error on sampling the CT controller: (a) T=5
ms; (b) T=20 ms.
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Figure 4.5.5: (Cont.) (c) T=50 ms; (d) T=100 ms.

4.5 Digital Robot Control
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Figure 4.5.6: Link 2 torque input in the digital CT controller: (a) T=5
ms; (b) T=50 ms.
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a. Effect of Sample Period on Digital Computed-Torque Controller

In Example 4.4.1 were given the subroutines needed for use with TRESP
(Appendix B) to simulate the continuous-time PD CT controller. To simulate
a digitized version of PD CT control, it is necessary to remove the controller
subroutine [called CTL(x) in that example] from the continuous dynamics
and place it into the subroutine DIG (IK, T, x) that is called by TRESP. This
is in keeping with Figure 4.5.1 and the technique given in Section 4.3 for
digital controller simulation.

In Figure 4.5.4 are shown the modified subroutines DIG(IK, TD, x) and
F(t, x, xp) needed for digital CT controller simulation with TRESP.
Subroutines SYSINP(IT, x, t) for trajectory generation and ARM(x, xp)
containing the arm dynamics are the same as in Example 4.4.1.

Running now program TRESP with different sample periods T yields
the tracking error plots shown in Figure 4.5.5. The Runge-Kutta integration
period was 5 ms for all plots. The graphs show that for T=5 ms the error

Figure 4.5.6: (Cont.) (c) T=100 ms.

4.5 Digital Robot Control
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was very small, in fact very similar to that in Example 4.4.1. However, as
the sampling period T increased the tracking performance deteriorated.

The torque input for joint 2 is depicted in Figure 4.5.6. For small T is is
virtually identical to the continuous CT controller in Example 4.4.1. A
very interesting phenomenon occurs when T=0.1 s. According to the plot
in Figure 4.5.6(c), there is a limit cycle, a form of nonlinear oscillation. It
is well known that sampling can induce such nonlinear effects in the closed-
loop system [Lewis 1992]. According to Figure 4.5.5(d), the limit cycle is
reflected in the tracking error as a periodic oscillation about e(t)=0. The
appearance of limit cycles is closely tied to a loss of observability in the
sampled system.
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Figure 4.5–7: Digital control subroutine that uses only joint position
measurements.

b. Digital Controller with Only Position Measurements

In part a we assumed that joint positions and velocities are both available
as measurements. In practical situations, only the joint positions are
available, often from optical encoder measurements. Therefore, here we
should like to design a realistic digital CT controller that reconstructs the
velocities.

The subroutines in Figure 4.5.7 uses only position measurements,
estimating the joint velocities using the derivative filter (4.5.7). The
resultant tracking error is shown in Figure 4.5.8. The performance is
comparable to the controller in part a that used velocity measurements,
with the exception of a larger initial error transient. The value of the
filter pole v was taken as 0.1.

Some implementation details are worthy of note. First, it is very
important how the digital controller is initialized. Note the code lines that
zero the velocity estimates in the first iteration (IK=0). It is a good exercise
to repeat this simulation deleting these lines (see the Problems).

Second, it might be thought that a reasonable procedure for finding the
velocity error k= (kT) is to find an estimate vk of the joint velocity k and
then use

(1)

There are two disadvantages to this. First, it requires the storage in memory
of the desired velocity  as well as the desired trajectory  Second, it does
not work.

4.5 Digital Robot Control
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Figure 4.5.8: Tracking error for digital controller using no velocity measurements:
(a) T=5 ms; (b) T=20 ms.
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Instead, it is necessary to use two derivative filters, one for estimating joint
velocities  and one for providing an estimate for the velocity error k. A
simulation that attempts to use 1 makes the point quite well.

Note that the velocity estimates are also used instead of  in computing
the nonlinear terms 

EXAMPLE 4.5–2: Digital PI Controller with Anti-windup Compensation

A general digital PI controller with sampling period of T seconds is
given by

(1)

We have sampled the continuous PI controller by the modified matched-
polezero (MPZ) method [Lewis 1992] to obtain a delay of T seconds in the
integrator to allow for computation time. The proportional gain is k and
the reset time is TI; both are fixed in the design stage. The tracking error is
ek.

Multiply by (1-z-1) to write

(2)

which is in the transfer function form (4.5.21). The corresponding difference
equation form for implementation is

(3)

This controller will experience windup problems since the autoregressive
polynomial R=1- z-1 has a root at z=1, making it marginally stable. Thus,
when uk is limited, the integrator will continue to integrate, “winding up”
beyond the saturation level.

a. Antiwindup Compensation

To correct this problem, select an observer polynomial of

(4)

�

4.5 Digital Robot Control
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which has a pole at some desirable location |α|<1. The design parameter α
may be selected by simulation studies. Then the controller with antiwindup
protection (4.5.23), (4.5.24) is given by

(5)

(6)

The corresponding difference equations for implementation are

(7)

(8)

A few lines of FORTRAN code implementing this digital controller are given
in Figure 4.5.9. This subroutine may be used as the control update routine
DIG for the digital simulation driver program TRESP in Appendix B.

If α=1 we obtain the special case (2), which is called the position form
and has no antiwindup compensation. If α=0, we obtain the deadbeat
antiwindup compensation

Figure 4.5–9: FORTRAN code implementing PI controller with antiwindup
compensation.
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(9)

with corresponding difference equation implementation

(10)

If uk is not in saturation, this amounts to updating the plant control by
adding the second and third terms on the right-hand side of (10) to uk-1.
These terms are, therefore, nothing but uk-uk-1. The compensator with α=0
is thus called the velocity form of the PI controller.

b. Digital Control of DC Motor

Consider the simplified model for a do motor given by

(11)

with � the angular velocity. A motor speed controller has the form

(12)

where e=r-w is the tracking error, with r the desired command angular velocity.
Taking a=1 and b=1, with k1=k2=-3.318, we obtain poles at s=-1, -3.318. The
slower pole is canceled by a zero, so that the step response is fast, having only
a mode like e

-3.318t.
Writing the PI controller as

(13)

we see that

(14)

The digital controller obtained using the modified MPZ is given by (1).
The time constant of the closed-loop system is  so

that a sampling period of T=0.05 s is reasonable. The sampling period
should be about one-tenth the time constant.

4.5 Digital Robot Control
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Program TRESP in Appendix B was used to obtain the response shown
in Figure 4.5.10(a). No saturation limits were imposed on uk.

Next, a saturation limit of uH=1.5 V was imposed on the control uk. No
antiwindup compensation was used (i.e., α=1 in Figure 4.5.9). The resulting
behavior shown in Figure 4.5.10(b) displays an unacceptable overshoot.

Figure 4.5.10(c) shows that the overshoot problem is easily corrected
using α=0.9 in the digital PI controller with antiwindup protection in Figure
4.5.9. In this example, as a decreases the step response slows down. The
value of α=0.9 was selected after several simulation runs with different
values of α.

Figure 4.5.10: Angular velocity step responses using digital controller: (a) digital PI
controller with no saturation limits; (b) digital PI controller with saturation limit
uH=1.5V and no antiwindup compensation; (c) digital PI controller with saturation
limit uH=1.5V and antiwindup compensation with α=0.9.

c. Antiwindup Compensation in Robotics

To implement the antiwindup compensation, it is necessary to know the
maximum and minimum values uH and uL of the integrator output.
Unfortunately, in a robot arm the motor torques are limited. These torque
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limits must be mapped using the feedback linearization input transformation
to determine the limits on the integrator outputs see [Bobrow et al. 1983].
Thus the saturation limits needed by the antiwindup compensator are
functions of the joint position q, the desired acceleration  and so on. This
issue is explored in the problems.

4.6 Optimal Outer-Loop Design

In Section 4.4 we discussed computed-torque control, showing how to select
the inner control loop using exact techniques involving the inverse manipulator
dynamics, as well as by a variety of approximate means. We also discussed
several schemes for designing the outer linear feedback (tracking) loop. The
results of our discussions are summarized in Table 4.4.1. In this section we
intend to present a modern control optimal technique for selecting the outer
feedback loop. Modern optimal design yields improved robustness in the
presence of disturbances and unmodeled dynamics.

Several papers have dealt with “optimal” or “suboptimal” control of robot
manipulators [Vukobratovic and Stokic 1983], [Lee et al. 1983], [Luo and
Saridis 1985], [Johansson 1990]. Although they are not all based on a
computed-torque-like approach, we would like here to present the flavor of
this work by using optimal techniques to design the computed-torque outer
feedback loop.

Linear Quadratic Optimal Control

First, it is necessary to review modern linear-quadratic (LQ) design. Suppose
that we are given the linear time-invariant system in state-space form

(4.6.1)

with  It is desired to compute the state-feedback
gain in

(4.6.2)

so that the closed-loop system

(4.6.3)

is asymptotically stable. Moreover, we do not want to use too much control
energy to stabilize the system, since in many modern systems (e.g., automobile,
spacecraft), fuel or energy is limited.

�

4.6 Optimal Outer-Loop Design

Copyright © 2004 by Marcel Dekker, Inc.



Computed-Torque Control244

This is a complex multivariable design problem, for the feedback gain
matrix K is of dimension m×n. A classical controls approach might involve,
for instance, performing mn root locus designs to close the feedback loops one
at a time. On the other hand, a solution that guarantees stability can be found
using modern controls techniques simply by solving some standard matrix
design equations. This modern approach closes all the feedback loops
simultaneously and guarantees a good gain and phase margin.

The feedback matrix is found using modern control theory as follows.
First, define a quadratic performance index (PI) of the form

(4.6.4)

where Q is a symmetric positive semidefinite n×n matrix (denoted Q�0) and
R is a symmetric positive definite m×m matrix (R>0). That is, all eigenvalues
of R are greater than zero and those of Q are greater than or equal to zero. Q
is called the state-weighting matrix and R the control-weighting matrix. These
matrices are design parameters that are selected by the engineer depending,
for instance, on the desired form of the closed-loop time responses.

The optimal LQ feedback gain K is the one that minimizes the PI J. The
motivation follows. The quadratic terms xTQx and uTRu in the PI are
generalized energy functions (e.g., the energy in a capacitor is ½Cv2, the
kinetic energy of motion is ½mv2). Suppose, then, that J is minimized in the
closed-loop system (4.6.3). This means that the infinite integral of
[xT(t)Qx(t)+uT(t)Ru(t)] is finite, so that this function of time goes to zero as t
becomes large. However,

 

with the square root of a matrix defined as . Since these
norms vanish with t and |R|�0, the functions  and u(t) both go
to zero. Under the assumption that  is observable [Kailath 1980], x(t)
goes to zero if y(t) does.

Therefore, the optimal gain K guarantees that all signals go to zero with
time in the closed-loop system (4.6.3). That is, K stabilizes (A-BK).

The determination of the optimal K is easy and is a standard result in
modern control theory (see, e.g., [Lewis 1986a], [Lewis 1986b]). The optimal
feedback gain is simply found by solving the matrix design equations
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(4.6.5)

(4.6.6)

where P is a symmetric n×n auxiliary design matrix on which the optimal
gain depends. The second of these is a nonlinear matrix quadratic equation
known as the Riccati equation; it is easy to solve this equation for the auxiliary
matrix P using standard routines in, for instance, MATLAB, [MATRIXx 1989],
and other software design packages.

The next result is of prime importance in modern control theory and
formalizes the stability discussion just given.

THEOREM 4.6–1: Let  be observable and (A, B) be controllable.

Then:

(a) There is a unique positive definite solution P to the Riccati equation.
(b) The closed-loop system (A-BK) is asymptotically stable.
(c) The closed-loop system has an infinite gain margin and 60° of phase
margin.

Controllability was discussed in Chapter 1. Observability means roughly
speaking that all the system modes have an independent effect in the PI, so
that if J is bounded, all the modes independently go to zero with t. To verify
these properties is easy. The system is controllable if the controllability matrix

(4.6.7)

has full rank n. The system (A, C) is observable if the observability matrix

(4.6.8)

has full rank n. MATLAB, for instance, provides routines for these tests.
Therefore, the state-weighting matrix Q may be chosen to satisfy the
observability requirement.

The theorem makes this modern design approach very powerful. No matter
how many inputs and states, a stabilizing feedback gain can always be found
under the hypotheses that stabilizes the system. The gain is found by closing

�

4.6 Optimal Outer-Loop Design
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all the nm feedback loops simultaneously by solving the matrix design
equations.

Linear Quadratic Computed-Torque Design

Now we apply these results to the control of the robot manipulator dynamics

(4.6.9)

According to Section 4.4, the computed-torque control law

(4.6.10)

yields the error system

(4.6.11)

which we may write as

(4.6.12)

with the state defined as

(4.6.13)

Now, select the outer-loop PD feedback

(4.6.14)

To find a stabilizing gain K, select the design parameter Q in the PI as

 

so that the position and velocity errors are independently weighted. Then,
due to the simple form of the A and B matrices, which represent n de-coupled
Newton’s law (i.e., double integrator) systems, the solution of the Riccati
equation is easily found (see the Problems). Using this solution in (4.6.5)
yields the formula for the optimal stabilizing gains

(4.6.15)

This LQ approach reveals the relation between the PD gains and some design
parameters Q and R that determine the total energy in the closed-loop system.
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Note particularly that the relative magnitudes of x(t) and u(t) in the closed-
loop system can be traded off. Indeed, if R is relatively larger than Qp and Qv,
the control effort in the PI (4.6.4) is weighted more heavily that the state.
Then the optimal control will attempt to keep u(t) smaller by selecting smaller
control gains; thus the response time will increase. On the other hand, selecting
a smaller R will increase the PD gains and make the error vanish more quickly.

If Qp, Qν, and R are diagonal, so then are the PD gains Kp, Kv. The LQ
approach with nondiagonal Qp, Qv, and R affords the possibility of outer
feedback loops that are coupled between the joints, which can sometimes
improve performance. Another important feature of LQ design is the
guaranteed robustness mentioned in the theorem. This can be very useful in
approximate computed-torque design where

(4.6.16)

and  and  can be simplified versions of M(q) and N(q, ). The performance
of such a controller with an LQ-design outer loop can be expected to surpass
that of a controller designed using arbitrary choices for Kp and Kv. This robust
aspect of LQ design is explored in the problems.

It is important to note that this LQ design results in minimum closed-loop
energy in terms of e(t), (t), and u(t). However, the actual control input into
the robot arm is

(4.6.17)

Although the energy in τ(t) is not minimized using this approach, we can use
some norm inequalities to write

(4.6.18)

so that keeping small ||u(t)|| might be expected to make  smaller. A more
formal statement can be made taking into account the bounds on ||M(q)|| and

 given in Table 3.3.1.
Since the energy in is not formally minimized in this approach, it is

considered as a suboptimal approach with respect to the actual arm dynamics,
although with respect to the error system and u(t) it is optimal. An optimal
control approach that weights e(t) τ(t) and in the PI is given in [Johansson
1990].

We have derived an LQ controller using a computed-torque (i.e., feedback
linearization) approach. An alternative approach that yields the same Riccati-
equation-based design is to employ the full nonlinear arm dynamics and find
an approximate (i.e., time-invariant) solution to the Hamilton-Jacobi-Bellman
equation [Luo and Saridis 1985]; [Luo et al. 1986].

4.6 Optimal Outer-Loop Design
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4.7 Cartesian Control

We have seen how to make a robot manipulator track a desired joint space
trajectory qd(t). However, in any practical application the desired trajectories
of a robot arm are given in the workspace or Cartesian coordinates. An important
series of papers dealt with resolved motion manipulator control [Whitney 1969];
[Luh et al. 1980], [Wu and Paul 1982]. There the joint motions were resolved
into the Cartesian coordinates, where the control objectives are specified. The
result is that an operator can use a joystick to specify Cartesian motion (e.g.,
for a prosthetic device), with the arm following the specified motion. Older
teleoperator devices used joysticks that directly controlled the motion of the
actuators, resulting in long training times and very awkward manipulability.

There are several approaches to Cartesian robot control. For instance, one
might:

1. Use the Cartesian dynamics in Section 3.5 for controls design (see the
Problems).

2. Convert the desired Cartesian trajectory yd(t) to a joint-space trajectory
qd(t) using the inverse kinematics. Then use the joint-space computed-
torque control schemes in Table 4.4.1.

3. Use Cartesian computed-torque control.

Let us discuss the last of these.

Cartesian Computed-Torque Control

This approach begins with the joint space dynamics

(4.7.1)

In Section 3.4 we discussed a general feedback-linearization approach for
linearizing the arm dynamics with respect to a general output. In this section
the output we are interested in is the Cartesian error

(4.7.2)

with yd(t) the desired Cartesian trajectory and y(t) the end-effector Cartesian
position.

The problems associated with specifying the Cartesian position of the end
effector are covered in Appendix A. There we see that y(t) is not necessarily a
6-vector, but could in fact be the 4×4 arm T matrix. Then yd(t) is a 4×4 matrix
given by
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(4.7.3)

containing the desired orientation (nd(t), od(t), ad(t)) and position pd(t) of the
end effector with respect to base coordinates. On the other hand, y(t) could be
specified (nonuniquely) using Euler angles as a 6-vector, or using quaternions
as a 7-vector, or using the encoded tool configuration vector which gives y(t)
� R6.

Although there are problems with specifying y(t) as a 6-vector, the
Cartesian error is easily specified (see the next subsection) as the 6-vector

(4.7.4)

with ep(t) the position error and eo(t) the orientation error. Thus equation
(4.7.2) is generally valid only as a loose notational convenience.

Let us assume that

(4.7.5)

with h(q) the transformation from q(t) to y(t), which is a modification of the
kinematics transformation, depending on the form decided on for y(t). Then
the associated Jacobian is J=¶h/¶q and

(4.7.6)

Now, the approach of Section 3.4, or a small modification of the derivation
in Section 4.4, shows that the computed-torque control relative to ey(t) is
given by

(4.7.7)

which results in the error system

(4.7.8)

with the disturbance

(4.7.9)

We call (4.7.7) the Cartesian computed-torque control law.
The outer-loop control u(t) may be selected using any of the

techniques already mentioned for joint-space computed-torque control (see
Table 4.4.1). For PD control, for instance, the complete control law is

4.7 Cartesian Control
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(4.7.10)

A disadvantage with Cartesian computed-torque control is the necessity to
compute the inverse Jacobian. To avoid inverting the Jacobian at each sample
period, we might propose the approximate Cartesian computedtorque controller

(4.7.11)

where  and  are approximations to MJ-1 and N, respectively. The error
system for this control law is not difficult to compute (cf. the joint space
approximation in Table 4.4.1 and see the Problems).

A PD outer feedback loop yields

(4.7.12)

A special case of this control law is obtained by setting =I,
=  which yields the Cartesian PD-gravity controller

(4.7.13)

The robustness properties of computed-torque control make this a successful
control law for many applications.

Simulations like those presented in this section could be carried out for
Cartesian computed-torque control. The basic principles would be the same
as for joint space computed-torque control (see the Problems).

Cartesian Error Computation

The actual Cartesian position may be computed from the measured joint
variables using the arm kinematics in terms of the arm T matrix

(4.7.14)

and the desired Cartesian position may likewise be expressed as (4.7.3). Then
a Cartesian position error and velocity error suitable for computedtorque
control may be computed as follows [Luh et al. 1980], [Wu and Paul 1982].
Define

(4.7.15)

with v(t), vd(t) the actual and desired linear velocity, and ω(t), ωd(t) the actual
and desired angular velocities. Then
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(4.7.16)

is easy to compute, since (t) may be determined from the measured joint
variables using (4.7.6).

The linear position error is simply given by

(4.7.17)

An orientation error eo(t) suitable for feedback purposes is more difficult to
obtain, but may be defined as follows.

Denote the rotation transformation portions of (4.7.14) and (4.7.3),
respectively, as R(t), Rd(t). The orientation error can be expressed in terms of
a rotation of φ(t) rads about an Euler axis of k(t) that takes R(t) into Rd(t)
(Appendix A). In fact, one may define the 3-vector

(4.7.18)

where eo(t) may be assumed small. With this definition, it can be shown that
eo(t) is found from T(t) and Td(t) using

(4.7.19)

The overall Cartesian error is now given by (4.7.4). Unfortunately, with this
definition of eo, it happens that ey is not the derivative of ey; however, the
control law (4.7.10) still yields suitable results. Alternative definitions of ey(t)
and y(t) are given in [Wu and Paul 1982]; they are closely tied to the cross-
product matrix O, in Appendix A and require the selection of a sampling
period T.

4.8 Summary

In this chapter we showed how to generate smooth trajectories defining robot
end-effector motion that passes through a set of specified points. Then we
covered the important class of computed-torque controllers, which subsumes
many types of robot control algorithms. Both classical and modern control
algorithms are described by this class, so that computed torque provides a
bridge between older and more modern algorithms for motion control.

As special types of computed-torque algorithms, we mentioned PD control,
PID control, PD-plus-gravity, classical joint control, and digital control. Most
robot control algorithms are implemented digitally, and computedtorque
provides a rigorous framework for analyzing the effects of digitization and
the size of the sampling period. This is approached by considering digital

4.8 Summary
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control as an approximate computed-torque law and studying the error system
(cf. subsequent chapters).

We showed some aspects of modern linear quadratic outer-loop design,
and concluded with a discussion of Cartesian control.
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PROBLEMS

Section 4.2
4.2–1 Minimum-Time Control. Derive the minimum-time control switching time ts

[cf. (4.2.11)] when the initial and final velocities are not zero.

4.2–2 Polynomial Path Interpolation. It is desired to move a single joint from q(0)=0,
(0)=0 through the point q(l)=5, (l)=40 to a final position/velocity of (2)=10,

Determine the cubic interpolating polynomials required in this two-interval
path. Plot the path generated and verify that it meets the specified requirements
on q(t) and (t) Plot (t) versus q(t).

4.2–3 LFPB. Repeat Problem 4.2–2 using LFPB.

4.2–4 Polynomial Path for Acceleration Matching. Derive the interpolating
polynomial required to match positions, velocities, and accelerations at the
via points.

Section 4.3

4.3–1 Simulation of Flexible Coupling System. Use computer simulation to reproduce
the results for the motor with flexible coupling shaft in Example 3.6.1.

4.3–2 Simulation of Nonlinear System. The Van der Pol oscillator is a nonlinear
system with some interesting properties. The state equation is

 

Simulate the dynamics for initial conditions of x1(0)=0.1, x2(0)= 0.1. Use
values for the parameter of α=0.1 and then α=0.8. Plot x1(t) and x2(t), as well
as x2(t) vs. x1(t) in the phase plane. For each simulation you should clearly see
the limit cycle that is characteristic of the Van der Pol oscillator.
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Section 4.4
4.4–1 Prove (4.4.32).

4.4–2 PD Computed-Torque Simulation. Repeat Example 4.4.1 using various values
for the PD gains. Try both critical damping and underdamping to examine
the effects of overshoot on the joint trajectories.

4.4–3 Classical Joint Control. Prove (4.4.55), (4.4.57), (4.4.60), and (4.4.62). See
[Franklin et al. 1986].

4.4–4 PD Computed Torque with Payload Uncertainty. The CT controller is
inherently robust. In Example 4.4.1, suppose that m2 changes from 1 kg to 2
kg at t=5 s, corresponding to a payload mass being picked up. The CT
controller, however, still uses a value of m2=1. Use simulation to plot the
error time history. Does the performance improve with larger PD gains?

4.4–5 PID Computed Torque with Payload Uncertainty. Repeat Problem 4.4–4
using a PID outer loop. Does the integral term help in rejecting the mass
uncertainty?

4.4–6 PD Computed Torque with Friction Uncertainty. Repeat Problem 4.4–4
assuming now that m2=1 kg stays constant and is known to the controller.
However, add friction of the form F(q, ) = Fv +Kdsgn( )(see Table 3.3.1) to
the arm dynamics, but not to the CT controller. Use vi=0.1, ki=0.1. Simulate
the performance for different PD gains.

4.4–7 PID Computed Torque with Friction Uncertainty. Repeat Problem 4.4–6
using a PID outer loop.

4.4–8 PD Computed Torque with Actuator Dynamics
(a) Design a CT control law for the two-link planar elbow arm with actuator

dynamics (Section 3.6) of the form

 

 Take the link masses and lengths as 1 kg, 1 m. Take motor parameters
of Jm=0.1 kg-m2, bm=0.2 N-m/rad/s, and R=5Ω, Set the gear ratio
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 r=0.1.

(b) Simulate the controller for various values of PD gains.

4.4–9 PD Computed Torque with Neglected Actuator Dynamics. Consider the
arm-plus-dynamics in Problem 4.4–8. Suppose, however, that the CT
controller was designed using only the arm dynamics and neglecting the
actuator dynamics. Use the PD gains in Example 4.4.1. Simulate the control
law on the arm-plus-dynamics for various values of gear ratio r. As r
decreases, the performance should deteriorate.

4.4–10 PD Computed Torque Using Only Actuator Dynamics. Consider the arm-
plus-dynamics in Problem 4.4–8. Design a CT controller using only the
actuator dynamics and no arm dynamics. Simulate the control law on the
arm-plus-dynamics for various values of gear ratio r. As r decreases, the
performance should improve. For fixed r, it is also instructive to try different
PD gains.

4.4–11 Classical Joint Control with Actuator Dynamics. Repeat Example 4.4.4
including actuator dynamics like those in Problem 4.4–8. Try different values
of gear ratio r. Compare to Problem 4.4–10.

4.4–12 PD Computed Torque with Flexible Coupling. Combine the flexible shaft in
Example 3.6.1 with the two-link arm in Example 4.4.1 to study the effects of
using CT control on a robot with compliant motor coupling. Try different
values of the coupling shaft parameters.

4.4–13 Error Dynamics with Approximate CT Control. Considzer the two-link
polar arm in Example 3.2.1 with friction of the form Find the error
dynamics (4.4.44) for the cases:
(a) Friction is not included in the CT control law.
(b) Payload mass m2 is not exactly known in the CT control law.
(c) PD-gravity CT is used.
(d) PD classical joint control is used with no nonlinear terms.

Section 4.5

4.5–1 Digital Control Simulation

(a) Repeat Example 4.5.1 using a desired trajectory with period of 1
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 s instead of 2 s. Plot as well the Cartesian position (x2(t), y2(t)) of the end
effector in base coordinates.

(b) Redo the simulation deleting the lines in Figure 4.5.7 that zero the initial
velocity estimates.

(c) Try to simulate the digital CT controller using the alternative technique
to compute k from  and vk, as given in equation (1) in the example.

4.5–2 Digital Control Simulation. Convert the PD-gravity CT controller in Example
4.4.3 to a digital controller. Try several sample periods.

4.5–3 Error Dynamics for Digital Control. Find the error system in Table 4.4.1
using digital control of the form (4.5.3).

4.5–4 Antiwindup Protection. In Example 4.4.4 we saw the deleterious effects in
robot control of integrator windup due to actuator saturation. In Example
4.5.2 we showed how to implement antiwindup protection on a simple PI
controller. Implement antiwindup protection on the robot controller in
Example 4.4.4. The issue is determining the limits on the integrator outputs
given the motor torque limits. Successful and thorough completion of this
problem might lead to a nice conference paper.

Section 4.6
4.6–1 Optimal LQ Outer-Loop PD Gains. Verify (4.6.15). To do this, select the

Riccati solution matrix as

 

 with Pi � Rn Substitute P, A, B, Q, R into the Riccati equation (4.6.6). You will
obtain three n×n equations that can be solved for Pi. Now use (4.6.5).

4.6–2 Robust Control Using LQ Outer-Loop Design. Redo the PDgravity simulation
in Example 4.4.3 using PD gains found from LQ design. Does the LQ
robustness property improve the responses found in Example 4.4.3 using
nonoptimal gains? Try various choices for Qp, Qv, and R, both diagonal and
nondiagonal.

Section 4.7

4.7–1 Direct Cartesian Computed-Torque Design. Begin with the Cartesian
dynamics in Section 3.5 and design a computed-torque controller. Compare
it to (4.7.10).

4.7–2 Approximate Cartesian Computed-Torque. Derive the error system dynamics
associated with the approximate control law (4.7.11).

4.7–3 Cartesian PD-Plus-Gravity Control. Repeat Example 4.4.3 using Cartesian
computed-torque control, where the trajectory is given in workspace
coordinates.
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Chapter 5

Robust Control of
Robotic Manipulators

In this chapter we discuss the control of robots when their dynamical model
is uncertain. This may arise because the robot is carrying an unknown load
or because the exact evaluation of the robot’s dynamics is too costly. The
robust controllers in this chapter are obtained from modifications to the
controllers designed in Chapter 4.

5.1 Introduction

The control of uncertain systems is usually accomplished using either an
adaptive control or a robust control philosophy. In the adaptive approach,
one designs a controller that attempts to “learn” the uncertain parameters
of the system and, if properly designed, will eventually be a “best” controller
for the system in question. In the robust approach, the controller has a fixed
structure that yields “acceptable” performance for a class of plants which
include the plant in question. In general, the adaptive approach is applicable
to a wider range of uncertainties, but robust controller are simpler to
implement and no time is required to “tune” the controller to the particular
plant. In this chapter we review different robust control designs used in
controlling the motion of robots. The adaptive control approach is discussed
in Chapter 6. The robust control methods presented in this chapter may be
used to analyze the performance of the simple controllers used by robot
manufacturers which were discussed in Chapter 4, and to suggest
improvements and modifications. In fact, we are able to determine the range
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of applicability of the simple PID controllers of Chapter 4, as a function of
the inherent lack of knowledge of the robot’s dynamics.

The controllers designed in this chapter may be analyzed using input-
output stability tools or state-space tools. In the input-output approach, the
stability of the controlled robot is shown using the small-gain theorem or
the passivity theorem. In the state-space approach, most designs are shown
to be stable using Lyapunov-based arguments. See Chapter 2 for an overview
of both approaches.

Consider the robot dynamics given in Chapter 3:

(5.1.1)

and assume that a desired trajectory in joint space is specified by the time
function . We will suppress the time dependence if no
ambiguity results. Let qd, d, d, and �d be bounded functions of time. In a
fashion similar to Chapter 4, we assume the trajectory error e to have two
components:

(5.1.2)

The controllers of this chapter assume that measurements of q and  are
available. As described in Section 3.5, variables other than q and  may be
measured. The Cartesian computed-torque controllers of Section 4.7 provide
a setting where Cartesian trajectory is to be followed directly. We limit our
discussion to the case of joint measurements with the understanding that a
desired trajectory in another coordinate system may be followed by first
obtaining the corresponding joint trajectory then applying the methods of
this chapter.

We may, however, assume that the measurements p and p of q and p are
corrupted by a bounded noise, that is,

(5.1.3)

where ||wi||≤ci.
In Section 5.2 we discuss the computed-torque-like controllers of Section

4.4 and study their robustness properties. The section is divided into
controllers whose robustness is deduced using Lyapunov stability and others
whose robustness relies on input-output stability. Nonlinear controllers which
are not necessarily derived from the computed-torque controllers are
presented in Section 5.3. These include controllers that exploit the passivity
of the robot dynamics and others which are variable-structure methods and
saturation controllers without particular emphasis on the special properties
of the robot. Finally, in Section 5.4 we review approaches that attempt to
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robustify the controllers by modifying the robot dynamics either explicitly
or implicitly.

5.2 Feedback-Linearization Controllers

The controllers designed in this section may be obtained as modification of
the feedback-linearization (or computed-torque) controllers of Chapter 3.
They are basically the computed-torque-like controllers of Section 4.4. We
study both static and dynamic feedback designs and compare different
controllers found in the literature. Note that such a study was started
in Section 4.4 and some of the controllers introduced there will reappear in
this chapter. The emphasis will be here on relating many of the controllers
scattered through the literature and to give them a common theoretical
justification.

We assume for simplicity that �d = 0 in (5.1.1) and that wi=0 in (5.1.3),
although the effects of bounded �d and wi can be easily accounted for and
will be considered in most examples. In a fashion similar to Chapter 4, the
dynamics of the robot are transformed into the linear system

and

(5.2.1)

leading to the nonlinear computed-torque controller

(5.2.2)

which, due to the invertibility of M(q), gives the following closed-loop system:

ë=u (5.2.3)

which is described by the transfer function

(5.2.4)

The problem is then reduced to finding a linear control u that will achieve
a desired closed-loop performance; that is, find F, G, H, and J in

5.2 Feedback-Linearization Controllers
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or

(5.2.5)

Not that the notion above indicates that u(t) is the output of a system C(s)
when an input e(t) is applied. Note also from (5.2.4) that the different
joints or the robot are decoupled so that at this level, n SISO separate
controllers may be designed to control the n joints of the robot.
Unfortunately, the control law (5.2.2) cannot usually be implemented due
to its complexity or to uncertainties present in M(q) and N(q, ) and to the
presence of �d and wi. Instead, one applies � in (5.2.6) below where  and

 are estimates of M and N,

(5.2.6)

This in turn will reintroduce some coupling in the linear model and leads to
(Fig. 5.5.1)

(5.2.7)

Note first that �, �, and therefore � are zero if  = M and  = N. In general,
however, the vector � is a nonlinear function of both e and u and cannot be
treated as an external disturbance. It represents an internal disturbance of
the globally linearized error dynamics caused by modelling uncertainties,
parameter variations, external disturbances, friction terms, and maybe even
noise measurements [Spong and Vidyasagar 1987]. Most commercial robots
are in fact controlled with the controller given in (5.2.6) with choices of  =
I and  = 0 See, for example, [Luh 1983] and Section 4.4. The choice of 
is validated by the powerful motors used to drive the robot links, and the
gearing mechanisms used to torque the motor output to an acceptable level,
while showing its speed down. The choice of is validated by keeping the
different motors from driving their links too fast, thus limiting the Coriolis
and centripetal torques. Such commercial controllers are known as “non-
model-based controllers” and have been used since the early days of robotics.
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The quest for more performance is, however, leading researchers and
manufacturers to use direct-drive robots and to attempt moving them at
higher speeds with less powerful but more efficient motors [Asada and Youcef-
Toumi 1987]. This new direction is increasing the need for more robust
controllers such as the ones described next.

The approaches of this section revolve around the design of linear
controllers C(s) such that the complete closed-loop system in Figure 5.5.1 is
stable in some suitable sense (e.g., uniformly ultimately bounded, globally
asymptotically stable, p stable etc.) for a given class of nonlinear perturbation
�. In other words choose C(s) in (5.2.5) such that the error e(t) in (5.2.8) is
stable in some desired sense.

The reasonable assumptions (5.2.9)–(5.2.11) below are often made for
revolute-joint robots when using this approach [Spong and Vidyasagar 1987].
In the following, µ1, µ2, �, �0, �1, and �2 are nonnegative finite constants
which depend on the size of the uncertainties.

(5.2.8)

(5.2.9)

(5.2.10)

(5.2.11)

Recall that inequality (5.2.8) was introduced in Section 3.3, and note that
the norms used in the inequalities above can be, depending on the application,
either ∞ or 2 norms. Also note that the bounds µi and �i are scalar functions

Figure 5.2.1: Feedback-linearization; uncertain structure.

5.2 Feedback-Linearization Controllers
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of q for robots with prismatic joints, and that (5.2.10) is satisfied by
 so that a=(µ2-

µ1)/(µ2+µ1)) [Spong and Vidyasagar 1987]. Finally, (5.2.10) is a result of the
properties of the Coriolis and centripetal terms discussed in Section 3.3.

We will give different representative designs of the feedback-linearization
approach, starting with controllers whose behavior is studied using Lyapunov
stability theory.

Lyapunov Designs

Static feedback compensators have been extensively used starting with the
works of [Freund 1982] and [Tarn et al. 1984]. Consider the controller
introduced in (4.4.13):

(5.2.12)

such that

(5.2.13)

It can be seen that by placing the poles of Ac sufficiently far in the left half-
plane, the robust stability of the closed- loop system in the presence of � is
guaranteed. This was shown true in [Arimoto and Miyazaki 1985] for the
case where  as described in Theorem 4.4.1 and Example
4.4.3. It was also shown true for the trajectory-following problem assuming
that  in [Dawson et al. 1990] as described in Theorem 4.4.2.
There are as many robust controllers designed using Lyapunov stability
concepts as there are ways of choosing Lyapunov function candidates, and
of designing the gain K to guarantee that the Lyapunov function candidate is
decreasing along the trajectories of (5.2.13). To decrease the asymptotic
trajectory error, however, excessively large gains may be required (see Example
4.4.3). We therefore choose to use the passivity theorem and a choice of the
gain matrix K that renders the linear part of the closed-loop system SPR. As
described in Section 2.11, an output may be chosen to make the closed-loop
system SPR; therefore allowing large passive uncertainties in the knowledge
of M(q). In fact, the state-feedback controller may be used to define an
appropriate output Ke such that the input-output closed-loop linear systems
K(sI-A+BK)-1B is strictly positive real (SPR). Consider the following closed-
loop linear system:
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(5.2.14)

It may then be shown using Theorem 2.11.5 that this system is SPR if

(5.2.15)

with the choice of

(5.2.16)

such that

(5.2.17)

is the positive-definite solution to the Lyapunov equation

(5.2.18)

and

(5.2.19)

The next theorem presents sufficient conditions for the uniform boundedness
of the trajectory error.

THEOREM 5.2–1: The closed-loop system given by (5.2.13) will be uniformly
bounded if

 

and

where Kv=2aI and Kp=4aI.

Proof:

5.2 Feedback-Linearization Controllers
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Consider the closed-loop system given by (5.2.8), with the controller
(5.2.12), and choose the following Lyapunov function candidate:

(1)

where  is the Lyapunov function corresponding to the SPR system
(5.2.14). Then if �≥0, we have that V>0. This condition is satisfied for ≥µ2I.
Then differentiate to find

(2)

To guarantee that V < 0 recall the bounds (5.2.8)–(5.2.11), and write

(3)

where 
. Note that ||e|| may be factored out of (3) without affecting

the sign definiteness of the equation. The uniform boundedness of the error
is then guaranteed using Lemma 2.10.3 and Theorem 2.10.3 if

(4)

which is guaranteed if

(5)

or

(6)

The error will be bounded by a term that goes to zero as a increases (see
Theorem 2.10.3 and its proof in [Dawson et al. 1990] for details). This
analysis then allows � to be arbitrarily large as long as ≥µ2I, as shown in
the next example. In fact, if N were known, global asymptotic stability is
assured from the passivity theorem since in that case �=0. The controller is

It is instructive to study (6) and try to understand the contribution of
each of its terms. The following choices will help satisfy (6).

1. Large gains Kp and Kv which correspond to a large a.

�
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2. A good knowledge of N which translates into small �i’s.

3. A large µ1 or a large inertia matrix M(q).

4. A trajectory with a small c, this a small desired acceleration d.

Figure 5.2.2: Kp=50, Kv=25 (a) errors of joint 1; (b) errors of joint 2; (c) torques of
joints 1 and 2.

The following example illustrates the sufficiency of condition (6) and of the
effects of larger gains Kp and Kv.

5.2 Feedback-Linearization Controllers
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(1)

where

EXAMPLE 5.2–1: Static Controller (Lyapunov Design)

In all our examples in this chapter we use the two-link revolute-joint robot
first described in Chapter 3, Example 3.2.2, whose dynamics are repeated
here:

(2)

The parameters m1=1kg, m2=1kg, a1=1m, a2=1m, and g=9.8 m/s2 are given.
Let the desired trajectory used in all examples throughout this chapter be
described by

Then . It may then be shown that

 

Let =0 then

or that

Then use =6I and a=172 to satisfy (6). In fact, these values will lead to a
larger controller gains than are actually needed. Suppose instead that we let
6
^
I, =0, and that
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(3)

Note that this is basically a computed-torque-like PD controller. A simulation
of the robot’s trajectory is shown in Figure 5.2.2. We also start our simulation
at =0. The effect of increasing the gains is shown in Figure 5.2.3,
which corresponds to the controller

(4)

Note that at least initially, more torque is required for the higher-gains case
(compare Figs. 5.2.2c and 5.2.3c) but that the errors magnitude is greatly
reduced by expanding more effort.

There are other proofs of the uniform boundedness of these static controllers.
In particular, the results in [Dawson et al. 1990] provide an explicit expression
for the bound on e in terms of the controller gains. In the interest of brevity
and to present different designs, we choose to limit our development to one
controller in this section.

As discussed in Section 4.4, a residual stead-state error may be present
even when using an exact computed-torque controller if disturbances are
present. A common cure for this problem (and one that will eliminate constant
disturbances) is to introduce integral feedback as done in Section 4.4. Such a
controller may again be used within a robust controller framework and will
lead to similar improvements if the integrator windup problem is avoided
(see Section 4.4).

In the next section we show the stability of static controllers similar to the
ones designed here and use input-output stability methods to design more
general dynamic compensators.

Input-Output Designs

In this section we group designs that show the stability of the trajectory
error using input-output methods. In particular, we present controllers that
show ∞ and 2 stability of the error. We divide this section into a subsection
that deals with static controllers such as the ones described previously,

�

5.2 Feedback-Linearization Controllers
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and a subsection dealing with the more general dynamic controllers, which
have similar gains in general.

Static Controllers

These controllers have the same structure as the ones described in Section
4.4 and in the preceding section. The difference is that here we show the
stability of the error using input-output concepts rather that the state-space
methods implied by Lyapunov theory. In [Craig 1988] the boundedness of

Figure 5.2.3: Kp=225, Kv=30 (a) errors of joint 1; (b) errors of joint 2; (c) torques of
joints 1 and 2.
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Table 5.2.1: Static Controller, Lyapunov Design

Figure 5.2.4: Block Diagram for second-order differential equation.

5.2 Feedback-Linearization Controllers
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the error signals was shown using a static controller. The norms used in
(5.2.8)–(5.2.10) are then ∞ norms. The development of this controller starts
with assumptions (5.2.8), (5.2.9), and a modification of (5.2.10) to

(5.2.20)

This assumption is justified by the fact that N is composed of gravity and
velocity-dependent terms which may be bounded independent from the
position error e [see (5.1.1)]. We shall also assume that =0. Let us
then choose the state-feedback controller (5.2.12) repeated here for
convenience:

(5.2.21)

The corresponding input-output differential equation

(5.2.22)

A block diagram description of this equation is given in Figure 5.2.4. Consider
now the transfer function from η (taken as an independent input) to e:

(5.2.23)

or

(5.2.24)

It can be seen that Kv and Kp are both diagonal, with , a critically
damped response it achieved at every joint [see (4.4.22), (4.4.30), and
(3.3.32)]. The infinity operator gains of P11(s) and P12(s) are (see Lemma
2.5.2 and Example 2.5.8)

(5.2.25)

where

(5.2.26)

Consider then the following inequalities:
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and using (5.2.8)–(5.2.11), we have that

(5.2.27)

The following theorem presents sufficient conditions for the boundedness of
the error that parallel those of Theorem 5.2.1.

THEOREM 5.2–2: Suppose that

and

(1)

Then the ∞ stability of the error is guaranteed if

(2)

Proof:
The condition above results from applying the small-gain theorem to the

closed-loop system, under the assumption that e(0)=0 so that the quadratic
term ||e||2 is small. See [Craig 1988] for details.

Note that (2) reduces to

and further to

(5.2.28)

Let us study the inequality above to determine the effect of each term. The
following observations are made to help satisfy (5.2.28).

1. A large kv will help satisfy the stability condition. Note: That will also
imply a large kp.

5.2 Feedback-Linearization Controllers
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2. A good knowledge of N, which will translate into small �i’s.

3. A large µ1 or a large inertia matrix M(q).

4. A trajectory with a small d.

5. Robots whose inertia matrix M(q) does not vary greatly throughout its
workspace (i.e. µ1≈µ2)), so that a is small. Note that a small a is needed
to guarantee that at least  < 1 in (5.2.28). This will translate into
the severe requirement that the matrix M should be close to the inertia
matrix M(q) in all configurations of the robot.

The controller is summarized in Table 5.2.2.
These observations are similar to those made after inequality (6) and are

illustrated in the next example.

EXAMPLE 5.2–2: Static Controller (Input-Output Design)

Consider the nonlinear controller (5.2.6), where

(1)

Therefore,

(2)

Condition (1) is then satisfied if kv>720. This of course is a large bound that
can be improved by choosing a better . A simulation of the closed-loop
behavior for kp=225 and kv=30 is shown in Figure 5.2.5. The errors
magnitudes are much smaller than those achieved with the PD controllers of
Example 5.2.1 with a comparable control effort. This improvement came
with the expense of knowing the inertia matrix M(q) as seen in (1).

Dynamic Controllers

The controllers discussed so far are static controllers in that they do not
have a mechanism of storing previous state information. In Chapter 4 and in
this chapter, these controllers could operate only on the current position and
velocity errors. In this section we present three approaches to show the
robustness of dynamic controllers based on the feedback-linearization

�
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method. The first two approaches are one-degree-of-freedom (DOF) feedback
compensators, while the last one is a two-DOF compensator.

One-Degree-of-Freedom Designs.

The first class of dynamic controllers are called one-degree-of-freedom
controllers because they can only operate on the measured output of the
robot. In other words, these are controllers that will take the measured
signals and filter them through a dynamical system before feeding the signal
back to the input. They should be contrasted with the static controllers,

Figure 5.2.5: Kp=225, Kv=30 (a) errors of joint 1; (b) errors of joint 2; (c) torques of
joints 1 and 2.

5.2 Feedback-Linearization Controllers
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which did not used dynamical feedback, and with the two-degree-of-freedom
controllers considered next.

In [Spong and Vidyasagar 1987] the factorization approach was used to
design a class of dynamic linear compensators C(s), parameterized by a stable
transfer matrix Q(s), which guarantee that the solution e(t) to the linear
system (5.2.9) is bounded. The actual factorization approach design is beyond
the scope of this book, but fairly general representative of the methodology
as it applies to robotics is given in Example 5.2.3. In [Spong and Vidyasagar
1987] it was actually assumed that the bound on � is linear [i.e., �2=0 in
5.2.10)] before the family of all ∞ stabilizing compensators of the nominal
plant was found. Although the case of noisy measurements was treated in
[Spong and Vidyasagar 1987], we limit ourselves to the noiseless case for
simplicity. Let us first recall the system (5.2.16), while suppressing the s
dependence,

(5.2.30)

and define

Table 5.2.2: Static Controller, Input-Output Design
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(5.2.31)

and let the operator gains of Pi, i=1,2, be given by

(5.2.32)

Note that �1=max �11, �12. See Lemma 2.5.2 and Example 2.5.8. Consider
then

(5.2.33)

The next theorem gives sufficient conditions for the BIBO stability of the
trajectory error.

THEOREM 5.2–3: The BIBO stability of the closed-loop system (5.2.30)
will be guaranteed if

(1)

In fact, the trajectory error is bounded by

(2)

Proof:
By the small-gain theorem. See [Spong and Vidyasagar 1987] for

details.

If we study (1) carefully we note that it will be satisfied if

1. µ1 is large or M(q) is large.

2. Good knowledge of N, resulting in a small �1.

3. Small �1 due to a large gain of the compensator C.

5.2 Feedback-Linearization Controllers
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4. �2 close to 1, which may also be obtained with a large-gain compensator
C.

Note that in the limit, and as the gain of C(s) becomes infinitely large, �1

goes to zero. This will then transform condition (1) to

(5.2.34)

It is also seen from (5.2.33)–(5.2.34) that increasing the gain k of C(s) will
decrease �1, therefore decreasing ||e||∞. A particular compensator may now
be obtained by choosing the parameter Q(s) to satisfy other design criteria,
such as suppressing the effects of �. One can, for example, recover Graig’s
compensator, by choosing C(s)=-K so that the control effort is given by

u=Ke. (5.2.35)

Then note that conditions (5.2.28) and (1) are identical if �2=0 and
�2=�11kp+�12kv. Also note from (2) that a smaller d results in a smaller tracking
error. In fact, if e=0 and �0=0, the asymptotic stability of the error may be
shown. Finally, note that the presence of bounded disturbance will make the
bound on the error e larger but will not affect the stability condition (1).
This controller is summarized in Table 5.2.3.

The factorization approach gives the family of all one-degree-of-freedom
stabilizing compensators C(s). The design methodology is illustrated for the
two-link robot in the next example.

EXAMPLE 5.2–3: Dynamic Controller (Input-Output Design)

Let Gv(s) of Example 4.2.1 be factored as

(1)

where N(s), D(s), N(s), and D(s) are matrices of stable rational functions.
We can then find

(2)
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Next we solve the Bezout indentity [Vidyasagar 1985] for X(s) and Y(s),
which are also stable rational functions,

Y(s)D(s)+X(s)N(s)=I  

to get

Table 5.2.3: Dynamic One-DOF Controller: Design 1

5.2 Feedback-Linearization Controllers
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(3)

Then all the stabilizing controllers are given by

(4)

where Q(s) is a stable rational function which is otherwise arbitrary. One
choice, of course, is to let Q(s)=0, which leads to the “central solution”
[Vidyasagar 1985]

(5)

One can also choose Q(s) to satisfy the required performance. In particular,
the following choice of Q(s) is presented in [Spong and Vidyasagar
1987]:

(6)

which leads to the following controller:

 

where

and

(7)

As k increases, the disturbance rejection property of the controller is enhanced
at the expense of higher gains as seen from the expression of C(s). A simulation
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of this controller for k=225 is shown in Figure 5.2.6. The following
observations are in order: The trajectory errors are smaller than any of the
previous controllers while the torque efforts are comparable. In addition,
the complexity of the controller is acceptable since the dynamics of the robot
are not used in implementing the control.

Figure 5.2.6: (a) errors of joint 1; (b) errors of joint 2; (c) torques of joints 1
and 2.

As it was discussed in [Craig 1988] and presented in Theorem 5.2.2,
including the more reasonable quadratic bound will not destroy the ∞

�

5.2 Feedback-Linearization Controllers
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stability result of [Spong and Vidyasagar 1987]. It was shown in [Becker
and Grimm 1988], however, that the 2 stability of the error cannot be
guaranteed unless the problem is reformulated and more assumptions are
made. It effect, the error will be bounded, but it may or may not have a finite
energy. In particular, noisy measurements are no longer tolerated for 2

stability to hold. We next present an extension of the ∞ stability result that
applies to dynamical compensators similar to the one described in Theorem
5.2.3 but without the requirement that �2=0.

THEOREM 5.2–4: The error system of (5.2.30) is ∞ bounded if

=0 

and

(1)

Proof:
An extension of the small-gain theorem. See [Becker and Grimm 1988]

for details.

A study of (1) reveals that the following desired characteristics will help
satisfy the inequality:

1. A large µ1 due to a large M(q).

2. A small �1 and a �2 close to 1, which will result from a large-gain
compensator C.

3. Small �i’s, which will result from a good knowledge of N.

4. A small c due to a small d.

Note that Craig’s conditions in Theorem 5.2.2 are recovered if �1=max �11,
�12 and �2k=�11kp+�12kv.

On the other hand, assuming that d=0 and �2=0, the 2 stability of e was
shown in [Becker and Grimm 1988] if

(5.2.36)

where  as given in Lemma 2.5.2. This
controller is summarized in Table 5.2.4.

�
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EXAMPLE 5.2–4: Dynamic One DOF Design

Use the same linear controller as that of Example 5.2.3, but assume that the
quadratic velocity terms in N are known so that �2=0; that is

The results are shown in Figure 5.2.7 for the parameter k=150. They do not
look remarkably different from those of Example 5.2.3 in Figure 5.2.6. This

Table 5.2.4: Dynamic One-DOF Controller: Design 2

5.2 Feedback-Linearization Controllers
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is due to the fact that the velocity terms are truly negligent in this particular
application. Such terms will, however, make a more vital contribution in
faster trajectories.

Figure 5.2.7: (a) errors of joint 1; (b) errors of joint 2; (c) torques of joints 1
and 2.

Two-Degree-of-Freedom Design.

It is well known that the two-DOF structure is the most general linear
controller structure. The two-DOF design allows us simultaneously to specify
the desired response to a command input and guarantee the robustness of

�
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the closed-loop system. This design was briefly discussed in Chapter 2,
Example 2.11.4. It is in a different spirit from the other design of this chapter,
because it relies on classical frequency-domain SISO concepts. The general
structure is shown in Figure 5.2.8. A two-DOF robust controller was designed
and simulated in [Sugie et al. 1988] and will be presented next. Let the plant
be given by (5.2.5) and consider the following factorization:

G(s)=N(s)D-1(s), 

where

D(s)=s2, N(s)=I. (5.2.37)

The following result presents a two-DOF compensator which will robustly
stabilize (in the ∞ sense) the error system.

THEOREM 5.2–5: Consider the two-DOF structure of Figure 5.2.8. Let
K1(S) be a stable system and K2(s) be a compensator to stabilize G(s). Then
the controller

u=s2K1v+K2(K1v-q) (1)

will lead to the closed-loop system

q=K1v (2)

and the closed-loop error system (5.2.13) will be ∞ stable.

Proof:
With simple block-diagram manipulations, it may be shown that the closed-

loop system is

q=K1v. 

The actual robustness analysis is involved and will be omitted, but a particular
design and its robustness are discussed in the next example.

Note from (2) that K1(s) is used to obtain the desired closed-loop transfer
function. It should then be stable, and to guarantee a zero steady-state error,
we choose v=qd and make sure that the dc gain K1(0)=1. Finally, we would
like K1(S) to be exactly proper (i.e., zero relative degree). K2(s), on the other
hand, will assure the robustness of the closed-loop system. Therefore, K2(s)
should stabilize G(s) and provide suitable stability margins. It should contain

5.2 Feedback-Linearization Controllers
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an integral term to achieve static accuracy. Its relative degree may be -1 since
both q and  are available.

EXAMPLE 5.2–5: Dynamic Two DOF Design

Consider the two-DOF structure of Figure 5.2.8, where

(1)

Then a two-DOF regulator is described by

(2)

where s3+b2s2+b1s+1 is a stable polynomial, and w1, w2, a1, b1, and b2 are
design parameters. Note that K2(s) is a PID controller and that the closed-
loop system given by K1(S) is a second-order system with natural frequency
w1 and damping ration . Note also that the input to the robot
becomes

Figure 5.2.8: Two-degree-of-freedom controller structure.
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or

(3)

We can immediately see that the joint position vector q is filtered through
the PID controller K2. Therefore, the differentiation of q is required unless
the measurement of is  available. The behavior of the nonlinear closed-loop
system is shown in Figure 5.2.9, when =1 and =0, a1=2, b1=b2=10, w1=8,
and w2=12. It is seen that initially, the torque effort and the trajectory errors
are too large. To understand the behavior of this controller, consider the
controller τ in the limit (i.e., as time goes to infinity). The output of K1qd has
settled down to its final value qd and therefore the controller (3) becomes
equivalent to a PID compensator [see Chapter 4, equation (4.4.35)]. It seems
that a different structure for k1 and K2 is warranted because in the meantime,
the two-DOF controller preforms rather poorly. This is a characteristic of
the example rather than an inherent flow in the twoDOF methodology. As a
matter of fact, this structure has shown better performance than the one-
DOF PID compensator in [Sugie et al. 1988] for a set-tracking case. The
reader is encouraged to work the problems at the end of the chapter related
to this design in order to compare the performance of one- and two-DOF
designs.

We have this presented a large sample of controllers that are more or less
computed-torque based. We have shown using different stability arguments
that the computed-torque structure is inherently robust and that by
increasing the gains on the outer-loop linear compensator, the position and
velocity errors tend to decrease in the norm. This class of compensators
constitutes by far the most common structure used by robotics
manufacturers and is the simplest to implement and study. There are more
compensators that would fit into this structure while appealing to some
classical control applications. The PD and PID compensators may be
replaced with the lead-lag compensators. These are especially appealing
when only position measurements are available. Such designs are discussed
in [Chen 1989] in the discrete-time case. There is also some work being done
in the nonlinear observer area which is directly relevant to this problem
[Canudas de Wit and Fixot 1991]. We refer the reader to the observability
discussion in Section 2.11. We also suggest some of the problems at the end
of this chapter, which discuss further modification of the feedback-
linearization designs.

�
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On the other hand, there exists other types of controllers, which although
less prevalent, still constitute a very important class of robot compensators.
These are nonlinear controllers which do not rely directly on the feedback
linearizability of the robot. Instead, the may be obtained from the passivity
of its dynamics or may even bypass any special structural properties of the
robot. These controllers are discussed next.

Figure 5.2.9: (a) errors of joints 1 and 2; (b) torques of joints 1 and 2.
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5.3 Nonlinear Controllers

There is a class of robot controllers that are not computed-torque-like
controllers. These controllers are obtained directly from the robot equations
without using the feedback-linearization procedure. Instead, these controller
may rely on other properties of the robot (such as the passivity of its Lagrange-
Euler description) or may be obtained without even considering the physics
of the robot. In general, these controllers may be written as a computed-
torque controller with an auxiliary, nonlinear controller added to it. The
nonlinear control term introduces coupling between the different joints
independently from the computed-torque term. In other words, even if the
computed-torque controller is a simple PID, the nonlinear term couples all
joints together as will be seen in Theorems 5.3.4 and 5.3.5, for example.

Direct Passive Controllers

First, we present controllers that rely directly on the passive structure
of rigid robots as described in equations (5.1.1), where (q)-2Vm(q, )
is skew symmetric by an appropriate choice of Vm(q, ) as described in
Section 3.3.

Based on the passivity property, if one can close the loop from  to � with
a passive system (along with 2 bounded inputs) as in Figure 5.3.1, the closed-
loop system will be asymptotically stable using the passivity theorem. Note
that the input u2 gives an extra degree of freedom to satisfy some performance
criteria. In other words, by choosing different 2 bounded u2 we may be able
to obtain better trajectory tracking or noise immunity. This structure will
show the asymptotic stability of  but only the Lyapunov stability of e. On

Figure 5.3.1: Passive-control structure.

5.3 Nonlinear Controllers
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the other hand, if one can show the passivity of the system, which maps � to
a new vector r which is a filtered version of e, a controller that closes the
loop between -r and � will guarantee the asymptotic stability of both e and .
This indirect use of the passivity property was illustrated in [Ortega and
Spong 1988] and will be discussed first.

Let the controller be given by (5.3.1), where F(s) is a strictly proper, stable,
rational function, and Kr is a positive-definite matrix,

(5.3.1)

Substituting (5.3.1) into (5.1.1) and assuming no friction [i.e., F( )=0], we
obtain

(5.3.2)

Then it may be shown that both e and  are asymptotically stable. In fact,
choose the following Lyapunov function:

Then

Substituting for M(q)  from (5.3.2), we obtain

Therefore, r is asymptotically stable, which can be used to show that both e
and e are asymptotically stable [Slotine 1988]. This approach was used in
the adaptive control literature to design passive controllers [Ortega and Spong
1988], but its modification in the design of robust controllers when M, Vm

and G are not exactly known is not immediately obvious. Such modifications
will be given in the variable-structure designs, but first, we present a simple
controller to illustrate the robustness of passive compensators.
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THEOREM 5.3–1: Consider the control law (1)

(1)

where �(s) is an SPR transfer function, to be chosen by the designer, and the
external input u2 is bounded in the 2 norm. Then  is asymptotically stable,
and e is Lyapunov stable.

Proof:
Using the control law above, one gets from Figure 5.3.1,

(2)

By an appropriate choice of �(s) and u2, one can apply the passivity theorem
and deduce that  and r are bounded in the 2 norm, and since �(s)-1 is SPR
(being inverse of an SPR function), one deduces that  is asymptotically
stable because

(3)

This will imply that the position error e is bounded but not its asymptotic
stability in the case of time-varying trajectories . In the set-point
tracking case, however (i.e., d=0), and with gravity precompensation, the
asymptotic stability of e may be deduced using LaSalle’s theorem. The
robustness of the closed-loop system is guaranteed as long as �(s) is SPR
and that u2 is 2 bounded, regardless of the exact values of the robot’s
parameters.

The controller is summarized in Table 5.3.1.

Table 5.3.1: Passive Controller

5.3 Nonlinear Controllers
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EXAMPLE 5.3–1: Passive Controllers

We choose an SPR transfer function

(1)

and we let u2= d. Note that the desired trajectory used so far violates the
assumption that u2 should be 2 stable. Nevertheless, the trajectories of

Figure 5.3.2: (a) errors of joints 1; (b) errors of joint 2; (c) torques of joints 1
and 2.
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Figure 5.3.2 show that his controller, when started at e(0)= (0)=0, performs
rather well for the sinusoidal trajectory. Of course, since the passivity theorem
provides sufficient conditions for stability, this example is not contradicting
the previous theorem but merely pointing out its conservatism.

Note that the compensator of Theorem 5.3.1 is a generalization of the PD
compensators of Chapter 4 and of the preceding section. In [Anderson 1989]
it was demonstrated, using network-theoretic concepts, that even in the
absence of the contact forces, a computed-torque-like controller is not passive
and may therefore cause instabilities in the presence of uncertainties. His
solution to the problem consisted of using proportionalderivative (PD)
controllers with variable gains K1(q) and K2(q) which depend on the inertia
matrix M(q), that is,

(5.3.3)

Even though M(q) is not exactly known, the stability of the closed-loop
error is guaranteed by the passivity of the robot and the feedback law. The
advantage of this approach is that contact forces and larger uncertainties
may now be accommodated. Its main disadvantage is that although robust
stability is guaranteed, the closed-loop performance depends on the
knowledge of M(q), whose singular values are needed in order to find Kp

and Kv. We will not discuss this particular design and refer the interested
reader to [Anderson 1989].

Variable-Structure Controllers

In this section we group designs that use variable-structure (VSS) controllers.
The VSS theory has been applied to the control of many nonlinear processes
[DeCarlo et al. 1988]. One of the main features of this approach is that one
only needs to drive the error to a “switching surface,” after which the system
is in “sliding mode” and will not be affected by any modelling uncertainties
and/or disturbances.

There are two main criticisms of these controllers as they apply to robots.
The first is that by ignoring the physics or the robot, these controllers will
necessarily perform no better (if not worse) that controllers which exploit
the structure of the Lagrange-Euler equations. The other criticism relates to
the “chattering” problem commonly associated with variable-structure
controllers. We shall address the second issue later in this section, and answer
the first by admitting that although initial applications of variable-structure
theory did indeed gloss over the physics of robots, later designs (such as the

5.3 Nonlinear Controllers
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ones discussed here) by [Slotine 1985] and [Chen et al. 1990] remedied the
problem.

The first application of this theory to robot control seems to be in [Young
1978], where the set-point regulation problem ( d=0)was solved using the
following controller:

(5.3.4)

where i=1,…, n for an n-link robot, and ri are the switching planes,

(5.3.5)

It is then shown, using the hierarchy of the sliding surfaces r1, r2,…, rn and
given bounds on the uncertainties in the manipulators model, that one can
find � + and � - in order to drive the error signal to the intersection of the
sliding surfaces, after which the error will “slide” to zero. This controller
eliminates the nonlinear coupling of the joints by forcing the system into the
sliding mode. Other VSS robot controllers have since been designed.
Unfortunately, for most of these schemes, the control effort as seen from
(5.3.4) is discontinuous along ri=0 and will therefore create chattering, which
may excite unmodelled high-frequency dynamics. In addition, these
controllers do not exploit the physics of the robot and are therefore less
effective than controllers that do.

To address this problem, the original VSS controllers were modified in
[Slotine 1985] as described in the next theorem. Let us first define a few
variables to simplify the statement of the theorem. Let

(5.3.6)

where

THEOREM 5.3–2: Consider the controller
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where

 

Then the error reaches the surface

in a finite time. In addition, once on the surface, q(t) will go to qd(t)
exponentially fast.

Proof:
Consider the Lyapunov function candidate

Then

Substituting for  and using the skew-symmetric property of (q)-2Vm(q, )
we obtain

Then, if we use the controller given by

we obtain

where

5.3 Nonlinear Controllers
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Then it is sufficient to choose

where �i>0. Therefore,

which implies that r=0 is reached in a finite time. In addition, once in sliding
mode, e converges exponentially fast to zero.

The controller is summarized in Table 5.3.2.

EXAMPLE 5.3–2: VSS Controller 1

Consider the two-link robot and choose K=10I and �=5I. The trajectory
errors for joint 1 are given in Figure 5.3.3. Note that the chattering behavior
due to the infinitely fast switching of the controller is becoming apparent. A
common remedy of the problem is to sacrifice asymptotic stability by using
sat(s/	), 	 > 0 instead of sgn(s) in the torque calculation. The saturation
function is depicted in Figure 5.3.4a and will result in the errors being
uniformly ultimately bounded. The behavior of such a controller is shown in
Figure 5.3.5, where �=5I, K=75I, and 	 = 0.001. Note that we were able to
greatly increase the gains in this case, which results in a smaller error
trajectories.

More recently, in [Chen et al. 1990], another VSS controller was introduced.
We describe this controller in detail to give a flavor of a different VSS
approach, which will exploit the dynamics of the robot. The assumptions
required by this controller are listed below.

(5.3.7)

Note that these bounds are different in spirit that those given in (5.2.8)–
(5.2.11). The current bounds are often more useful since they depend on the
uncertainty of each element of the inertia matrix M and the velocity-dependent
torques N.

�

�
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THEOREM 5.3–3: The errors e and e. are asymptotically stable if the input
torque is given by

(1)

where

(2)

(3)

(4)

Proof:
Choose the same Lyapunov function as in Theorem 5.3.2:

Figure 5.3.3: errors of joint 1: (a) e1; (b) e1

5.3 Nonlinear Controllers
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Then, differentiating and substituting for �, we obtain

Figure 5.3.4: (a) plot of sat(r/	); (b) plot of tanh(gr)
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which using (4)–(5.3.8) may be shown to be

Therefore, the surface r(t)=0 is reached in a finite time, after which the
exponential stability of the error results as discussed in Theorem 5.3.2.

This controller is summarized in Table 5.3.3.

Figure 5.3.5: (a) errors of joint 1; (b) errors of joint 2; (c) torques of joints 1
and 2

�
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The resulting errors for joint 1 are shown in Figure 5.3.5. Due to the same
chattering problems encountered in Example 5.3.2, we choose instead a
controller with a saturation function and parameters identical to those in
Example 5.3.2. The resulting behavior is plotted in Figure 5.3.7.

As seen in Figures 5.3.3 and 5.3.5, the algorithms of Theorems 5.3.2 and
5.3.3, although using the physics of the robot, suffer from the chattering

Table 5.3.2: Variable Structure Controller 1

EXAMPLE 5.3–3: VSS Controller 2 (Saturation)

The two-link robot was controlled using this controller with the following
design parameters:

�
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commonly encountered in VSS control because of the presence of the sgn(r)
term. A common remedy of the problem is to sacrifice asymptotic stability
by using sat(r/	), 	 > 0, instead of sgn(r) in the torque calculation as done in
both Examples 5.3.2 and 5.3.3. We propose instead to use a term tanh(gr),
where tanh is the hyperbolic tangent and g is a gain parameter that adjusts
the slope of tanh around the origin as shown in Figure 5.3.7b. This term is
continuously differentiable, and a good approximation of sgn(r) for large s,
will result in uniformly ultimately bounded errors, and by adjusting g we are
able to get similar performance to the sgn(r) controller without the chattering
behavior. The next example illustrates this controller and compares it to the
usual saturation controller.

Table 5.3.3: Variable Structure Controller 2

5.3 Nonlinear Controllers
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EXAMPLE 5.3–4: VSS Controller 2 (Hyperbolic Tangent)

Contrast the saturation controller behavior of Example 5.3.2 with the
hyperbolic tangent modification with g=3 in Figure 5.3.8. Similar comparisons
should be made between Example 5.3.3 and the behavior shown in Figure
5.3.9, where g=3 is also used.

�

Saturation-Type Controllers

In this section we present controllers that utilize an auxiliary saturating signal
to compensate for the uncertainty present in the robot dynamics as given by
(5.2.1), where Vm (q,q

.
) is defined in Chapter 3.

(5.3.8)

or

(5.3.9)

Figure 5.3.6: errors of joint 1(a) e1; (b) e1
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Therefore, Z(q,q) is an n-vector representing friction, gravity and bounded
torque disturbances. The controllers introduced in this section are robust
due to the fact that they are designed based on uncertainty bounds rather
than on the actual values of the parameters. The following bounds are needed
and may be physically justified. The 
i’s in (5.3.11) are positive scalar constants
and the trajectory error e is defined before.

(5.3.10)

Figure 5.3.7: (a) errors of joint 1; (b) errors of joint 1; (c) torques of joints 1
and 2

5.3 Nonlinear Controllers
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(5.3.11)

A representative of this class was developed in [Spong et al. 1987] and is
given as follows.

THEOREM 5.3–4: The trajectory error e is uniformly ultimately bounded
(UUB) with the controller

Figure 5.3.8: (a) errors of joint 1; (b) errors of joint 1; (c) torques of joints 1
and 2
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(1)

where

(2)

Figure 5.3.9: (a) errors of joint 1; (b) errors of joint 1; (c) torques of joints 1
and 2

5.3 Nonlinear Controllers
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and

(3)

(4)

(5)

Proof:
Choose the Lyapunov function

and proceed as in Theorem 2.10.4. See [Spong et al. 1987] for details. �

Note that in the equations above, the matrix B is defined as in (5.2.3), the
�i’s are defined as in (5.2.10), and the matrix P is the symmetric, positive-
definite solution of the lyapunov equation (5.3.12), where Q is symmetric
and positive-definite matrix and Ac is given in (5.2.14).

(5.3.12)

In particular, the choice of Q

(5.3.13)

leads to the following P:

(5.3.14)

The expression of P in (5.3.14) may therefore be used in the expression of
vr in (2). This design is summarized in Table 5.3.4.
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EXAMPLE 5.3–5: Saturation Controller 1

The following design parameters were chosen in simulating this
controller:

and

e(0)=e
.
(0)=0  

Table 5.3.4: Saturation Controller 1

5.3 Nonlinear Controllers
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Upon closer examination of Spong’s controller in Theorem 5.3.4, it
becomes clear that vr depends on the servo gains Kp and Kv through p. This
might obscure the effect of adjusting the servo gains and may be avoided

The same trajectory is followed by the two-link robot as shown in Figure
5.3.10. Note that although the trajectory errors seem to be diverging, they
are indeed ultimately bounded and may be shown to be so by running the
simulation for a long time.

Figure 5.3.10: (a) errors of joint 1; (b) errors of joint 1; (c) torques of joints 1
and 2

�
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as described in [Dawson et al. 1990].

THEOREM 5.3–5: The trajectory error e is uniformly ultimately bounded
(UUB) with the controller

(1)

where

Figure 5.3.11: (a) errors of joint 1; (b) errors of joint 1; (c) torques of joints 1
and 2

5.3 Nonlinear Controllers
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and

(2)

where �i’s are positive scalars.

Proof:
We again choose

 

and

and proceed as in Theorem 2.10.4. See [Dawson et al. 1990] for details. �

Note that p no longer contains the servo gains and, as such, one may adjust
Kp and Kv without tampering with the auxiliary control vr. As was also shown
in [Dawson et al. 1990], if the initial error e(0)=0 and by choosing Kv=2Kp=kvI,
the tracking error may be bounded by the following, which shows the direct
effect of the control parameters on the tracking error:

(5.3.15)

Finally, note that if e(0)=e.(0)=0, the uniform boundedness of e(t) may be
deduced. This controller is given in Table 5.3.5.

EXAMPLE 5.3–6: Saturation Controller 2

In this example, let

Copyright © 2004 by Marcel Dekker, Inc.
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The results of this simulation are presented in Figure 5.3.11. The errors
are ultimately bounded as may be seen after a long simulation run.

Note that the last two controllers, although using a continuous term v
r
, may

be modified using the hyperbolic tangent term introduced in Example 5.3.4.
In fact, there are many extensions to these types of controllers. A particularly
simple one that uses linearity of the dynamics with respect to the unknown
physical parameters of the robot 3.3.59 was given in (3.3.62), where
p=||W||�

m
ax. In this formulation, W is a matrix containing time-varying but

known terms, while � is a vector of unknown but constant terms in the
dynamic formulation (3.3.59) repeated here:

(5.3.16)

More on this formulation and its usage is presented in Chapter 6.

Table 5.3.5: Saturation Controller 2

�

5.3 Nonlinear Controllers
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5.4 Dynamics Redesign

In this section we present two other approaches to design robust controllers.
The first starts with the mechanical design of the robot and proposes to
design robots such that their dynamics are simple and decoupled. It then
solves the robust controller problem by eliminating its causes. The second
approach may be recast into one of the approaches discussed previously, but
it presents such a novel way to looking at the problem that we decided to
include it separately.

Decoupled Designs

It was shown throughout the previous chapters that the controller complexity
is directly dependent on that of the robot dynamics. Thus it would make
sense to design robots such that they have simple dynamics making their
control much easier. This approach is advocated in [Asada and Youcef-Toumi
1987]. In fact, it is shown that certain robotic structures will have a decoupled
dynamical structures resulting in a decoupled set of n SISO nonlinear systems
which are easier controlled than the one MIMO nonlinear system. The
decoupling is achieved by modifying the dimensions and mass properties
of the arm to cancel out the velocity-dependent terms and decouple the
inertia matrix. An illustrative example of such robots is given in the next
example.

EXAMPLE 5.4–1: Decoupled Design

Consider the robot described in Figure 5.4.1. This mechanism is known as
the five-bar linkage and its dynamics are described when the following
condition holds:

by

Note that the inertia matrix is decoupled and position independent. The
controller given by

Copyright © 2004 by Marcel Dekker, Inc.
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The closed-loop error system is a linear second-order system which will
be stable with positive-definite gains.

with positive-definite Kp and Kv is enough to achieve any desired level of
performance. In particular, consider the following case:

Figure 5.4.1: Five-bar linkage.

5.4 Dynamics Redesign

�
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Some standard robotic structures may also be decoupled by design. Studies
have been carried out to partially or totally decouple robots up to six links.
The interested reader is referred to [Yang and Tzeng 1986], [Asada and
Youcef-Toumi 1987], and [Kazerooni 1989] for good discussions of this
topic.

Imaginary Robot Concept

The decoupled design alternative is very useful if the control engineer has
access to, or can modify, the robot design at an early stage. It is more
reasonable, however, to assume that the robot has already been constructed
to satisfy may mechanical requirements before the control law is actually
implemented. Thus a dynamics redesign is difficult if not impossible. The
imaginary robot concept is presented as an alternative robust design
methodology [Gu and Loh 1988]. The development of this approach is
described next. Consider an output function of the robot given by

(5.4.1)

so that

(5.4.2)

and

(5.4.3)

The generalized output y may denote the coordinates of the end effector
of the robot or the trajectory joint error qd-q. The imaginary robot concept
attempts to simplify the design of the control law for the physical robot, by
controlling an “imaginary” robot that is close to the actual robot. This choice
of the controller is shown to achieve the global stability of an imaginary
robot whose joint positions are described by the components of the vector y.

The methodology starts by decomposing M(q) as follows:

(5.4.4)

and then using the controller

(5.4.5)

(5.4.6)
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Since M(q) is unknown, however, the actual M
~

 is not available. The
resulting controller is then simpler and may be applied to the physical robot
to lead acceptable, if not optimal behavior.

The following theorem illustrates a controller to guarantee the boundedness
of the error.

THEOREM 5.4–1: Let

(1)

(2)

The ∞ stability of the closed-loop system is guaranteed if

(3)

Proof:
This is an immediate result of Theorem 5.2.2. See [Gu and Loh 1988] for

more detail and for illustrative examples.

The controller is shown in Table 5.4.1.

�

Table 5.4.1: Computed-Torque-Like Robot Controllers.

5.4 Dynamics Redesign

Copyright © 2004 by Marcel Dekker, Inc.



Robust Control of Robotic Manipulators320

5.5 Summary

The design of robust motion controllers of rigid robots was reviewed. There
main designs were identified and explained. All controllers were robust with
respect to a range of uncertain parameters and will guarantee the
boundedness of the position-tracking error. In the presence of disturbance
torques, a bounded error is best achievable outcome. The question of which
robust control method to choose is difficult to answer analytically, but the
following guidelines are suggested. The linear-multivariable approach is
useful when linear performance specifications (percent overshoot, damping
ratio, etc.) are available. The one-DOF dynamic compensators performed
rather well, with little or no knowledge of the robot dynamics. They may,
however, result in high-gain control laws in the attempt to achieve
robustness. The passive controllers are easy to implement but do not
provide easily quantifiable performance measures. The modified variable-
structure controllers seem to preform well when using the physics of the
robot without excessive torque effort. The saturation controllers are most
useful when a short transient error can be tolerated, but ultimately, the error
will have to be bounded.

A common thread throughout this chapter has been the fact that a high-
gain controller will guarantee the robustness of the closed-loop system. The
challenge is, however, to guarantee the robust stability of the robot without
requiring excessive torques. The robustness of the motion controllers when
nonzero initial errors or disturbances are present was also verified through
some of the examples and is discussed in the problems at the end of the
chapter. It is useful to note that although the robot’s dynamics are highly
nonlinear, most successful controllers have exploited their physics and their
very special structure. In the next chapter we describe the design of adaptive
controllers in the case of uncertain dynamical description of the robots.

Copyright © 2004 by Marcel Dekker, Inc.
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5.2–1 WE consider the three-axis SCARA robot shown in Figure 5.5.1,
where all links are assumed to be thin, homogeneous rods of mass
mi and length ai, i=1, 2, 3. Then the dynamics are given by:

Figure 5.5.1: Three-axis SCARA robot

PROBLEMS

Section 5.2
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and let

 

Note that the first two joints are decoupled from the last one. Find �, �i,
and µi defined in (5.2.8)–(5.2.11), assuming that m12(q)=m21(q)=0 and that

5.2–2 Choose a desired set point q1d=45 deg, q2d=90 deg, and  for
the robot in Problem 5.2–1. Design an SPR controller as described
in (5.2.14)–(5.2.19). Also, find a value of a to satisfy Theorem 5.2.1.

5.2–3 Let q1d=10 sin t, q2d=10 cos t, and  for the robot in Problem

5.2–1.

1. Design an SPR controller as described in (5.2.14)–(5.2.19).

2. Let the desired trajectory now be q1d=sin t, q2d=cos t, and .
Study the effect that decreasing qd has on a and on the trajectory
error.

5.2–4 Choose a value of kv that satisfies condition (5.2.28) for the robot in
Problem 5.2–1 and the trajectory in Problem 5.2–3(b). What happens
to kv and to the trajectory errors if m1, m2, m3 increase to 20?

5.2–5 Design a dynamic controller similar to that of Example 5.2.3 for the
robot in Problem 5.2–1 and the trajectory in Problem 5.2–3(a).
Compare the performance for k=10 and k=50.
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5.2–6 Find the value of k that satisfies inequality (1) for you design in
Problem 5.2–5. What happens to your conditions if both the velocity
terms and gravity terms are available to feedback (i.e., �i=0)?

5.2–7 Consider the robot in Problem 5.2–1 and the set point of Problem
5.2–2. Also, assume that all �i=0 so that velocity and gravity terms
are available to feedback. Find a gain k to satisfy (5.2.36) and
implement the resulting controller.

5.2–8 Repeat Problem 5.2–7 with the trajectory of Problem 5.2–3(a).

5.2–9 Design a controller similar to the one in Example 5.2.5 for the robot
of Problem 5.2–1 to follow the trajectory of Problem 5.2–3(a).
Choose the same parameters used in that example and compare the
resulting behavior to a set of parameters of your choosing.

Section 5.3

5.3–1 Design a controller similar to the one in Example 5.3.1 for the robot
of Problem 5.2–1 to follow the trajectory of Problem 5.2–3(a).
Choose the same parameters used in that example and compare the
resulting behavior to a set of parameters of your choosing.

5.3–2 Consider the robot of Problem 5.2–1 with the desired set point of
Problem 5.2–2. Design a variable-structure controller as described
in Theorem 5.3.2. You may want to start your design with the
parameter values in Example 5.3.2.

5.3–3 Repeat Problem 5.3–2 for the trajectory described in Problem 5.2–
3(a).

5.3–4 Consider the robot of Problem 5.2–1 with the desired set point of
Problem 5.2–2. Design a variable-structure controller as described
in Theorem 5.3.3. You may want to start your design with the
parameter values in Example 5.3.3.

5.3–5 Repeat Problem 5.3–4 for the trajectory described in Problem 5.2–
3(a).

5.3–6 Consider the robot of Problem 5.2–1 with the desired set point of
Problem 5.2–2. Design a saturation-type controller as described in
Theorem 5.3.4. You may want to start your design with the
parameter values in Example 5.3.5.
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5.3–7 Repeat Problem 5.3–6 for the trajectory described in Problem 5.2–
3(a).

5.3–8 Consider the robot of Problem 5.2–1 with the desired set point of
Problem 5.2–2. Design a saturation-type controller as described in
Theorem 5.3.5. You man want to start your design with the
parameter values in Example 5.3.6.

5.3–9 Repeat Problem 5.3–8 for the trajectory described in Problem 5.2–
3(a).
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Chapter 6

Adaptive Control of
Robotic Manipulators

In this chapter adaptive controllers are formulated by separating unknown
constant parameters from known functions in the robot dynamic equation.
The type of stability for each adaptive control strategy is discussed at length
to motivate the formulation of the controllers. Some issues regarding
parameter error convergence, persistency of excitation, and robustness are
also discussed.

6.1 Introduction

The problem of designing adaptive control laws for rigid-robot manipulators
that ensure asymptotic trajectory tracking has interested researchers for many
years. The development of effective adaptive controllers represents an
important step toward high-speed/precision robotic applications. Even in a
well-structured industrial facility, robots may face uncertainty regarding the
parameters describing the dynamic properties of the grasp load (e.g., unknown
moments of inertia). Since these parameters are difficult to compute or
measure, they limit the potential for robots to manipulate accurately objects
of considerable size and weight. It has recently been recognized that the
accuracy of conventional approaches in high-speed applications is greatly
affected by parametric uncertainties.

To compensate for this parametric uncertainty, many researchers have
proposed adaptive strategies for the control of robotic manipulators. An
advantage of the adaptive approach over the robust control strategies
discussed in Chapter 5 is that the accuracy of a manipulator carrying unknown
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extracting information from the tracking error. Therefore, adaptive controllers
can give consistent performance in the face of load variations.

It is only recently that adaptive control results have included rigorous
proofs for global convergence of the tracking error. Now that the existence
of globally convergent adaptive control laws has been established, it is difficult
to justify control schemes based on approximate models, local linearization
techniques, or slowly time varying assumptions. In the control literature
there also seems to be no general agreement as to what constitutes an adaptive
control algorithm; therefore, in this chapter, the discussion will be limited to
control schemes that explicitly incorporate parameter estimation in the control
law.

6.2 Adaptive Control by a Computed-Torque
Approach

In Chapter 3 we motivated the use of the computed-torque control law for
controlling the robotic manipulator dynamics given by

(6.2.1)

This motivation was actually quite simple. Specifically, if there are some
nonlinear dynamics which one does not wish to deal with, one can change
the nonlinear control problem to a linear control problem by directly canceling
the nonlinearities. There is a wealth of available knowledge for controlling
linear systems; therefore, if exact knowledge of the robot model is available,
there is not much need for sophisticated nonlinear control techniques.

Approximate Computed-Torque Controller

Of course, in reality, we never have exact knowledge of the robot model due
to many problems associated with model formulation. Two common
uncertainties that do not allow exact model cancellation in robotic
applications are unknown link masses due to payload disturbances and
unknown friction coefficients. One way of dealing with these types of
parametric uncertainties would be to use the computed-torque controller
given in Chapter 3 with some fixed estimate of the unknown parameters in
place of the actual parameters. This approximate computed-torque controller
would have the form

(6.2.2)
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where the superscript “ˆ” denotes the estimated dynamics with the unknown
actual parameters replaced by the parameter estimates, Kv and Kp are control
gain matrices, qd is used to denote the desired trajectory, and the tracking
error e is defined by

e=qd-q. 

We now illustrate the approximate computed-torque controller by examining
an example.

EXAMPLE 6.2–1: Approximate Computed-Torque Controller

We wish to design and simulate an approximate computed-torque
controller for the two-link arm given in Figure 6.2.1 (see Chapter 2 for
the two-link revolute robot arm dynamics). Assuming that the friction is
negligible, the link lengths are exactly known, and the masses m1 and m2

are known to be in the regions 0.8±0.05 kg and 2.3±0.1 kg, respectively,
a possible approximated computed-torque controller can be written as

(1)

(2)

Figure 6.2.1: Two-link planar arm.

6.2 Adaptive Control by a Computed-Torque Approach
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where l1=l2=1 m and g is the gravitational constant. We choose 1=0.85 kg
and 2=2.2 kg since the actual values are assumed to be unknown. After
substituting the control law above into the two-link robot dynamics, we can
form the error system

(3)

where -1 (q) is the inverse of the inertia matrix M(q) with m1 and m2 replaced
by 1, and 2, respectively. The matrix W(q, , ), sometimes called the
regression matrix [Craig 1985], is a 2×2 matrix given by

(4)

where  

The vector  called the parameter error vector, is a 2×1 vector given by

(5)

where

 

and

 

The associated tracking error 2×1 vector and 2×2 gain matrices in (3) are
given by

,
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We cannot use the error system (3) to select the values for Kv and Kp with
standard linear control methods since the right-hand side of the error system
is composed of nonlinear functions of q, , and . For the approximate
computed-torque controller, simulation can be used to select the appropriate
values for Kv and Kp. A good starting point for selecting the values of Kp and
Kv for the approximate computed-torque controller is to use the same values,
as the computed-torque scheme would dictate, for a given desired damping
ratio and natural frequency.

For m1=0.8 kg and m2=2.3 kg, the approximate computed torque controller
(1)–(2) was simulated with q(0)= (0)=0, with the controller gains set at

(6)

and with a desired trajectory of

qd1=qd2=sin t. (7)

The tracking error is depicted in Figure 6.2.2. As illustrated by these figures,
the tracking error remains bounded rather than going to zero. The reason
for this type of bounded tracking error performance is that the error system
given by (3) is constantly being excited by the dynamics on the right-hand
side of (3).

�

Adaptive Computed-Torque Controller

For unknown parametric quantities such as link masses or friction coefficients,
the approximate computed-torque controller simply substitutes a fixed estimate

 for the unknown parametric quantities. From Equation (3) in Example
6.2.1, one can clearly see that if the parameter error vector  is equal to zero,
the tracking error can be shown to be asymptotically stable. For many
applications, we cannot assume that  is equal to zero. For example, in the
case of an unknown payload mass attached to the end effector of a robot,
there will always be an unknown parametric quantity related to the payload
mass that would appear in the parameter error vector.

6.2 Adaptive Control by a Computed-Torque Approach
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The adaptive control strategy can, heuristically, be motivated by reasoning
that one could expect better tracking performance if the parameter estimate
was adjusted as the robot manipulator moves instead of always being a fixed
quantity. That is, it seems reasonable to attempt to change our parameter
estimates based on an adaptive update rule that would be a function of the
robot configuration and the tracking error. The question then becomes: How
do we formulate an adaptive control strategy, and how does this adaptive
update rule affect the stability of the tracking error? The answer to both of
these questions is that the adaptive update rule is formulated from the stability
analysis of the tracking error system. That is, we ensure stability of the tracking
error system by formulating the adaptive update rule and by analyzing the
stability of the tracking error system at the same time.

The first adaptive control strategy that we will examine is the method
outlined in [Craig 1985]. The adaptive computed-torque controller is the
same as the approximate computed-torque controller (6.2.2) with the addition
of an adaptive update rule for adjusting the parameter estimates. This adaptive
controller is based on the fact that the parameters appear linearly in the
robot model (see Chapter 2). That is, the robot dynamics (6.2.1) can be
written in the form

(6.2.3)

where W(q, , ) is an n×r matrix of known time functions and  is an r×1
vector of unknown constant parameters. This property is crucial for the type
of adaptive control that Craig formulated in that it illustrates the separation
of unknown parameters and the known time functions. The reason that the

Figure 6.2.2: Simulation of approximate computed-torque controller.
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robot dynamics can be separated in this form is that the robot dynamics are
linear in the parameters expressed in the vector form . This separation of
unknown parameters and known time functions will be used in the
formulation of the adaptive update rule and also in the stability analysis of
the tracking error system.

The first step in the study of the adaptive computed-torque controller is
to form the tracking error system. Note that, by using (6.2.3), we may write
the robot dynamic Equation given by (6.2.1) as

(6.2.4)

From [Craig 1985], the adaptive computed-torque controller is given by

(6.2.5)

It is easy to see from our definition of the tracking error how (6.2.5) can be
written as

(6.2.6)

By utilizing (6.2.3), (6.2.6) can be written as

(6.2.7)

where  is an n×1 vector used to represent a time-varying estimate of the
unknown constant parameters. Substituting (6.2.7) into (6.2.4), we can form
the tracking error system

(6.2.8)

where the parameter error is

(6.2.9)

Now for convenience, rewrite (6.2.8) in the state-space form

(6.2.10)

where the tracking error vector is

 

and

6.2 Adaptive Control by a Computed-Torque Approach
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with In being the n×n identity matrix, and On being the n×n zero matrix.
Now that the tracking error system has been formed, we use Lyapunov

stability analysis (see Chapter 1) to show that the tracking error vector e is
asymptotically stable with the right choice of adaptive update law. We first
select the positive-definite Lyapunov-like function

(6.2.11)

where P is a 2n×2n positive-definite, constant, symmetric matrix, and Γ is a
diagonal, positive-definite r×r matrix. That is, Γ can be written as

 

where the γi’s are positive scalar constants.
Differentiating (6.2.11) with respect to time yields

(6.2.12)

It is important to note in (6.2.12) that we have used the fact that

(6.2.13)

since Γ=ΓT. (Note that a scalar quantity can always be transposed.) Now,
substituting for e from (6.2.10) into (6.2.12) yields

(6.2.14)

Combining terms in (6.2.14) and using the scalar transportation property
gives

(6.2.15)

where Q is a positive-definite, symmetric matrix that satisfies the Lyapunov
equation

(6.2.16)
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From Chapter 1 we note that for stability, it is always desirable to have 
at least negative semidefinite; therefore, the choice of adaptation update rule
becomes obvious. Specifically, by substituting

(6.2.17)

(6.2.15) becomes

(6.2.18)

To determine explicitly the type of stability, we must do further analysis;
however, note first that (6.2.17) gives the adaptive update rule for the parameter
estimate vector  since  is equal to zero. That is, by recalling that the actual
unknown parameters are constant, we can substitute (6.2.9) into (6.2.17) to
obtain the adaptive update rule:

(6.2.19)

for the parameter estimate vector .
Before examining the type of stability for the tracking error system, we

note that Craig modified the adaptation update rule in (6.2.19) to prevent a
circular argument in the stability analysis [Craig 1985]. Specifically, the
parameter estimates are forced to remain within some known region. That is,
if parameter estimates drift out of a known region, they are reset to within a
known region. By resetting the parameter estimates in “software,” we are
guaranteed that the parameter estimates  remain bounded.

We now detail the stability for the tracking error. Since  is negative
semidefinite and V is lower bounded by zero, V remains upper bounded in the
time interval [O, ∞); furthermore,

(6.2.20)

where V∞ is a positive scalar constant. Since V is upper bounded, it is obvious
from the definition of V given in (6.2.11) that e and  are bounded, which
also means that q,  and  are bounded. Note that we have already assumed
that   is bounded, and we will always assume that the desired trajectory and
its first two derivatives are bounded.

Now, from the robot Equation (6.2.1), it is clear that

(6.2.21)

therefore,  is bounded since  and τ depend only on the bounded quantities
q, , and . If  is bounded, (6.2.10) shows that  is bounded. Since  is
bounded, we can state from (6.2.18) that  is bounded. Therefore, since V is

6.2 Adaptive Control by a Computed-Torque Approach
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lower bounded by zero,  is negative semidefinite, and  is bounded, then by
Barbalat’s lemma (see Chapter 1),

 

which means that by the Rayleigh-Ritz Theorem (see Chapter 1)

(6.2.22)

Table 6.2.1: Adaptive Computed-Torque Controller

The information given in (6.2.22) informs us that the tracking error vector
e is asymptotically stable. But what of the parameter error ? Does it also
converge to zero? From our analysis, all we can say about the parameter
error is that it remains bounded if -1(q) exists. Indeed, this places a restriction
on the parameter update law given in (6.2.19). That is, we must use the
parameter resetting method discussed earlier to ensure that poor parameter
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estimates do not cause the inverse of  (q) to explode. In [Craig 1985] a
possible method for ensuring that the parameter estimates and -1(q) remain
bounded is outlined; furthermore, he shows how this method does not interfere
with the stability result delineated by (6.2.22). We will not discuss this
parameter estimate resetting method and the resulting stability proof since we
will show later in this chapter how Slotine and Li used a more judicious
choice of Lyapunov function to remove the need for resetting the parameter
estimates, and at the same time remove the need for acceleration measurements
in the regression matrix W (q, , )! The adaptive computed-torque controller
is summarized in Table 6.2.1 and depicted in Figure 6.2.3.

We now present an example to illustrate how Table 6.2.1 can be used to
generate adaptive controllers for robotic manipulators.

EXAMPLE 6.2–2: Adaptive Computed-Torque Controller

It is desired to design and simulate the adaptive computed-torque
controller given in Table 6.2.1 for the two-link arm given in Figure 6.2.1.

Figure 6.2.3: Block diagram of the adaptive computed-torque controller.

6.2 Adaptive Control by a Computed-Torque Approach
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Assuming that the friction is negligible and that the link lengths are exactly
known, the adaptive computed-torque controller can be written in the same
form as that given in Example 6.2.1, with the exception that we must find
the update rules for 1 and 2. That is, we use Equations (1) and (2) in
Example 6.2.1 for the joint torque control and then formulate the update rule
for m1 and m2 according to Table 6.2.1.

For simplicity, in this example we select the servo gains as

(1)

where kv and kp are positive, scalar constants and for this case In is the
2×2 identity matrix. We propose that the matrix P in Table 6.2.1 be
selected as

(2)

Note that P is symmetric, and that it is positive definite if kv is selected
to be greater than 1 (see the Gerschgorin Theorem in Chapter 1). To
see if our selection of P gives a positive-definite Q, perform the matrix
operation

(3)

(4)

Since we have already restricted kv>1, it can be verified that Q is a positive
definite, symmetric matrix. We note here that the process of finding a positive
definite, symmetric P and Q for the general Lyapunov approach is not always
an easy task.

Now that we have found an appropriate P, we can formulate the adaptive
update rule given in Table 6.2.1. The associated parameter estimate vector is

with update rules
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(5)

and

(6)

where

 

the Pi’s are defined in (2), and the quantities forming the regression matrix
Wii’s are found in Example 6.2.1.

For m1=0.8 kg and m2=2.3 kg, this adaptive computed-torque controller
was simulated with kv=50, kp=125, γ1=500, γ2=500, 1 (0)=0.85, 2(0)=2.2,
and with the same desired trajectory and initial joint conditions used in Example
6.2.1. The tracking error and mass estimates are depicted in Figure 6.2.4. As
illustrated by this figure, the tracking error goes to zero, and the parameter
estimates remain bounded as predicted by the theory. Note that we did not
take any special precautions in this simulation to ensure the existence of -

1(q). We could have developed some sort of procedure to guarantee that -

1(q) existed; however, this is not really needed since we show in the next
section how to eliminate this restriction.

�

6.3 Adaptive Control by an Inertia-Related
Approach

In Section 6.2 we showed how adaptive control can be used to compensate
for parametric uncertainties. This led Craig to develop the adaptive
computed-torque controller. We also gave the two restrictions required for the

6.3 Adaptive Control by an Inertia-Related Approach
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implementation of the adaptive computed-torque controller [i.e., the need for
measuring  and ensuring that -1(q) exists]. Both of these restrictions can be
quite cumbersome. For example, most industrial robots have only position
and velocity sensors, and since differentiation of velocity is not desirable in
general, we must add additional costly sensors for measuring .
Furthermore, if large, unknown payloads relative to the manipulator’s weight
are being lifted by the manipulator, it may be extremely difficult to ensure
that -1(q) exists.

After researchers reexamined the structure of the adaptive computedtorque
controller, they began to wonder if all the available information about the
robot manipulator was being used in designing adaptive control schemes.
That is, are all the properties inherent to a mechanical manipulator being
exploited? In [Arimoto and Miyazaki 1986] a proportionalderivative (PD)
feedback controller with gravity compensation is proposed. It should be noted
that this controller is not a product of the feedback linearization approach.
Rather, this controller employs an inertia-related Lyapunov function in the
stability analysis which utilizes physical properties inherent to a mechanical
manipulator. After reexamining the adaptive computed-torque controller,
one can see that the Lyapunov function used in the stability analysis is not
inertia-related but is somewhat arbitrary.

Figure 6.2.4: Simulation of the adaptive computed-torque controller.
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Examination of a PD Plus Gravity Controller

One method [Slotine 1988] of motivating a PD plus gravity controller [Arimoto
and Miyazaki 1986] is to write the manipulator dynamics in the conservation-
of-energy form

(6.3.1)

where the left-hand side of (6.3.1) is the derivative of the manipulator kinetic
energy, and the right-hand side of (6.3.1) represents the power supplied from
the actuators minus the power dissipated due to gravity and friction. Note
that the Coriolis and centripetal terms are accounted for in (6.3.1) since
these terms are related to the time derivative of the inertia matrix.

Suppose that we now want to design a constant set-point controller (i.e.,
d=0) for the system given in the conservation of energy form (6.3.1). To

begin, we select the inertia-related Lyapunov function

(6.3.2)

Since a Lyapunov function can be thought of heuristically as an energy function,
this Lyapunov function seems quite reasonable. That is, the Lyapunov function
is composed of the kinetic energy of the robotic manipulator system 
and an additional energy damping term . This energy damping
term can be thought of as using physical springs so that the manipulator will
be better behaved.

Differentiating (6.3.2) with respect to time yields

(6.3.3)

Substituting (6.3.1) into (6.3.3), we have

(6.3.4)

since we are solving the set-point control problem. Since it is desirable for 
to be at least negative semidefinite, the control

(6.3.5)

is motivated by the form of (6.3.4). That is, substituting (6.3.5) into (6.3.4)
yields

(6.3.6)

The analysis above illustrates that V is decreasing for all time except for 
equal to zero. We now use this information to illustrate that the desired set

6.3 Adaptive Control by an Inertia-Related Approach
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point qd is achieved. That is, if =0, then =0, and =0; hence therefore, for
= =0, we can utilize (6.2.1) and (6.3.5) to write the closed-loop system in

the form Kpe=0, which implies that e=0. From Chapter 1, LaSalle’s Theorem
can now be used to show that the tracking error e is asymptotically stable.

Adaptive Inertia-Related Controller

Although the controller given in (6.3.5) utilizes the conservation of energy
property, it has two disadvantages. First, the controller merely ensures that
the manipulator reaches a desired set point. In general, a robot control designer
must ensure that the manipulator tracks a desired time-varying trajectory.
Second, the controller requires exact knowledge of any parameters associated
with the robot manipulator model since the gravity and friction terms are
included in the control law (6.3.5).

In [Slotine and Li 1985 (a)] the conservation of energy formulation given
in (6.3.1) is exploited to design an adaptive controller for the trajectory-
following problem. This controller can be motivated in much the same way
as our treatment of the PD plus gravity controller. In other words, we use the
stability analysis to guide us in finding an adaptive controller. Since we are
designing an adaptive trajectory-following controller, we should select a
Lyapunov function that is a function of the tracking error and the parameter
error. Slotine selected the inertia-related Lyapunov-like function

(6.3.7)

where

(6.3.8)

with Γ defined as in (6.2.11), Λ defined as positive-definite, diagonal matrix
such that

and  defined as in (6.2.9). The auxiliary signal r(t) given in (6.3.8) may be
considered as a filtered tracking error.

After differentiating (6.3.7) with respect to time, we have

(6.3.9)

From (6.3.9) it is clear that we must substitute for the variable ; therefore,
we must write the robot equation in terms of the variable r. Using (6.2.1), the
robot dynamics can be rewritten as
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(6.3.10)

where

 (6.3.11)

and Y(·) is an n×r matrix of known time functions. This is the same type of
parametric separation that was used in the formulation of the adaptive
computed-torque controller; however, note that Y(·) is not a function of joint
acceleration !

Substituting (6.3.10) into (6.3.9) gives

   (6.3.12)

Applying the skew-symmetric property (see Chapter 2), we can write (6.3.12)
as

(6.3.13)

Again, the stability analysis has guided us to a choice of torque controller
and adaptive update rule. That is, if we select the torque control to be

(6.3.14)

(6.3.13) becomes

(6.3.15)

By selecting the adaptive update rule as

(6.3.16)

(6.3.15) becomes

(6.3.17)

We now detail the type of stability for the tracking error. First, since  in
(6.3.17) is negative semidefinite, we can state that V in (6.3.7) is upper bounded.
Using the facts that V is upper bounded and that M(q) is a positive-definite
matrix (see Chapter 2), we can state that r and  are bounded. From the
definition of r given in (6.3.8), we can use standard linear control arguments
to state that e and  (and hence q and ) are bounded. Since e, , r, and 
are bounded, we can use (6.3.10) and (6.3.14) to show that  (and hence 

6.3 Adaptive Control by an Inertia-Related Approach
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obtained by differentiating (6.3.17)) is bounded. Second, note that since M(q)
is lower bounded, we can state that V given in (6.3.7) is lower bounded. Since

 is lower bounded, V is negative semidefinite, and  is bounded, we can use
Barbalat’s lemma (see Chapter 1) to state that

(6.3.18)

which means that by the Rayleigh-Ritz Theorem (see Chapter 1)

(6.3.19)

Note that (6.3.8) is a stable first-order differential equation driven by the
“input” r; therefore, by standard linear control arguments and (6.3.19), we
can write

(6.3.20)

This result informs us that the tracking errors e and  are asymptotically
stable. Again, from the analysis above, all we can say about the parameter
error is that it remains bounded. Later, we will show that the parameter
error also converges to zero under certain conditions on the desired trajectory.
The adaptive controller derived above is summarized in Table 6.3.1 and
depicted in Figure 6.3.1.

After glancing through Table 6.3.1, we can see that the restrictions with regard
to the adaptive computed-torque controller have been removed. Specifically,
for the adaptive inertia-related controller, we do not require measurements of
acceleration or any ad hoc adjustment of the parameter estimates to ensure

-1 (q) that exists.
We now present an example to illustrate how Table 6.3.1 can be used to

design adaptive controllers for robotic manipulators.

EXAMPLE 6.3–1: Adaptive Inertia-Related Controller

We wish to design and simulate the adaptive inertia-related controller given
in Table 6.3.1 for the two-link arm given in Figure 6.2.1. Assuming that
the friction is negligible and the link lengths are exactly known, the adaptive
inertia-related torque controller can be written as

(1)

and
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(2)

Table 6.3.1: Adaptive Inertia-Related Controller

Figure 6.3.1: Block diagram of the adaptive inertia-related controller.

6.3 Adaptive Control by an Inertia-Related Approach
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In the expression for the control torques, the regression matrix Y(·) is given
by

(3)

where

(4)

(5)

(6)

and

(7)

Formulating the adaptive update rule as given in Table 6.3.1, the associated
parameter estimate vector is

 

with the adaptive update rules

(8)

and

(9)

For m1=0.8 kg and m2=2.3 kg, the adaptive inertia-related controller was
simulated with kv1=kv2=10, λ1=λ2=2.5, λ1=λ2=20, 1(0)=0, 2(0)=0, and with
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the same desired trajectory and initial joint conditions as given in Example
6.2.1. The tracking error and mass estimates are depicted in Figure 6.3.2. As
illustrated by the figure, the tracking error is asymptotically stable, and the
parameter estimates remain bounded.

�

6.4 Adaptive Controllers Based on Passivity

In recent years, many authors have developed adaptive control schemes that
are different with regard to the torque control law or the adaptive update
rule. To unify some of the approaches, general adaptive control strategies
have been developed based on the passivity approach (see [Ortega and Spong
1988] and [Brogliato et al. 1990]). In this section we illustrate how the
passivity approach can be used to develop a class of torque control laws and
adaptive update rules for the control of robot manipulators.

Passive Adaptive Controller

First, we define an auxiliary filtered tracking error variable that is similar
to that defined for the adaptive inertia-related controller. That is, we define

Figure 6.3.2: Simulation of the adaptive inertia-related controller.

6.4 Adaptive Controllers Based on Passivity
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our tracking variable to be

(6.4.1)

where

(6.4.2)

and s is the Laplace transform variable. In (6.4.2), the n×n gain matrix K(s) is
chosen such that H(s) is a strictly proper, stable transfer function matrix. The
reason for this restriction on H(s) will be clear after we analyze the stability
of the adaptive controller that is presented later in this section.

As in the preceding sections, our adaptive control strategies have been centered
around the ability to separate the known time functions from the unknown
constant parameters. Therefore, we use the expressions given in (6.4.1) and
(6.4.2) to define

(6.4.3)

where in this control formulation, Z(·) is a known n×r regression matrix.
[Note the standard abuse of notation in (6.4.3), where K(s)e is used to
represent the inverse Laplace transform of K(s) convolved with e(t).] It is
important to note that K(s) can be selected so that Z(·) and r do not depend
on measurement of . Indeed, if K(s) is selected such that H(s) has a relative
degree of 1 [Kailath 1980], Z(·) and r will not depend on .

The adaptive control formulation given in this section is called the passivity
approach because the mapping of -r → Z(.)  is constructed to be a passive
mapping. That is, we construct an adaptive update rule such that

(6.4.4)

is satisfied for all time and for some positive scalar constant ß. This passivity
concept is used in analyzing the stability of the error system, as we shall
show. However, for now let us illustrate the use of (6.4.4) in generating an
adaptive update rule.
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EXAMPLE 6.4–1: Adaptive Update Rule by Passivity

Let us show that the adaptive update rule

(1)

satisfies the inequality given by (6.4.4). Note that G is defined as in
(6.2.11).

First rewrite (1) in the form

(2)

where we have used the fact that G is a diagonal matrix. Substituting (2)
into (6.4.4) gives

(3)

Since Γ is a constant matrix, we can use the product rule to rewrite (3) as

(4)

or

(5)

From (5) it is now obvious that if ß is selected as

(6)

then the passivity integral given in (6.4.4) is satisfied for the adaptive
update rule given in (1).

�

Now that we have a feeling for how the passivity integral (6.4.4) can be used
to generate adaptive update rules, we use the concept of passivity to analyze
the stability of a class of adaptive controllers. For this class of adaptive
controllers, the torque control is given by

(6.4.5)

6.4 Adaptive Controllers Based on Passivity
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Note that many types of torque controllers can be generated from (6.4.5)
by selecting different transfer function matrices for K(s) in the definition of r.
That is, for different K(s), we have different types of feedback because the
feedback term Kvr will change accordingly.

To form the error system, rewrite the robot dynamics (6.2.1) in terms of
the tracking error variable r and the regression matrix Z(·) as

(6.4.6)

Substituting (6.4.5) into (6.4.6) yields the tracking error system

(6.4.7)

For analyzing the stability of this system, we use the Lyapunov-like function

(6.4.8)

[Ortega and Spong 1988]. Note that V is positive since the parameter estimate
update rule is constructed to guarantee (6.4.4). That is, if (6.4.4) is satisfied,
then

(6.4.9)

therefore, V is a positive scalar function. Differentiating (6.4.8) with respect
to time gives

(6.4.10)

Substituting (6.4.7) into (6.4.10) yields

(6.4.11)

Utilizing the skew-symmetric property (see Chapter 2) allows one to write

(6.4.12)

We now detail the type of stability for the tracking error. First note from
(6.4.12) that we can place the new upper bound on :

(6.4.13)

which can also be written as
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(6.4.14)

Multiplying (6.4.14) by -1 and integrating the left-hand side of (6.4.14) yields

(6.4.15)

Since  is negative semidefinite as delineated by (6.4.12), we can state that V
is a nonincreasing function that is upper bounded by V(0). By recalling that
M(q) is lower bounded, as delineated by the positive-definite property of the
inertia matrix (see Chapter 2), we can state that V given in (6.4.8) is lower
bounded by zero. Since V is nonincreasing, upper bounded by V(0), and lower
bounded by zero, we can write (6.4.15) as

(6.4.16)

or

(6.4.17)

The bound delineated by (6.4.17) informs us that  (see Chapter 1),
which means that the filtered tracking r is bounded in the “special” way
given by (6.4.17).

To establish a stability result for the position tracking error e, we establish
the transfer function relationship between the position tracking error and
the filtered tracking error r. From (6.4.1) we can state that

(6.4.18)

where H(s) is as defined in (6.4.2). Since H(s) is a strictly proper, asymptotically
stable transfer function matrix and , we can use Theorem 1.4.7 in
Chapter 1 to state that

(6.4.19)

The result above informs us that the position tracking error is
asymptotically stable. In accordance with the theoretical development above,
all we can say about the velocity tracking error is that it is bounded.

The passivity-based controller is summarized in Table 6.4.1. From this
table we can see that the passivity approach gives a general class of torque

6.4 Adaptive Controllers Based on Passivity
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control laws. We illustrate this concept with some examples that unify some
of the research in adaptive control.

EXAMPLE 6.4–2: Passivity of the Adaptive Inertia-Related
Controller

In this example we show how the adaptive inertia-related controller can
be derived using passivity concepts. First, note that by defining

(1)

and

(2)

in Table 6.4.1, we obtain the torque control law

(3)

where

(4)

This corresponds to the definition given in (6.3.11); therefore, using (2),
we have obtained the adaptive inertia-related torque controller as given
in Table 6.3.1.

The last item to check is whether the adaptive inertia-related update
rule satisfies the passivity integral given in Table 6.4.1. From Table 6.3.1
the adaptive inertia-related update rule can be written as

(5)

for the choice of K(s) given in (1). After reexamining Example 6.4.1 it is
now obvious that we have derived the adaptive inertia-related controller
with the passivity approach.

�
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EXAMPLE 6.4-3: PID Torque Control Law

In Example 6.4.2 the torque control law was shown to be

(1)

This torque controller is a proportional-derivative (PD) feedback controller
since we are using e and  in the feedback portion of the control. It is now
desired to find the choice of K(s) in Table 6.4.1 to give a proportional-integral-
derivative (PID) type of torque controller of the form

(2)

Using Table 6.4.1, we can select

(3)

Table 6.4.1: Passive Class of Adaptive Controllers

6.4 Adaptive Controllers Based on Passivity
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where

 

�i’s are positive scalar constants, �i’s are positive scalar constants, Kp= Kv�,
and KI=Kv�. Now we must check to verify that H(s) is indeed a strictly proper,
stable transfer function matrix. For this choice of K(s) in Table 6.4.1, we can
write

(4)

Note that since � and � have been selected to be diagonal positive-definite
matrices, H(s) is a decoupled transfer function matrix. That is, the transfer
function for the ith system is

(5)

Since the �i’s and �’s are positive, H(s) is a strictly proper, stable transfer
function matrix.

General Adaptive Update Rule

As mentioned earlier, the adaptive control scheme outlined in Table 6.4.1
allows one to formulate different adaptive update laws by ensuring that the
proposed update satisfies the passivity integral given in (6.4.4). Landau
proposed the general update rule (which satisfies the passivity integral)

(6.4.20)

where Fp is an r×r positive definite, constant matrix, and FI(t) is an r×r positive
definite matrix kernel whose Laplace transform is a positive real transfer
function matrix with a pole at s=0 [Landau 1979].

By utilizing this general update law, many types of adaptation may be
designed. All we need to keep in mind is that the conditions on FI(t) and Fp

must be met. One possible adaptive scheme that comes directly from (6.4.20)
is the proportional + integral (PI) adaptation scheme. The PI update law is the
same as that given by (6.4.20), with

�
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FI(t)=K1, (6.4.21)

where K1 is a diagonal, constant positive-definite matrix. It has been pointed
out in [Landau 1979] that with regard to adaptive model following, PI
adaptation has shown a significant improvement over integral adaptation.
Therefore, this type of adaptation might be beneficial for the tracking control
of robot manipulators.

6.5 Persistency of Excitation

For the adaptive controllers presented in the previous sections the tracking
error has been shown to be asymptotically stable; however, all that could be
said about the parameter error was that it was bounded. In general, parameter
identification will occur in adaptive control systems only if certain conditions
on the regression matrix can be established. Specifically, several researchers
[Morgan and Narendra 1977], [Anderson 1977] have studied the asymptotic
stability of adaptive control systems similar to the ones we have presented in
this chapter. For example, parameter error convergence can be established
for the adaptive inertia-related controller if the regression matrix Y(·) satisfies

(6.5.1)

for all t0, where α, ß, and ρ are all positive scalars. Furthermore, since the
tracking error is asymptotically stable, we can rewrite (6.5.1) as

(6.5.2)

where the arguments q and q have been replaced by qd and d, respectively.
The condition given in (6.5.2) informs us that if Y(·) varies sufficiently

over the interval given by ρ so that the entire r-dimensional parameter space
is spanned, we know the parameter error converges to zero. This amounts to
a condition on the desired trajectory such that all parameters will be identified
after a sufficient learning interval. This condition can be helpful in formulating
desired trajectories to ensure that parameters such as friction coefficients or
payload masses are identified. We now illustrate the meaning of a persistently
exciting trajectory with some examples.

6.5 Persistency of Excitation
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where the term b is used to denote the positive scalar representing the dynamic
coefficient of friction. We assume that this robot arm is in the plane not
affected by the gravitational force and that m and b are unknown positive
constants.

a. Adaptive Controller

By using Table 6.3.1, the adaptive inertia-related controller for the dynamics
(1) can be shown to be given by

(2)

In the expression above for the control torque, the regression matrix Y(·) is
given by

EXAMPLE 6.5–1: Lack of Persistency of Excitation for a One-Link Robot
Arm

We wish to investigate the persistency of excitation conditions for the one-link
robot arm given in Figure 6.5.1. The dynamics of this robot arm will be taken
to be

(1)

Figure 6.5.1: One-link revolute arm.
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(3)

where

 

The corresponding parameter estimate vector is given by

 

We can formulate the adaptive update rule given in Table 6.3.1 as

(4)

and

(5)

b. Persistency of Excitation

With this adaptive controller it is desired to show analytically that qd= 1-e-2t is
not persistently exciting. From (6.5.2), the integrand of the persistently exciting
condition for this example is given by

 

or

(6)

Multiplying the first column of YT(·)Y(·) by  and adding it to the second
column of YT(·)Y(·) gives

 (7)

Since the matrix RYY has the same range space as the matrix YT(·)Y(·), we
can see from (7) that the range space of the matrix YT(·)Y(·) will always be
one-dimensional; therefore, the persistent excitation condition does not hold
for

6.5 Persistency of Excitation
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(1)

with initial conditions of

(2)

The tracking error and the parameter estimates are depicted in Figure 6.5.2.
As anticipated, the tracking error is asymptotically stable, and the parameter
estimates remain bounded. Note that  and  do not go to zero since the
desired trajectory is not persistently exciting.

qd=1-e-2t.  

EXAMPLE 6.5–2: Persistency of Excitation for a One-Link Arm

a. Desired Trajectory with Single Frequency

With the adaptive controller in Example 6.5.1, we would like to show by
simulation that qd=sin t is not persistently exciting. For m=1 kg and b=1 N-m-
s, the adaptive inertia-related controller was simulated with

Figure 6.5.2: Lack of persistency of excitation.

�
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b. Desired Trajectory with Multiple Frequencies

With the adaptive controller in Example 6.5.1, we desire to show by simulation
that qd=sin t+cos 3t is persistently exciting. The adaptive controller given in
Example 6.5.1 should be simulated under the same conditions as those given
in part (a) of this example except for the change in the desired trajectory. The
tracking error and the parameter error are depicted in Figure 6.5.3. As
illustrated by the figure, the tracking error is asymptotically stable, and the
parameter estimates remain bounded. Note that  and  converge to the
exact values of b and m, respectively. This is because the desired trajectory is
persistently exciting.

6.6 Composite Adaptive Controller

In both the adaptive computed-torque and the adaptive inertia-related control
strategies, we have shown that the tracking error is asymptotically stable and
the parameter error is bounded. It was then illustrated that if a persistency of
excitation condition holds, the parameter error  converges to zero. In some
robotic applications it may not be practical to utilize a persistently exciting

Figure 6.5.3: Persistency of excitation.

�

6.6 Composite Adaptive Controller
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trajectory; therefore, we are motivated to redesign the adaptive control strategy
to achieve parameter identification.

In this section we show how the adaptive controller given in Section 6.3
can be modified to ensure asymptotic convergence of both the tracking error
and the parameter error [Slotine and Li 1985(b)]. The asymptotic convergence
of the parameter error is shown to hold if a condition on the filtered regression
matrix holds. This condition, often called the infinite integral condition, is
less restrictive than the persistency of excitation condition.

The procedure for designing the new adaptive controller can be out-lined
as follows. First, a filtered regression matrix is formed from torque
measurements. Second, it is shown how this filtered regression matrix can be
used to formulate a least-squares estimator for estimating the unknown
parameters. Finally, the adaptive update rule in Table 6.3.1 is modified to
include an additional least-squares estimator term.

Torque Filtering

We now show how the regression matrix that is formed from a torque
measurement can be filtered to eliminate the need for acceleration
measurements. From Section 6.2 we can write the robot Equation (6.2.1) in
the following form:

(6.6.1)

The middle expression in (6.6.1) is written in the form

(6.6.2)

where

(6.6.3)

and

(6.6.4)

The reason for writing the robot equation in the form given by (6.6.2) is that
this equation has now been separated in a way that allows  to be filtered out
or removed. That is, by filtering (6.6.2), we have

(6.6.5)
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where f is the impulse response of a linear stable, strictly proper filter, and the
* is used to denote the convolution operation. For example, we could use the
first-order filter given by

(6.6.6)

where a is a positive scalar constant. By using the property of convolution

(6.6.7)

we can rewrite (6.6.5) as

(6.6.8)

After substituting the expressions for h and g, note that  has been filtered
out. That is, the explicit expression for if is given by

(6.6.9)

where  is the impulse response of a proper, stable filter; for example,

(6.6.10)

By linearity, the unknown parameters can still be separated out with regard
to (6.6.9). That is, (6.6.9) can be rewritten as

(6.6.11)

where Wf(·) is an n×r filtered regression matrix, and ϕ is an r×1 vector of
unknown parameters. We now use an example to show how torque filtering
can be used to eliminate the need for acceleration measurements.

EXAMPLE 6.6–1: Torque Filtering of a One-Link Robot Arm

Using the dynamics of the one-link robot arm given in Example 6.5.1, it is
desired to find the filter regression matrix Wf(q, ) given in (6.6.11), where
the linear filter is given by

(1)

or, in the time domain,

6.6 Composite Adaptive Controller
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f(t)=e-t. (2)

Using (6.6.9), the filtered torque expression for the one-link arm is given
by

(3)

where

(4)

The expression in (3) is used to separate the known functions from the unknown
constants into the form

(5)

where the filtered regression matrix and parameter vector are given by

(6)

and

(7)

The important concept to realize in the regression matrix formulation given
by (6.6.11) is that the quantities τf and Wf(q, )are known or assumed to be
measurable; however, ϕ is unknown. To estimate ϕ, we define the estimate of
the filtered torque based on the estimate of the unknown parameters, that is,

(6.6.12)

We can now define the measurable quantity

(6.6.13)

where

(6.6.14)

�
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The use of f is crucial in the development of the least-squares estimator
that is developed in the next section. We can easily see how f is measurable
by writing (6.6.14) in the form

(6.6.15)

As explained earlier, f and Wf(·) are assumed to be known or measurable;
therefore, all we need is the parameter estimate term [i.e.,  in (6.6.15)] for if
to be known. Later, we generate an adaptive update rule that will give us the
parameter estimate term  in (6.6.15). So for now we will assume that f is
known.

Least-Squares Estimation

Least-squares estimation methods have been used in many types of parameter
identification schemes [Astrom and Wittenmark 1989]. It turns out that this
type of estimation method extracts the maximum amount of parametric
information even when the desired trajectory is not persistently exciting. This
is an important fact to realize when designating adaptive control systems for
robot manipulators because in many robot applications, the persistency of
excitation condition will not be valid. Therefore, least-squares estimation
offers an attractive solution to the design of adaptive controllers for robot
manipulators.

We now show how the least-squares estimation method can be used to
generate an adaptive update rule. First, define the least-squares update rule

(6.6.16)

where

(6.6.17)

and P is an r×r time-varying symmetric matrix.
With this least-squares estimation method, if an “infinite integral” condition

holds, the parameter error converges to zero. Specifically, if

(6.6.18)

holds, then

(6.6.19)

6.6 Composite Adaptive Controller
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As pointed out in [Slotine and Li 1985(b)], this infinite integral condition is
a weaker condition than the persistency of excitation condition. That is, in
practical robot applications, (6.6.18) can often be validated.

EXAMPLE 6.6–2: Least-Squares Estimator for a One-Link Robot Arm

Using the dynamics of the one-link robot arm given in Example 6.5.1, it is
desired to find the least-squares estimator given by (6.6.16) and (6.6.17).
Since the number of unknown parameters is two, define the matrix P to be

(1)

Utilizing the filtered regression matrix from Example 6.6.1, we have

(2)

where

 

Using (6.6.17), it is easy to see that the matrix P should be updated in the
following manner:

(3)

(4)

and

(5)

Now using (6.6.16), the parameter update rules are

(6)

and
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(7)

where, from (6.6.16), �f is given by

(8)

�

For insight into how the least-squares estimation method extracts parameter
information, we now show how (6.6.18) is obtained. Utilizing (6.6.13) and
the fact that the parameters are constant, we write (6.6.16) as

(6.6.20)

Using the matrix identity =–P –1P we can write (6.6.17) as

(6.6.21)

Substituting (6.6.21) into (6.6.20) yields the differential equation

(6.6.22)

We claim that

(6.6.23)

is the solution to (6.6.22). This fact can be verified by substituting (6.6.23)
into the right-hand and left-hand sides of (6.6.22). That is, we obtain

(6.6.24)

therefore, (6.6.23) is the solution. Now from (6.6.21) it is easy to see that the
solution for P is given by

(6.6.25)

After examining (6.6.25), we can intuitively see that if the infinite integral
condition is satisfied, then

(6.6.26)

and

(6.6.27)

6.6 Composite Adaptive Controller
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Now if (6.6.26) holds, we can see from (6.6.23) that the parameter error
converges to zero. This proof is detailed in [Li and Slotine 1987].

Composite Adaptive Controller

The composite adaptive controller is the same as the controller given in Table
6.3.1, with the exception of a modification to the adaptive update rule. This
modification is given by

(6.6.28)

To prove that the tracking error and the parameter error both converge to
zero, start with the Lyapunov-like function,

(6.6.29)

Differentiating (6.6.29) with respect to time yields

(6.6.30)

From the control law given in Table 6.3.1 and the development in Section
6.3, we can form the tracking error system

(6.6.31)

Substituting (6.6.31) into (6.6.30) yields

(6.6.32)

After substituting  in (6.6.28), –1 in (6.6.21), and f in (6.6.13) into (6.6.32),
we have

(6.6.33)

We now detail the type of stability for the tracking error and the parameter
error. First, since  in (6.6.33) is at least negative semidefinite in the form

(6.6.34)

we can state that V in (6.6.29) is bounded. Since V is bounded, M(q) is a
positive-definite matrix, and P-1 satisfies the condition given by (6.6.27), we
can state that r and  are bounded. Furthermore, from the definition of r
given in (6.3.8), we can use standard linear control arguments to state that e
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and e (and  hence q and ) are bounded. We can now use the same arguments
presented in Section 6.4 to show that . Given that , we can
determine a stability result for the position tracking error by establishing the
transfer function relationship between the position tracking error and the filtered
tracking error r. From (6.3.8), we can state that

(6.6.35)

where s is the Laplace transform variable,

(6.6.36)

I is the n×n identity matrix, and � is an n×n positive-definite matrix. Since
G(s) is a strictly proper, asymptotically stable transfer function and 
we can use Theorem 1.4.7 in Chapter 1 to state that

(6.6.37)

Second, since  is at least negative semidefinite, we know that V must be
nonincreasing, and hence  is upper bounded by V(0). Furthermore, by the
infinite integral assumption, we have concluded in (6.6.27) that

(6.6.38)

Since the term

(6.6.39)

in V given in (6.6.29) is upper bounded by V(0), we can see that for (6.6.38)
to hold, we must have

 

Therefore, from the argument above, the position tracking error and the
parameter error are asymptotically stable for the composite adaptive controller
outlined in Table 6.6.1. In accordance with the theoretical development above,
all we can say about the velocity tracking error is that it is bounded; however,
Barbalat’s lemma can be invoked to illustrate that the velocity tracking error
is also asymptotically stable (see Problem 6.6–3). We now use an example to
illustrate how the composite adaptive controller is formulated.

6.6 Composite Adaptive Controller
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EXAMPLE 6.6–3: Composite Adaptive Controller for a One-Link Robot Arm

It is desired to formulate the composite adaptive controller for the one-link
robot arm given in Figure 6.5.1. The torque control law is the same as that
given by Equation (2) in Example 6.5.1; therefore, all that need be done is the
formulation of the composite adaptive update rule. From Table 6.6.1, the
composite parameter update rules are

(1)

and

(2)

where r is defined in (6.3.8), Y11, Y12 are defined in Example 6.5.1, and P1, P2,
P3, Wf11, Wf12, f are defined in Example 6.6.2.

�

Table 6.6.1: Composite Adaptive Controller
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6.7 Robustness of Adaptive Controllers

All of the adaptive control schemes discussed ensure asymptotic tracking of a
desired reference trajectory for the robot manipulator dynamics; however, in
reality we know that there will always be disturbances in any electromechanical
system. A simplistic way to take into account some sort of disturbance effect
is to add a bounded disturbance term to the manipulator dynamic equation.
With this additive disturbance term the robot equation becomes

(6.7.1)

where Td is an n×1 vector that represents an additive disturbance.
Applying the adaptive inertia-related control strategy and ignoring the

term Td in (6.7.1) gives the adaptive control scheme of Table 6.3.1. However,
if we reexamine the stability analysis given in Section 6.3 for the adaptive
inertia-related controller, we can see that a bounded disturbance term gives
us a different type of stability result for the tracking error. Specifically, with
the addition of the bounded disturbance term in (6.7.1), the derivative of the
Lyapunov function in (6.3.7) becomes

(6.7.2)

From (6.7.2) it is obvious that  can no longer be taken to be negative
semidefinite. From our previous experience with Lyapunov stability theory, it
was desired to have  be “negative”; therefore, it stands to reason that it
would be advantageous to find the region where  is negative in (6.7.2). By
the use of the Rayleigh-Ritz Theorem (see Chapter 1), we can write (6.7.2) as

(6.7.3)

From (6.7.3), a sufficient condition on the negativity of  can be obtained.
That is,  will be negative if

(6.7.4)

If (6.7.4) is satisfied,  is negative and V will decrease. If V decreases, then by
our definition of the Lyapunov function given in (6.3.7), r must eventually
decrease. However, if r decreases such that

6.7 Robustness of Adaptive Controllers
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(6.7.5)

then  may become positive, which means that V will start to increase. If V
starts to increase, we gain insight into the problem by examining two
possibilities. One, the increase in V causes r to increase such that (6.7.4) is
satisfied. This means that V will start to decrease and hence r will eventually
decrease. If r increased and decreased in this fashion continually, then r and

 both remain bounded. The other possibility is that the increase in V causes
 to increase while r stays small enough such that (6.7.5) is satisfied. For

this case, V remains positive; therefore,  could continue to increase. If V
continues to increase in this fashion, r is bounded; however,  and hence 
both become unbounded.

The argument above reveals that the parameter estimate in the adaptive
inertia-related control law may go unstable in the presence of a bounded
disturbance. That is, the parameter estimate may diverge under the
assumption that the robot model is given by (6.7.1). If the parameter estimate
becomes too large, we can see from Table 6.3.1 that the input torque will
start to grow and possibly saturate the joint motors; therefore, it would be
desirable to modify the adaptive controller to eliminate the possibility of
torque saturation.

EXAMPLE 6.7–1: Effects of Disturbance on Adaptive Control

In this example we simulate the same adaptive controller given in Example
6.3.1 with the same control parameters, initial conditions, and desired
trajectory; however, we have added the disturbance term

(1)

to the two-link manipulator dynamics. The tracking error and parameter
estimates are illustrated in Figure 6.7.1. From the figure, note that for the
disturbance given by (1), the parameter estimates do not become unbounded;
however, the tracking error is no longer asymptotically stable.

�

Torque-Based Disturbance Rejection Method

To reject an additive disturbance term in the robot model, we illustrate
how the parameter estimates remain bounded if the torque control is
modified to be
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(6.7.6)

where �d is the torque control given in Table 6.3.1,

(6.7.7)

sgn(·) is used to denote the signum function, and kd is a scalar constant that
satisfies

(6.7.8)

with Tdi; representing the ith component of the n×1 vector Td [Slotine and Li
1985(c)].

Applying the disturbance rejection controller given in (6.7.6), the derivative
of the Lyapunov function in (6.3.7) becomes

(6.7.9)

By noting that

(6.7.10)

(6.7.9) can be written as

Figure 6.7.1: Simulation of adaptive controller in the pressence of disturbance.

6.7 Robustness of Adaptive Controllers
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(6.7.11)

By utilizing (6.7.8), we can write (6.7.11) as

(6.7.12)

The same arguments as in Section 6.6 can be used to show that the position
tracking error is asymptotically stable while the velocity tracking error and
the parameter estimate are bounded.

EXAMPLE 6.7–2: Disturbance Rejection for a Two-Link Robot Arm

In this example we simulate the modified adaptive controller given in (6.7.6)
with the same control parameters, initial conditions, and desired trajectory as
in Example 6.3.1 and also with the disturbance given in Example 6.7.1. The
modified torque controller is given by

(1)

and

(2)

where �a1, and �a2 are the same adaptive torque controllers given in
Example 6.3.1, �1, and �2 are the same scalar constants defined in Example
6.3.1, and

(3)

Note that kd has been chosen to satisfy the condition given in (6.7.8) and
that the update laws are the same as those given in Example 6.3.1. The
tracking error and parameter estimates are illustrated in Figure 6.7.2. From
the figure we note that the parameter estimates remain bounded; furthermore,
the tracking error is now asymptotically stable even in the presence of a
disturbance. It is important to note that for the theoretical development given
for the torque-based disturbance rejection method above, we only guaranteed
the velocity tracking error to be bounded.

�
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Estimator-Based Disturbance Rejection Method

In [Reed and Ioannou 1988] a modified version of the �-modification [Ioannou
and Tsakalis 1985] to the adaptive inertia-related control algorithm [Slotine
and Li 1985(a)] was introduced to compensate for unmodeled dynamics and
bounded disturbances in the robot model. In this method the torque control is
the same as that given by Table 6.3.1; however, the adaptive update rule is
modified to be

(6.7.13)

Figure 6.7.2: Simulation of adaptive controller with disturbance rejection,

where

(6.7.14)

and

(6.7.15)

With the update rule (6.7.13), Reed showed that the tracking error could be
confined to a residual set and that all closed-loop signals are bounded.

As we have shown, a bounded disturbance can cause the parameter estimates
to go unstable. The update rule given by (6.7.13) is intended to remedy this

6.7 Robustness of Adaptive Controllers
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problem by regulating on-line the size of the parameter estimates. This is
done by the scalar design constant �0. That is, by checking the size of the
parameter estimates against �0, the parameter estimates are forced to remain
bounded by using this new update rule. One can see clearly that if � �<�0, the
update rule is the same as that given by Table 6.3.1. In other words, if the
parameter estimates do not get too large, the controller is the same as the
adaptive inertia-related controller. On the other hand, if parameter estimates
get too large, the adaptive update rule is modified to ensure that the parameter
estimates remain bounded. How this σ-modification accomplishes this task is
now discussed.

To motivate how the update rule given in (6.7.13) was formulated, examine
the case when � �>�0. This is the stabilizing part of the update rule. That is,
if the parameter estimates become too large, the update rule switches to

(6.7.16)

or in terms of the parameter error,

(6.7.17)

We now reexamine the stability analysis given in Section 6.3 for the adaptive
inertia-related controller with the parameter update rule given by (6.7.16).
Specifically, with the addition of the bounded disturbance term in (6.7.1), the
derivative of the Lyapunov function in (6.3.7) becomes

(6.7.18)

or

(6.7.19)

where

(6.7.20)

By the use of the Rayleigh-Ritz Theorem (see Chapter 1), we can write
(6.7.19) as

(6.7.21)

From (6.7.21),  will be negative if
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(6.7.22)

It is important to note that the right-hand side of (6.7.22) is a constant;
therefore, if (6.7.22) is satisfied,  is negative, which causes V to decrease. If
V decreases, then by our definition of the Lyapunov function given in (6.3.7),
x must eventually decrease. However, if x decreases such that

(6.7.23)

then  may be positive, which means that V will start to increase. The increase
in V causes x to increase such that (6.7.22) is satisfied. This means that V now
starts to decrease again and hence x eventually decreases. This argument
illustrates how x is bounded. If x is bounded, then from (6.7.20), r and  are
bounded. Since r is bounded, standard linear control arguments can be used
to show that e and e are  bounded.

One last point is now discussed regarding the region �0�� ��2�0. for the
adaptive update rule given in (6.7.13). This part of the adaptive update rule
is used to ensure that there is a smooth transition between the adaptive
inertia-related update rule and the stabilizing portion of the update rule
given by (6.7.16). That is, this ensures that we do not obtain any
discontinuities in the parameter estimates, which could cause a large
discontinuity in the input torque. A large discontinuity is undesirable in the
input torque signal since this type of signal could cause the robot manipulator
to jerk violently.

6.8 Summary

In this chapter an account of several of the most recent adaptive control
results for rigid robots has been given. The intent has been to lend some
perspective to the growing list of adaptive control results for robot manipulators.
Some research areas, such as transient behavior, digital implementation, and
robustness to unmodeled dynamics, will no doubt be addressed in the future.
An issue that remains to be investigated is the comparison of the advantages
and disadvantages of the different servo and adaptive laws.

Some excellent adaptive control work with regard to robot manipulators
by other researchers is outlined in [Ortega and Spong 1988]. Since this is such
a well-studied field and there is limited space available in this chapter, we
apologize to anyone who has been left out.

6.8 Summary
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PROBLEMS

Section 6.2

6.2–1 Design and simulate the adaptive computed-torque controller given
in Table 6.2.1 for the two-link polar robot arm given in Chapter 2.

6.2–2 Find different positive-definite, symmetric matrices, P and Q from
that given in Example 6.2.2 that satisfy

 

 where

 Kp, Kv are diagonal positive-definite matrices, and On, In represent
the n×n zero matrix and n×n identity matrix, respectively.

6.2–3: With the P and Q found in Problem 6.2–3, redo Problem 6.2–1 and
report the differences in the tracking error performance.

Section 6.3

6.3–1 Design and simulate the adaptive inertia-related controller given in
Table 6.3.1 for the two-link polar robot arm given in Chapter 2.

6.3–2 For the simulation given in Problem 6.3–1, run several simulations
with different values of the control parameters (ie., �, Kv, 	), and
report the effects on tracking error performance.

6.3–3 Enumerate the the advantages of the adaptive controller given in
Table 6.3.1 over the adaptive controller given in Table 6.2.1.

6.3–4 As given in (6.3.8), the filtered tracking error is defined by

 

 where � is a positive-definite diagonal matrix. Show that if

Section 6.4

6.4–1 Design and simulate an adaptive controller for the two-link re volute
arm given in Example 6.3.1 with the PID servo law given in Example
6.4.3 and the adaptation law given in Example 6.4.1. Report any
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 differences from that given in Example 6.3.1.

6.4–2 Redo Problem 6.4–1 with the proportional+integral adaptation law
given by Equations (6.4.20) and (6.4.21).

Section 6.5

6.5–1 Show analytically that qd=sin t in Example 6.5.2 is not persistently
exciting.

Section 6.6

6.6–1 Show that

6.6–2 Simulate the composite adaptive controller given in Example 6.6.3
and report the effects on the tracking error of using different values
for P(0) and a (i.e., the pole of the filter used for the filtered regression
matrix).

6.6–3 Show how Barbalat’s lemma given in Chapter 1 can be used in the
proof of the composite adaptive controller to yield

 

Section 6.7

6.7–1 Redo Problem 6.3–1 with the additive bounded disturbance

 

 added to two-link polar robot arm dynamics given in Chapter 2.

6.7–2 Redo Problem 6.3–1 with the additive bounded disturbance given in
Problem 6.7–1 and with the term

 

 added to the adaptive controller. Run several simulations with different
values of kd, and report the effects on tracking error performance.
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Chapter 7

Advanced Control
Techniques

In this chapter some advanced control techniques for the tracking control of
robot manipulators are discussed. The controllers that are developed in this
chapter address computational issues and the effects of actuator dynamics.
The analytical concepts and the control developments presented in this chapter
are in general more complex than those presented in the previous chapters;
therefore, it is highly recommended that the previous chapters be studied
before examining this new material.

7.1 Introduction

As research in robot control has progressed over the last couple of years,
many robot control researchers have begun to focus on implementational
issues. That is, implementational concerns, such as the reduction of on-line
computation and the effects of actuator dynamics, are causing researchers to
rethink the previous theoretical development of robot controllers so that these
concerns are addressed. This constant retooling of the previous control
development to coincide with the implementational restrictions is how previous
progress in robot control research has proceeded. Utilizing this concept of
forcing the theoretical development to satisfy implementational restrictions,
we illustrate how some researchers have begun to address problems such as
reducing on-line computation and compensating for the effects of actuator
dynamics.
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7.2 Robot Controllers with Reduced On-Line
Computation

In this section we examine the robot controllers designed by Sadegh and
coworkers [Sadegh and Horowitz 1990], [Sadegh et al. 1990]. We separate
these controllers from related work since this work addresses the extremely
relevant implementation issue of on-line controller computation. Specifically,
this adaptive controller reduces on-line computation as opposed to other
control techniques, such as the adaptive controllers presented in Chapter 6.
Following the development of the adaptive controller research, a “repetitive”
controller is also presented. This repetitive controller also reduces online
computation.

Desired Compensation Adaptation Law

One of the disadvantages of the adaptive controllers in Chapter 6 is that the
regression matrix (e.g., the matrix Y(·) in the adaptive inertia-related controller)
used as feedforward compensation must be calculated on-line. The regression
matrix must be calculated on-line since it depends on the measurements of the
joint position and velocity (i.e., q and q). For the simple two-link robot
controller given in Example 6.3.1, it is evident that online calculation of Y(·)
is computationally intensive. As one can imagine, on-line computation of the
regression matrix can be very computationally intensive if one desires to
control a robot manipulator with many degrees of freedom.

To eliminate the need for on-line computation of the regression matrix, we
will now examine the desired compensation adaptation law (DCAL) [Sadegh
and Horowitz 1990]. The DCAL eliminates the need for on-line computation
of the regression matrix by replacing q and q with the desired joint position
and velocity (i.e., qd and qd). That is, the DCAL regression matrix only depends
on desired trajectory information; therefore, the DCAL regression matrix can
be calculated a priori off-line. Of course, this modification of the regression
matrix forces us to reexamine the adaptive control design and the corresponding
stability analysis.

For purposes of control design in this section, we assume that the robotic
manipulator is a revolute manipulator with dynamics given by

(7.2.1)

where Fd is a n×n positive-definite, diagonal matrix that is used to
represent the dynamic coefficients of friction, and all other quantities
are as defined in Chapter 3. As in other chapters, we define the joint
tracking error to be
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e=qd-q. (7.2.2)

As explained in Chapter 6, adaptive control of robot manipulators involves
separating the known time functions from the unknown constant parameters.
For example, recall that this separation of parameters from time functions for
the adaptive inertia-related controller is given by

(7.2.3)

where Y(·) is an n×r regression matrix that depends only on known time
functions of the actual and desired trajectory, and � is an r×1 vector of unknown
constant parameters. (Note that � defined Table 6.3.1 is taken to be the
identity matrix.)

In the DCAL, this separation of parameters from time functions is given by

(7.2.4)

where Yd(·) is an n×r regression matrix that depends only on known functions
of the desired trajectory. Note that if we substitute qd and qd for q and q
respectively, into (7.2.3), the regression matrix formulation given by (7.2.3)
is equivalent to that given by (7.2.4).

Utilizing the regression matrix formulation given in (7.2.4), the DCAL is
formulated as

(7.2.5)

where kv, kp, ka are scalar, constant, control gains,  is the r×1 vector of
parameter estimates, and the filtered tracking error is defined as

r=e+ . (7.2.6)

The corresponding DCAL parameter adaptive update law is

(7.2.7)

where Γ is an r×r positive definite, diagonal, constant, adaptive gain matrix,
and the parameter error is defined by

(7.2.8)

Note that the DCAL given by (7.2.5) is quite similar to adaptive controllers
discussed in Chapter 6 with the exception of the term ka||e||2r in (7.2.5). It
turns out that this additional term is used to compensate for the
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difference between Y(·)� and Yd(·)� given in (7.2.3) and (7.2.4), respectively.
As shown in [Sadegh and Horowitz 1990], this difference between the actual
regression matrix and the desired regression matrix formulations can be
quantified as

and �1, �2, �3, and �4 are positive bounding constants that depend on the
desired trajectory and the physical properties of the specific robot configuration
(i.e., link mass, link length, friction coefficients, etc.).

To analyze the stability of the controller given by (7.2.5), we must form
the corresponding error system. First, we rewrite (7.2.1) in terms of Y(·)� and
r defined in (7.2.3) and (7.2.6), respectively. That is, we have

(7.2.11)

Adding and subtracting the term Yd(·)� on the right-hand side of (7.2.11)
yields

(7.2.12)

where  is defined in (7.2.10). Substituting the control given by (7.2.5) into
(7.2.12) yields the error system

(7.2.13)

where  is defined in (7.2.8).
We now analyze the stability of the error system given by (7.2.13) with the

Lyapunov-like function

(7.2.14)

Differentiating (7.2.14) with respect to time yields

(7.2.15)

since scalar quantities can be transposed. Substituting (7.2.13) into (7.2.15)
fields

(7.2.9)

(7.2.10)

where
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(7.2.16)

By utilizing the skew-symmetric property (see Chapter 3) and the update
law in (7.2.7), it is easy to see that the second line in (7.2.16) is equal to
zero, therefore, by invoking the definition of r given in (7.2.6), (7.2.16)
simplifies to

(7.2.17)

From (7.2.17), we can place an upper bound on V in the following manner:

(7.2.18)

A new upper bound on  can be obtained by substituting (7.2.9) into (7.2.18)
to yield

(7.2.19)

By rearranging the second line of (7.2.19), it can be written as

(7.2.20)

After collecting common terms in (7.2.20), it can be rewritten as

(7.2.21)

By noting that if the control gain ka is adjusted in accordance with

(7.2.22)
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where

we can see that the terms on the second line of (7.2.21) will all be negative;
therefore, we can obtain the new upper bound on .

(7.2.23)

By rewriting (7.2.23) in the matrix form

(7.2.24)

we can establish sufficient conditions on kp and kv such that the matrix  in
(7.2.24) is positive definite. Specifically, by using the Gerschgorin theorem
(see Chapter 2), we can see that if

the matrix  defined in (7.2.24) will be positive definite; therefore,  will be
negative semidefinite.

We now detail the type of stability for the tracking error. First, since 
is negative semidefinite, we can state that V is upper bounded. Using the
fact that V is upper bounded, we can state that e, , r, and  are bounded.
Since e, , r, and  are bounded, we can use (7.2.13) to show that 
and hence  in (7.2.17) are bounded. Second, note that since M(q) is
lower bounded as delineated by the positive-definite property of the inertia
matrix (see Chapter 3), we can state that V given in (7.2.14) is lower
bounded. Since V is lower bounded, V is negative semidefinite, and  is
bounded, we can use Barbalat’s lemma (see Chapter 2) to state that

 

Therefore, from the argument above and (7.2.24), we know that

(7.2.27)

From (7.2.27), we can also determine the stability result for the velocity

and

(7.2.26)

(7.2.25)
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tracking error. Specifically, from (7.2.6), note that r is defined to be a stable
first-order differential equation in terms of the variable e; therefore, by standard
linear control arguments, we can write

(7.2.28)

This result informs us that if the controller gains are selected according to
(7.2.22), (7.2.25), and (7.2.26), the tracking errors e and  are asymptotically
stable. From the analysis above, all we can say about the parameter error is
that it remains bounded. The adaptive controller just derived is summarized
in Table 7.2.1 and depicted in Figure 7.2.1.

Table 7.2.1: DCAL Controller

After glancing through Table 7.2.1, we can see that as opposed to the
adaptive inertia-related controller, the DCAL has the obvious advantage of
reduced on-line calculations. Specifically, the regression matrix Yd(·) depends
only on the desired trajectory; therefore, the regression matrix can be calculated
off-line. We now present an example to illustrate how Table 7.2.1 can be used
to design adaptive controllers for robotic manipulators.
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EXAMPLE 7.2–1: DCAL for the Two-Link Arm

We wish to design and simulate the DCAL given in Table 7.2.1 for the
two-link arm given in Figure 6.2.1. (The dynamics for this robot arm are
given in Chapter 3.) Assuming that the friction is negligible and the link
lengths are exactly known to be of length 1 m each, the DCAL can be
written as

(1)

and

(2)

In the expression for the control torques, the regression matrix Yd(·) is
given by

(3)

Figure 7.2.1: Block diagram of DCAL controller.
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where

Formulating the adaptive update rule as given in Table 7.2.1, the
associated parameter estimate vector is

 

with the adaptive update rules

(8)

For m1=0.8 kg and m2=2.3 kg, the DCAL was simulated with

 

The tracking error and mass estimates are depicted in Figure 7.2.2. As
illustrated by the figure, the tracking error is asymptotically stable, and the
parameter estimates remain bounded.

(9)

and

and
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Repetitive Control Law

In many industrial applications, robot manipulators are used to perform the
same task repeatedly. For example, a robot may be required to paint the same
assembly-line part over and over again. As one can imagine, the desired
trajectory for this painting operation would be a periodic function. That is,
after the desired trajectory has been generated for painting the first part (i.e.,
the first “trial”), the same desired trajectory should be followed in a repetitive
fashion for painting the next part (i.e., the next “trial”).

If a control strategy does not take into account the nature of a repetitive
operation, mistakes made along the first trajectory will be repeated from trial
to trial. Therefore, one is motivated to design a controller that utilizes the
tracking error measurements in the present trial to improve the tracking
performance in the next trial. These types of controllers are often referred to
as “learning” or repetitive controllers. The term “learning controller” is used
to emphasize the fact that the controller attempts to learn the repeat able part
of the manipulator dynamics.

To motivate the design of the repetitive control law (RCL) [Sadegh et al.
1990], we note that the dynamics given by

(7.2.29)

Figure 7.2.2: Simulation of DCAL controller.
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are repeatable if the desired trajectory is periodic. That is, even though there
may be unknown constant parametric quantities in (7.2.29), the signal
represented by the n×1 vector ud(t) will be periodic or repeatable. Therefore,
in the subsequent discussion, we assume that the desired trajectory is periodic
with period T. This periodic assumption on the desired trajectory allows us to
write

ud(t)=ud(t-T) (7.2.30)

since the dynamics represented by ud(t) depend only on periodic quantities.
Utilizing the repeatability of the dynamics given by (7.2.29), the RCL is

formulated as

(7.2.31)

where the n×1 vector ûd(t) is a learning term that is used to compensate for the
repeatable dynamics ud(t), and all other quantities are the same as those defined
for the DCAL. The learning term ûd(t) is updated from trial to trial by the
learning update rule

(7.2.32)

where kL is a positive scalar control gain.
As done similarly in the adaptive control development, we will write the

learning update rule given in (7.2.32) in terms of the learning error, which is
defined as

(7.2.33)

Specifically, multiplying (7.2.32) by -1 and then adding ud(t) to both sides of
(7.2.32) yields

(7.2.34)

By utilizing the periodic assumption given by (7.2.30), we can write (7.2.34)
as

(7.2.35)

which gives the learning error update rule

(7.2.36)

where  is defined in terms of (7.2.33).
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Before we analyze the stability of the controller given in (7.2.31), we will
form the corresponding error system. First, we rewrite (7.2.1) in terms of r
defined in (7.2.6). That is, we have

(7.2.37)

where the n×1 vector ua(t) is used to represent the “actual manipulator
dynamics” given by

(7.2.38)

Adding and subtracting the term ud(t) on the right-hand side of (7.2.37) yields

(7.2.39)

where  is defined as

(7.2.40)

As shown similarly in [Sadegh and Horowitz 1990], this difference between
the actual manipulator dynamics (i.e., ua(t)) and the repeatable manipulator
dynamics (i.e., ud(t)) can be quantified as

(7.2.41)

where �1, �2, �3, and �4 are positive bounding constants that depend on the
desired trajectory and the physical properties of the specific robot configuration
(i.e., link mass, link length, friction coefficients, etc.).

The last step in forming the error system is to substitute the control given
by (7.2.31) into (7.2.39) to yield

(7.2.42)

We now analyze the stability of the error system given by (7.2.42) with the
Lyapunov-like function

(7.2.43)

Differentiating (7.2.43) with respect to time yields
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(7.2.44)

Substituting the error system given by (7.2.42) into (7.2.44) yields

(7.2.45)

By utilizing the skew-symmetric property and the learning error update law
in (7.2.36), it is easy to show that the second line in (7.2.45) is equal to

 

Therefore, by invoking the definition of r given in (7.2.6), (7.2.45) simplifies
to

(7.2.46)

From (7.2.46) we can place an upper bound on in the following manner:

(7.2.47)

The rest of the stability argument is a modification of the stability argument
presented in the preceding section for the DCAL. Specifically, we first note
that (7.2.18) and (7.2.47) are almost identical since  in (7.2.18) and  in
(7.2.47) are bounded by the same scalar function. After one retraces the steps
of the DCAL stability argument, we can see that the controller gains ka and kp

should still be adjusted according to (7.2.22) and (7.2.25), respectively.
However, the controller gain kv, is adjusted in conjunction with the controller
gain kL to satisfy

(7.2.48)

where �1, �2, �3, and �4 are defined (7.2.41). If the controller gains are adjusted
according to (7.2.22), (7.2.25), and (7.2.48), then from the analytical
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development given for the DCAL (i.e., (7.2.18) to (7.2.24)) and (7.2.47), we
can place the new upper bound on :

(7.2.49)

where λ3 is a positive scalar constant given by λmin{Q0},

 

We now detail the type of stability for the tracking error. First note that
from (7.2.49), we can place the new upper bound on :

Multiplying (7.2.51) by -1 and integratisg the left-hand side of (7.2.51) yields

(7.2.52)

Since  is negative semidefinite as delineated by (7.2.49), we can state that V
is a nonincreasing function and therefore is upper bounded by V(0). By recalling
that M(q) is lower bounded as delineated by the positive-definite property of
the inertia matrix, we can state that V given in (7.2.43) is lower bounded by
zero. Since V is nonincreasing, upper bounded by V(0), and lower bounded by
zero, we can write (7.2.52) as

(7.2.53)

or

The bound delineated by (7.2.54) informs us that  (see Chapter 2),
which means that the filtered tracking error r is bounded in the “special” way
given by (7.2.54).

(7.2.50)

which implies that

(7.2.51)

(7.2.54)
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To establish a stability result for the position tracking error e, we establish
the transfer function relationship between the position tracking error and the
filtered tracking error r. From (7.2.6), we can state that

e(s)=G(s)r(s), (7.2.55)

where s is the Laplace transform variable,

G (s)=(sI+I)-1, (7.2.56)

and I is the n×n identity matrix. Since G(s) is a strictly proper, asymptotically
stable transfer function and , we can use Theorem 2.4.7 in Chapter 2 to

state that

(7.2.57)

Therefore, if the controller gains are selected according to (7.2.22), (7.2.25),
and (7.2.48), the position tracking error e is asymptotically stable. In accordance
with the theoretical development presented in this section, all we can say
about the velocity tracking error e is that it is bounded. It should be noted that
if the learning estimate ûd(t) in (7.2.32) is “artificially” kept from growing,
we can conclude that the velocity tracking error is asymptotically stable [Sadegh
et al. 1990]. The stability proof for this modification is a straightforward
application of the adaptive control proofs presented in Chapter 6.

The repetitive controller examined in this section is summarized in Table
7.2.2 and depicted in Figure 7.2.3. After glancing through Table 7.2.2, we
can see that the RCL requires very little information about the robot being
controlled as opposed to adaptive controllers that required the formulation of
regression-type matrices. Another obvious advantage of the RCL is that it
requires very little on-line computation. We now present an example to illustrate
how Table 7.2.2 can be used to design repetitive controllers for robot
manipulators.

EXAMPLE 7.2–2: RCL for the Two-Link Arm

We wish to design and simulate the RCL given in Table 7.2.2 for the two-link
arm given in Figure 6.2.1. (The dynamics for this robot arm are given in
Chapter 3.) From Table 7.2.2, the RCL can be written as

(1)

and
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(2)

Formulating the learning update rule as given in Table 7.2.2 yields

(3)

and

(4)

For m1=0.8 kg, m2=2.3 kg, and nk lengths of 1 m, the RCL was simulated
with

ka=kv=kp=kL=50, T=2p,  

 
and

Table 7.2.2: RCL Controller
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The position and velocity tracking error is depicted in Figure 7.2.4. As
illustrated by the figure, the position and velocity tracking error are both
asymptotically stable; however, in accordance with the theoretical development
in this subsection, we are only guaranteed that the position tracking error will
be asymptotically stable.

7.3 Adaptive Robust Control

In Chapter 6 we discussed the use of adaptive controllers for the tracking
control of robot manipulators. One of the attractive features of the adaptive
controllers is that the control implementation does not require a priori
knowledge of unknown constant parameters such as payload masses or friction
coefficients. Two disadvantages of the adaptive controllers are that large
amounts of on-line calculation are required, and the lack of robustness to
additive bounded disturbances.

Figure 7.2.3: Block diagram of RCL.
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In Chapter 5 we discussed the use of robust controllers for the control of
robot manipulators. Two of the attractive features of the robust controllers
are that on-line computation is kept to a minimum and their inherent robustness
to additive bounded disturbances. One of the disadvantages of the robust
control approach is that these controllers require a priori known bounds on
the uncertainty. In general, calculations of the bounds on the uncertainty can
be quite a tedious process since this calculation involves finding the maximum
values for the mass and friction related constants for each link of the robot
manipulator. Another disadvantage of the robust control approach is that
even in the absence of additive bounded disturbances, we cannot guarantee
asymptotic stability of the tracking error. In general, it would be desirable to
obtain at least a “theoretical” asymptotic stability result for the tracking
error.

In this section an adaptive robust controller is developed for the tracking
control of robot manipulators. The adaptive robust controller can be thought
of as combining the best qualities of the adaptive controller and the robust
controller. This control approach has the advantages of reduced online
calculations (compared to the adaptive control method), robustness to additive
bounded disturbances, no a priori knowledge of system uncertainty, and
asymptotic tracking error performance.

For purposes of control design in this section, we assume that the robotic
manipulator is a revolute manipulator with dynamics given by

(7.3.1)

where Fd is a n×n positive definite, diagonal matrix that is used to represent
the dynamic coefficients of friction,  vector containing the

Figure 7.2.4: Simulation of RCL.
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static friction terms, Td is a n×1 vector representing an unknown bounded
disturbance, and all other quantities are as defined in Chapter 3.

The adaptive robust controller is very similar to the robust control strategies
discussed in Chapter 5 in that an auxiliary controller is used to “bound” the
uncertainty. Recall from Chapter 5 that the robust controllers bounded the
uncertainty by using a scalar function that was composed of tracking error
norms and positive bounding constants. For example, suppose that the dynamics
given by

(7.3.2)

represent the uncertainty for a given robot controller. That is, the dynamics
given by (7.3.2) are uncertain in that payload masses, coefficients of friction,
and disturbances are not known exactly. It is assumed; however, that a positive
scalar function ρ can be used to bound the uncertainty as follows:

(7.3.3)

As delineated in [Dawson et al. 1990], the physical properties of the robot
manipulator can be used to show that the dynamics given by (7.3.2) can be
bounded as

(7.3.4)

and δ0, δ1, and δ2 are positive bounding constants that are based on the largest
possible payload mass, link mass, friction coefficients, disturbances, and so on.

In general, the robust controllers presented in Chapter 5 required that the
bounding constants defined in (7.3.4) be formulated a priori. The adaptive
robust controller that will be developed in this section “learns” these bounding
constants on-line as the manipulator moves. That is, in the control
implementation, we do not require knowledge of the bounding constants;
rather, we only require the existence of the bounding constants defined in
(7.3.4).

Similar to the general development presented in [Corless and Leitmann
1983], the adaptive robust controller has the form

(7.3.6)

(7.3.5)

where
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where Kv is a n×n diagonal, positive-definite matrix, r (the filtered tracking
error) is defined as in (7.2.6), and vR is a n×1 vector representing an auxiliary
controller. The auxiliary controller vR in (7.3.6) is defined by

(7.3.7)

kε is a positive scalar control constant,  is a scalar function defined as

(7.3.9)

and  are the dynamic estimates of the corresponding bounding
constants δ0, δ1, and δ2 defined in (7.3.4). The bounding estimates denoted by
“ˆ” are changed on-line based on an adaptive update rule. Before giving the
update rule, we write (7.3.9) in the more convenient form

(7.3.10)

The actual bounding function ρ given in (7.3.3) can also be written in the
matrix form

(7.3.11)

Note the similarity between the regression matrix formulation in the adaptive
approach (see Chapter 6) and the formulation given by (7.3.10). Specifically,
the 1×3 matrix S resembles a “regression matrix,” and the 3×1 vector 
resembles a “parameter estimate vector.”

The bounding estimates defined in (7.3.10) are updated on-line by the
relation

(7.3.12)

where r is defined in (7.2.6), S is defined in (7.3.10), and γ is a positive scalar
control constant. For convenience, we also note that since δ0, δ1, and δ2 defined
in (7.3.4) are constants, (7.3.12) can be written as

where

(7.3.8)

where

where
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(7.3.13)

since we will define the difference between � and  as

(7.3.14)

We now turn our attention to analyzing the stability of the corresponding
error system for the controller given in (7.3.6). Substituting the controller
(7.3.6) into the robot Equation (7.3.1) gives the error system

(7.3.15)

where w is defined in (7.3.2).
We now analyze the stability of the error system given by (7.3.15) with the

Lyapunov-like function

(7.3.16)

Differentiating (7.3.16) with respect to time yields

(7.3.17)

since scalar quantities can be transposed. Substituting (7.3.13) and (7.3.15)
into (7.3.17) yields

(7.3.18)

By utilizing the skew-symmetric property, it is easy to see that the second line
in (7.3.18) is equal to zero. From (7.3.18), we can use (7.3.3) and (7.3.11) to
place an upper bound on V in the following manner:

(7.3.19)

Substituting (7.3.7), (7.3.8), (7.3.10) and (7.3.14) into (7.3.19), we obtain

(7.3.20)

which can be written as
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(7.3.21)

Obtaining a common denominator for the last two terms in (7.3.21) enables
us to write (7.3.21) as

(7.3.22)

Since the sum of the last two terms in (7.3.22) is always less than zero, we can
place the new upper bound on :

(7.3.23)

We now detail the type of stability for the tracking error. First, note from
(7.3.23) that we can place the new upper bound on :

(7.3.24)

As illustrated for the RCL in the preceding section, we can use (7.3.24) to
show that all signals are bounded and that  (see Chapter 2). Following
the RCL stability analysis, we can use (7.2.6) to show that the position tracking
error (e) is related to the filtered tracking error r by the transfer function
relationship

(7.3.25)

where s is the Laplace transform variable and G(s) is a strictly proper,
asymptotically stable transfer function. Therefore, we can use Theorem 2.4.7
in Chapter 2 to state that

(7.3.26)

The result above informs us that the position tracking error e is asymptotically
stable. In accordance with the theoretical development presented in this section,
we can only state that the velocity tracking error e and the bounding estimates

 are bounded. It should be noted that in [Corless and Leitmann 1983], a
more complex theoretical development is presented that proves the velocity
tracking error is asymptotically stable. However, in the interest of brevity
this additional information is left for the reader to pursue.
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The adaptive robust controller derived in this section is summarized in
Table 7.3.1 and depicted in Figure 7.3.1. We now present an example to
illustrate how Table 7.3.1 can be used to design adaptive robust controllers
for robot manipulators.

EXAMPLE 7.3–1: Adaptive Robust Controller for the Two-Link Arm

We wish to design and simulate the adaptive robust controller given in Table
7.3.1 for the two-link arm given in Figure 6.2.1. (The dynamics for this robot
arm are given in Chapter 3.) To model friction and disturbances, the dynamics

(1)

and

Table 7.3.1: Adaptive Robust Controller
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(2)

were added to  respectively, in the two-link robot model.
We can now use Table 7.3.1 to formulate the adaptive robust controller as

(3)

In the expression above for the control torques, the bounding function  is
given by

(5)

where  From Table 7.3.1, the associated bounding

estimates are updated in the fashion

(6)

For m1=0.8 kg, m2=2.3 kg, and link lengths of 1 m each, the adaptive
robust controller was simulated with the control parameters, initial conditions,
and desired trajectory given by

 

and

(4)

and

Copyright © 2004 by Marcel Dekker, Inc.



7.4 Compensation for Actuator Dynamics 407

The tracking error and mass estimates are depicted in Figure 7.3.2. As
illustrated by the figure, the position and the velocity tracking error are both
asymptotically stable, and the bounding estimates remain bounded. It should
be noted that from the theoretical development given in this section, we are
only guaranteed that the position tracking error is asymptotically stable while
all other signals remain bounded.

7.4 Compensation for Actuator Dynamics

Throughout this book we have discussed controllers that are designed at the
“torque input level.” That is, any dynamics associated with the actuators
have been neglected. The reason for bringing up this point is not to denigrate
the control development discussed previously, since this research has been
involved with solving a very difficult problem, namely, the global tracking
control of a highly nonlinear system in the presence of uncertainty. We
mention this deficiency in previous approaches to highlight the fact that

Figure 7.3.1: Block diagram of adaptive robust controller.
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in many robot control researchers’ opinions, it is now time to begin to include
the effects of actuator dynamics in the control synthesis. Recently, several
researchers have postulated that the detrimental effects of actuators are
preventing high-speed motion/force control of robot manipulators [Eppinger
and Seering 1987].

In this section we illustrate how a systematic approach can be used to
compensate for actuator dynamics in the form of electrical effects and joint
flexibilities. Using this approach and the assumption of exact model knowledge,
controllers are developed that yield a global asymptotic stability result for
the link tracking error. Although we assume exact knowledge of the model, it
is important to realize that in some cases, it may be possible to formulate
adaptive and robust nonlinear tracking controllers to compensate for
“uncertainty.” The compensation of uncertain systems in the presence of
actuator dynamics is currently being researched [Ghorbel and Spong 1990].

Electrical Dynamics

In this subsection, we illustrate how a “corrective” controller [Kokotovic et
al. 1986] can be synthesized that ensures asymptotic link tracking despite the
electrical dynamics that a motor will add to the overall system dynamics.
The terminology corrective controller is used to emphasize the fact that the
controller corrects for the electrical dynamics. The class of robots studied in
this subsection will be referred to as rigid-link electrically driven (RLED)
robots. For simplicity, we assume that the ac-tuator is a direct-current (dc)

Figure 7.3.2: Simulation of adaptive robust controller.
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motor; however, the following analysis, with some modifications, can be
used for more complicated motors such as the switched-reluctance motor
[Taylor 1989].

The model [Tarn et al. 1991] for the RLED robot is taken to be

(7.4.1)

(7.4.2)

(7.4.3)

M(q) is a n×n link inertia matrix,  is a n×I vector containing the
centripetal, Coriolis, gravity, damping, and friction terms, J is a n×n constant,
diagonal, positive-definite matrix used to represent the actuator inertia, I(t) is
an n×1 vector used to denote the current in each actuator, KT is a constant
diagonal n×n matrix used to represent the conversion between torque and
current, La is a n×n constant positive-definite diagonal matrix used to represent
the electrical inductance,  is a n×1 vector used to represent the electrical
resistance and the motor back-electromotive force, and uE(t) is an n×1 control
vector used to represent the input motor voltage.

Throughout the book, a good deal of emphasis has been placed on the
utilization of physical properties of robot manipulators to aid us in the stability
analysis. In this tradition we note that the composite inertia matrix M(q)
defined in (7.4.3) is symmetric, positive definite, and is uniformly bounded as
a function of q; therefore, we can state for any n×1 vector x that

(7.4.4)

where m1 is a positive scalar constant that depends on the mass properties
of the specific robot (see Chapter 3). From (7.4.4), it can also be established
that

(7.4.5)

where ||·||i2 is used to denote the induced 2-norm (see Chapter 2).
As discussed many times before, we are interested in the performance of

the link tracking error. To avoid confusion, we restate that the tracking error
is defined to be

where
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(7.4.6)

where qd represents the desired link trajectory. We will assume that qd and its
first, second, and third derivatives are all bounded as functions of time. We
also assume that the first derivative of the link dynamics on the left-hand side
of (7.4.1) exists. These assumptions on the “smoothness” of the desired trajectory
and the link dynamics ensure that the controller, which will be developed
later, remains bounded.

The control objective will be to obtain asymptotic link tracking despite the
electrical dynamics. To accomplish this objective, we first rewrite (7.4.1) in
terms of the tracking error given by (7.4.6) to yield

(7.4.7)

The error system given by (7.4.7) can also be written in the state-space form

(7.4.8)

On×n is the n×n zero matrix, and In×n is the n×n identity matrix.
As one can plainly see, there is no control input in (7.4.8); therefore, we

will add and subtract the term BM-1(q)uL on the right-hand side of (7.4.8) to
yield

(7.4.9)

where uL is an n×1 vector representing a “fictitious” n×1 control input. As it
turns out, the controller uL is the computed-torque controller that ensures
asymptotic link tracking error if the electrical dynamics were not present. As
we will see later, the fictitious controller uL is actually embedded inside the
overall control strategy, which is designed at the voltage control input uE.

Continuing with the error system development, we define uL for RLED
robots to be the computed-torque controller

(7.4.10)

where
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where KLv and KLp are defined to be n×n positive-definite diagonal matrices.
Substituting (7.4.10) for only the first uL term in (7.4.9) yields the link tracking
error system

(7.4.11)

With regard to the link tracking error system given by (7.4.11), if ηE could
be guaranteed to be zero for all time, we could easily show that the tracking
error would be asymptotically stable since AL defined in (7.4.12) has stable
eigenvalues. Therefore, one can view the control objective as forcing the
“perturbation” η E to go to zero.

To design a control law for ηE, we must first establish its dynamic
characteristics. From (7.4.12), the derivative of ηE with respect to time is
given by

(7.4.13)

To obtain the the dynamic characteristics of ηE, we substitute for in (7.4.13)
from (7.4.2) to yield

(7.4.14)

We can now use (7.4.14) to design a control law at the input uE to force ηE

to go to zero. The fact that ηE should go to zero motivates the corrective
control law

(7.4.15)

where KEp is defined to be a n×n positive-definite diagonal matrix. Substituting
(7.4.15) into (7.4.14) yields

(7.4.16)

The dynamic equations given by (7.4.11) and (7.4.16) can be thought of as
two interconnected systems representing the overall closed-loop dynamics. As
one would expect, it would be desirable to determine the type of stability of
the overall closed-loop system. To determine the type of stability of (7.4.11)
and (7.4.16), we will utilize the Lyapunov function

where

(7.4.11)

(7.4.17)

Copyright © 2004 by Marcel Dekker, Inc.



Advanced Control Techniques412

where

 

If the sufficient condition given by

(7.4.18)

is satisfied, then by the Gerschgorin theorem (see Chapter 2), it is obvious that
PL is a positive-definite matrix, and hence V is a Lyapunov function. The
condition given by (7.4.18) simply means that the smallest velocity controller
gain should be larger than 1.

Differentiating (7.4.17) with respect to time yields

Note that if the sufficient condition given by (7.4.18) holds, it is obvious that
the matrix QL is positive definite. Using the fact that QL is positive definite
allows us to place an upper bound on  given in (7.4.20). This upper bound
is given by

(7.4.22)

where ml is defined in (7.4.5).
To determine the sufficient conditions on the controller gains for asymptotic

stability, we rewrite (7.4.22) in the matrix form

(7.4.23)

where

(7.4.19)

Substituting (7.4.11) and (7.4.16) into (7.4.19) yields

where

where
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By the Gerschgorin Theorem, the matrix Q
0
 defined in (7.4.23) will be positive

definite if the sufficient condition

(7.4.24)

holds. Therefore, if the controller gains satisfy the conditions given by (7.4.18)
and (7.4.24), we can use standard Lyapunov stability arguments (see Chapter
2) to state that the vector x0 defined in (7.4.23) and hence ||e||, e, and e are all
asymptotically stable. It is easy to show that if the sufficient condition

(7.4.25)

holds, the conditions given by (7.4.18) and (7.4.24) are always satisfied.
It should be noted that the control given by (7.4.15) depends on the

measurement of uL,  and I. At first one might be tempted to state that this
controller requires measurements of  and I; however, since we have
assumed exact knowledge of the dynamic model given by (7.4.1) and (7.4.2),
we can use this information to eliminate the need for measuring q That is, by
differentiating (7.4.10) with respect to time, uL can be written as

(7.4.26)

After substituting for  in (7.4.26), uL will depend only on the measurement of
q,  and I. The actual control that would be implemented at the control input
uE can be found by making the appropriate substitution into (7.4.15). That is,
the corrective control given by (7.4.15) can be written as

(7.4.27)

where  is found from (7.4.1) to be
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where  would be given by (7.4.26).
After examining the functional dependence of  given in (7.4.26), it is

now obvious why we have assumed that the desired trajectory and the link
dynamics be sufficiently smooth. Specifically, we can see from (7.4.26) that
the corrective controller requires that the first, second, and third time derivatives
of the desired trajectory to be bounded while requiring the existence of the
first derivative of the link dynamics. These assumptions on the desired trajectory
and the link dynamics ensure that the control input will remain bounded.

The corrective controller derived above is summarized in Table 7.4.1 and
depicted in Figure 7.4.1. We now present an example to illustrate how Table
7.4.1 can be used to design corrective controllers for RLED robots.

EXAMPLE 7.4–1: Corrective Controller for the One-Link RLED Arm

We wish to design and simulate a corrective controller using Table 7.4.1 for
the one-link motor-driven robot arm given in Figure 7.4.2. The dynamics for
the system are taken to be

(1)

where m=1kg, KT=2 N/A, kb=0.3 V-S, fd=3 kg-m/s, L=1 m, La=0.1 H, R=5
Ω, g is the gravitational coefficient, J=0.2 kg-m2, I is the motor current, and uE

is the motor input voltage.
Assuming that the model given by (1) and (2) is known exactly, we can use

Table 7.4.1 to formulate the corrective controller

(3)

and

(2)

where

(4)
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where  is found from (1) to be

(5)

The corrective controller was simulated with the control parameters, initial
conditions, and desired trajectory given by

The tracking error and the control voltage are depicted in Figure 7.4.3. As
illustrated by the figure, the tracking error is asymptotically stable.

Table 7.4.1: RLED Corrective Controller

and
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Joint Flexibilities

In this subsection we illustrate how a “corrective” controller can be
synthesized that ensures asymptotic link tracking despite the joint flexibilities
that a drive or gearing will add to the overall system dynamics. The

Figure 7.4.1: Block diagram of RLED corrective controller.

Figure 7.4.2: One-link RLED robot.
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terminology corrective controller is used to emphasize the fact that the controller
corrects for the dynamics that are used to represent the effects of joint
flexibilities. The class of robots studied in this subsection will be referred to as
rigid-link flexible-joint (RLFJ) robots.

The model [Spong 1987] for the RLFJ robot is taken to be

(7.4.28)

qm(t) is a n×1 vector representing the motor displacement, K is a constant,
diagonal, positive-definite n×n joint flexibility matrix,  is an
n×1 vector that represents the motor damping and flexibility effects, uF(t)
is an n×1 control vector used to represent the input torque, and all other
quantities are defined as in the preceding subsection. With regard to the
rigid link model given in (7.4.28), we note from Chapter 3 that for any
n×1 vector x

Figure 7.4.3: Simulation of RLED corrective controller.

where

(7.4.29)

(7.4.30)
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(7.4.31)

where m1 is a positive scalar constant.
As in the preceding subsection, we are interested in the performance of the

link tracking error defined in (7.4.6). For the control of RLFJ robots, we will
assume that qd and its first, second, third, and fourth derivatives are all bounded
as functions of time. We also assume that the first and second derivatives of
the link dynamics on the left-hand side of (7.4.28) exist. These assumptions
on the “smoothness” of the desired trajectory and the link dynamics ensure
that the controller, developed later, remains bounded.

Following the same analytical development given in the previous sections,
we write (7.4.28) in terms of the tracking error given by (7.4.6) to yield the
state-space form

(7.4.32)

where A0, e, and B are defined as in (7.4.8). Again, since there is no control
input in (7.4.32); we add and subtract the term BM-1(q)uL on the right-hand
side of (7.4.32) to yield

(7.4.33)

where uL is again used to represent a fictitious n×1 control input. As before,
the fictitious controller uL will be embedded inside the overall control strategy,
which is designed at the control input uF.

Continuing with the error system development, we define uL for RLFJ robots
to be the computed-torque controller

(7.4.34)

where KLv and KLp are defined as in (7.4.10). Substituting (7.4.34) into (7.4.33)
yields the link tracking error system

(7.4.35)

where AL is defined as in (7.4.12),
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(7.4.36)

The reason for defining η F in terms of (uL-Kqm) and its derivative is that the
dynamics given by (7.4.29) are second-order dynamics. That is, since the
actuator dynamics are second order, we force ηF and its derivative (i.e.η. F, ) to
zero to ensure that the link tracking error (e) goes to zero.

To design a control law for ηF, we must first establish its dynamic
characteristics. From (7.4.36), the derivative of ηF is given by

(7.4.37)

To obtain the the dynamic characteristics of ηF, we substitute for qm in (7.4.37)
from (7.4.29) to yield

(7.4.38)

We can now use (7.4.38) to design a control law at the input uF to force η F

to go to zero. The fact that ηF should go to zero motivates the control law

(7.4.39)

where KFv and KFp are defined to be n×n positive-definite diagonal matrices.
Substituting (7.4.39) into (7.4.38) yields

(7.4.40)

The dynamic equations given by (7.4.35) and (7.4.40) can be thought of as
two interconnected systems representing the overall closed-loop dynamics.
To determine the type of stability for the closed-loop dynamics, we will utilize
the Lyapunov function

(7.4.41)

where PL is defined in (7.4.17) and

where
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If the sufficient condition given by

(7.4.42)

is satisfied, then by the Gerschgorin theorem it is obvious that the matrices PL

and PF given in (7.4.41) are positive-definite matrices, and hence V is a
Lyapunov function.

Differentiating (7.4.41) with respect to time yields

(7.4.43)

Substituting (7.4.35) and (7.4.40) into (7.4.43) yields

(7.4.44)

where QL is defined in (7.4.21) and

(7.4.45)

Note that if the sufficient condition given by (7.4.42) holds, it is obvious
that the matrices QL and QF defined in (7.4.44) are positive-definite matrices.
Using the fact, that QL and QF are positive definite allows us to place an
upper bound on  given in (7.4.44). This upper bound is given by

(7.4.46)

where

 

where m1 is defined in (7.4.31).
To determine the sufficient conditions on the controller gains for asymptotic

stability, we rewrite (7.4.46) in the matrix form

(7.4.47)

where
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By the Gerschgorin theorem, the matrix Q
1
 defined in (7.4.47) will be positive

definite if the sufficient condition

(7.4.48)

holds. Therefore, if the controller gains satisfy the conditions given by (7.4.42)
and (7.4.48), we can use standard Lyapunov stability arguments to state that
the vector x1 defined in (7.4.47), and hence ||e||, e, and e, are all asymptotically
stable. It is easy to show that if the sufficient condition

(7.4.49)

holds, the conditions given by (7.4.42) and (7.4.48) are always satisfied.
It should be noted that the corrective controller given by (7.4.39) depends

on the measurement of  Again, it seems that this
control would require measurements of  and its derivative; however, since
we have assumed exact knowledge of the dynamic model, we can use this
information to eliminate the need for measuring  and its derivative. That is,

 can be written as

(7.4.50)

where  is found from (7.4.28) to be

(7.4.51)

Substituting (7.4.51) into (7.4.50), we see that uL can be written as a function
of , and time (i.e., t) since the desired trajectory can be explicitly
written as a function of time. We can delineate this functional dependence by
use of the equation

(7.4.52)

where  is an n×1 vector given by the right-hand side of (7.4.50).
We can obtain the functional dependence for üL by differentiating (7.4.52)
with respect to time to yield
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(7.4.53)

where  is an n×1 vector. Note that (7.4.51) can be used
again to eliminate the need for measurement of  therefore, the expressions
given for  and üL in (7.4.50) and (7.4.53), respectively, depend only on the
measurements of  and The actual control that would be
implemented at the control input uF can be found by making the appropriate
substitution into (7.4.39). That is, the corrective control given by (7.4.39) can
be written as

(7.4.54)

where  and üL would be given by (7.4.50) and (7.4.53), respectively.
After closely examining the functional dependence of  and üL given in

(7.4.50) and (7.4.53), respectively, it is obvious why we have assumed that
the desired trajectory and link dynamics be sufficiently smooth. Specifically,
we can see from (7.4.50) and (7.4.53) that the corrective controller given in
(7.4.39) will require that the first, second, third, and fourth time derivative of
the desired trajectory be bounded while also requiring the existence of the
first and second derivatives of the link dynamics. These assumptions on the
desired trajectory and the link dynamics ensure that the control input will
remain bounded.

The corrective controller derived above is summarized in Table 7.4.2 and
depicted in Figure 7.4.4. We now present an example to illustrate how Table
7.4.2 can be used to design corrective controllers for RLFJ robots.

EXAMPLE 7.4–2: Corrective Controller for the One-Link RLFJ Arm

We wish to design and simulate a corrective controller using Table 7.4.2 for
the one-link flexible joint robot arm given in Figure 7.4.5. The dynamics for
the system are taken to be

(1)

(2)
and
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where m=1 kg, K=10 N, B=5 kg-m/s, fd=3 kg-m/s, L=1 m, g is the gravitational
coefficient, J=0.2 kg-m2, qm is the motor displacement measured in radians,
and uF is the input torque.

Assuming that the model given by (1) and (1) is exactly known, we can use
Table 7.4.2 to formulate the corrective controller

and is found from (1) to be

Table 7.4.2: RLED Corrective Controller

where

(3)

(4)
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and  is found from (1) to be

(5)

To obtain an expression for üL given in (3), we substitute (5) into (4) to yield

Figure 7.4.4: Block diagram of RLFJ corrective controller.

(6)
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Differentiating (6) with respect to time yields

where  is found from (5).
The corrective controller was simulated with the control parameters, initial

conditions, and desired trajectory given by

The tracking error and the control torque are depicted in Figure 7.4.6. As
illustrated by the figure, the tracking error is asymptotically stable.

Figure 7.4.5: One-link RLFJ robot.

(7)

and
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7.5 Summary

In this chapter an account of several of the more advanced control techniques
for the control of robot manipulators has been given. The intent of this chapter
has been to study controllers that reduce online computation and controllers
that compensate for actuator dynamics. Some current research issues involve
the integration of force controllers with advanced motion controllers and the
corresponding digital implementation.

Figure 7.4.6: Simulation of RLFJ corrective controller.
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PROBLEMS

Section 7.2

7.2–1 Illustrate how the DCAL stability analysis can be modified if the filter
tracking error is defined as

 

 where Λ is a positive-definite diagonal matrix.

7.2–2 Design and simulate the DCAL controller given in Table 7.2.1 for the
two-link polar robot arm given in Chapter 3. (Ignore the fact that this
robot has a prismatic link.)

7.2–3 Can the DCAL stability analysis (and consequently, the controller
itself) be modified to account for the prismatic link robot given in
Problem 7.2–2? If so, explain how.

7.2–4 Illustrate how the RCL stability analysis can be modified to show that
the velocity tracking error is asymptotically stable if the learning
term ûd(t) is forced to remain within the a priori bounds

 

ûdmin≤ûdi(t)≤ûdmax,

 where the subscript i is used to denote the ith component of the n×1
vector ûd(t), and ûdmin, ûdmax are scalar constants.

7.2–5 Design and simulate the RCL controller given in Table 7.2.2 for the
two-link polar robot arm given in Chapter 3. (Ignore the fact that this
robot has a prismatic link.)

7.2–6 Can the RCL stability analysis (and consequently, the controller itself)
be modified to account for the prismatic link robot given in Problem
7.2–5? If so, explain how.

Section 7.3

7.3–1 Design and simulate the adaptive robust controller given in Table
7.3.1 for the two-link polar robot arm given in Chapter 3. (Ignore the
fact that this robot has a prismatic link.)
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7.3–2 Can the adaptive robust controller stability analysis (and consequently,
the controller itself) be modified to account for the prismatic link
given in Problem 7.3–1? If so, explain how.

7.3–3 Show how Barbalat’s lemma (see Chapter 2) can be used to modify
the stability analysis for the adaptive robust controller to guarantee
that the velocity tracking error is also asymptotically stable.

Section 7.4

7.4–1 For a constant, symmetric, positive-definite, n×n matrix A, show that

(a)
 

(b)

Section 7.4

7.4–2 Design and simulate the RLED corrective controller given in Table
7.4.1 for the two-link revolute robot arm given in Chapter 3. Assume
that both motors can be modeled as the motor given in Example
7.4–1.

7.4–3 For a constant, symmetric, positive-definite, n×n matrix A show that
 

 where On×n is the n×n zero matrix.

7.4–4 Design and simulate the RLFJ corrective controller given in Table
7.4.2 for the two-link revolute robot arm given in Chapter 3. Assume
that both joints can be modeled similar to the joint given in Example
7.4–2.
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Chapter 8

Neural Network Control
of Robots

A framework is given for controller design using neural networks. These
structures possess a universal approximation property that allows them to be
used in feedback control of unknown systems without requirements for linearity
in the system parameters or finding a regression matrix. Feedback control
topologies and weight tuning algorithms are given here that guarantee closed-
loop stability and bounded weights.

8.1 Introduction

In recent years, there has been a great deal of effort to design feedback control
systems that mimic the functions of living biological systems [White and
Sofge 1992], [Miller et al. 1991]. There has been great interest recently in
‘universal model-free controllers’ that do not need a mathematical model of
the controlled plant, but mimic the functions of biological processes to learn
about the systems they are controlling on-line, so that performance improves
automatically. Techniques include fuzzy logic control, which mimics linguistic
and reasoning functions, and artificial neural networks, which are based on
biological neuronal structures of interconnected nodes. Neural networks (NNs)
have achieved great success in classification, pattern recognition, and other
open-loop applications in digital signal processing and elsewhere. Rigorous
analyses have shown how to select NN topologies and weights, for instance,
to discriminate between specified exemplar patterns. By now, the theory and
applications of NN in open-loop applications are well understood, so that
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NN have become an important tool in the repertoire of the signal processor
and computer scientist.

There is a large literature on NN for feedback control of unknown plants.
Until the 1990’s, design and analysis techniques were ad hoc, with no repeatable
design algorithms or proofs of stability and guaranteed performance. In spite
of this, simulation results appearing in the literature showed good performance.
Most of the early approaches used standard backpropagation weight tuning
[Werbos 1992] since rigorous derivations of tuning algorithms suitable for
closed-loop control purposes were not available. Many NN design techniques
mimicked adaptive control approaches, where rigorous analysis results were
available [Åström and Wittenmark 1989], [Landau 1979], [Goodwin et al.
1984], proposing NN feedback control topologies such as indirect
identification-based control, inverse dynamics control, series-parallel
techniques, etc.

In keeping with the philosophy of those working in control system theory
since Maxwell, Lyapunov, A.N.Whitehead, von Bertalanffy, and others, to
address such issues it is necessary to begin with the knowledge available
about the system being controlled. Narendra [Narendra 1991], [Narendra
and Parthasarathy 1991] and others [Miller et al. 1991], [White and Sofge
1992], [Werbos 1992] pioneered rigorous NN controls applications by
studying the dynamical behavior of NN in closed-loop systems, including
computation of the gradients needed for backprop tuning. Other groups
providing rigorous analysis and design techniques for closed-loop NN
controllers included [Sanner and Slotine 1991] who showed how to use radial
basis function NN in feedback control, [Chen and Khalil 1992], [Chen and
Liu 1994] who provided NN tuning algorithms based on dead-zone methods,
[Polycarpou and Ioannou 1991], [Polycarpou 1996] who used projection
methods, [Lewis et al. 1993], [Lewis et al. 1995] who used an e-mod approach,
[Sadegh 1993] who provided NN controllers for discrete-time systems, and
[Rovithakis and Christodoulou 1994] who used dynamic NN for feedback
control.

In this chapter is given an approach to the design and analysis of neural
network controllers based on several PhD dissertations and a body of published
work, including [Lewis et al. 1999], [Kim and Lewis 1998]. The control
structures discussed here are multiloop controllers with NN in some of the
loops and an outer tracking unity-gain PD loop. There are repeatable design
algorithms and guarantees of system performance including both small tracking
errors and bounded NN weights. It is shown that as uncertainty about the
controlled system increases or performance requirements increase, the NN
controllers require more and more structure. An exposition of this material in
greater depth appears in [Lewis 1999], which also shows relationships with
Fuzzy Logic Systems.
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8.2 Background in Neural Networks

In this section is provided the background in neural network structures required
for feedback control. For more details see [Haykin 1994], [Lewis et al. 1999],
[Lewis and Kim 1998]. Two key features that make NN useful for feedback
control are their universal approximation property and their learning
capability, which arises due to the fact that their weights are tunable parameters
that can be updated to improve controller performance. The universal
approximation property is the main feature that makes non-linear network
structures more suitable for robot control than adaptive robot controllers,
which have generally relied upon the determination of a regression matrix,
which in turn requires linearity in the tunable parameters (LIP).

Multilayer Neural Networks

A multilayer neural network is shown in Figure 8.2.1. This NN has two
layers of adjustable weights, and is called here a ‘two-layer’ net. This NN
has no internal feedback connections and so is termed feedforward, and no
internal dynamics and so is said to be static. The NN output y is a vector with
m components that are determined in terms of the n components of the input
vector x by the recall equation

(8.2.1)

where �(·) are the activation functions and L is the number of hidden-layer
neurons. The first-layer interconnections weights are denoted vjk and the second-
layer interconnection weights by wij. The threshold offsets are denoted by �vj,
�wi.

Many different activation functions �(·) are in common use. For feed-back
control using multilayer NN it is required that �(·) be smooth enough so that
at least its first derivative exists. Suitable choices include the sigmoid

(8.2.2)

the hyperbolic tangent

(8.2.3)

and other logistic-curve-type functions, as well as the gaussian and an assortment
of other functions.
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By collecting all the NN weights vjk, wij into matrices of weights VT, WT,
the NN recall equation may be written in terms of vectors as

(8.2.4)

The thresholds are included as the first columns of the weight matrices WT,
VT; to accommodate this, the vectors x and �(·) need to be augmented by
placing a ‘1’ as their first element (e.g. x=[1 x1 x2…xn]T). In this equation, to
represent (8.2.1) one has sufficient generality if �(·) is taken as a diagonal
function from �L to �L that is �(z)=diag{�(zj)} for a vector z=[z1 z2 …zL]T ∈ �L.

Note that the recall equation is nonlinear in the first-layer weights and
thresholds V.

Figure 8.2.1: Two-layer feedforward neural network.
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Universal Function Approximation Property. NN satisfy many important
properties. A main one of concern for feedback control purposes is the universal
function approximation property [Hornik and Stinchombe 1989]. Let f(x) be
a general smooth function from �n to �m. Then, it can be shown that, as long
as x is restricted to a compact set S of �n, there exist weights and thresholds
such that one has

(8.2.5)

for some number of hidden-layer neurons L. This holds for a large class of
activation functions, including those just mentioned. The value � is called the
NN functional approximation error, and it generally decreases as the net size
L increases. In fact, for any choice of a positive number ��, one can find a
feedforward NN such that

(8.2.6)

for all x in S. The selection of the net size L for a prescribed accuracy �� is an
open question for general unstructured fully-connected NN. This problem
can be solved for CMAC, FL nets, and other structured nonlinear nets as
subsequently described.

The ideal NN weights in matrices W, V that are needed to best approximate
a given nonlinear function f(x) are difficult to determine. In fact, they may not
even be unique. However, all one needs to know for controls purposes is that,
for a specified value of �� some ideal approximating NN weights exist. Then,
an estimate of f(x) can be given by

(8.2.7)

where W, V are estimates of the ideal NN weights that are provided by some
on-line weight tuning algorithms subsequently to be detailed. Note that all
‘hat’ quantities are known, since they may be computed using measurable
signals and current NN weight estimates.

The assumption that there exist ideal weights such that the approximation
property holds is very much like various similar assumptions in adaptive
control [Åström and Wittenmark 1989], [Landau 1979], including Erzberger’s
assumptions and linearity in the parameters. The very important difference is
that in the NN case, the universal approximation property always holds,
while in adaptive control such assumptions often do not hold in practice, and
so they imply restrictions on the form of the systems that can be controlled.
Overcoming the NLIP Problem. Multilayer NN are nonlinear in the weights
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V and so weight tuning algorithms that yield guaranteed stability and bounded
weights in closed-loop feedback systems have been difficult to discover until a
few years ago. The NLIP problem is easily overcome if a correct and rigorous
approach is taken. One approach is the following appropriate use of the
Taylor series [Lewis et al. 1996].

Define the functional estimation error

(8.2.8)

the weight estimation errors

(8.2.9)

and the hidden-layer output error

(8.2.10)

For any z one may write the Taylor series

(8.2.11)

where �’ is the jacobian and the last term means terms of order z2.Therefore,

(8.2.12)

This key equation allows one to write the functional estimation error as

(8.2.13)

The first term has W multiplied by a known quantity (in square braces), and
the second term has V multipled by a known quantity. When used subsequently
in the closed-loop error dynamics, this form allows one to derive tuning laws
for V and W that guarantee closed-loop stability.
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Linear-in-the-parameter neural nets

If the first-layer weights and thresholds V in (8.2.4) are fixed and only the
second-layer weights and thresholds W are tuned, then the NN has only one
layer of tunable weights. One may then define the fixed function 
so that such a 1-layer NN has the recall equation

(8.2.14)

where  and L is the number of hidden-layer
neurons. This NN is linear in the tunable parameters W, so that it is far easier
to tune. In fact, standard adaptive control proofs can be used to derive suitable
tuning algorithms.

Though LIP, these NN still offer an enormous advantage over standard
adaptive control approaches that require the determination of a regression
matrix since they satisfy a universal approximation property if the functions
�(.) are correctly chosen. Note that adaptive controllers are linear in the
system parameters, while 1-layer NN are linear in the NN weights. An
advantage of 1-layer NN over 2-layer NN is that firm results exist for the
former on the selection of the number of hidden layer neurons L for a specified
approximation accuracy. A disadvantage of LIP networks is that Barron [Barron
1993] has shown a lower bound on the approximation accuracy.

Functional-Link Basis Neural Networks. More generality is gained if �(·) is
not diagonal, but �(.) is allowed to be a general function from �n to �L. This
is called a functional-link neural net (FLNN) [Sadegh 1993]. For LIP NN, the
functional approximation property does not generally hold. However, a 1-
layer NN can still approximate functions as long as the activation functions
�(.) are selected as a basis, which must satisfy the following two requirements
on a compact simply-connected set of S of �n:

1. A constant function on S can be expressed as (8.2.14) for a finite number
L of hidden-layer neurons.

2. The functional range of (8.2.14) is dense in the space of continuous functions
from S to �m for countable L.

If �(.) provides a basis, then a smooth function f(x) from �n to �m can be
approximated on a compact set S of �n, by

(8.2.15)

for some ideal weights and thresholds W and some number of hidden layer
neurons L. In fact, for any choice of a positive number ��, one can find a
feedforward NN such that  for all x in S.
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The approximation for f(x) is given by

(8.2.16)

where W are the NN weight and threshold estimates given by the tuning
algorithm. For LIP NN, the functional estimation error is given by

(8.2.17)

which, when used subsequently in the error dynamics, directly yields tuning
algorithms for W that guarantee closed-loop stability.

Barron [Barron 1993] has shown that for all LIP approximators there is a
fundamental lower bound, so that � is bounded below by terms on the order of
1/L2/n. Thus, as the number of NN inputs n increases, increasing L to improve
the approximation accuracy becomes less effective. As shown subsequently,
this is not a major limitation on adaptive controllers designed using 1-layer
NN. This lower bound problem does not occur in the NLIP multilayer nonlinear
nets.

A special FLNN is now discussed. We often use �(·) in place of �(.), with
the understanding that, for LIP nets, this activation function vector is not
diagonal, but is a general function from �L to �L.

Gaussian or Radial Basis Function (RBF) Networks. The selection of a basis
set of activation functions is considerably simplified in various sorts of
structured nonlinear networks, including radial basis function, CMAC, and
fuzzy logic nets. It will be shown here that the key to the design of such
structured nonlinear nets lies in a more general set of NN thresholds than
allowed in the standard equation (8.2.1), and in their appropriate selection.

A NN activation function often used is the gaussian or radial basis function
(RBF) [Sanner and Slotine 1991] given when x is a scalar as

(8.2.18)

where x is the mean and p the variance. RBF NN can be written as (8.2.4),
but have an advantage over the usual sigmoid NN in that the n-dimensional
gaussian function is well understood from probability theory, Kalman filtering,
and elsewhere, so that n-dimensional RBF are easy to conceptualize.

The j-th activation function can be written as

Copyright © 2004 by Marcel Dekker, Inc.



8.2 Background in Neural Networks 439

(8.2.19)

with . Define the vector of activation functions as �(x)�[�1(x)
�2(x)…�L(x)]T. If the covariance matrix is diagonal so that Pj=diag{pjk}, then
(8.2.19) becomes separable and may be decomposed into components as

(8.2.20)

where  are the k-th components of . Thus, the n-dimensional
activation functions are the product of n scalar functions. Note that this equation
is of the form of the activation functions in (8.2.1), but with more general
thresholds, as a threshold is required for each different component of x at
each hidden layer neuron j; that is, the threshold at each hidden-layer neuron
in Figure 8.2.1 is a vector. The RBF variances pjk and offsets xjk are usually
selected in designing the RBF NN and left fixed; only the output-layer weights
WT are generally tuned. Therefore, the RBF NN is a special sort of FLNN
(8.2.14) (where �(x)=�(x)).

Figure 8.2.2:2-dimensional separable gaussian functions for an RBF NN.
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Figure 8.2.2 shows separable gaussians for the case x ��2. In this figure,
all the variances pjk are identical, and the mean values xjk are chosen in a
special way that spaces the activation functions at the node points of a 2-D
grid. To form an RBF NN that approximates functions over the region {-
1<x1�1, -1<x2�1} one has here selected L=5×5=25 hidden-layer neurons,
corresponding to 5 cells along x1 and 5 along x2. Nine of these neurons have
2-D gaussian activation functions, while those along the boundary require the
illustrated ‘one-sided’ activation functions.

8.3 Tracking Control Using Static Neural
Networks

In this section is discussed feedback tracking control design using nonlinear
nets and assuming full state-variable feedback. For more details see [Lewis et
al. 1999] and other listed references. If full state feedback is available, then a
static feedforward NN suffices for control. A control topology and net tuning
algorithms are provided here that guarantee closed-loop stability and bounded
weights. The techniques to be discussed apply for general nonlinear nets
including both neural networks and fuzzy logic systems [Wang 1997], [Lewis
et al. 1997], so that the abbreviation NN might henceforth be construed as
meaning ‘nonlinear network’. The resulting multiloop control topology has
an outer PD tracking loop and an inner NN feedback linearization or action
generating loop. It is found that backprop tuning does not generally suffice,
but modified tuning algorithms are needed for guaranteed closed-loop
performance.

Many industrial mechanical systems, as well as automobiles, aircraft, and
spacecraft, have dynamics in the Lagrangian form, which are exemplified by
the class of rigid robot systems. Therefore, the Lagrangian robot dynamics
will be considered [Lewis et al. 1993], [Lewis et al. 1996]. The NN control
techniques presented may also be applied to other unknown systems including
certain important classes of nonlinear systems [Lewis et al. 1999].

Robot Arm Dynamics and Error System

The dynamics of rigid Lagrangian systems, including robot arms, have some
important physical, structural, and passivity properties [Craig 1988], [Lewis
et al. 1993], [Slotine 1988], [Spong and Vidyasagar 1989] that make it very
natural to use NN in their control. These properties should be taken into
account in the design of any controller—in fact, they provide the foundation
for rigorous design algorithms for NN controllers.

The dynamics of an n-link rigid (i.e. no flexible links or high-frequency
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joint/motor dynamics) robot manipulator may be expressed in the Lagrange
form

(8.3.1)

with q(t)��n the joint variable vector, whose entries are the robot arm joint
angles or link extensions. M(q) is the inertia matrix, Vm(q,q) the coriolis/
centripetal matrix, G(q) the gravity vector, and F(q) the friction. Bounded
unknown disturbances (including e.g. unstructured unmodelled dynamics) are
denoted by �d, and the control input torque is �(t) The robot dynamics have
the following standard properties:

Property 1: M(q) is a positive definite symmetric matrix bounded by
m1I<M(q)<m2I, with m1, m2 positive constants.

Property 2: The norm of the matrix Vm(q, q) is bounded by vb(q)||q||, for some
function vb(q).

Property 3: The matrix M–2Vm is skew-symmetric. This is equivalent to the
fact that the internal forces do no work.

Property 4: The unknown disturbance satisfies  with bD a positive
constant.

Given a desired arm trajectory qd(t)��n the tracking error is

(8.3.2)

and the filtered tracking error is

(8.3.3)

where 	 is a symmetric positive definite design parameter matrix, usually
selected diagonal. If a controller is found such that r(t) is bounded, then e(t) is
also bounded; in fact , with 
the minimum singular value of 	.

Differentiating r(t) and using (8.3.1), the arm dynamics may be written in
terms of the filtered tracking error as

(8.3.4)

where the nonlinear robot function is

(8.3.5)

8.3 Tracking Control Using Static Neural Networks
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The vector x required to compute f(x) can be defined, for instance, as

(8.3.6)

which can be measured. Function f(x) contains potentially unknown robot
parameters including pay load mass and complex forms of friction.

A suitable control input for trajectory following is given by the computed-
torque-like control

(8.3.7)

with  a gain matrix, generally chosen diagonal, and f(x) an
estimate of the robot function f(x) that is provided by some means. The
robustifying signal v(t) is needed to compensate for unmodelled unstructured
disturbances. Using this control, the closed-loop error dynamics is

(8.3.8)

In computing the control signal, the estimate f can be provided by several
techniques, including adaptive control or neural or fuzzy networks. The
auxiliary control signal v(t) can be selected by several techniques, including
sliding-mode methods and others under the general aegis of robust control
methods.

The desired trajectory is assumed bounded so that

(8.3.9)

with qB a known scalar bound. It is easy to show that for each time t, x(t) is
bounded by

(8.3.10)

for computable positive constants c0, c1, c2.

Adaptive Control

Standard adaptive control techniques in robotics [Craig 1988], [Slotine 1988],
[Spong and Vidyasagar 1989], [Lewis et al. 1993] use the assumption that the
nonlinear robot function is linear in the tunable parameters so that

(8.3.11)
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where p is a vector of unknown parameters and 
(x) is a known regression
matrix. The control is selected as

(8.3.12)

and tuning algorithms are determined for the parameter estimates P. This is
facilitated by the LIP assumption. If the approximation error � is non-zero,
then the tuning algorithm must be modified in order to guarantee bounded
parameter estimates. Various robustifying techniques may be used for this
including the �-mod [Ioannou and Kokotovic 1984], the e-modification
[Narendra and Annaswamy 1987], or the dead-zone techniques [Kreisselmeier
and Anderson 1986]. There are adaptive control techniques by now that do
not require LIP or the determination of a regression matrix [Colbaugh and
Seraji 1994]. It is interesting to compare the complexity of these to the NN
controllers to be discussed herein.

Neural Net Feedback Tracking Controller

A NN will be used in the control �(t) in (8.3.7) to provide the estimate f for the
unknown robot function f(x). The NN approximation property assures us that
there always exists a NN that can accomplish this within a given accuracy
�N. For 2-layer NLIP NN the approximation is

(8.3.13)

while for 1-layer LIP NN it is

(8.3.14)

with �(.) selected as a basis.
The structure of the NN controller appears in Figure 8.3.1, where e�

. The neural network that provides the estimate for
f(x) appears in an inner control loop, and there is an outer tracking loop
provided by the PD term Kvr. In control theory terminology, the inner loop is
a feedback linearization controller [Slotine and Li 1991], while in computer
science terms it is the action generating loop [Werbos 1992], [Miller et al.
1991], [White and Sofge 1992]. This multiloop intelligent control structure is
derived naturally from robot control notions, and is not ad hoc. As such, it is
immune to philosophical deliberations concerning suitable NN control
topologies including the common discussions on feed-forward vs. feedback,
direct vs. indirect, and so on. It is to be noted that the static feedforward NN
in this diagram is turned into a dynamic NN by closing a feedback loop
around it (c.f. [Narendra 1991]).

8.3 Tracking Control Using Static Neural Networks
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Advantage of NN over LIP Adaptive Control. Each robotic system has its
own regression matrix, so that a different 
(x) must be determined for each
system. This regression matrix is often complicated and determining it can be
time consuming. One notes that the regression matrix effectively provides a
basis for function approximation for a specific given system. On the other
hand, the universal approximation property of non-linear networks shows
that NN provide a basis for all sufficiently smooth systems. Therefore, NN
can be used to approximate smooth f(x) for all rigid robotic systems, effectively
allowing the design of a single tunable controller for a class of systems. No
regression matrix need be determined, for the same NN activation functions
suffice for the whole class of plants.

Figure 8.3.1: Neural net robot controller, showing nonlinear neural network loop
and outer tracking loop.
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Even the 1-layer NN, which is LIP, has this advantage. Note that the 1-layer
NN is linear not in the system parameters, but in the NN weights. Even the LIP
NN has a universal approximation property so that no regression matrix is
needed.

Initial Tracking Errors and Initial NN Weights. It is now required to determine
how to tune the NN weights to yield guaranteed closed-loop stability. Several
cases are considered for NN controller design in this section. All of them need
the following construction.

Since the NN approximation property holds on a compact set, one must
define an allowable initial condition set as follows. Let the NN approximation
property hold for the function f(x) given in (8.3.5) with a given accuracy �N in
(8.2.6) for all x inside the ball of radius bx>qB. Define the set of allowable
initial tracking errors as

(8.3.15)

Note that the approximation accuracy of the NN determines size of Sr. For
a larger NN (i.e. more hidden-layer units), �N is small for a larger radius bx.
Thus, the allowed initial condition set Sr is larger. On the other hand, a more
active desired trajectory (e.g. containing higher frequency components) results
in a larger acceleration qd(t), which yields a larger bound qB, thereby decreasing
Sr. It is important to note the dependence of Sr on the PD design ratio 	—both
c0 and c2 depend on 	.

A key feature of our the Initial Condition Requirement is its independence
of the NN initial weights. This is in stark contrast to other techniques in the
literature where the proofs of stability depend on selecting some initial
stabilizing NN weights, which is very difficult to do.

8.4 Tuning Algorithms for Linear-in-the-
Parameters NN

Suppose now that a LIP FLNN is used to approximate the nonlinear robot
function (8.3.5) according to (8.2.15) with  on a compact set, the
ideal approximating weights W constant, and �(x) selected as a basis. An
estimate of f(x) is given by (8.3.14). Then the control law (8.3.7) becomes

(8.4.1)

and the closed-loop filtered error dynamics (8.3.8) are

(8.4.2)

8.4 Tuning Algorithms for Linear-in-the-Parameters NN
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The next theorem derives the tuning law for a NN controller that is augmented
by an e-mod term as in [Narendra and Annaswamy 1987].

It must now be assumed that the ideal weights W are constant and bounded
so that

(8.4.3)

with the bound WB known. In [Polycarpou 1996] it is shown how to use
standard adaptive robust techniques to avoid the assumption that the bound
WB is known.

THEOREM 8.4–1: (NN Weight Tuning Algorithm).
Let the desired trajectory qd(t) be bounded by qB and the initial tracking

error r(0) be in Sr. Let the NN reconstruction error bound �N and the disturbance
bound dB be constants. Assume the ideal NN target weights are bounded by
WB as in (8.4.3). Let the control input for the robot arm be given by (8.4–1)
with v(t)=0 and gain

(1)

Let the weight tuning be

(2)

with F=FT>0 and �>0 a small design parameter. Then the filtered tracking
error r(t) and the NN weight estimates W(t) are UUB with practical bounds
given respectively by the right-hand sides of (8), (9). Moreover, the tracking
error may be made as small as desired by increasing the tracking gain Kv.

Proof:
Let the NN approximation property (8.2.15) hold for the function f(x)

given in (8.3.5) with a given accuracy �N for all x in the compact set
 with bx>qB. Let r(0)�Sr. Then the approximation

property holds at time 0.
Define the Lyapunov function candidate

(3)

Differentiating yields

(4)
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whence substitution from (8.4.2) yields

(5)

Then, using tuning rule (2) yields

(6)

Since

 

there results

(7)

which is negative as long as the term in braces is positive. Completing the
square yields

 

which is guaranteed positive as long as

(8)

or

(9)

Thus, L is negative outside a compact set. Selecting the gain according to (1)
ensures that the compact set defined by ||r||�br is contained in Sr, so that the
approximation property holds throughout. This demonstrates the UUB of
both ||r|| and ||W||F. �

This proof is similar to [Narendra and Annaswamy 1987] but is modified
to reflect the fact that the NN approximates only on a compact set. In this
result one now requires the bound WB on the ideal weights W, which appears
in the PD gain condition (1). Now, bounds are discovered both for the

8.4 Tuning Algorithms for Linear-in-the-Parameters NN
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tracking error r(t) and the weights W(t). Note that no persistence of exictation
condition is needed to establish the bounds on W with the modified weight
tuning algorithm.

The NN weight tuning algorithm (2) consists of a backpropagation through
time term plus a new second term. The importance of the �, term, called the
e-modification, is that it adds a quadratric term in  in (7), so that it is
possible to establish that L is negative outside a compact set in the

 plane [Narendra and Annaswamy 1987]. The e-mod term
makes the tuning law robust to unmodelled dynamics so that the PE condition
is not needed. In [Polycarpou and Ioannou 1991] a projection algorithm is
used to keep the NN weights bounded. In [Chen and Khalil 1992], [Chen
and Liu 1994] a deadzone technique is employed.

Weight Initialization and On-Line Tuning. In the NN control schemes derived
in this paper there is no preliminary off-line learning phase. The weights are
simply initialized at zero, for then Figure 8.3.1 shows that the controller is
just a PD controller. Standard results in the robotics literature [Dawson et al.
1990] show that a PD controller gives bounded errors if Kv is large enough.
Therefore, the closed-loop system remains stable until the NN begins to learn.
The weights are tuned on-line in real-time as the system tracks the desired
trajectory. As the NN learns f(x), the tracking performance improves. This is
a significant improvement over other NN control techniques where one must
find some initial stabilizing weights, generally an impossible feat for complex
nonlinear systems.

Bounds on the Tracking Error and NN Weight Estimation Errors. The right-
hand side of (8) can be taken as a practical bound on the tracking error in
the sense that r(t) will never stray far above it. It is important to note from
this equation that the tracking error increases with the NN reconstruction
error �N and robot disturbances dB, yet arbitrarily small tracking errors
may be achieved by selecting large gains Kv. This is in spite of Barron’s
lower bound on �.

Note that the NN weights W are not guaranteed to approach the ideal
unknown weights W that give good approximation of f(x). However, this is of
no concern as long as W–W is bounded, as the proof guarantees. This
guarantees bounded control inputs so that the tracking objective can be
achieved.
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8.5 Tuning Algorithms for Nonlinear-in-the-Parameters NN

Now suppose that a 2-layer NN is used to approximate the robot function
according to (8.2.5) with ||�||��� on a compact set, and the ideal approximating
weights W, V constant. Then the control law (8.3.7) becomes

(8.5.1)

The proposed NN control structure is shown in Figure 8.3.1.
The NLIP NN controller is far more powerful than the 1-layer FLNN as it

is not necessary to select a basis of activation functions. In effect, the weights
V are adjusted on-line to automatically provide a suitable basis. The control
is nonlinear in the first-layer weights V, which presents complications in
deriving suitable weight tuning laws. Auxiliary signal v(t) is a function to be
detailed subsequently that provides robustness in the face of higher-order terms
in the Taylor series arising from the NLIP problem.

Using the result (8.2.13) to properly address the NLIP problem, the closed-
loop error dynamics (8.3.8) can be written as

(8.5.2)

where the disturbance terms are

(8.5.3)

Define

(8.5.4)

and Z, Z equivalently. It is not difficult to show that

(8.5.5)

with Ci known positive constants.
It is assumed that the ideal weights are bounded so that

(8.5.6)

with ZB known. (Standard adaptive robust control techniques can be used to
lift the assumption that ZB is known [Polycarpou 1996].)

The next theorem presents the most powerful NN controller in this
chapter.

8.5 Tuning Algorithms for Nonlinear-In-The-Parameters NN
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THEOREM 8.5–1: (Augmented Backprop Weight Tuning for Multi-layer NN
Controller).

Let the desired trajectory qd(t) be bounded by qB and the initial tracking
error r(0) be in Sr. Let the ideal target NN weights be bounded by known ZB.
Take the control input for the robot dynamics (8.3.1) as (8.5.1) with PD gain
satisfying

(1)

where C3 is defined in the proof. Let the robustifying term be

(2)

with gain

(3)

Let NN weight tuning be provided by

(4)

(5)

with any constant matrices F=FT>0, G=GT>0, and �>0 a small scalar design
parameter. Then the filtered tracking error r(t) and NN weight estimates V, W
are UUB, with the bounds given specifically by (10) and (11). Moreover, the
tracking error may be kept as small as desired by increasing the gains Kv in
(8.5.1).

Proof:
Let the NN approximation property (8.2.5) hold for the function f(x) given

in (8.3.5) with a given accuracy εN for all x in the compact set
 with bx>qB. Let r(0)�Sr. Then the approximation property

holds at time 0.
Define the Lyapunov function candidate

(6)

Differentiating yields

(7)
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Substituting now from the error system (8.5.2) yields

(8)

The tuning rules give

Since

 

there results

where Kvmin is the minimum singular value of Kv, and the last inequality holds
due to (3).

L is negative as long as the term in braces is positive. Defining C3=
ZB+C1/� and completing the square yields

(9)

which is guaranteed positive as long as either

8.5 Tuning Algorithms for Nonlinear-In-The-Parameters NN
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(10)

or

(11)

Thus, L is negative outside a compact set. According to the LaSalle
extension [Lewis et al. 1993] this demonstrates the UUB of both ||r|| and ||Z||F
as long as the control remains valid within this set. However, the PD gain
condition (1) shows that the compact set defined by ||r||�br is contained in Sr,
so that the approximation property holds throughout. �

The first terms in the tuning algorithms (4), (5) are nothing but back-
propagation of the tracking error through time. The last terms are the Narendra
e-mod, and the second term in (4) is a novel second-order term needed due to
the NLIP of the NN. The robustifying term v(t) is required also due to the
NLIP problem.

The comments appearing after Theorem 8.4.1 are germane here.
Specifically, there is no preliminary off-line tuning phase and NN weight
tuning occurs on-line in real-time simultaneously with control action. Weight
initialization is not an issue in the proof and it is not necessary to provide
initial stabilizing weights; the weights are simply initialized so that the NN
output is equal to zero, for then the PD loop keeps the system stable until the
NN begins to learn. However, practical experiments [Gutierrez and Lewis
1998] show that it is important to initialize the weights suitably. A good
choice is to select V(0) randomly and W(0) equal to zero.

In practice it is not necessary to compute the constants c0, c1, c2, C0, C1, C2,
ZB nor determine Sr. The size L of the NN and the PD gains Kv are simply
selected large and a simulation is performed. The simulation is then repeated
with a different L and Kv. Based on the difference in behavior between the two
simulations, L and Kv can be modified.

Straight Backpropagation Weight Tuning. The backprop algorithm (usually
in discrete-time form) has been proposed innumerable times in the literature
for closed-loop control. It can be shown that if the NN approximation error �
is zero, the disturbances are �d(t) zero, and there are no higher-order terms in
the Taylor series (8.2.12), then the straight backprop algorithm

(8.5.7)
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may be used for closed-loop control instead of (4), (5). PE is required to show
that the NN weights are bounded using straight backprop. The conditions
mentioned are very restrictive and do not occur in practice; they essentially
require the robot arm to be linear (e.g. 1=link). Moreover, PE conditions are
not easy to guarantee in NN.

Passivity Properties of NN Controllers

The NN used in this paper are static feedforward nets, but since they appear
in a closed feedback loop and are tuned using differential equations, they are
dynamical systems. Therefore, one can discuss the passivity of these NN. In
general a NN cannot be guaranteed to be passive. However, the NN controllers
in this paper have some important passivity properties that result in robust
closed-loop performance.

The system x=f (x, u),y=h(x, u) is said to be passive if it verifies an equality
of the so-called power form [Slotine and Li 1991]

(8.5.8)

for some lower-bounded L(t) and some g(t)�0. That is,

(8.5.9)

for all T�0 and some �0. The system is dissipative if it is passive and in
addition

(8.5.10)

A special sort of dissipativity occurs if g(t) is a quadratic function of ||x||
with bounded coefficients. We call this state strict passivity (SSP); then, the
norm of the internal states is bounded in terms of the power delivered to the
system. Somewhat surprisingly, the concept of SSP has not been extensively
used in the literature [Lewis et al. 1993], [Seron et al. 1994], though see
[Goodwin et al. 1984] where input and output strict pasivity are defined. SSP
turns out to be pivotal in studying the passivity properties of NN controllers,
and allows one to conclude some internal boundedness properties without
any assumptions of persistence of excitation.

Passivity of the Robot Tracking Error Dynamics
The error dynamics in this paper (e.g. (8.5.2)) appear in Figure 8.5.1 and
have the form

(8.5.11)

8.5 Tuning Algorithms for Nonlinear-In-The-Parameters NN
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where r(t) is the filtered tracking error and �0(t) is appropriately defined. This
system satisfies the following strong passivity property.

THEOREM 8.5–2: (SSP of Robot Error Dynamics).

The dynamics (8.5.11) from �0(t) to r(t) are a state strict passive system.

Proof:
Take the nonnegative function

 

so that, using (8.5.11), one obtains

 

whence, the skew-symmetry property yields the power form

 

Figure 8.5.1: Two-layer neural net closed-loop error system.
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This is the power delivered to the system minus a quadratic term in ||r||,
verifying state strict passivity. �

Passivity Properties of 2-layer NN Controllers

The closed-loop system is in Figure 8.3.1, where the NN appears in an inner
feedback linearization loop. The error dynamics for the 2-layer NN controller
are given by (8.5.2). The closed-loop error system appears in Figure 8.5.1,
with the signal �1 defined as

(8.5.12)

Note the role of the NN in the error dynamics, where it is decomposed into
two effective blocks appearing in a typical feedback configuration.

We now reveal the passivity properties engendered by straight back-
propagation tuning (8.5.7). To prove this algorithm, one uses the error
dynaqmics in a different form than (8.5.2), so that in Figure 8.5.1 one has

.

THEOREM 8.5–3: (Passivity of Backprop NN Tuning Algorithm).

The simple backprop weight tuning algorithm (8.5.7) makes the map from
, and the map from r(t) , both passive maps.

Proof:
The dynamics with respect W, V are

(1)

(2)

1. Selecting the nonnegative function

 

and evaluating L along the trajectories of (1) yields

 

which is in power form (8.5.8).
2. Selecting the nonnegative function

 

8.5 Tuning Algorithms for Nonlinear-In-The-Parameters NN
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and evaluating along the trajectories of (2) yields

 

which is in power form. �

Thus, the robot error system in Figure 8.5.1 is state strict passive (SSP) and
the weight error blocks are passive; this guarantees the passivity of the closed-
loop system. Using the passivity theorem [Slotine and Li 1991] one may now
conclude that the input/output signals of each block are bounded as long as
the external inputs are bounded.

Unfortunately, though passive, the closed-loop system cannot be guaranteed
to be SSP, so that when disturbances are nonzero, this does not yield boundedness
of the internal states of the weight blocks (i.e. W, V) unless those blocks are
observable, that is persistently exciting (PE).

The next result shows why a PE condition is not needed with the modified
weight update algorithm given in Theorem 8.5.1.

THEOREM 8.5–4: (SSP of Augmented Backprop NN Tuning Algorithm).

The modified weight tuning algorithms in Theorem 8.5.1 make the map from
, and the map from , both

state strict passive (SSP) maps.

Proof:
The dynamics relative to W, V using the tuning algorithms in Theorem

8.5.1 are given by

 

1. Selecting the nonnegative function

 

and evaluating L yields

 

Since
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there results

 

which is in power form with the last function quadratic in
2. Selecting the nonnegative function

 

and evaluating L yields

 

which is in power form with the last function quadratic in ||V||F. �

The SSP of both the robot dynamics and the weight tuning blocks does guarantee
SSP of the closed-loop system, so that the norms of the internal states are
bounded in terms of the power delivered to each block. Then, boundedness of
input/output signals assures state boundedness without any sort of observability
or PE requirement.

Definition of Passive NN and Robust NN. We define a dynamically tuned
NN as passive if, in the error formulation, the tuning guarantees the passivity
of the weight tuning subsystems. Then, an extra PE condition is needed to
guarantee boundedness of the weights. This PE condition is generally in terms
of the outputs of the hidden layers of the NN. We define a dynamically tuned
NN as robust if, in the error formulation, the tuning guarantees the SSP of the
weight tuning subsystem. Then, no extra PE condition is needed for boundedness
of the weights. Note that (1) SSP of the open-loop plant error system is needed
in addition for tracking stability, and (2) the NN passivity properties are
dependent on the weight tuning algorithm used.

8.5 Tuning Algorithms for Nonlinear-In-The-Parameters NN
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Passivity Properties of 1-Layer NN Controllers

In a similar fashion, it is shown that the FLNN controller tuning algorithm
makes the system passive, so that an additional PE condition is needed to
verify internal stability of the NN weights. On the other hand, the augmented
tuning algorithm in Theorem 8.4.1 yields SSP, so that no PE is needed.

8.6 Summary

Neural network controller design algorithms were given for a general class of
industrial Lagrangian motion systems characterized by the rigid robot arms.
The design procedures are based on rigorous nonlinear derivations and stability
proofs, and yield a multiloop intelligent control structure with NN in some of
the loops. NN weight tuning algorithms were given that do not require
complicated initialization procedures or any off-line learning phase, work
on-line in real-time, and offer guaranteed tracking and bounded NN weights
and control signals. The NN controllers given here are model-free controllers
in that they work for any system in a prescribed class without the need for
extensive modeling and preliminary analysis to find a ‘regression matrix’.
Unlike standard robot adaptive controllers, they do not require linearity in
the parameters (see also [Colbaugh and Seraji 1994] which does not need
LIP). Proper design allows the NN controllers to avoid requirements such as
persistence of excitation and certainty equivalence. NN passivity and
robustness properties are defined and studied here.
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Chapter 9

Force Control

In this chapter the fundamentals of position/force controllers are studied.
The topics that are covered include stiffness control, hybrid position/force
control, hybrid impedance control, and reduced-state position/force control.
Emphasis is placed on controller development, stability, and implementation
issues.

9.1 Introduction

For tasks performed by robot manipulators, such as moving payloads or
painting objects, position controllers give adequate performance because
these types of tasks only require the robot to follow a desired trajectory.
However, during grinding or an assembly task, the robot manipulator comes
in contact with the environment; therefore, interaction forces develop
between the robot manipulator and the environment. Consequently, these
interaction forces, as well as the position of the end effector, must be
controlled.

To motivate the need for using a combination of force and position control,
consider the problem of controlling a manipulator to write a sentence on a
blackboard. To form the letters in the sentence, we must certainly control
the end-effector position or, equivalently, the position of the chalk. As anyone
who has written on a blackboard knows, the force with which one presses
on the blackboard must also be controlled. That is, pressing too lightly can
result in letters that are not easily readable, while pressing too hard can
result in broken chalk. This example clearly illustrates that many robotic
applications will require that a desired positional trajectory and a desired
force trajectory must be specified. In this chapter we present some general
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control strategies that control not only the robot end-effector position but
also the force that the end effector exerts on the environment. It should be
noted that throughout this chapter, we assume that the desired velocity and
force trajectories, which are commanded by the controllers, are consistent
with the model of the environment [Lipkin and Duffy 1988]. If this is not the
case, it may be possible to modify the desired velocity and force trajectories
to be consistent with the model of the environment. The interested reader is
referred to [Lipkin and Duffy 1988] for information on this modifying or
“kinestatic filtering” of the desired trajectories.

9.2 Stiffness Control

Since the first robot manipulators involved in industrial processes were
required to perform positional tasks (e.g., spray painting), robot manipulators
were manufactured to be very rigid. This rigid design allowed the robot
control designer to obtain reasonable positional accuracy by utilizing simple
control laws. As one might expect, force control applications (e.g., grinding
or sanding) are extremely difficult to accomplish with such a “stiff” robot.
Therefore, if the robot manipulator “stiffness” could be controlled, force
control applications could be accomplished more easily. In this section the
concept of stiffness control is formulated for a simple single-degree-of-freedom
example. The robot manipulator equation is then modified to account for
the forces exerted on the environment. Using this new model, the stiffness
control concept [Salisbury and Craig 1980] is then generalized to an n-link
robot manipulator.

Stiffness Control of a Single-Degree-of-Freedom Manipulator

To motivate the concept of stiffness control, consider the problem of force
control for the system depicted by Figure 9.2.1. Here the manipulator with
mass m is assumed to be in contact with the environment, which is located
at the static position xe. The control problem is to specify an input force
(i.e.,�) so that the manipulator moves to a desired constant position (i.e.,
xd). In this system, we also assume that if the position of the manipulator
(i.e., x) is greater than xe, the force (i.e., f) exerted on the environment is
given by

f=ke(x-xe), (9.2.1)

where ke is a positive constant used to denote the environmental stiffness.
That is, we are assuming that the environmental stiffness can be modeled as
a linear spring with a spring constant denoted by ke. From this assumption

Copyright © 2004 by Marcel Dekker, Inc.



9.2 Stiffness Control 465

Assuming that gravity and friction are negligible, the equation of motion
for the system given in Figure 9.2.2 is given by

(9.2.2)

The system block diagram for (9.2.2) is given by Figure 9.2.3. Note that in
Figure 9.2.3, we have used the variable s to denote the Laplace transform
variable.

The form of the dynamics given by (9.2.2) motivates the simple PD control
law

(9.2.3)

where kv and kp are positive scalar control gains. After substituting (9.2.3)
into (9.2.2), we obtain the closed-loop system

(9.2.4)

we can visualize the single-degree-of-freedom system as the mass-spring
diagram given by Figure 9.2.2.

Figure 9.2.1: Single-degree-of-freedom system.

Figure 9.2.2: Mass-spring diagram.
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which can be represented by the block diagram given by Figure 9.2.4. From
Figure 9.2.4 we know that the closed-loop system is stable since we have
defined the constants m, kv, kp, and ke to be positive. That is, we can show
that the poles of the transfer function

 

are in the open left-half s-plane.
To investigate how the PD control given in (9.2.3) controls the force exerted

on the environment, we examine the system in steady-state conditions. Because
xd and xe are constant, the Laplace transform of x can be found from (9.2.4)
to be

(9.2.5)

Therefore, the steady-state manipulator position (i.e.,) can easily be shown
to be

(9.2.6)

Figure 9.2.4: Closed-loop system block diagram.

Figure 9.2.3: System block diagram.

Copyright © 2004 by Marcel Dekker, Inc.



9.2 Stiffness Control 467

The steady-state manipulator position can now be used to calculate the steady-
state force (i.e., f) exerted on the environment. Specifically, upon substituting
(9.2.6) into (9.2.1), the steady-state force is given by

(9.2.7)

As one would expect, the spring constant of the environment is often
considered to be large because the robot is pushing on a nearly rigid surface
in most robot force control applications. Thus, if we assume that  we
can approximate the steady-state force in (9.2.7) as

(9.2.8)

From the discussion above, we can see that the position control strategy
given by (9.2.3) does indeed exert a force on the environment. Specifically,
this force is created by commanding a desired trajectory that is slightly inside
the contact surface. In attempting to eliminate the position error, the position
controller exerts a steady-state force on the surface. From the approximate
steady-state force given by (9.2.8), the position gain (i.e., kp) can be thought
of as representing the desired “stiffness” of the manipulator. That is, the
manipulator can be visualized as a spring, with spring constant kp, exerting
a force on the environment. Hence the term “stiffness control” has often
been associated with the PD control given by (9.2.3) since the stiffness of the
manipulator can be set by the adjustment of kp.

The Jacobian Matrix and Environmental Forces

Before the stiffness controller can be generalized to an n-link robot
manipulator, we must define some notation with regard to the forces that
the robot exerts on the environment. As explained in [Spong and Vidyasagar
1989], the forces are commonly transformed into the joint-space via a
Jacobian matrix. In this chapter we define the Jacobian matrix in terms of a
task space coordinate system which is defined for the specific robot application
in question. That is, for a certain application, we may wish to have the end
effector apply forces along a particular set of directions while moving along
other directions. This concept is illustrated in Figure 9.2.5, which depicts a
manipulator moving along a slanted surface. The task space coordinate system
is given by the directions u and v since we wish to move the end effector
along the surface in the direction v while applying a force normal to the
surface along the direction u. An appropriate task space coordinate system
is usually defined in most robotic applications from this line of reasoning.

Following this logic, let x be the n×1 task space vector defined by
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(9.2.9)

where h(q) is found from the manipulator kinematics and the appropriate
relationships between the joint and task spaces. The derivative of x is defined
as

(9.2.10)

where the n×n task space Jacobian matrix J(q) [Spong and Vidyasagar 1989]
is defined as

(9.2.11)

with the identity matrix I, the zero matrix 0, and the transformation matrix
T having dimensions dependent on the task space coordinate system selected.
The transformation matrix T is typically used when converting joint velocities
to the derivatives of the roll, pitch, and yaw angles associated with end-
effector orientation. For brevity we assume that the robot manipulators
discussed in this chapter are nonredundant and are always in a nonsingular
configuration; therefore, the Jacobian matrix is a nonsingular square matrix.

Using the task space coordinate concept, we now examine how the robot
equation must be modified for the purposes of force control. If the end effector
of the manipulator is in contact with the environment, force interactions

Figure 9.2.5: Manipulator moving along slanted surface.
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will exist between the end effector and the environment. If the interaction
forces are measured in the joint space, the manipulator dynamic equation
can be written as

(9.2.12)

where �e is an n×1 vector in joint space coordinates, which denotes the force
exerted on the environment. The dynamic equation given by (9.2.12) makes
sense because if the manipulator is not moving (i.e., ), then (9.2.12)
reduces to

(9.2.13)

That is, if the robot manipulator is in static operation, the actuator force is
equal to the force exerted on the environment plus the force needed to
withstand the gravitational forces. Note that in (9.2.13), we have assumed
that static friction can be neglected.

A joint space representation for the force exerted on the environment is
not the standard notation in the robotics literature; rather, the robot
manipulator equation is usually given by

(9.2.14)

where f is the n×1 vector of contact forces and torques in task space.
To understand the origin of (9.2.14), equate the right-hand sides of (9.2.12)

and (9.2.14) to yield

(9.2.15)

This equation can be shown to be true quite easily by using a conservation
of energy argument. Specifically, by conservation of energy, we know that

(9.2.16)

Substituting (9.2.10) into (9.2.16) yields

 

Since the relationship above must hold for all q, we can see that (9.2.15)
obviously represents a true statement. To shed some light on the process of
developing the Jacobian and the task space formulation, two examples are
now discussed.
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EXAMPLE 9.2–1: Task Space Formulation for a Slanted Surface

We want to find the manipulator dynamics for the Cartesian manipulator
system (i.e., both joints are prismatic) given in Figure 9.2.5 and to
decompose the forces exerted on the surface into a normal force and a
tangent force. First, the motion portion of the dynamics can easily be
determined when the robot is not constrained by the surface. After
removing the surface and the interaction forces f1, and f2, the manipulator
dynamics can be shown to be

(1)

where

 

and F(q) is the 2×1 vector  that models the friction as
discussed in Chapter 2.

To account for the interaction forces, let x be the 2×1 task space vector
defined by

(2)

where u and v define a fixed coordinate system such that u represents the
normal distance to the surface, and v represents the tangent distance along
the surface. As in (9.2.9), the task space coordinates can be expressed in
terms of the joint space coordinates by

(3)

where h(q) is found from the geometry of the problem to be

(4)
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The task space Jacobian matrix is found from (9.2.11) by utilizing the
fact that T is the identity matrix for this problem because we do not have
to concern ourselves with any end-effector angles of orientation. That is,
J(q) is given as

(5)

Following (9.2.14), the robot manipulator equation is given by

(6)

where

 

It is important to realize that the normal force (i.e., f1) and the tangent
force (i.e., f2) are drawn in the direction of the task space coordinate system
given by (2) (see Fig. 9.2.5).

�

EXAMPLE 9.2–2: Task Space Formulation for an Elliptical Surface

We wish to find the manipulator dynamics for the Cartesian
manipulator system given in Figure 9.2.6 and to decompose the forces
exerted on the surface into a normal force and a tangent force. The
motion portion of the dynamics is the same as in Example 9.2.1;
however, due to the change in the environmental surface, a new task
space coordinate system must be defined. Specifically, let x be the 2×1
task space vector defined by

(1)

where u and v define a rotating coordinate system such that u represents
the normal distance to the surface and v represents the tangent distance
along the surface. As in (9.2.9), the task space coordinates can be expressed
in terms of the joint space coordinates by

(2)
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where h(q) is found to be

(3)

with u, v, q1 and q2 being appropriately defined unit vectors used in the dot
product notation given in (3). The unit vectors q1 and q2 are defined in terms
of the fixed coordinate set given by q1 and q2. These unit vectors are defined
as

(4)

To find the unit vectors u and v, we first use the function of the surface

(5)

to parameterize the surface in terms of one variable (i.e., q2) as follows:

(6)

Figure 9.2.6: Manipulator moving along elliptical surface.
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The partial derivative of (6) with respect to q2 divided by the length of the
vector yields a unit vector (i.e., v) that is always tangent to the surface. That
is, v is given by

(7)

where

 

By using (5) again, the expression for v can be simplified to yield

(8)

where

 

Because the vectors u and v must be orthogonal (i.e., u.v=0), via (8) and the
geometry of the problem, we know that

(9)

Substituting (4), (8), and (9) into (3) yields

(10)

The task space Jacobian matrix is found from (9.2.11) by utilizing the fact
that T is the identity matrix. That is, J(q) is given as

(11)

where
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Following (9.2.14), the robot manipulator equation is given by

(12)

where �, M, q, G, f, and F(q) are as defined in Example 9.2.1. It is important
to note that the normal force (i.e., f1) and the tangent force (i.e., f2) are
drawn in the direction of the task space coordinate system given by (1) (see
Fig. 9.2.6).

Stiffness Control of an N-Link Manipulator

Now that we have the robot manipulator dynamics in a form which includes
the environmental interaction forces, the stiffness controller for the n-link
robot manipulator can be formulated. As before, the force exerted on the
environment is defined as

(9.2.17)

where Ke is an n×n diagonal, positive semi-definite, constant matrix used to
denote the environmental stiffness, and xe is an n×1 vector measured in task
space that is used to denote the static location of the environment. Note that
if the manipulator is not constrained in a particular task space direction, the
corresponding diagonal element of the matrix Ke is assumed to be zero. Also,
the environmental surface friction is typically neglected in the stiffness control
formulation.

The multidimensional stiffness controller is the PD-type controller

(9.2.18)

where Kv and Kp are n×n diagonal, constant, positive-definite matrices and
the task space tracking error is defined as
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As before, xd is used to denote the desired constant end-effector position
that we wish to move the robot manipulator to; however, xd is now an n×1
vector. Substituting (9.2.17) and (9.2.18) into (9.2.14) yields the closed-loop
dynamics

(9.2.19)

To analyze the stability of the system given by (9.2.19), we utilize the
Lyapunov-like function

(9.2.20)

Differentiating (9.2.20) with respect to time and utilizing (9.2.10) yields

(9.2.21)

Note that in (9.2.21) we have used the fact that xe and xd are constant and
that the transpose of either a scalar function or a diagonal matrix is equal to
that function or matrix, respectively. Substituting (9.2.19) into (9.2.21) and
utilizing (9.2.10) yields

(9.2.22)

Applying the skew-symmetric property (see Chapter 2) to (9.2.22) yields

(9.2.23)

which is nonpositive. Since the matrices J(q) and hence JT(q)KvJ(q) are
nonsingular, V can only remain zero along trajectories where q=0 and hence
q=0 (see LaSalle’s theorem in Chapter 1). Substituting q=0 and q=0 into
(9.2.19) and utilizing (9.2.10) yields

(9.2.24)

or, equivalently,

(9.2.25)

where the subscript i is used to denote the ith component of the vectors x, xd,
xe, and the ith diagonal element of the matrices Kp and Ke.
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The stability analysis above can be interpreted to mean that the robot
manipulator will stop moving when the task space coordinates are given by
(9.2.25). That is, the final position or steady-state position of the end effector
is given by (9.2.25), which in the single-degree-of-freedom case is equivalently
given by (9.2.6). To obtain the ith component of the steady-state force exerted
on the environment, we substitute (9.2.25) into the ith component of (9.2.17)
to yield

(9.2.26)

Thus the steady-state force exerted by the end effector on the environment
is given by (9.2.26), which in the single-degree-of-freedom case is
equivalently given by (9.2.7). As in the single-degree-of-freedom case, we
assume that Kei is much larger than Kpi for the task space directions that
are to be force controlled. That is, the steady-state force in (9.2.26) can be
approximated by

Table 9.2.1: Stiffness Controller

(9.2.27)
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therefore, Kpi can interpreted as specifying the stiffness of the manipulator in
these task space directions.

If the manipulator is not constrained in a task space direction, the
corresponding stiffness constant Kei is equal to zero. Substituting Kei=0 into
(9.2.25) yields

(9.2.28)

This means that for the nonconstrained task space directions, we obtain set-
point control; therefore, in steady state the desired position set point is
reached. The stiffness controller along with the corresponding stability result
are both summarized in Table 9.2.1. We now illustrate the concept of stiffness
control with an example.

EXAMPLE 9.2–3: Stiffness Controller for a Cartesian Manipulator

We want to design and simulate a stiffness controller for the robot
manipulator system given in Figure 9.2.5. The control objective is to move
the end effector to a desired final position of vd=3 m while exerting a final
desired normal force of fd1=2 N. We neglect the surface friction (i.e., f2) and
joint friction, and assume that the normal force (i.e., f1) satisfies the
relationship

(1)

where  and ke=1000 N/m. The robot link masses are assumed
to be unity, and the initial end-effector position is given by

(2)

To accomplish the control objective, the stiffness controller from Table 9.2.1
is given by

(3)

where
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�, J, G, and x are as defined in Example 9.2.1, ud is defined as the desired
normal position, and the gain matrices Kv and Kp have been taken to be
Kv=kvI and Kp=kpI. For this example we select kv= kp=10, which will
guarantee that kp<< k e as required in the stiffness control formulation. To
satisfy the control objective that fd1=2 N, we utilize (9.2.27) to determine
the desired normal position. Specifically, substituting the values of fd1, ke,
and ue into

(4)

yields 
The simulation of the stiffness controller given by (3) for the robot

manipulator system (Figure 9.2.5) is given in Figure 9.2.7. As indicated by
the simulation, the desired tangential position and normal force are reached
in about 4 s.

�

9.3 Hybrid Position/Force Control

A major disadvantage of the stiffness controller given in Section 9.2 is that it
can only be used for set-point control; in other words, the desired end effector
manipulator position and the desired force exerted on the environment must
be constant. In many robotic applications, such as grinding, the end effector
must track a desired positional trajectory along the object surface while

Figure 9.2.7: Simulation of stiffness controller.
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tracking a desired force trajectory exerted onto the object surface. In this
type of application, a stiffness controller will not perform adequately;
therefore, another control approach must be utilized.

The so-called hybrid position/force controller [Chae et al. 1988] and
[Raibert and Craig 1981] can be used for tracking position and force
trajectories simultaneously. The basic concept of the hybrid position/force
controller is to decouple the position and force control problems into subtasks
via a task space formulation. As we have seen, the task space formulation is
valuable in determining which directions should be force or position
controlled. That is, the position and force control subtasks are easily
determined from the task space formulation. After the control subtasks have
been identified, separate position and force controllers can then be developed.

Hybrid Position/Force Control of a Cartesian Two-Link Arm

To illustrate this concept of hybrid position/force control, consider the robot
manipulator system given by Figure 9.3.1. For this application, the position
along the surface and the normal force exerted on the surface should both be
controlled; therefore, one must determine which variables should be force
controlled and which should be position controlled.

9.3 Hybrid Position/Force Control

Figure 9.3.1: Manipulator moving along perpendicular surface.
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Following the task space concept given in Section 9.2, the task space
formulation for the manipulator system given in Figure 9.3.1 is

(9.3.1)

with the task-space Jacobian matrix given by

 

As illustrated by (9.3.1), the task space and the joint space are equivalent for
this problem; therefore, we will refer to joint variables as task-space variables
throughout this problem.

To design the position/force controller for the manipulator system, we
must first determine the dynamic equations for the task space formulation
given by (9.3.1). Using this task space formulation and neglecting joint
friction, the manipulator dynamics can be shown to be

(9.3.2)

where �, M, G, and f are as defined in Example 9.2.1. The two dynamic
equations given in the matrix form represented by (9.3.2) are

(9.3.3)

and

(9.3.4)

In formulating a hybrid position/force controller, we design separate
controllers for the dynamics given by (9.3.3) and (9.3.4). As illustrated by
Figure 9.3.1, the position along the task space direction q2 should be position
controlled; therefore, we should use (9.3.4) for designing the position
controller. [This is obvious because the dynamics given by (9.3.3) do not
contain the task space variable q2.]

Because we are designing a position controller to track a desired trajectory,
we will define the “tangent space” tracking error to be

(9.3.5)

where qd2 represents the desired position trajectory along or tangent to the
surface. The position controller will be the computed-torque controller (see
Chapter 3)

(9.3.6)
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where

(9.3.7)

with kTv and kTp being positive control gains. Substituting (9.3.6) into (9.3.4)
gives the position tracking error system

(9.3.8)

By using the fact that kTv and kTp are positive, we can apply standard linear
control results to (9.3.8) to yield

 

therefore, asymptotic positional tracking is guaranteed with the controller
given by (9.3.6). Note that the position controller requires measurement of
the joint position, joint velocity, and surface friction force; therefore, from
an implementation point of view, force measurements are required in the
position controller.

The position controller given in (9.3.6) will ensure good position tracking
along the surface of the environment; however, we also want to control the
force exerted on the environment. For the manipulator system given in Figure
9.3.1, the task space direction normal to the surface is q1; therefore, we will
assume that in this direction the environment can be modeled as a spring.
Specifically, the normal force f1 exerted on the environment is given by

(9.3.9)

where ke represents the environment stiffness and qe=3. Taking the second
derivative of (9.3.9) with respect to time gives the expression

(9.3.10)

where the normal task space acceleration is written in terms of the second
derivative of the normal force. Substituting (9.3.10) into (9.3.3) yields the
force dynamic equation

(9.3.11)

We can now use the force dynamic equation given in (9.3.11) to design a
force controller to track a desired force trajectory. First, define the force
tracking error to be

9.3 Hybrid Position/Force Control
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(9.3.12)

where fd1 represents the desired normal force that is to be exerted on the
environment. Similar to the position controller, the force controller will be
the computed-torque controller

(9.3.13)

where

(9.3.14)

with kNv and kNp being positive control gains. Substituting (9.3.13) into
(9.3.11) gives the force tracking error system,

(9.3.15)

Using the fact kNv and kNp are positive in (9.3.15) yields

 

therefore, asymptotic force tracking is guaranteed with the controller given
by (9.3.13). It is important to realize that the force controller requires
measurement of the normal force and the derivative of the normal force.
Because the force derivative is often not available for measurement, it is
manufactured from (9.3.9), that is,

(9.3.16)

therefore, the stiffness of the environment and the normal task space velocity
are used to simulate the derivative of the force.

Hybrid Position/Force Control of an N-Link Manipulator

The hybrid position/force controller given in the preceding section can easily
be extended to the multidegree case by using the task space formulation
concept. Specifically, one can develop a feedback-linearizing control that
will globally linearize the robot manipulator equation and then develop linear
controllers to track the desired force and position trajectories.

First, the control designer selects a task space formulation

(9.3.17)
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such that the normal and tangent surface motions are decomposed as
discussed in Section 9.2. The robot dynamics given in (9.3.14) are then written
in terms of the task space acceleration by differentiating (9.3.17) twice with
respect to time to obtain

(9.3.18)

where J(q) is the task space Jacobian defined in (9.2.11). Solving (9.3.18) for
q yields

(9.3.19)

Substituting (9.3.19) into (9.2.14) yields

(9.3.20)

The corresponding feedback linearizing control for the dynamics given by
(9.3.20) is given by

(9.3.21)

where a is an n×1 vector used to represent the linear position and force
control strategies, which will be discussed later. After substituting (9.3.21)
into (9.3.20), we have

(9.3.22)

From (9.3.22), we can see that the task space motion has been globally
linearized and decoupled; therefore, we can design the position and force
controllers independently in a method similar to that of the preceding section.
Specifically, linear position controllers can be designed for the task space
variables that represent tangent motion; moreover, linear force controllers
can be designed for the task space variables that represent normal force.

Because the dynamics given in (9.3.20) have been decoupled in the task
space, we will define the tangent space components of x as xTi, where the
subscript T is used to denote the tangent space, and the subscript i is used to
denote the ith component of xT. From this notation the tangent space
components of (9.3.22) are given as

(9.3.23)

9.3 Hybrid Position/Force Control
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where aTi is the ith linear tangent space position controller. For the purpose
of feedback control, we define the tangent space tracking error to be

(9.3.24)

where xTdi represents the ith desired position trajectory tangent to the
environment surface. As in the preceding section, the corresponding linear
controller is then given as

(9.3.25)

with kTvi and kTpi being the ith positive control gains. Substituting (9.3.25)
into (9.3.23) gives the position tracking error system

(9.3.26)

Using the fact that kTvi and kTpi are positive in (9.3.26) yields

 

therefore, asymptotic positional tracking is guaranteed.
For purposes of force control, we define the normal space components of

x as xNj where the subscript N is used to denote normal space, and the subscript
j is used to denote the jth component of xN. From this notation, the normal
space components of (9.3.22) are given as

(9.3.27)

where aNj is the jth linear normal space force controller. As in the preceding
section, we assume that the environment can be modeled as a spring.
Specifically, the normal force fNj exerted on the environment is given by

(9.3.28)

where kej is the jth component of environmental stiffness, and xej is used to
represent the static location of the environment in the direction of the normal
space xNj.

As done for the single-degree-of-freedom robot in the preceding subsection,
we must formulate the force dynamics before we can develop the force
controller. Taking the second derivative of (9.3.28) with respect to time gives
the expression

(9.3.29)
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where the normal task space acceleration is written in terms of the second
derivative of the normal force. Substituting (9.3.29) into (9.3.27) yields the
force dynamics

(9.3.30)

For the purpose of feedback control, we define the force tracking error to be

(9.3.31)

where fNdj represents the jth component of the desired force exerted normal
to the environment. As in the preceding section, the corresponding linear
controller is then given by

(9.3.32)

with kNvj and kNpj being the jth positive control gains. Substituting (9.3.32)
into (9.3.30) gives the force tracking error system

(9.3.33)

Using the fact that kNvj and kNpj are positive in (9.3.33) yields

 

therefore, asymptotic force tracking is guaranteed.
The hybrid position/force controller and the corresponding stability result

are both summarized in Table 9.3.1. We now illustrate the concept of hybrid
position/force control with an example.

EXAMPLE 9.3–1: Hybrid Position/Force Control Along a Slanted Surface

We want to design and simulate a hybrid position/force controller for the
robot manipulator system given in Figure 9.2.5. The control objective is
to move the end effector with a desired surface trajectory of vd=sin(t) m
while exerting a normal force trajectory of . We neglect
joint friction and assume that the normal force (i.e., f1) satisfies the
relationship

(1)

9.3 Hybrid Position/Force Control
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where  and ke=1000 N/m. The robot link masses are assumed
to be unity, and the initial end-effector position is given by

(2)

To accomplish the control objective, the hybrid position/force controller
from Table 9.3.1 is given by

(3)

where a is a 2×1 vector representing the linear position and force
controllers with �, J, G, and f as defined in Example 9.2.1. The controller

Table 9.3.1: Hybrid Position/Force Controller
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given by (3) decouples the robot dynamics in the task space as follows:

(4)

From Figure 9.2.5, we can see that the task space variable u represents the
normal space, and the task space variable v represents the tangent space;
therefore, (4) may rewritten in the notation given in Table 9.3.1 as

(5)

From Table 9.3.1, the corresponding linear position and force controllers
are then given by

(6)

and

(7)

where , and ke1=1000.
The simulation of the hybrid position/force controller given by (3), (6),

and (7) for the robotic manipulator system (Figure 9.2.5) is given in Figure
9.3.2. The controller gains were selected as

 

As indicated by the simulation, the position and force tracking error go to
zero in about 4 s.

�

Implementation Issues

After reexamining the hybrid position/force controller, one can see that the
task space forces are needed for implementation of the control law. Often
a wrist-mounted force sensor is used for measuring the end-effector forces;
however, in general, these forces will not be the task space forces that are
needed for control implementation. Fortunately, a transformation can be

9.3 Hybrid Position/Force Control
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used to obtain the task space forces for any particular force application.
That is, the task space forces are related to the sensor forces by

(9.3.34)

where Js(q) is an n×n Jacobian sensor matrix, and fs is an n×1 vector of
sensor forces. Using (9.3.34), the task space forces are given by

(9.3.35)

As we mentioned earlier, the force control law requires measurement of the
task space force derivative; however, this signal is not usually available. Often,
the stiffness equation (9.3.28) is used to obtain the jth task space force
derivative as

(9.3.36)

which is in terms of the measurable jth task space normal velocity.

Figure 9.3.2: Simulation of hybrid position/force controller.
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With these implementational concerns in mind, the overall hybrid position/
force control strategy is depicted in Figure 9.3.3. The feedforward terms in
the block diagram are used to represent the terms

(9.3.37)

in the control law given in Table 9.3.1.

9.4 Hybrid Impedance Control

Impedance control is based on the concept that the controller should be used
to regulate the dynamic behavior between the robot manipulator motion
and the force exerted on the environment [Hogan 1987] rather than
considering the motion and force control problems separately. Using this
concept, the control designer specifies the desired dynamic behavior between
the motion of the manipulator and the force exerted on the environment.
This desired behavior is sometimes referred to as the target impedance because
it is used to represent an Ohm’s law type of relationship between motion and
force.

9.4 Hybrid Impedance Control

Figure 9.3.3: Hybrid position/force controller.
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Modeling the Environment

As pointed out in [Hogan 1987], the environmental model is central to any
force control strategy. In the force control strategies discussed previously,
the environment has simply been modeled as a spring; however, as one might
imagine, a simple spring model may not adequately describe all types of
environments. To classify the many types of environments, we use the linear
transfer function relationship

(9.4.1)

where the variable s is the Laplace transform variable, f represents the force
exerted on the environment, x represents the velocity of the manipulator at
the environmental contact point, and Ze(s) represents the environmental
impedance. For now, all quantities are assumed to be scalar functions;
however, at the end of this section we generalize impedance control to the
multidimensional case.

The quantity Ze(s) is called an impedance because (9.4.1) represents an
Ohm’s law type of relationship between motion and force. As in circuit theory,
environmental impedances can be separated into different categories. To
further our impedance control discussion, we now give three commonly used
categories which are used to classify environmental impedances.

DEFINITION 9.4–1 An impedance is inertial if and only if |Z(0)|=0.
�

An illustration of an inertial environment is given in Figure 9.4.1a. This
figure depicts a robot manipulator moving a payload of mass h with velocity
x. The corresponding interaction force is given by

 

therefore, utilizing (9.4.1) yields an inertial environmental impedance of

(9.4.2)

We can easily verify that this impedance is indeed inertial by applying
Definition 9.4.1.

DEFINITION 9.4–2 An impedance is resistive if and only if |Z(0)|=c where
0<c<�.  �

An illustration of a resistive environment is given in Figure 9.4.1b. This figure
depicts a robot manipulator moving through a liquid medium with velocity x.
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The liquid medium is assumed to have a damping coefficient of b. The
corresponding interaction force is given by

 

therefore, utilizing (9.4.1) yields a resistive environmental impedance of

(9.4.3)

We can easily verify that this impedance is indeed resistive by applying
Definition 9.4.2.

9.4 Hybrid Impedance Control

Figure 9.4.1: Environmental impedances.
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DEFINITION 9.4–3 An impedance is capacitive if and only if |Z(O)|= �.
�

An illustration of a capacitive environment is given in Figure 9.4.1c.
This figure depicts a robot manipulator pushing against an object of
mass h with velocity x. The object is assumed to have a damping
coefficient of b and a spring constant of k. The corresponding interaction
force is given by

 

therefore, utilizing (9.4.1) yields a capacitive environmental impedance of

(9.4.4)

We can easily verify that this impedance is indeed capacitive by applying
Definition 9.4.3.

Position and Force Control Models

As we have seen in the preceding section, the environment can be modeled as
an impedance defined by the force/velocity relationship in (9.4.1). For our
impedance control formulation, we will assume that the environmental
impedance is either inertial, resistive, or capacitive. The question then
becomes: How does one design a controller for a given environmental
impedance? The solution is obtained by formulating a manipulator impedance
model, Zm(s) [Anderson and Spong 1988]. In other words, a manipulator
impedance (or target impedance) is selected after the environment has been
modeled. The criterion for selecting the manipulator impedance is related to
the dynamic performance of the manipulator. That is, the manipulator
impedance is selected such that there is zero steadystate error to a step input
(which may be a force or velocity command). As we will show, this
performance criterion can be achieved if the manipulator impedance is the
dual of the environmental impedance.

Before the concept of duality can be illustrated fully, the models for position
and force control must be formulated. For position control [Anderson and
Spong 1988], the relationship between force and velocity is modeled by

(9.4.5)

where xd represents the input velocity of the manipulator at the environmental
contact point and Zm(s) represents the manipulator impedance.
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As we will show subsequently, the manipulator impedance Zm(s) is selected
to “zero-out” the steady state to a step input by utilizing the dynamic
relationship between x and xd, To determine the dynamic relation between x
and xd. we combine (9.4.1) with (9.4.5) to yield the position control block
diagram given in Figure 9.4.2. We can use this block diagram to illustrate
the concept of duality. Specifically, we examine the steady-state velocity error

(9.4.6)

where  for a step velocity input. Utilizing Figure 9.4.2, we can
easily show that (9.4.6) can be reduced to

(9.4.7)

For Ess to be equal to zero in (9.4.7), Ze(s) must be a noncapacitive impedance
[i.e., Ze(s) must be inertial or resistive], and Zm(s) must be a noninertial
impedance. That is, zero steady-state error can be achieved for a velocity
step input if inertial environments are position controlled with noninertial
manipulator impedances, while resistive environments are position controlled
with capacitive manipulator impedances. The aforementioned term duality
is used to emphasize the fact that inertial environmental impedances can be
position controlled with capacitive manipulator impedances.

9.4 Hybrid Impedance Control

From the development above, it is obvious that a capacitive environment
cannot be position controlled and maintain the zero steady-state error
specification. However, subsequently we will show that capacitive
environments can be force controlled while maintaining the zero steady-
state error specification. With regard to force control, the dynamic relationship
between force and velocity is modeled [Anderson and Spong 1988] by

(9.4.8)

Figure 9.4.2: Position control block diagram.
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where fd is used to represent the input force exerted at the environmental
contact point.

As we will show subsequently, the manipulator impedance Zm(s) is selected
to “zero-out” the steady state to a step input by utilizing the dynamic
relationship between f and fd. To determine the dynamic relation between f
and fd, we combine (9.4.1) with (9.4.8) to yield the force control block diagram
given in Figure 9.4.3. We can use this block diagram to illustrate the concept
of duality. Specifically, we examine the steady-state force error

(9.4.9)

where fd(s)=1/s for a step force input. Utilizing Figure 9.4.3, we can easily
show that (9.4.9) can be reduced to

(9.4.10)

For Ess to be equal to zero in (9.4.10), Ze(s) must be a noninertial impedance,
and Zm(s) must be a noncapacitive impedance. That is, zero steady-state
error can be achieved for a force step input if capacitive environments are
force controlled with noncapacitive manipulator impedances while resistive
environments are force controlled with inertial manipulator impedances.
The term “duality” is used to emphasize the fact that capacitive
environmental impedances can be force controlled with inertial manipulator
impedances.

The discussion above can be summarized by the following duality
principle.

DUALITY PRINCIPLE Capacitive environments are force controlled with
noncapacitive manipulator impedances, inertial environments are position
controlled with noninertial manipulator impedances, and resistive
environments are force controlled with inertial manipulator impedances or
position controlled with capacitive manipulator impedances.

Impedance Control Formulation

Now that we have illustrated how the environment and the manipulator can
be modeled as impedances, we develop an “impedance” controller based on
this model. To utilize an impedance control approach, the control designer
selects a task space formulation

(9.4.11)
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for the particular position/force control application. As in Section 9.3, we
can show that the torque control

(9.4.12)

yields the linear set of equations

(9.4.13)

where a is an n×1 vector used to represent the impedance position and force
control strategies.

As delineated by (9.4.13), the task space motion has been globally
linearized; therefore, we can design separate position and force controllers
for each task space degree of freedom. That is, in each task space direction
represented by a component xk, an environmental impedance relationship
between xk and the corresponding environmental force fk is assigned. Based
on this assignment of environmental impedance, the duality principle is
used to determine if the corresponding element of a should be a force or
position controller. After this determination is made, (9.4.5) and (9.4.8)
are then used to obtain the specific position and force control components
of a.

As a means of separating the position control design from the force control
design, we use (9.4.13) to define the equations that are position controlled
in the task space directions as

(9.4.14)

where the subscript i denotes the ith position-controlled task space
variable, and the subscript p denotes position control. The associated
environmental forces in the position controlled task space directions are
denoted by fpi.

Assuming zero initial conditions, the Laplace transform of (9.4.14) can
be written as

9.4 Hybrid Impedance Control

Figure 9.4.3: Force control block diagram.
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(9.4.15)

From the position control model given by (9.4.5), we can also write the left-
hand side of (9.4.15) as

(9.4.16)

where Zpmi is the ith position-controlled manipulator impedance. Therefore,
equating (9.4.16) and (9.4.15) gives the ith position controller

(9.4.17)

where L-1 is used to represent the inverse Laplace transform operation.
Continuing with the separation of position and force control designs, we

use (9.4.13) to define the equations that are to be force controlled in the task
space directions as

(9.4.18)

where the subscript j denotes the jth force-controlled task space variable,
and the subscript f denotes force control. The associated environmental forces
in the force-controlled task space directions are denoted by ffj.

Assuming zero initial conditions, the Laplace transform of (9.4.18) can
be written as:

(9.4.19)

From the force control model given in (9.4.8), the left-hand side of (9.4.19)
can also be written as

(9.4.20)

(9.4.21)

where Zfmj is the jth force-controlled manipulator impedance. Therefore,
equating (9.4.21) and (9.4.19) gives the jth force controller

The overall “hybrid” impedance control strategy is obtained by using
(9.4.12) in conjunction with (9.4.17) and (9.4.20). This hybrid impedance
control strategy is summarized in Table 9.4.1. Note that a higher-level
controller would be used to select the components of the task space which
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would be position or force controlled and then the appropriate manipulator
impedances would be assigned. As delineated by the duality principle, the
manipulator impedances Zfmj in (9.4.20) are assigned to be noncapacitive
and the manipulator impedances Zpmi in (9.4.17) are assigned to be non-
inertial. To illustrate the concept of hybrid impedance control, we now present
an example.

EXAMPLE 9.4–1: Hybrid Impedance Control Along a Slanted
Surface

We wish to formulate a hybrid impedance controller for the robot
manipulator system given in Figure 9.2.5. The joint and surface friction
may be neglected, and we assume that the tangential force (i.e., f2) satisfies
the relationship

(1)

and the normal force (i.e., f1) satisfies the relationship

9.4 Hybrid Impedance Control

Table 9.4.1: Hybrid Impedance Controller
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(2)

where he, be, de, and ke are all positive scalar constants.
From Table 9.4.1, the hybrid impedance controller is given by

(3)

where a is a 2×1 vector representing the separate position and force control
strategies, and �, J, G, and f are as defined in Example 9.2.1. The torque
controller given by (3) decouples the robot dynamics in the task space as
follows:

(4)

therefore, we can easily determine which task space directions should be
force or position controlled.

Applying Definition 9.4.2 to (1) allows us to state that the environmental
impedance in the task space direction given by v is a resistive impedance;
therefore, by the duality principle, we will select a position controller that
utilizes the capacitive manipulator impedance

 (5)

where hm, bm, and km are all positive scalar constants. Since the task space
variable v will be position controlled, we use the notation from (9.4.14) to
yield

 

and

 

Now using (5) and the definition of ap1 given in Table 9.4.1, we can easily
show that

(6)
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Applying Definition 9.4.3 to (2) allows us to state that the environmental
impedance in the task space direction given by u is capacitive; therefore, by
the duality principle, we will select a force controller that utilizes the inertial
manipulator impedance

(7)

where dm is a positive scalar constant. Since the task space variable u will be
force controlled, we use the notation from (9.4.18) to yield

 

and

 

Using (7) and the definition of a f1 given in Table 9.4.1, we can easily show
that

(8)

The overall impedance control strategy is obtained by substituting

(9)

into (3), where ap1 and af1 are as given by (6) and (8), respectively.
�

Implementation Issues

As mentioned earlier, the manipulator impedance Zm(s) is selected such
that the duality principle is maintained. However, from a practical point of
view, Zm(s) should also be selected in the expressions for api and afj such
that only measurements of f, x, and x are required. In other words, our
controller should not require acceleration (i.e., x) or force derivative (i.e.,
f) measurements. We can easily show that the expressions for api and afj

will not require measurements of f and x if the manipulator impedance is
selected as

 

9.4 Hybrid Impedance Control
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where h is some positive scalar constant, and Zr is selected to be a proper
transfer function [Anderson and Spong 1988].

As delineated by Table 9.4.1, the hybrid impedance controller requires
task space force measurements. As stated previously for the hybrid position/
force controller, a transformation can be used to obtain the task space forces
for any particular force application. Specifically, the task space forces are
related to the sensor forces by

 

where Js(q) is an n×n Jacobian sensor matrix, and fs is an n×1 vector of
sensor forces.

With these implementation concerns in mind, the overall hybrid impedance
control strategy is depicted in Figure 9.4.4. The feedforward terms in the
block diagram are used to represent the terms

Figure 9.4.4: Hybrid impedance controller.
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9.5 Reduced State Position/Force Control

If a rigid manipulator is constrained by a rigid environment, the degrees
of freedom are reduced because the manipulator end effector cannot
move through the environment; therefore, one or more degrees of
freedom with regard to position are lost. Consequently, as the
manipulator end effector contacts the environmental constraint,
interaction forces between the end effector and the environment
(sometimes referred to as constraint forces) develop. This process of
“reducing” positional freedom while developing constraint forces leads
one to believe that position/force controllers should be designed
according to this natural phenomenon.

Recently, researchers have begun to formulate a theoretical framework
[McClamroch and Wang 1988], [Kankaanranta and Koivo 1988] that
incorporates the effects of the constraint forces into the robot manipulator
model by utilizing classical results in dynamics. The reasoning for
postulating that controllers should be designed for a rigid manipulator
contacting a rigid constraint is that in most force control applications, the
environment is much more rigid than the manipulator. Therefore, it seems
unreasonable to assume that the manipulator is rigid while the environment
is compliant.

Effects of Holonomic Constraints on the Manipulator Dynamics

For the controller given in this section, we assume that the environmental
constraints are holonomic and frictionless. That is, we assume the existence
of a constraint function  (a p×1 vector function) in joint-space coordinates
that satisfies

(9.5.1)

The relationship given by (9.5.1) illustrates that the environmental constraints
are holonomic. The dimension of the constraint function is assumed to be
less than the number of joint variables (i.e., p<n). For a specific problem, the
function  is found from the robot kinematics and the environmental
configuration. To illustrate the holonomic concept, we now present an
example.

9.5 Reduced State Position/Force Control
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EXAMPLE 9.5–1: Holonomic Constraints

We wish to formulate the constraint function �(q) for the robot/
environmental configurations given in Figs. 9.2–5 and 9.2–6. In both of
these configurations, the joint space has a dimension of 2 and the constraint
function has a dimension of 1 (i.e., the constraint is a one-dimensional
surface). For the manipulator system given in Figure 9.2.5, the constraint
function is given by

For the manipulator system given in Figure 9.2.6, the constraint function
is given by

 

�

For the general n-link robot manipulator with holonomic and frictionless
constraints, the constrained robot dynamics can be written in the form

(9.5.2)

where � is a p×1 vector that represents the generalized force multipliers
associated with the constraints, and the constraint Jacobian matrix A(q)
is a p×n matrix defined by

(9.5.3)

As in [Kankaanranta and Koivo 1988], we will assume that the p columns
of AT(q) are linearly independent over the joint space. Also, note that the
force variable � is independent of q and q.

To motivate the origin of (9.5.2), we reexamine Lagrange’s equation

(9.5.4)

where the modified Lagrangian for the constrained robot manipulator is
given by

(9.5.5)

Note that the Lagrangian given in (9.5.5) is really the same Lagrangian as
given in Chapter 2, since
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as required by (9.5.1).
From (9.5.4) and (9.5.5), we can see that the structure of the robot

manipulator dynamic equation is the same for the constrained manipulator
as for the unconstrained manipulator with the exception of any new terms
contributed by the substitution of  in Lagrange’s equation.
Specifically, the constrained robot manipulator equation given in (9.5.2) is
obtained by substituting (9.5.5) into (9.5.4) utilizing the identity

 

Before we develop the reduced-state position/force controller, we explain
briefly, from a heuristic point of view, how the position and force variables
have been reduced in dimension. First, note that for the constrained robot
dynamics given in (9.5.2), the variable � is used to represent the constraint
forces that should be controlled. Note that the dimension of � is p, which,
by definition, is less than n. In previous formulations of the environmental
forces given in this chapter, the dimension of the forces was assumed to be
equal to n. In this approach we are able to reduce the number of forces
that must be controlled because we have initially assumed that the constraint
surface is frictionless. Of course, in reality, surface friction will exist in
most robot force control applications; however, it is often treated as a
disturbance because such friction is a function of the applied normal contact
force.

Second, we examine the position constraints on robot motion given by
(9.5.1). Because �(q)=0 by assumption, we can differentiate (9.5.1)
withrespect to time to obtain

(9.5.6)

where A(q) is defined in (9.5.3). The expression given by (9.5.6) gives a
concise form for the kinematic velocity constraints. From the position and
velocity constraints given in (9.5.1) and (9.5.6), we can state that the
manipulator dynamics belong to the invariant manifold C, in R2n, defined by

 

That is, the motion of the robot manipulator remains on the manifold defined
by C. As stated in [McClamroch and Wang 1988], the manifold C is singular
on R2n; therefore, we can reduce the order of the motion dynamics.

9.5 Reduced State Position/Force Control
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Reduced State Modeling and Control

A robot system consisting of a single n-joint nonredundant manipulator
constrained by a rigid environment has n-p degrees of motion freedom. Note,
however, that the joint variable model of a manipulator as given in (9.5.2)
contains n position variables (q), which, in combination with the p force
variables (�), cause the total number of control variables (i.e., states) n+p to
exceed the number of control inputs n. In this section we show how a variable
transformation can be used to reduce the states of the dynamical model and
thereby reduce the number of control variables from n+p to n.

A reduced state model can be obtained by representing the manipulator
dynamics given in (9.5.2) in terms of another set of independent coordinates,
called the constraint space coordinates, which will be denoted by x. It is
intended that x be an (n-p)×1 vector of joint space coordinates. That is, x is
a subset of q.

The constrained robot model is reduced by assuming that there exists an
n×1 vector function g(x) that relates the constraint space vector x [an (n-
p)×1 vector] to the joint space vector q. This function is given by

(9.5.7)

where the function g(x) must be selected such that

(9.5.8)

and such that the n×(n-p) Jacobian matrix �(x) defined as

(9.5.9)

contains n-p independent rows along the constraint space motion given by x.
Even though the constraint space vector x is of smaller dimension than the

joint space vector q, one is usually able to find the functional mapping from x
to q given in (9.5.7). For particular problems, the algebraic relations given by
the holonomic equation (9.5.1) and the robot kinematics are used to find g(x).
Also note that the choice of g(x) is nonunique and that the conditions on g(x)
given by (9.5.8) and on the rows of �(x) are related to the reduced state model.
Specifically, the condition that �(x) contain n-p independent rows ensures
that the decoupled model represents n-p independent equations. The condition
on g(x) given by (9.5.8) is used to ensure that the forces represented by � can
be decoupled from the constraint space motion represented by x. It should be
noted that since the constraints are assumed to be holonomic and the matrix
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AT(q) is assumed to have p linearly independent columns, we can show that
both of the conditions above always hold. The reader is referred to
[McClamroch and Wang 1988] for details.

To obtain the reduced state dynamics in terms of the constraint space
coordinates, we first differentiate (9.5.7) with respect to time to yield

(9.5.10)

where Σ(x) is defined in (9.5.9). Differentiating (9.5.10) with respect to time
gives

(9.5.11)

After substituting q, q, and q, from (9.5.7), (9.5.10), and (9.5.11), respectively,
into (9.5.2), we obtain the reduced-state model

(9.5.12)

where

 

The significance of the reduced state model given by (9.5.12) is illustrated by
premultiplying (9.5.12) by ΣT(x) to obtain

(9.5.13)

where

 

Note that the contact forces in (9.5.12) have been removed as a consequence
of (9.5.8), which ensures that  The model given by (9.5.13)
is useful because the dynamics that govern the motion of the manipulator on
the constraint surface have been reduced from n differential equations to n-
p differential equations; furthermore, the motion has been decoupled from
the contact forces. These two results are important in the design and stability
analysis of the subsequent position/force controllers.

Before the reduced state position/force controller is presented, we give
some definitions with regard to position/force tracking problems. First, the
constraint position tracking error is defined as

(9.5.14)
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We assume that the desired constraint space trajectory and its first two
derivatives, denoted by xd, xd, and xd, respectively, are all bounded functions.
We also assume that the desired force multiplier trajectory, �d, is a known
bounded function, from which the corresponding force multiplier tracking
error variable is defined as

(9.5.15)

The reduced state position/force controller is a feedback linearizing controller;
therefore, exact knowledge of the robot dynamics is required. The reduced
state controller [McClamroch and Wang 1988] is

(9.5.16)

where Kv and Kp are diagonal, positive-definite (n-p)×(n-p) matrices, and Kf

is a diagonal, positive-definite p×p matrix.
To determine the type of stability for the position error and force tracking

error, we substitute (9.5.16) into (9.5.12) to yield

(9.5.17)

Premultiplying (9.5.17) by �T(x) yields

(9.5.18)

as a consequence of (9.5.8). Because �T(x) contains n-p independent columns
along the constraint space motion and M(x) is a positive-definite symmetric
matrix, M* is a positive-definite symmetric matrix. Therefore, we can
premultiply (9.5.18) by M*-1 to obtain

(9.5.19)

Because Kv and Kp are diagonal positive-definite matrices, one can apply
standard linear control arguments to (9.5.19) to yield

(9.5.20)

To obtain the stability result for the force tracking error, we substitute (9.5.20)
into (9.5.17) to yield

(9.5.21)
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where I in (9.5.21) is the p×p identity matrix. Because the p columns of
AT(x) are assumed to be linearly independent and the composite matrix (I+Kf)
is a positive-definite, diagonal matrix, we can write (9.5.21) as

(9.5.22)

As delineated by (9.5.20) and (9.5.22), the reduced state position/force
controller given in (9.5.16) yields an asymptotic stability result for both
the constraint position error and force tracking error. The reduced state
position/force control strategy is summarized in Table 9.5.1. To illustrate
the concept of reduced state position/force control, we now present an
example.

9.5 Reduced State Position/Force Control

Table 9.5.1: Reduced State Position/Force Controller
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EXAMPLE 9.5–2: Reduced State Position/Force Control Along a Slanted
Surface

We wish to formulate a reduced state position/force controller for the
robot manipulator system given in Figure 9.2.5. The joint and surface
friction may be neglected. As given in Example 9.5.1, the constraint
function for this problem is

 

therefore, utilizing (9.5.2) and (9.5.3), the robot dynamics on the constraint
surface can be written as

(1)

where �, M, q, and G are as defined in Example 9.2.1 and

(2)

For this problem, assume that x=q1; therefore, according to (9.5.7), we
must find the function g(x) such that

 

From the holonomic constraints, we can easily verify from the kinematic
relationships that

(3)

Utilizing (9.5.9), we can show that

(4)

therefore, from Table 9.5.1, the reduced state position/force controller is
given by

(5)
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where xd represents the desired trajectory of q1 and �d represents the desired
force multiplier.

For this problem we can easily examine how � is related to the normal
force exerted on the surface by equating the expression for the forces in
Example 9.2.1 and this example. Specifically, we have

(6)

where J and f are as defined in Example 9.2.1. Because the surface
friction has been neglected (i.e., f2=0 in Figure 9.2.5), we can use (6) to
show that

(7)

where f1 is defined as the normal force exerted on the surface in Figure
9.2.5. Similarly, from the kinematic relationships, we have

(8)

where v is defined to be the end-effector position measured along the
surface. It should be noted that the relationships given by (7) and (8)
would be used for trajectory generation since the position and force
control objectives would be formulated in terms of the variables f1 and
v. That is, �d would be obtained from the desired normal force (i.e., fd1),
and qd1 would be obtained from the desired end-effector surface position
(i.e., vd).

Implementation Issues

As delineated by Table 9.5.1, the reduced state position/force controller
requires measurements of the force variable �. As stated previously for the
hybrid position/force control development, a transformation can be used to
obtain measurements of � for any particular force application. That is, the
force variables � are related to the sensor forces by

(9.5.23)

where Js (q) is an n×n Jacobian sensor matrix, and fs is an n×1 vector of
sensor forces. From (9.5.23), p independent equations can be obtained such
that � is given by
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where g1(q, fs) is a p×1 vector function that depends only on the measurable
quantities q and fs.

With these implement at ional concerns in mind, the overall reduced order
position/force control strategy is depicted in Figure 9.5.1. The feedforward
terms in the block diagram are used to represent the terms

 

9.6 Summary

In this chapter several position/force control strategies for rigid robots
have been given. The intent has been to chronicle the evolution of force
control development. Some new research areas, such as the effects of
actuator dynamics, sensor dynamics, joint flexibilities, manipulator
dynamic uncertainty, surface uncertainty, and environmental impact

Figure 9.5.1: Reduced state position/force controller.
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instability on position/force controller performance are now being studied
by many researchers. After some of these problems have been solved, one
can expect to see robot manipulators used more frequently in force control
applications.
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PROBLEMS

Section 9.2

9.2–1 Find the associated task space Jacobian matrix for the normal and
tangent forces exerted on the environmental surface for the
manipulator given in Figure 9.2.6 with the new surface function
given by

9.2–2 Design and simulate a stiffness controller for the robot manipulator
system given in Figure 9.2.5 with the surface function given by

 

 The control objective is to move the end effector to a desired final
position of qd2=0.3 m while exerting a final desired normal force of
2 N. Neglect the surface and joint friction and assume that the normal
force satisfies the relationship

 

 where ke=100 N/m, and ue is the static normal distance to the surface.
The robot link masses can be assumed to be unity while the initial
end-effector position is assume to be given by

 

Section 9.3

9.3–1 Since the position and force error systems for the hybrid position/
force control strategies are linear, discuss how the selection of the
controller gains can be used to change the performance of the
manipulator end effector.

9.3–2 Design and simulate a hybrid position/force controller for the robot
manipulator system given in Figure 9.2.5 with the surface function
given
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 The control objective is to move the end effector along the surface
with trajectory

 

 while exerting a desired normal force of

 

 Neglect the surface and joint friction and assume that the normal
force satisfies the relationship

 

 where ke=1000 N/m, and ue is the static normal distance to the
surface. The robot link masses can be assumed to be unity while the
initial end-effector position is assumed to be given by

 

9.3–3 Explain why the hybrid position/force control strategy is really a
positional control strategy.

Section 9.4

9.4–1 Suppose that for force or position control, the manipulator
impedance is selected to be

 

 where h is positive scalar constant, and Zr(s) is a proper stable transfer
function. With the manipulator impedance above, show that the
hybrid impedance controller will only require measurements of the
joint position, joint velocity, and contact force.

9.4–2 Design a hybrid impedance controller for the robot manipulator
system given in Figure 9.2.5 with the surface function given by
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 Neglect the surface and joint friction and assume that the normal
force and tangent force satisfies the relationship

 

 where ke=10 N/m, be=1 N-s/m, and ue is the static normal distance
to the surface.

9.4–3 Explicitly show how Table 9.4.1 can be used to find equation (6) in
Example 9.4.1.

Section 9.5

9.5–1 Design a reduced state controller for the robot manipulator system
given in Figure 9.2.6.

9.5–2 For the controller developed in Problem 9.5–1, show how the normal
force (i.e., f1) is related to the force multiplier (i.e., �), and how the
reduced motion variable (i.e., x) is related to the motion along the
surface (i.e., v).
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Chapter 10

Robot Control
Implementation and
Software

The diversity of robot manipulator research along with the complex
requirements of the associated hardware/software systems has always
presented a challenge for software developers. As a result, many of the
previously developed software control platforms were complex, expensive,
and not very user friendly. Even though several of the previous platforms
were designed to provide an open architecture-based system, very few of the
previous platforms have been reused. To address previous disadvantages,
this chapter describes the design and implementation of a software control
platform called the Robotic Platform. The Robotic Platform is an open
software development platform for robot manipulator applications. It
includes hardware interfacing, servo control, trajectory generation, 3D
simulation, a graphical user interface, and a math library. As opposed to
distributed solutions, the Robotic Platform implements all of these
components on a single hardware platform, with a single programming
language (C++), and on a single operating system while guaranteeing hard
real-time performance. This design leads to an open architecture that is less
complex, easier to use, and easier to extend, and hence, builds on the following
state-of-the-art technologies and general purpose components to further
increase simplicity and reliability: i) PC technology, ii) the QNX Real-Time
Operating System, iii) the Open Inventor and STL libraries, iv) object-oriented
design, and v) an easy-to-use, previously-developed, low-level control
environment.
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10.1 Introduction

Since the construction of a software control platform requires building
blocks that cover a wide range of disciplines (see Figure 10.1.1), it would be
desirable to create a common generic platform that can be reused by
researchers for different applications. Considering the variety of robotic
applications and research areas, this task is made even more challenging due
to the fact that robot manipulator vendors often supply the user with
proprietary robot control languages that run on proprietary hardware
components. Due to the lack of flexibility and performance of proprietary
robot control languages, some of the previous work has focused on building
robot control libraries on top of a commonly used programming language
(RCCL [Lloyd et al. 1988] and ARCL [Corke] are examples of such
libraries). While many of the previous software approaches achieved new
levels of flexibility and performance by using a common programming
language, many software control platforms developed in the 80’s and early
90’s were inherently complex due to the limitations of the operating systems
and the hardware components of that time. That is, most operating systems
did not support real-time programming, and hence, fostered the
development of projects such as RCI [Lloyd 1990] and Chimera [Stewart
1989]. In addition, procedural programming languages, such as “C”, tend
to reach their limits with regard to reusability for complex projects. In
addition, the limited performance of hardware components of that era
forced system developers to utilize distributed architectures (see [Miller
1991], [Kapoor 1996], and [Pelich 1996]) that integrated a mix of
proprietary hardware and software. Besides the obvious advantages of
distributed systems (e.g., greater extensibility and more computational
power), there are several disadvantages. Specifically, a distributed
architecture increases the complexity of the software significantly.
Additionally, hard real-time behavior over network connections often
requires expensive proprietary hardware. Generally, the overall hardware
cost is also higher; furthermore, users have to familiarize themselves with
different hardware architectures and operating systems. Even though many
software control platforms have attempted to be flexible, reconfigurable,
and open, these platforms are seldom reused (compared to non-robotic
platforms like Open Inventor or Corba). Apparently, engineers consider it
faster and easier to develop their applications from scratch. Indeed, as many
researchers have noted, the learning curve of installing, learning, and
modifying previously developed software control platforms of the past is
extremely steep.

Over the last ten years, many innovations in the computing area have
occurred. Specifically, the advent of object-oriented software design
[Stroustrup 1991] facilitated the management of more complex projects
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while also fostering code reuse and flexibility. For example, robot control
libraries like RIPE [Miller 1991], MMROC+ [Zielinski 1997], OSCAR
[Kapoor 1996], and ZERO++ [Pelich 1996] utilized object-oriented
techniques in robot programming. The engineering community has also
witnessed the proliferation of real-time Unix-like operating systems for the
PC [QSSL], which facilitates the replacement of proprietary hardware
components for real-time control [Costescu 1999]. Likewise, in the
hardware sector, the engineering community has witnessed the advent of
high-speed, low-cost PCs, fast 3D graphics video boards, and inexpensive
motion control cards. Consequently, the PC platform now provides versatile
functionality, and hence, makes complex software architectures and
proprietary hardware components superfluous. As a result of these
technological advances, the QMotor Robotic Toolkit (QMotor RTK)
[Loffler 2001] was developed. The QMotor RTK was one of the first
software control platforms to integrate real-time manipulator control and
the graphical user interface (GUI) all on a single PC. Despite, the many
advantages of the QMotor RTK, it lacked some capabilities due to the
limitations of the real-time operating system (i.e., QNX4) on which it was
based. For example, it lacked a 3D simulation capability, and it did not
support the use of threads.

In the late 1990’s, QSSL, one of the leading real-time software development
houses, substantially upgraded QNX4 with the release of QNX6 [QSSL]
(i.e., QNX6/Neutrino operating system). This microkernel-based operating
system is probably the most advanced real-time operating system currently
available; furthermore, it has additional components for software
development and multimedia applications. Indeed, the new attributes of
QNX6 greatly facilitated the potential capabilities of an upgrade of the
QMotor RTK, in fact so much so, QMotor RTK was completely transformed
into a new software control platform call the Robotic Platform [Bhargava

Figure 10.1.1: Building Blocks of a Robotic Software Control Platform

10.1 Introduction
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2001]. The rest of this chapter provides a broad overview of the Robotic
Platform by examining its advantages, its design, and its operation. The word
“broad” needs to be emphasized because it is really impossible to give a
detailed explanation of how a software control platform should be developed
for robot manipulators in one chapter of a book. With that being said, it is
hope that this chapter will give the reader a better understanding of the
associated complexities.

10.2 Tools and Technologies

Given recent technological advances, it now seems almost obvious that new
software control platforms should integrate servo control loops, trajectory
generation, task level programs, GUI programs, and 3D simulation in a
homogeneous software architecture. That is, next-generation software
control platforms should utilize one hardware platform (e.g., the PC), only
one operating system (e.g., the QNX6 Real-Time Operating System
[QSSL]), and only one programming language (e.g., C++ [Stroustrup
1998]). The advantages of this next-generation software control platform
are as follows:

Simplicity. A homogeneous non-distributed architecture is much smaller and
simpler than a distributed inhomogeneous architecture. It is easier to
install, easier to understand, and easier to extend. Simplicity is critical
with regard to motivating code reuse of the platform for different
applications.

Performance. The homogeneous, non-distributed architecture also ensures
high performance and hard real-time behavior, since overhead due to
interprocess communication is minimal.

Flexibility at all Levels. Every component of the platform is open for
extensions and modifications. Many past platforms have utilized an open
architecture at some levels, but other levels had been implemented on
proprietary hardware such that they could not be modified.

Cost. The Robotic Platform requires fewer hardware components than a
distributed platform. Basically, a single PC with one or more input/output
(I/O) boards is sufficient. Additionally, PC hardware is very cost effective
as compared to other hardware platforms.

To explain the advantages in more detail and delineate how the Robotic
Platform reduces software development and complexity, the general purpose
tools and technologies that are used to develop the Robotic Platform are

Copyright © 2004 by Marcel Dekker, Inc.



521

now examined. It seems logical to begin this discussion with the hardware
engine, namely the standard desktop PC. Due to its popularity in the consumer
market, the standard desktop PC has evolved dramatically over the past 20
years. While in the past, only expensive UNIX workstations provided the
processing power necessary to control robotic systems, the PC has caught
up or even exceeded the performance of workstations [Costescu 1999].
Compared to UNIX workstations, a PC based system allows for a greater
variety of hardware and software components. Additionally, these
components and the PC itself are usually cheaper than their UNIX
counterparts; furthermore, the PC is a well-known platform that is
comfortable for most software developers.

The second most important part of any software control platform is the
operating systems. Indeed since reliability is extremely important for robot
manipulation, the QNX6 Real-Time Operating Systems by QSSL [QSSL]
was selected. The programming interface of QNX6 is compliant with the
POSIX standards and is the first platform that combines the following
features:

Hard Real-Time. QNX6 provides hard real-time response (e.g., it can execute
a control loop at a certain frequency without falling behind). The real-
time functionality is integrated in the microkernel.

Self-Hosted Development. The development and the execution of software
are performed in the same environment and on the same PC.

Fast 3D Graphics. QNX6 provides support for hardware-accelerated 3D, as
required for the graphical simulation of a robotic work cell.

Threads. QNX6 supports the concurrent execution of processes, known as
threads.

Device Driver Architecture. It is very easy to develop device drivers under
QNX6, as is required for integrating different robotic hardware.

Cost. QNX6 is also very cost-effective as it is free for non-commercial use
and runs on low-cost standard PCs.

The third most important part or design aspect of any software control
platform is the programming philosophy. With regard to developing robot
manipulator control software, object-oriented programming has three
main benefits over procedural programming. First, it provides language
constructs that allow for a much easier programming interface. For
example, a matrix multiplication can be expressed by a simple “*”, similar
to MATLAB programming. Second, object-oriented programming allows

10.2 Tools and Technologies
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for a system architecture that is very flexible but yet very simple. That is,
the components (classes) of a system can have a built-in default behavior
and default settings. The use of this default behavior and/or default settings
allows the programmer to reduce the code size. The programmer, however,
can still override the default behavior for specific applications. Finally,
object-oriented programming supports generic programming by facilitating
the development of components that are independent from a specific
implementation (e.g., a generic class “Manipulator” will work with
different manipulator types). All of the above benefits are based on the
general concepts of object-oriented programming, such as abstraction,
encapsulation, polymorphism, and inheritance [Stroustrup 1991]. As will
be shown later in this chapter, these object-oriented design concepts lead to
an intuitive system architecture. As one might expect, the language of
choice is C++, as it provides the whole spectrum of object-oriented
concepts while maintaining high performance [Stroustrup 1998] (e.g.,
templates and inline functions can be used to create highly versatile and
optimized code in the Robotic Platform). The power of C++ and object-
oriented programming can be further increased when using strong object-
oriented libraries such as STL [Musser 1996]. STL provides standard data
structures (e.g., lists, vectors, etc.) and algorithms. These standard data
structures and algorithms simplify programming effort since these tools are
often required in common programming tasks. The data structures of the
STL are very universal since they can be used with different data types (i.e.,
template programming).

The last design aspect of a software control platform has do with how the
roboticist interacts with the system. Specifically, how does the roboticist
animate objects for simulation purposes and how does the roboticist
implement and tune control algorithms. For purposes of simulation
animation, Open Inventor [Wernecke] was utilized. Open Inventor,
developed by Silicon Graphics, is an object-oriented C++ library for creating
3D graphics and animation. Open Inventor minimizes development effort,
as it is able to load 3D models that were created in the Virtual Reality
Modeling Language (VRML) format [Hartman 1996]. A variety of software
packages are available that facilitate the construction of 3D VRML models.
These packages can be utilized to quickly create a graphical representation
of robotic components. The Robotic Platform utilizes the built-in
functionality of Open Inventor to animate these components. Open
Inventor also provides advanced features like object picking, which is very
useful in the programming of operator interfaces. For purposes of control
implementation, QMotor [Loffler 2002] was utilized because it allows users
to establish a real-time control loop, to log data, to tune control parameters,
and to plot signals. QMotor control programs can be directly integrated in
the class design of the Robotic Platform since QMotor supports object-
oriented programming.
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10.3 Design of the Robotic Platform

Overview

Each component of the Robotic Platform (e.g., the teachpendant, the
trajectory generator, etc.) is modeled by a C++ class. A C++ class definition
combines the data and the functions related to that component. For example,
the class “Puma560” contains the data related to the Puma 560 robot (e.g.,
the current joint position) as well as functions related to the Puma 560 robot
(e.g., enabling of the arm power). Hence, the design of the Robotic Platform
results from grouping data and functions in a number of classes in a
meaningful and intuitive way. A class can also use parts of the functionality
and the data of another class (called the base class) by deriving this class
from the base class. The classes of the Robotic Platform include GUI
components and a 3D model for graphical simulation. These types of
components are traditionally found in separate programs (e.g., see the RCCL

same class, one can achieve tight integration of the user interface, 3D
modeling, and other functional parts.

To provide new capabilities for different applications, the user creates
new classes. Usually, new classes are derived from one of the already
existing classes to minimize coding effort. This process is called
inheritance, and it greatly facilitates code reuse and eliminates redundancy.
To illustrate how classes are derived from each other, class hierarchy
diagrams are used. The main class hierarchy diagram of the Robotic
Platform is shown in Figure 10.3.1. Each arrow is drawn from the derived
class to the parent class. The further to the right a class is listed, the more
specific it must become. The further to the left a class is listed, the more
generic it must become. The classes of the Robotic Platform can be
separated into the following categories (note that some of the classes
discussed below are not shown in Figure 10.3.1 since their class hierarchies
will be discussed later):

The Core Classes. The classes RoboticObject, FunctionalObject, and
PhysicalObject build the core of the Robotic Platform by defining the
overall behavior of all robotic objects. These classes by themselves can
be the basis for any robotic system.

Generic Robotic Classes. Derived from the core classes are a number of
generic robotic classes. These classes (e.g., ServoControl, Manipulator,
and Gripper) cannot be instantiated. Rather, these classes serve as base
classes that implement common functionality while also presenting a
generic interface to the programmer (i.e., these classes can be used to

10.3 Design of the Robotic Platform
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create programs that are independent from the specific hardware or the
specific algorithm).

Specific Robotic Classes. Derived from the generic robotic classes are classes
that implement a specific piece of hardware (e.g., the class Puma560
implements the Puma 560 robot) or a specific functional component (e.g.,
the class DefaultPositionControl implements a proportional integral
derivative (PID) position controller).

The ControlProgram Class. This class is the basis for all real-time control
loops.

Utility Classes. The utility classes manage common tasks (e.g., managing
configuration files).

The Object Manager. The object manager supervises all objects and classes
existing in the system.

The Math Library. The math library consists of classes for using matrices,
vectors, transformations, filters, differentiators, and integrators.

Figure 10.3.1: Class Hierarchy of the Robotic Platform.
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The Manipulator Model Library. The manipulator model library consists
of classes that model the kinematic and dynamic behavior of
manipulators.

In a robot control program, the user instantiates objects from classes.
When instantiating an object, memory for the object is reserved, and the
object initializes itself. The user can create as many objects as desired from
the same class. For example, two Puma robots can be operated by simply
creating two objects of the class Puma560. As soon as objects are created,
the user can employ their functionality. The object manager maintains a list
of all currently existing objects. With the object manager, it is possible to
initiate functionality on multiple objects (e.g., shutdown all objects). The
Scene Viewer is the default GUI of the Robotic Platform. It contains windows

Figure 10.3.2: Run-Time Architecture of the Robotic Platform.

Figure 10.3.3: Object Relationships in an Example Scenario.

10.3 Design of the Robotic Platform
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to view the 3D scene of the robotic work cell and to list all objects. The
overall run-time architecture is shown in Figure 10.3.2.

In a robotic system, different components are related to each other. To
reflect this fact, object relationships are established between objects. For
example, objects can specify their physical connection to each other. Object
relationships are implemented by C++ pointers to the related object. The
object relationships in an example scenario are shown in Figure 10.3.3.

Core Classes

The class RoboticObject is the base class for all classes. It defines a generic
interface (i.e., a set of functions that can be used with all classes of the Robotic
Platform). For example, a program can use the startShutdown( ) function to
instruct an object of either the class Puma560 or the class Gripper to
shutdown. Specifically, the following generic functionality is defined in the
class RoboticObject (see also Figure 10.3.4):

Error Handling. Every object must indicate its error status.

Interactive Commands. Each object can define a set of interactive commands
(e.g., “Open Gripper”) that will show up in the object pop-up menu of
the Scene Viewer.

Configuration Management. Each object can use the global configuration
file to set itself up. Additionally, each object can also have a local object
configuration file.

Shutdown Behavior. Each object is able to shutdown itself.

GUI Control Panel. Each object is able to create a control panel.

Message Handler. Each object has a message handler that can interpret custom
messages.

Thread Management. Each object indicates if additional threads are required
for its operation and also provides functions that execute those additional
threads.

Note that the actual functionality is usually implemented in the derived class.
However, the class RoboticObject also implements simple default
functionality. This feature supports code reuse and simplicity by giving all
classes derived from the class RoboticObject the ability to take over this

default behavior.
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The class PhysicalObject is derived from the class RoboticObject. It is the
base class for all classes that represent physical objects (e.g., manipulators,
sensors, grippers, etc.). It defines a generic interface for these classes as
illustrated in Figure 10.3.5 and Table 10.3.2. Specifically, the following generic
functionality is defined in PhysicalObject:

3D Visualization. Every physical object can create its Open Inventor 3D
model. The Scene Viewer loops through all physical objects to create the
entire 3D scene.

Object Connections. A physical object can specify another object as a
mounting location. By using this object relationship, the Scene Viewer
draws objects at the right location (e.g., the gripper being mounted on
the end-effector of the manipulator).

Position and Orientation. The position/orientation information specifies the
absolute location of the object in the scene (or the mounting location, if
an object connection is specified).

Simulation Mode. Every physical object can be locked into simulation mode.
That is, the object does not perform any hardware I/O (i.e., its behavior
is only simulated).

The class FunctionalObject does not contain any functionality; however, it is
use to build other classes. For example, functional classes, such as the class
TrajectoryGenerator, are derived from the class FunctionalObject.

Robot Control Classes

The central components of any robotic work cell are manipulators. The
class Manipulator is a generic class that defines common functionality of

Figure 10.3.4: The Class Robotic Object.

10.3 Design of the Robotic Platform
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manipulators with any number of joints. Derived from the class Manipulator
is the class DefaultManipulator, which contains the defaultimplementation
of a manipulator. The class DefaultManipulator is a template class (i.e., it
is parameterized with the number of joints). The generic programming

Table 10.3.1: The Interface of the Class RoboticObject and its Default
Behavior.
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interface and the default implementation are illustrated in Table 10.3.3.
Derived from the class DefaultManipulator are the classes that implement
specific manipulator types. Currently, three manipulators are supported:
the Puma 560 robot, the IMI robot [Berkeley 1992], and the Barrett Whole
Arm Manipulator (WAM) [Barrett] in both the 4 link and 7 link
configuration. More information about the specific control
implementation of these robot manipulators can be found in [Loffler 2001]
and [Costescu et al. 1999]. For simulation of the manipulators, their
dynamic model is required. Additionally, for Cartesian control, forward/
inverse kinematics and the calculation of the Jacobian matrix are needed.
All of these functions are located in the ManipulatorModel classes. The

Table 10.3.2: The Interface of the Class PhysicalObject and its Default
Behavior.

Figure 10.3.5: The Class Physical Object.

10.3 Design of the Robotic Platform
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class hierarchy and the generic interface of the ManipulatorModel classes
are displayed in Figure 10.3.6.

The class DefaultManipulator creates a real-time control loop, but it does
not include the servo control algorithm. The servo control algorithm is
contained in a separate object of the class ServoControl or of a derived class.
The class ServoControl is a generic class that defines common properties
and functionality of a ServoControl. That is, a servo control obtains the

Table 10.3.3: Functionality defined in the Classes Manipulator and Default-
Manipulator.

Figure 10.3.6: The ManipulatorModel Classes.
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current position from the manipulator object and calculates the required
output control signal to achieve the control task (e.g., servo the manipulator
to a desired setpoint). Derived from the class ServoControl is the class
DefaultPositionControl, which contains a PID position control with friction
compensation in joint and Cartesian space. The control loop in the class
DefaultManipulator first determines the current position of the manipulator
and then calls the calculate() function of the class ServoControl. The
advantage of the servo control being a separate object is that the user can
switch between multiple servo control algorithms, even while the
manipulator is moving.

The trajectory generation is also performed in a separate class. The
class TrajectoryGenerator defines the interface of a generic trajectory
generator. A trajectory generator is any object that creates a continuous
stream of setpoints and forwards this stream to a servo control object. A
trajectory generator must implement its own loop such that the trajectory
generator can run independently and at a different frequency than the
frequency used in the servo control. The servo control calls the
getCurrentSetpoint () function of the trajectory generator to determine the
current desired position. It is also possible to define multiple trajectory
generators and switch between them while the manipulator is moving.
The class QueueTrajectoryGenerator is derived from the class
TrajectoryGenerator to implement the generic interface and common
functionality of a trajectory generator that creates the trajectory along via
points and target points (i.e., motion queue management functions are
implemented). Derived from the class QueueTrajectoryGenerator is the
class DefaultTrajectoryGenerator. This class is the specific implementation
of a trajectory generator that can interpolate both in joint space and
Cartesian space, including path blending between two motion segments at
the via points. Table 10.3.4 shows the interface of the default trajectory
generator.

Classes, such as Puma560 or WAM, automatically create a default
trajectory generator and a default servo control for the convenience of the
user. However, the user can switch to a different trajectory generator or
servo control if desired. Figure 10.3.7 illustrates in a typical scenario how

Figure 10.3.7: Object Setup for the Servo Control and the Trajectory Generation of a
Manipulator.
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the manipulator object, the servo control object, and the trajectory generator
object work together.

External Device Classes

Besides the classes related to specific manipulators, there are a several other
classes that can be used for robotic applications. Specifically, these classes
give the robot manipulator the ability to interface with other physical objects
by means of grippers, robotic hands, and/or tools. These external device
classes are given below:

Gripper. The class Gripper is the generic interface for a gripper. Basically, it
defines the functions open(), close(), and relax().

DefaultGripper. The class DefaultGripper assumes that two digital output
lines control the gripper, one digital line to open the gripper, and one to
close it.

BarrettHand. This is a class to operate the BarrettHand [Barrett]. This class
allows the user to move each of the three fingers to certain positions and
also control the spread motion.

ForceTorqueSensor. This class defines the generic interface for a force/
torque sensor. That is, it defines functions to read the forces and the
torques.

Table 10.3.4: Interface of the class DefaultTrajectoryGenerator.
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AtiFTSensor. This class is the specific implementation of the ATI Industrial
Automation Gamma 30/100 Force/Torque sensor.

ToolChanger. The class ToolChanger is the generic interface of a tool changer.
Basically, it defines the functions lock(), unlock(), and relax().

DefaultToolChanger. The class Def aultToolChanger assumes that one digital
output line controls the lock function of the toolchanger and another
line the unlock function.

StaticObject. An object of the class StaticObject has no functionality other
than specifying its 3D model. It can be used to add objects such as a table
or work pieces to the 3D scene.

Utility Classes

As with any complex software system, utility programs are needed for
communication purposes and for providing the user with system related
information. To this end, several separate, general-purpose utility classes
are used throughout the Robotic Platform. These utility classes are given
below:

Status. The class Status provides functionality to stack status messages. It
returns detailed status reports to the user. Each class has a data member
of class Status that indicates the status of the object.

Client. The class Client simplifies the sending of messages to a separate task
or thread.

Server. The class Server, the counterpart to the class Client, simplifies receiving
of messages and replying to messages.

Config. The class Conf ig handles configuration files in ASCII format.

IOBoardClient. The class IOBoardClient allows communication with an I/
O board (e.g., providing encoders readings, writing D/A values, reading
A/D values, setting and reading digital inputs/outputs).

Lock. The class Lock provides mutual exclusion between two threads.

Configuration Management

The Robotic Platform utilizes a global configuration file, which is parsed by
the object manager and the objects to determine the system’s configuration.
This file is called rp.cfg by default. The object manager searches for this file

10.3 Design of the Robotic Platform
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in the path specified by the shell variable RP_CONFIG_PATH. By starting a
Robotic Platform program with the option -config <filename>, a different
filename and path for the configuration file can be specified. The format of
the configuration file is now discussed. For each object, the configuration
file lists the object name in brackets, the class name of the object, and some
additional settings (see Figure 10.3.8). Table 10.3.5 lists possible object
settings and their related member functions defined by the classes
RoboticObject and PhysicalObject. Derived classes can be used to define
additional settings.

Object Manager

The object manager, implemented as the class ObjectManager, handles all
objects in the system. Every time a new object is created, it registers itself
with the object manager. Similarly, every time an object is destroyed, it is
removed from the object list that is maintained by the object manager. The
object manager contains the necessary functionality to loop through this
list, and hence, allows one to perform operations on multiple objects. For
example, the Scene Viewer retrieves a list of all objects that are derived
from the class PhysicalObject. This list retrieval operation allows the Scene
Viewer to render each of the objects, and thereby, render the entire 3D
scene.

The object manager also maintains a list of all the classes used in the Robotic
Platform. This feature is essential for fostering generic programming. The
advantages of generic programming for this application are obvious.

Figure 10.3–8: An Example Global Configuration File.
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Specifically, generic code utilizes only components that provide a generic
interface; hence, generic code does not need to be changed when a component
with a different implementation is used. That is, the same code can be used
for a number of specific implementations, and hence, attributes to code reuse
(e.g., a generic trajectory generator can be used with different manipulator
types). Fortunately, C++ utilizes class inheritance and virtual functions to
facilitate generic programming. To illustrate this concept, consider a section
of the class hierarchy as shown in Figure 10.3.9. The following snippet of
generic code demonstrates how to write a manipulator independent program
that works with either the Puma robot, the WAM, the IMI, or any robot that
might be added in the future:

Manipulator *manipulator;
ObjectManager om;

manipulator = om.createDerivedObject<Manipulator>(“leader”);
// Creates either a Puma, an IMI or a WAM object, depending on
// what is specified in the global configuration file under
the name “leader”

// Now, we can do generic operations
manipulator->enableArmPower();
Transform t = manipulator->getCurrentCartesianPosition();}

To utilize generic programming in C++, the above code creates an object
of the derived class (e.g., an object of the class Puma or the class WAM),
and operates the object via a pointer to the generic base class (i.e.,
Manipulator *manipulator). The function createDerivedObject() of the
object manager is utilized to create an object of either the class Puma560,
Barrett Arm, WAM or IMI. To create the correct object, the
createDerivedObject() function looks for the object name in the global
configuration file (see Figure 10.3.8). Then, the createDerivedObject()
function reads the class name of the object from the configuration file and
creates an object of this class. Hence, to switch to a different manipulator
type, only the class name in the global configuration file has to be changed
when utilizing an existing generic program.

10.3 Design of the Robotic Platform
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Table 10.3.5: Object Settings of the Configuration File.

Figure 10.3.9: The Generic Class Manipulator and its Derived Classes.
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Concurrency/Communication Model

An inherent complication associated with the development of a software
control platform for robot manipulator systems is the issue of concurrency.
That is, while it is often sufficient for many engineering systems to run as a
single task, robotic systems require components, such as the servo control,
to be executed concurrently with other components (e.g., the trajectory
generator). The Robotic Platform addresses this issue by running all
concurrent tasks on the same PC. It should be noted that since QNX6 supports
symmetric multiprocessing, it is possible to distribute the tasks over multiple
processors.

The predecessor of the Robotic Platform, the QMotor RTK [Loffler 2001],
executed multiple programs to achieve concurrency on a single processor.
While this concept fosters modularity, it is inconvenient to manage the startup
and termination of multiple programs. In contrast, an application that uses
the Robotic Platform is compiled and linked to a single program instead.
This program spawns threads if concurrent execution is required. Once the
program terminates; all threads terminate automatically. Figure 10.3.10
illustrates an example of how a user program spawns multiple threads. At
program start, only thread 1 is executing. At the initialization of the Robotic
Platform library, a new thread is created that executes the 3D Scene Viewer.

Figure 10.3.10: Creating New Threads for Concurrency.
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Then, the user utilizes a new object of a manipulator class. The creation of
this manipulator object automatically spawns a third thread for the servo
control loop. Hence, the first thread can go ahead and calculate target points
for the manipulator, while the servo control loop and the Scene Viewer run
in the background. To ensure real-time behavior of time critical tasks, the
threads run at different priorities (e.g., the servo control loop runs at the
high priority 27).

Since threads access the same address space, communication between
threads can easily be performed by using this address space. However, it is
important to synchronize this access to avoid corruption of the data structures.
Synchronization is achieved by using the class Lock to provide mutual
exclusion for accessing the data that is shared between multiple threads.

Plotting and Control Tuning Capabilities

The issue of tuning and debugging the low-level controller and trajectory
planning algorithms has usually not addressed in many of the previously
developed software control platforms. However, this is an extremely
important issue given the level of complexity associated with accurately
positioning a multi-degree of freedom system such as robot manipulator. To
address this issue, the Robotic Platform utilizes QMotor for low-level
algorithm development. QMotor [Loffler 2002] is a comprehensive
environment for implementing and tuning control strategies. QMotor consists
of: i) a client/server architecture for hardware access, ii) a C++ library to
create control programs, and iii) custom GUI for control parameter tuning,
data logging, and plotting.

To communicate with hardware, QMotor uses hardware servers that run
in the background and perform hardware I/O at a fixed rate. Servers for
different I/O boards are available (e.g., the ServoToGo board, the Quanser
MultiQ board, and the ATI force/torque sensor interface board). The use of
hardware servers provides an abstract client/server communication

Figure 10.3.11: The QMotor Control Parameter Window.
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interface such that clients can perform the same generic operations with
different servers. Hence, one can quickly reconfigure the system to use
different I/O boards by simply starting different servers. For writing control
programs, QMotor provides a library, which defines the class
ControlProgram. To implement a real-time control loop, the user derives a
specific class from the class ControlProgram and defines several functions
that perform the control calculation and the necessary housekeeping. Once
a control program is implemented and compiled, the user can start up the
QMotor GUI, load the control program, start it, and tune the control
strategy from the control parameter window (see Figure 10.3.11).
Furthermore, the user can open multiple plot windows (see Figure 10.3.12)
and set the logging parameters.

To utilize QMotor for the Robotic Platform, classes such as the class Def
aultManipulator are derived from the class ControlProgram. Hence, these
classes inherit the functionality of a control program (i.e., real-time
execution, data logging, and communication with the GUI). If a class is
derived from the class ControlProgram, the base class RoboticObject
automatically creates a new thread of execution that runs the control loop in
the background. QMotor was originally designed to load and tune one
control program at a time. That is, to switch to a different control program,
the current control program had to be stopped and unloaded. The Robotic
Platform is designed to start and run multiple control loops at the same time;
hence, it became necessary to upgrade QMotor. Specifically, QMotor can
now attach itself to an executing control program instead of loading and
starting the control program. This QMotor modification now allows the

Figure 10.3.12: The QMotor Plot Window.
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following operational scenario in the Robotic Platform. The user first starts
the control program. This control program creates several threads that
execute real-time control loops. The user can then start the QMotor GUI
and attach it to any of the control programs. Once the QMotor GUI is
attached to a control program, control parameters can be changed and data
can be plotted.

Math Library

Past robot control libraries often introduced their own specific robotic data
types. Most of these data types are based on vectors or matrices (e.g., a
homogeneous transformation is a 4x4 matrix). Hence, it is more feasible to
use a general C++ matrix library and define robotic types on top of it. Most
of the matrix libraries available for C++ use dynamic memory allocation,
which risks the loss of deterministic real-time response [Loffler 2001]. Hence,
the big disadvantage of libraries that use dynamic memory allocation is that
they can not be used in large sections of the Robotic Platform. To overcome
this problem, special real-time matrix classes were developed for the Robotic
Platform that use templates for the matrix size. This means that the matrix
size is known at compile time and dynamic memory allocation is not required.
Besides being feasible for real-time applications, this solution also produces
highly optimized code. That is, due to the use of templates and inline functions,
the matrix classes can be as fast as direct programming. Specifically, with
optimized implementation, the multiplication of two 2x2 matrices C=A * B
is as fast as writing

c11=a11 * b11 + a12 * b21;
c12=a11 * b12 + a12 * b22; etc.

An additional advantage is that the compiler can check for the correct
matrix sizes at compile time (e.g., a matrix multiplication of two matrices
with incompatible size is detected during compilation). Figure 10.3.13,
Table 10.3.6, and Table 10.3.7. Functions of the Matrix, Vector, and
Transformation Classes illustrates the class hierarchy, the types classes, and
the data types. The classes MatrixBase, VectorBase, Matrix, Column
Vector, and RowVector are parameterized with the data type of the
elements. The default element data type is double, which is the standard
floating-point data type of the Robotic Platform. The classes MatrixBase
and VectorBase are pure virtual base classes that allow for manipulation of
matrices and vectors of an unknown size (matrices and vectors of an
unknown size are required during generic manipulator programming).
Figure 10.4.1 shows an example program that uses the math library to
calculate a position equation.
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Figure 10.3.13: Class Hierarchy of the Matrix Classes.

Table 10.3.6: Classes of the Math Library.

Table 10.3.7: Functions of the Matrix, Vector, and Transformation Classes.
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In addition to the matrix, vector, and transformation classes, the classes
ButterworthFilter, Differentiator and Integrator are part of the math library.
The class ButterworthFilter is used for low-pass filtering. The class
Differentiator implements numerical differentiation via the backwards
difference method plus low-pass filtering. Finally, the class Integrator utilizes
the trapezoidal method for numerical integration. The user can derive a
specific class from the class Integrator to implement more advanced
integration methods. Both classes are parameterized with the data type (i.e.,
they work with scalars, vectors, and matrices).

Error Management and the Front-End GUI

Each object is responsible for maintaining the appropriate error status. If a
fatal error occurs, any object can request the object manager to shut down
the system. For example, this could be the case when a control torque exceeds
its limit. For such a system shutdown, the object manager loops through all
objects in the system and calls their start Shut down () function. Then, the
object manager waits until all objects have completed their shutdown. The
completion of the object shutdown is indicated by the is ShutdownComplete()
function.

The front-end GUI components for the Robotic Platform were developed
with the C++ GUI class library QWidgets++. QWidgets++ allows for object-
oriented techniques in GUI programs. The GUI consists of three parts:

• The Scene Viewer is the default supervising GUI, which is opened
automatically at startup of every Robotic Platform program.

• Each class can have its own control panel. The control panels are opened
from the Scene Viewer.

• Several utility programs (e.g., the Manual Move program and the
Teachpendant program) have a GUI.

Figure 10.3.14: Example Program for the Matrix classes.
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Operation of the front-end GUI for the Robotic Platform is further explained
in the next section.

10.4 Operation of the Robotic Platform

Scene Viewer and Control Panels

When a program running inside the Robotic Platform is executed, the Scene
Viewer window opens up. The Scene Viewer window displays the entire 3D
scene and also allows the user to open a window that displays a list of
currently running objects (see Figure 10.4.2). To create a 3D scene, the Scene
Viewer loops through all objects that are derived from the class
PhysicalObject and calls the get3DModel() function to obtain the Open
Inventor 3D data of that object. Then, the Scene Viewer uses the object
connection relationships (specified by the function setConnection() of the
class PhysicalObject) to display the 3D objects at the right position (e.g., to
display a gripper being mounted at the end-effector of a robot manipulator).
Furthermore, the Scene Viewer continuously updates the 3D scene with the
current state of all objects (e.g., it uses the current joint position of a robot
manipulator to display the robot joints in the correct position). Hence, the
3D scene rendered in the Scene Viewer window always represents the
current state of the actual hardware (in simulation mode, the simulated state
of the hardware is represented). To select the best viewing position, the user
navigates in the 3D scene using a mouse. The user can rotate the view, move
forward and backward, and also store/restore desired viewing positions.
Additionally, the user can hide objects in the scene to increase the frame rate.
Many different Scene Viewer windows can be opened to view the 3D scene
from different viewing positions at the same time. The user can also open the
Object Viewer window to display the list of all objects that are currently
being instantiated.

Each object also has an individual pop-up menu (See Figure 10.4.3. The
Object Pop-Up Menu). This pop-menu appears if the user either: i) right
clicks on the object in the Scene Viewer rendering area, or ii) right clicks
on an entry in the Object Viewer window. Options associated with pop-up
menu can be used to hide the object in the rendering area and to select
between a wire frame or a solid display. In addition, the pop-up menu
displays interactive commands that are defined in the specific class of the
object. For example, a gripper object has additional menu items to open,
close, and relax the gripper. Finally, the user can open the control panel
from the object pop-up menu. Figure 10.4.5 shows the control panel of the
Barrett WAM as an example. Each control panel appears in a new
window.

10.4 Operation of the Robotic Platform
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Utility Programs for Moving the Robot To facilitate low-level
algorithm development, utility programs for moving the robot must be
created. For example, the Manual Move utility (see Figure 10.4.6) is a

Figure 10.4.1: The Scene Viewer and Object List Windows.

Figure 10.4.2: The Object Pop-Up Menu.

Figure 10.4.3: The Control Panel of the WAM Class.
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program that gives the user the ability to test the low-level servo control of
a robot manipulator. Specifically, the Manual Move utility contains a
slider for each joint. As, the user can move the sliders with the mouse, the
selected robot manipulator joint immediately follows the commanded user
input.

The Teachpendant (see Figure 10.5.1) implements a low-level zero gravity
controller that allows the user to physically position the robot manipulator
joints in any location. Once the user has moved the robot manipulator joints
to a desired target position, this position can be stored as in list of robot
manipulator positions. The Teachpendant utilizes the Robotic Platform’s
trajectory generator to move the robot manipulator to the stored positions.
In this way, the user can cycle the robot manipulator through all or some of
the stored positions.

Figure 10.4.4: The Manual Move Utility.

Figure 10.4.5: The Teachpendant.
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Writing, Compiling, Linking, and Starting Control Programs

A control program is first compiled and then linked to the Robotic Platform
library. The entire Robotic Platform (i.e., all classes and the Scene Viewer) is
contained in one library. As explained earlier, the Robotic Platform can easily
be extended by adding new classes. If the extension is specific to a certain
control program, the classes can be added to the code of the associated control
program. If an extension is used in different control programs, it would
probably be more convenient to add this new functionality to the Robotic
Platform library. To reflect the extensions in preexisting compiled and linked
programs, the Robotic Platform library is constructed to be a dynamic library
(i.e., a program loads the library whenever it is started). Therefore, after the
library is extended with new functionality, programs such as the Teachpendant
will take advantage of the new functionality (e.g., the teachpendant will be
able to operate new manipulator types).

Figure 10.4.6 shows the listing of an example control program for a simple
pick and place operation. Every Robotic Platform control program must
first call RoboticPlatform::init(). This function initializes the Robotic Platform
and starts up the Scene Viewer. The command line arguments are passed to
RoboticPlatform:: init () such that any Robotic Platform program can be
started with certain default command line options (see Table 10.4.1).
Additionally, these options can be controlled from C++ code as well by using
the functions listed in the third column of Table 10.4.1. After
RoboticPlatform::init() is called, the user’s program creates all objects that
are required for the associated robotic task (i.e., a gripper object, a Puma
560 object, and a trajectory generator object are created). If the option -wait
was specified in the command line, no control loops are started until the
user’s program executes the RoboticPlatf orm:: start () function. This function
waits for the user to hit the start button. This feature is necessary since this
function gives the user the ability to start the QMotor GUI, set control
parameters, and select logging modes before the control loops are started.
The last part of the example program utilizes the trajectory generator object
and the gripper object to move the robot to the workpiece, close the gripper,
pick up the workpiece, and drop it at the target position.

// Simple pick and place operation
#include “RoboticPlatform.hpp”

void main(int argc, char *argv[])
{

RoboticPlatform::init(argc, argv);

Puma560 puma;                // Create Puma560 object
DefaultGripper gripper;    // Create gripper object

DefaultTrajectoryGenerator tragen;
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Table 10.4.1: Default Command Line Options of Robotic Platform Programs.

Figure 10.4–6: A Simple Pick and Place Program
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10.5 Programming Examples

Comparison of Simulation and Implementation

A very interesting option is to forward the setpoints created by a trajectory
generator to two manipulators. In this way, the motion of two manipulators
with the same kinematics can be compared, or the behavior of a real
manipulator can be compared with a dynamic simulation. The latter
application is implemented in the program in Figure 10.5.1. First, two objects
of the class Puma 560 are created, and one of the objects is configured into
simulation mode. Then, both objects are connected to the same trajectory
generator to receive the same setpoints.

Virtual Walls

This is a good example on how to create a custom servo control. It also
demonstrates the use of the manipulator model functions and the math library.
Virtual walls are virtual planes in the manipulator’s workspace that generate
a reaction force once the manipulator is moved into the wall. Given a plane
with the plane equation (using homogeneous coordinates):

where n is the normal vector of the plane, and d0 is the distance from the
origin. If xEndEf fector is the current end-effector position, then

Figure 10.5–1: Example to Forward the Same Trajectory to two Robots.
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Using the control law

creates a joint torque that resists moving the robot into the wall.
To implement a new servo control algorithm, a class is derived from the

class ServoControl (See line (1) of Figure 10.5.2). The above virtual wall
functions are implemented in the function calculate(), which calculates the
control output. In the function main(), the robot object is created as usual.
In addition, an object of the virtual wall servo control class is created (See
line (2) of Figure 10.5.2). Finally, the robot object is instructed to utilize the
new servo control instead of the default position control, and the gravity
compensation is enabled to allow the robot to be pushed around (See line (3)
of Figure 10.5.2).

10.5 Programming Examples
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Figure 10.5–2: Virtual Walls Example.

10.6 Summary

The Robotic Platform is a software framework to support the implementation
of a wide range of robotic applications. As opposed to past distributed
architecture-based software control platforms, the Robotic Platform presents
a homogeneous, non-distributed object-oriented architecture. That is, based
on PC technology and the real-time operating system QNX6, all non real-
time and real-time components are integrated in a single C++ library. The
architecture of the Robotic Platform provides efficient integration and
extensibility of devices, control strategies, trajectory generation, and GUI
components. In addition, software-based control systems implemented with
the Robotic Platform are inexpensive and offer high performance. The
Robotic Platform is also built on the QMotor control environment for data
logging, control parameter tuning, and real-time plotting. A real-time math
library simplifies operations and provides an easy-to-use programming
interface. Built-in GUI components like the Scene Viewer and the control
panels provide for easy operation of the Robotic Platform and a quick ramp-
up-time for users that are inexperienced in C++ programming.
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Appendix A

Review of Robot
Kinematics and Jacobians

We review here the basic information from a first course in robotics that is
needed for this book. This includes robot kinematics, the arm Jacobian, and
the issue of specifying the Cartesian position. The review is detailed since
those with a background in system theory and controls may not yet have seen
this material. Several examples are given which are used throughout the
book for design and simulation purposes.

A.1 Basic Manipulator Geometries

In this section we look at some basic arm geometries. A robot arm or
manipulator is composed of a set of joints separated in space by the arm
links. The joints are where the motion in the arm occurs (cf. our own wrist
and elbow), while the links are of fixed construction (cf. our own forearm).
Thus the links maintain a fixed relationship between the joints. [Although the
links may be flexible (i.e., they may bend); we ignore flexibility effects here.]

The joints may be actuated by motors or hydraulic actuators. There are
two sorts of robot joints, involving two sorts of motion. A revolute joint
(denoted R) is one that allows rotary motion about an axis of rotation. An
example is the human elbow. A prismatic joint (denoted P) is one that allows
extension or telescopic motion. An example is a telescoping automobile
antenna. There is no anthropomorphous analogy to the prismatic link. The
joint variables of a manipulator are the variable parameters of the joints. For
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Figure A.1.1: Basic robot arm geometries: (a) articulated arm, revolute co-ordinates
(RRR); (b) spherical coordinates (RRP); (c) SCARA arm (RRP).
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a revolute joint the variable is an angle, denoted �. For a  prismatic joint it is
a length, denoted d.

Some basic arm geometries are shown in Figure A.1.1. The RRR articulated
arm in Figure A.1.1a is like the human arm, while the PPP Cartesian arm in
Figure A.1.1e is closely tied to the coordinates used in the manipulator
workspace, where the Cartesian coordinates (x, y, z) are often used to describe
tasks to be performed. The workspace is the total volume swept out by the
end effector as the robot executes all possible motions.

The joint axis of a revolute joint is the axis about which the rotation �
occurs. (The sense of rotation is determined using the right-handed screw
rule: If the curled fingers of the right hand indicate the direction of rotation,
the thumb indicates the direction of the axis of rotation.) For a prismatic
joint, it is the axis along which the telescoping action d occurs. The relative
orientations of the joint axes of an arm determine its fundamental properties.
Figure A.1.1c shows a RRP manipulator known as the SCARA (selected
compliant articulated robot for assembly) arm. It has quite a different structure
than the RRP spherical arm shown in Figure A.1.1b, since its joint axes are
all parallel. On the other hand, the joint axes of the spherical arm intersect at
a point.

Industrial examples of the RRR arm are the PUMA and Cincinnati-Milacron
T3 735 manipulators. The Stanford manipulator is a spherical RRP arm; the
AdeptOne is a SCARA RRP arm. An example of the RPP arm is the GMF M-
100. The Cincinnati-Milacron T3 gantry robot is a PPP arm.

Figure A.1.1:(Cont.) (d) cylindrical coordinates (RPP); (e) Cartesian arm, rectangular
coordinates (PPP).

A.1 Basic Manipulator Geometries
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Many industrial robots are serial link manipulators since they consist of
a series of links connected together by actuated joints. The base is called
link 0, and the last link is terminated by the tool or end effector. Many
robots have six joints, corresponding to the six degrees of freedom needed to
obtain arbitrary position and orientation of the end effector in three-
dimensional space.

Arms like the PUMA 560 have six revolute joints. In such an arm, the
joints may be grouped into two sets of three joints each. The first three
joints may be used to place the end effector at an arbitrary position within
the three-dimensional workspace. The last three joints may be used to
obtain an arbitrary orientation of the end effector at that position. In the
PUMA 560, the axes of joints 4, 5, and 6 intersect at a common point and
are mutually orthogonal. This makes orienting the end-effector convenient.
The last three joints are known as the wrist mechanism (see Example
A.2.4).

A.2 Robot Kinematics

Here we review the kinematics of robot manipulators, including the arm A
matrices, homogeneous transformations, the T matrix, forward and inverse
kinematics, and joint-space and Cartesian coordinates. Several illustrative
examples are given.

A Matrices

For given values of the joint variables, it is important to be able to specify the
locations of the links with respect to each other. This is accomplished by
using the manipulator kinematic equations.

We may associate with each link i a coordinate frame (xi, yi, zi) fixed to
that link. See Figure A.2.1. A standard and consistent paradigm for so doing
is the Denavit-Hartenberg (D-H) representation [Paul 1981], [Spong and
Vidyasagar 1989]. The frame attached to link 0 (i.e., the base of the
manipulator) is called the base frame or inertial frame.

The relation between coordinate frame i-1 and coordinate frame i is given
by the transformation matrix
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(A.2.1)

Most of the parameters in this A matrix for link i are fixed. The link parameters
are �i, the twist of the link i, and ai, the length of link i. These parameters are
tabulated for each link in the arm manufacturer’s specifications. The joint
parameters are the joint angle �i and the joint offset di. If joint i is revolute,
the joint variable is �i and di is a constant tabulated in the specs. On the other
hand, if the link is prismatic, then di is the joint variable and �i is a constant
provided in the specs. The parameter ai for a prismatic joint is defined to be
zero, since the link length is variable and described by di.

By the D-H convention, for a revolute joint, the rotation �i occurs about
axis zi-1. For a prismatic joint di occurs along axis zi-1. Thus the link
coordinate frame is considered to be attached to the outer end of the link.
See the examples.

The A matrix Ai is a function of only a single variable, namely the joint
variable �i or di, since all the other parameters in Ai are fixed for a specific
joint. If a manipulator has n links, the joint-variable vector q is an n-vector
composed of the individual joint variables. Thus q is in general a combination
of angles �i and lengths di. For instance, for an RRP arm,

 

Figure A.2.1: Link kinematic relations in a manipulator.

A.2 Robot Kinematics
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The components of q are denoted by qi; that is, the general joint variable qi

can represent either an angle �i or a length di as appropriate.

Homogeneous Transformations
The A matrix is a homogeneous transformation matrix of the form

(A.2.2)

where Ri is a rotation matrix and pi is a translation vector. Thus if ir is a point
described with respect to the coordinate frame of link i, the same point has
coordinates i-1r with respect to the frame of link i-1 given by

(A.2.3)

The homogeneous transformation is a 4×4 matrix, so that it can describe
both rotations and translations; therefore, the vectors describing position in a
given coordinate frame are 4-vectors. They are of the form

, (A.2.4)

where (ix, iy, iz) are the coordinates of the point in frame i. Thus, according to
(A.2.3) and (A.2.2),

(A.2.5)

which is just a rotation of Ri applied to the coordinates in frame i plus a
translation of pi.

We may interpret frame i-1 as the fixed (i.e., “original”) frame and frame
i as the rotated and translated (i.e., “new”) frame due to the following
considerations. According to (A.2.5), there is an easy way to find the rotation
matrix Ri that rotates a given coordinate frame i-1 into another given frame i.
Set pi equal to zero and (ix, iy, iz)=(1,0,0). Then (A.2.5) is equal to the first
column of Ri. That is, the first column of Ri is nothing but the representation
of the new x-axis ix in terms of the original coordinates (i-1x, i-1y, i-1z). Similarly,
the second (respectively third) column of Ri is the representation of the rotated
y-axis iy (respectively, z-axis and iz) in the fixed frame i-1. We shall illustrate
this in Example A.2.1.

Therefore, Ai may be interpreted from several points of view. It is the
transformation that takes a representation ir of a vector in frame i to its
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representation i-1r in frame i-1. On the other hand, it is the description of
frame i in terms of frame i-1; in fact, Ri describes the orientation of the axes of
frame i in terms of frame i-1, while pi describes the origin of frame i in terms
of the coordinates of frame i-1.

A rotation matrix R enjoys the property of orthogonality, that is, RT=R-1. It
has one eigenvalue at �=1, whose eigenvector is the axis of rotation. A rotation
of � about the x axis, for instance, looks like

(A.2.6)

The last entry of “1” in (A.2.4) represents a scaling factor for the length of
the vector. By using a homogeneous transformation whose (4, 4) entry is not
unity, vectors may be scaled. By using entries in positions, (4, 1), (4, 2), (4, 3)
of the transformation matrix, perspective transformations may be performed.
These ideas are important, for instance, in camera-frame transformations but
will not be useful in the transformations associated with the manipulator
arm.

Arm T Matrix
To obtain the coordinates of a point in terms of the base (i.e., link 0) frame,

we may use the matrices

(A.2.7)

Then, given the coordinates ir of a point expressed in the frame attached to
link i, the coordinates of the same point in the base frame are given by

(A.2.8)

We call Ti a kinematic chain of transformations.
We define the arm T matrix as

(A.2.9)

with n the number of links in the manipulator. Then, if nr are the coordinates
of a point referred to the last link, the base coordinates of the point are

(A.2.10)

This is an important relation since nr, the coordinates of an object in the nth
frame, can represent the location of the object with respect to the tool or end
effector. It is thus important in specifying tasks to be accomplished. On the

A.2 Robot Kinematics
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other hand, 0r represents the location of the object with respect to the base
frame, which is the object’s absolute position with respect to the manipulator
base.

Forward Kinematics
The position and orientation of the end effector with respect to the

manipulator base frame are given by evaluating the arm T matrix. It is
conventional to symbolize this homogeneous transformation as

(A.2.11)

Thus the orientations of the axes of the end-effector reference frame are described
with respect to base coordinates by the rotation matrix R=[n o a], and the
origin of the end-effector frame has a position of p in base coordinates.

Figure A.2.2: Robot end effector, showing the definition of (n, o, a, p).

The 3-vectors n, o, a, and p are defined as in Figure A.2.2. The approach
vector of the end effector is “a”; the orientation vector “o” is the direction
specifying the orientation of the hand, from fingertip to fingertip. The normal
vector “n” is chosen to complete the definition of a right-handed coordinate
system using
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Thus (n, o, a) are the base coordinates of an (x, y, z) Cartesian coordinate
system attached to the end effector. The position vector p specifies the location
of the origin of the (n, o, a) frame with respect to the base frame.

The representation (n, o, a) for the orientation of the end effector is inefficient.
Note that [n o a] is a 3×3 matrix, so that it has nine entries. However, it does
not take nine degrees of freedom to specify orientation. Indeed, [n o a] is a
rotation matrix, so that its columns are orthogonal; this orthogonality
requirement imposes extra constraints on the elements of [n o a], so that the
nine entries of [n o a] are not independent. Alternative more efficient methods
of specifying the orientation of the end effector in base coordinates are the
roll-pitch-yaw, Euler angle, quaternion, and tool-configuration vector
descriptions. We discuss some of these later. The reason we use (n, o, a) is that
the arm T matrix is easily computed using the A matrices in terms of the arm
parameters and join variables. Then n, o, a, and p are simply read off by
examining the T matrix, as we shall see in the examples.

At this point we should like to distinguish between two sets of coordinates
describing the end effector. The joint variable coordinates of the end effector
are given by the n-vector.

 

where qi can represent angles or lengths, depending on whether the links are
revolute or prismatic. Generally, n=6, so that the arm has six degrees of
freedom. The end-effector Cartesian coordinates are the description of end
effector orientation and position in terms of the arm base coordinates. According
to (A.2.11), where T may be computed knowing q, the joint variable and
Cartesian coordinates are equivalent, for both specify the location of the end
effector.

We say that q is the joint-space description of the position and orientation
of the end effector, while (n, o, a, p) is the Cartesian or task space description.
This terminology derives from the fact that descriptions of tasks to be performed
by an arm are generally given in Cartesian coordinates, not in joint coordinates.

The robot arm kinematics problem is as follows. Given the joint variables
q, find the Cartesian position and orientation of the end of the manipulator.
Thus the kinematics problem amounts to converting given joint variables
into the Cartesian position and orientation of the end effector expressed in
base coordinates. Let us illustrate the solution of this problem for several
simple robot arms which we use as examples throughout the book. It amounts
to computing T.

It should be mentioned that there are several software packages
commercially available for computing the A matrices and the T matrix for a
given robot arm. See, for instance, [MATMAN 1986].

A.2 Robot Kinematics
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EXAMPLE A.2–1: Kinematics for Three-Link Cylindrical Arm

A simple RPP manipulator is shown in Figure A.2.3a. It may be interpreted as
the first three joints of an arm much as the GMF M-100. These are the joints
used to position the end effector. A wrist mechanism consisting of three joints
may be added to the end of the RPP arm to orient the end effector in space (see
Example A.2.4). The joint variables of the three-link arm shown are �, h, r,
which correspond to the coordinates of a cylindrical coordinate system, so
that the joint-variable vector is

(1)

a. A Matrices

Coordinate frames may be attached to links 1, 2, and 3 using any technique
desired. The D-H frames, to which (A.2.1) corresponds, are shown in Figure
A.2.3b. For this choice of frames, the A matrices may be determined as
follows.

Frame 1 is related to the base frame 0 by a simple rotation of �
degrees about the axis z0. A z-axis rotation, Rz, �, with no translation is
described by

(2)

where c� represents cos� and s� represents sin �.
To find A2 we may use (A.2.1). Since link 2 is prismatic with extension h,

the length a2 is zero. In this example the rotation �2 is also zero. The twist �2

of link 2 is the angle of rotation about axis x2 required to align z1 with z2–that
is, -90°. Therefore,
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(3)

Figure A.2.3: Three-link cylindrical manipulator: (a) arm schematic; (b) D-H coordinate
frames.

There is an attractive alternative to (A.2.1) for determining the link A
matrix in simple cases. Recall that the first column of A2 is the representation
of x2 in the coordinates (x1, y1, z1). According to the figure, this is just [1 0 0]T.
The second column of A2 is the representation of y2 in the coordinates (x1, y1,
z1), which the figure shows is [0 0 -1]T. The third column of A2 is the
representation of 22 in frame o1, which is just [0 1 0]T. Thus (3) is obtained by
inspection.

In similar fashion we obtain,

A.2 Robot Kinematics
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(4)

b. T Matrix and Arm Kinematics

The arm T matrix is now obtained as

(5)

To interpret the T matrix, examine (A.2.11). The position in base coordinates
of the end of the manipulator, that is, the origin of frame 3, is

(6)

The orientation of frame 3 described in base coordinates is expressed in (n, o,
a) form by giving the coordinates of the normal, orientation, and approach
vectors in terms of the base frame. These are given by

(7)

A glance at Figure A.2.3b verifies these expressions.
�
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EXAMPLE A.2–2: Kinematics for Two-Link Planar Elbow Arm

A two-link planar RR arm is shown in Figure A.2.4a where a1 and a2 are the
fixed and known link length parameters. The link coordinate frames are
shown in Figure A.2.4b. We have taken the z-axes perpendicular to the page
to conform to the convention of specifying points in a plane by (x, y)
coordinates. Therefore, the frames are not defined quite as in the D-H
convention.

The arm A matrices may be written by inspection as

(1)

where c1, s1, represent respectively cos �1, sin �1 and

(2)

The arm T matrix is given by

(3)

A.2 Robot Kinematics
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where 
Therefore, the origin o2 of frame 2 in terms of base coordinates is located

at

(4)

Figure A.2.4: Two-link planar RR arm: (a) arm schematic; (b) D-H coordinate
frames.
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This represents the kinematic solution, which converts the joint variable
coordinates (�1, �2) into the base-frame Cartesian coordinates of the end of the
arm. The reader should examine Figure A.2.4a to verify this expression.

�

EXAMPLE A.2–3: Kinematics for Two-Link Polar Arm

A two-link planar RP arm is shown in Figure A.2.5a where � is the fixed
known length of the base link. The link frames, with the z-axes perpendicular
to the page, are shown in Figure A.2.5b. The joint vector is

(1)

which corresponds to polar coordinates in the plane.

By inspection, the A matrices are found to be

Figure A.2.5: Two-link planar RP arm: (a) arm schematic; (b) D-H coordinate
frames.

A.2 Robot Kinematics
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(2)

(3)

The T matrix is

(4)

Therefore, the base coordinates of the end of the arm are

(5)

which should be verified by examining Figure A.2.5a. This may be interpreted
as the forward kinematics solution for the arm.

This example illustrates the freedom we have to select the base frame
origin o0. We could have selected o0 coincident with o1. However, we have
chosen to include the length � of link 0 by placing o0 at the bottom of the base
link.

�
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EXAMPLE A.2–4: Kinematics for Spherical Wrist

Figure A.2.6: Spherical wrist.

A spherical wrist mechanism is shown in Figure A.2.6. See [Paul 1981], [Spong
and Vidyasagar 1989]. For convenient orientational control, all three joint
axes intersect at a common point. Since many six-link industrial arms, including
the Stanford arm, end in such a configuration, we have labeled the three joint
variables �4, �5, �6. The D-H frames are also shown in the figure. Recall that
the rotation �i occurs about axis zi-1 in the D-H convention. The origin of
frame 6 has been chosen at the base of the fingered gripper. The length d6 is a
fixed known parameter.

By expressing the axes x4, y4, z4 in terms of the coordinates (x3, y3, z3), we are
able to directly determine the columns of A4 to obtain

A.2 Robot Kinematics
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(1)

Determining x5, y5, z5 in terms of (x4, y4, z4) yields

(2)

In writing down A5, it is important to note that �5 is defined to be zero when
the end effector is in an upright position, that is, when the arm is fully extended.
We have drawn the figure with �5=-90° to show more clearly the different
coordinate systems.

In similar fashion, we obtain

(3)

The wrist T matrix is
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(4)

where c4≡cos �4, and so on. It is quite interesting to note that the rotational
part of this T matrix corresponds to the Euler angle transformation [Spong
and Vidyasagar 1989]. Therefore, �4, �5, �6 may be interpreted as the Euler
angles with respect to frame 3.

Suppose that we would like to determine the kinematic transformations of
the 3-link cylindrical arm in Example A.2.1 terminated with a spherical wrist.
Then it is only necessary to multiply the T matrix in Example A.2.1 and (4),
in that order, to obtain the overall manipulator T matrix.

�

Inverse Kinematics
The location of the end effector is specified in base coordinates by the arm

T matrix. On the other hand, the location of the end effector is specified in
joint coordinates by giving the values of the joint variables qi. We may compute
the T matrix knowing the joint-variable vector q, as in the examples just
shown. Finding T from q is the kinematics problem.

The inverse-kinematics problem is as follows. Given (n, o, a, p) for the
end effector in base coordinates, determine the joint variables qi in the T
matrix

(A.2.12)

that yield the specified (n, o, a, p). This problem is important in manipulator
control, for the desired Cartesian orientation and position of the end effector
are specified by the task. Then the solution to the inverse kinematics
problems gives the joint variables qi required to achieve that orientation
and position.

Due to the functions involved in the T matrix, the relations between qi

and (n, o, a, p) are highly nonlinear; these must be inverted to obtain the

A.2 Robot Kinematics
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inverse kinematic solution q. The solutions for qi are generally not unique.
If the last three arm axes intersect at a point (e.g., the wrist mechanism in
Example A.2.4), it is common to split the inverse kinematics problem into
two parts. In a six-link arm, for instance, one first determines q1, q2, and q3

required to obtain the desired Cartesian position p. Then the wrist variables
q4, q5, and q6 that give the desired orientation (n, o, a) are determined. Some
techniques for solving the inverse kinematics problem are given in [Paul
1981], [Craig 1989], [Spong and Vidyasagar 1989]. An example is now
given.

EXAMPLE A.2–5: Inverse Kinematics for Two-Link Planar Elbow Arm

For the planar RR arm of Example A.2.2, the inverse kinematics problem
amounts to finding the joint variable �1 and �2 given a desired Cartesian
position (x, y) of the end of the arm. See Figure A.2.7.

The first thing that is evident is that, as long as ,
there are two solutions. The one shown in Figure A.2.7 is the “elbow down”
solution. Another solution may be determined for the “elbow
up“configuration, where both links are above the vector [x y]T. Thus the
inverse kinematics problem generally has a nonunique solution. This may
often be taken advantage of to obtain end-effector positioning with collision
avoidance.

Given the T matrix from Example A.2.2, we see that �1 and �2 may be
found by solving

(1)

(2)

Determining �1 and �2 based on algebraic manipulations of such equations is
called the algebraic inverse kinematics solution technique [Paul 1981]. Let us
show a geometric technique here.

Referring to Figure A.2.7, define

(3)

and use the law of cosines to obtain
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(4)

Figure A.2.7: Inverse kinematics for two-link planar RR arm.

We could now solve for �2 using the cos-1 function. However, it is better to use
tan-1 for reasons of numerical accuracy. The FORTRAN function implementing
tan-1(b/c) is ATAN2(b, c). This function has a uniform accuracy over the
range of its arguments, returns a unique value for the angle depending on the
signs of b and c, and gives the correct solution if b and/or c is zero.

Therefore, we proceed by computing

(5)

(6)

(7)

An additional advantage of using the arctangent is that the multiple solutions
of the inverse kinematics problem are explicitly revealed by the choice of
negative or positive sign in (6).

A.2 Robot Kinematics
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To determine �1 define the auxiliary angle � in the figure. By inspection of
the right triangle shown,

(8)

Moreover,

(9)

so that

(10)

Note that �1 depends on �2.
�

A.3 The Manipulator Jacobian

Given a generally nonlinear transformation from the joint variable q(t)�Rn

to ,

(A.3.1)

we define the Jacobian associated with h(q) as

(A.3.2)

As we have just seen, the Jacobian is useful in feedback linearization, and
therefore in robot manipulator control. It is also the means by which we
transform velocity, acceleration, and force between coordinate frames.

Transformation of Velocity and Acceleration

Since

(A.3.3)

the Jacobian allows us to transform velocity from joint space to “y-space.”
Let us discuss the special case where y(t) is the Cartesian velocity. Then J(q) is
called the manipulator Jacobian.

It is usual to define the generalized Cartesian velocity as
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(A.3.4)

with v=[vx vy vz]T the linear velocity and �=[�x �y �z]T the angular velocity.
For instance, �x represents angular velocity about the x-axis. Thus y has six
components and the arm Jacobian J is a 6×n matrix, with n the number of
joints in the manipulator. If n=6, the Jacobian is square. We shall soon show
how to compute the manipulator Jacobian.

Using (A.3.3), we can obtain an expression for the transformation of
differential motion. Let dq=[dq1…dqn]T be a differential motion in joint space,
with dqi a small rotation if joint i is revolute, and a small linear displacement
if joint i is prismatic. Let

(A.3.5)

describe the same differential motion in Cartesian coordinates, with [dx dy

dz]T the differential linear motion and [�x �y �z]T representing the differential
rotation. Here �x, for instance, means a small rotation about the x-axis. We
have written the Cartesian differential motion vector dy in boldface to
distinguish it from the small change dy in the second coordinate of Cartesian
position.

According to (A.3.3), where , we see that

(A.3.6)

with J the Jacobian relating joint space and Cartesian space.
The transformation of acceleration is found by differentiating (A.3.3) to be

(A.3.7)

Transformation of Force
To discover the transformation of static force between coordinate frames,

consider the following.
The virtual work resulting from the application of a generalized force/

torque in joint space that results in a differential motion dq is

(A.3.8)

A.3 The Manipulator Jacobian
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with � the n-vector of arm control torques/forces, and dq=[dq1…dqn]T the
differential change in the joint variable. If the description in another coordinate
frame of the force is F and the description there of position is y, we must also
have

(A.3.9)

Now taking (A.3.6) into account, we may write

 

so that the transformation from force to torque is given by

(A.3.10)

In the case that y(t) is Cartesian position, we define the Cartesian generalized
force to be the 6-vector

(A.3.11)

with fc=[fx fy fz]T a Cartesian force 3-vector, and �c=[�x �y �z]T a 3-vector
representing Cartesian torques. For instance, �x represents torque exerted about
the x-axis.

If the arm has six links and the Jacobian is nonsingular, the transformation
from generalized torque to generalized force is given by

(A.3.12)

The singularities in the Jacobian generally occur at the extremities of the
manipulator workspace.

Specification of Cartesian Position

It is now necessary to confront an issue that is a source of confusion in
robotics. Consider Equation (A.3.2). Unfortunately, when discussing the
transformation h(q) from joint space to Cartesian space, this equation may only
be interpreted as a convenience of notation, not as a rigorous mathematical
formula. The reason is that although the generalized Cartesian velocity (A.3.4)
and acceleration, and the generalized Cartesian force (A.3.11) are bona fide 6-
vectors, there is a problem with conveniently specifying the generalized Cartesian
position y(t). We now discuss several ways to specify the Cartesian position.

Representing Generalized Cartesian Position as (n, o, a, p). In our context,
both the location of the origin of the end-effector frame as well as its orientation
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must be specified in base coordinates. It is easy to specify the origin of the
end-effector frame in base coordinates (x, y, z) using a 3-vector p(t)=[px py pz]T.
However, specification of orientation is not so easy. This is because it takes
more than three independent variables to specify uniquely the orientation of
one frame with respect to another.

It should be mentioned that conventions such as the Euler angles and roll-
pitch-yaw [Paul 1981], [Spong and Vidyasagar 1989] involve only three
variables. However, they may not be used to uniquely specify the absolute
orientation of one frame with respect to another, but only relative changes in
orientation. We have already seen in (A.3.5) that only three variables are
needed to describe differential rotations.

In our work we have specified the Cartesian position y(t) of the end effector
in base coordinates by using the (n, o, a, p) approach (see Section A.2). There
we define the generalized Cartesian position as

(A 3.13)

with T(t) the arm T matrix, (n, o, a) the vectors needed to describe the end-
effector orientation, and p=[px py pz]T the positional portion of the Cartesian
description that specifies the origin of the end-effector frame.

It is clear that the selection of the transformation h(q) depends on how we
wish to describe the Cartesian position y(t). If we use (A.3.13), then h(q) is just
the arm kinematics transformation discussed in Section A.2. However, then
y(t) is not a 6-vector but a 4×4 matrix. Therefore, the definition of the arm
Jacobian as J(q)=∂h/∂q is a loose one purely for notational convenience.
Therefore, we are faced with the problem of providing a suitable definition
for J(q). Before we do this, let us discuss some more techniques for representing
the generalized Cartesian position.

Representing Cartesian Orientation Using Euler’s Theorem. The positional
portion of y is easy to specify; it is just the 3-vector p= [px py pz]T found from
the last column of the T matrix in (A.3.13). However, since [n o a] is a
rotation matrix having nine elements, it does not afford an efficient
representation of orientation. The orthogonality of the rotation matrix imposes
some constraints among its elements, meaning that it actually has only four
degrees of freedom.

The orientation of one coordinate frame (frame 1) with respect to another
(frame 0) may be specified uniquely using a 3-vector k representing the axis
of rotation of frame 1 with respect to frame 0, and an angle ϕ specifying the
amount of rotation about that axis. We call (k, �) the Euler rotation parameters.
The (k, �) convention involves four variables, which may be found as follows.
Suppose that the rotation matrix

A.3 The Manipulator Jacobian
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(A.3.14)

describes the orientation of frame 1 with respect to frame 0. Note that R is the
upper left 3×3 submatrix of the arm T matrix, so that it may be computed
given the joint vector q.

A rotation matrix is orthogonal, so that it has one eigenvalue equal to 1.
Then the axis of rotation k is the eigenvector of the eigenvalue. That is,

(A.3.15)

This is known as Euler’s theorem. It says that Rk=k, or that the rotation axis
is not rotated by R. There are many good routines for computing eigenvectors
(e.g., [IMSL]), which may be used to find k from R. See the problems to find
an explicit formula for k in terms of (n, o, a) [Paul 1981].

The angle of rotation � about the axis k may easily be found, for the trace
of a rotation matrix is equal to 1+2 cos �. Therefore,

(A.3.16)

where nx, for instance, denotes the x component of the normal vector n.
Using Euler’s rotation parameters we may specify the generalized Cartesian

position as a 7-vector, with three components for position (i.e., the last column
p of the T matrix) and four components (i.e., k and �) for orientation.

Representing Cartesian Orientation Using Quaternions. The quaternion
representation is a 4-vector which is often used to describe the end-effector
frame orientation [Ickes 1970], [Sheppard 1978], [Yuan 1988], [Stevens and
Lewis 1992].

The quaternions are four numbers represented as (q0, q), with q=[q1 q2 q3]T

a 3-vector. They are given in terms of the Euler parameters (k, �) by

(A.3.17)

Using quaternions, the generalized Cartesian position may be represented as
the 7-vector y=[px py pz q0 q1 q2 q3]T. An advantage of this representation is
that no angles are involved.
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Tool-Configuration Vector. A technique for specifying y(t) as a 6-vector is
given in [Schilling 1990]. It depends on adopting a convention for encoding
orientational information.

Consider the arm T matrix in (A.3.13) whose rotational portion is R in
(A.3.14). Let us select the 3-vector p to represent Cartesian linear position.
The approach vector a is a 3-vector specifying the direction in which the end
effector points in terms of base coordinates. Recall from the discussion on
kinematics in Section A.2 that this vector specifies in base coordinates the
axis zn of the frame attached to the end of link n. Since the rotation matrix R
is orthogonal, the approach vector has a length of one.

The two vectors p and a almost completely specify the Cartesian position
of the end effector. The only piece of information missing is the roll angle of
the end effector. However, this angle is nothing by qn=�n, the last joint variable
of the manipulator.

To capture the information qn, let us propose scaling the approach vector
by the exponential function eqn/� to define the tool-configuration vector as

(A.3.18)

This is a 6-vector, which uniquely specifies the Cartesian position of the end
effector in base coordinates.

Note that there is a unique mapping between w and (p, a, qn), since, given
w and the fact that ||a||=1, we may compute

(A.3.19)

(A.3.20)

with wi the ith component of w.

Finding Cartesian Velocity from the Arm T Matrix. Note that using the
definition (A.3.4), the Cartesian velocity y is a 6-vector that is not strictly
speaking the derivative of y(t) in (A.3.13), which is a 4×4 matrix. To compute
y, we may find the Jacobian J(q) and then use (A.3.3). Alternatively, the
Cartesian velocity may be found directly from the arm T matrix (A.2.11) as
follows.

Setting  with v the linear velocity and � the angular velocity,
it is clear that

A.3 The Manipulator Jacobian
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(A.3.21)

with p found from the last column of T.
To find �, proceed as follows. Since R in (A.2.11) is orthogonal, we have

(A.3.22)

which on differentiation yields

 

Therefore, the matrix defined as

(A.3.23)

satisfies , so it is skew symmetric. It may therefore be represented
as

(A.3.24)

The relation between the cross-product matrix 	 and the angular velocity
vector

(A.3.25)

is an interesting one, for one may easily demonstrate that

(A.3.26)

for any 3-vector w. That is, the cross product may be replaced by a matrix
multiplication in terms of the cross-product matrix. We denote by 	(w) the
cross-product matrix associated with a vector �.

The complete procedure for determining y from the T matrix is then as
follows. First, compute v using the p vector as in (A.3.21). Then, compute
	(w) from the rotation matrix R using (A.3.23), and hence find the last three
components � of y from the definition of 	(w). Computing y from q thus
requires a computer subroutine. Robot controllers generally have block
diagrams in which some of the blocks are standard components like integrators,
but some of the blocks are implemented in software.

Using (A.3.23), we may write the strapdown equation
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(A.3.27)

which is of fundamental importance in inertial navigation [Stevens and Lewis
1992].

Computing the Arm Jacobian
Let us now return to the problem of defining and computing the arm Jacobian

J(q). If the Cartesian position is defined by (A.3.13), then (A.3.2) does not
afford an appropriate definition. Therefore, let us select (A.3.3) as the definition
of J(q). That is, define J(q) by

(A.3.28)

so that it maps the joint velocity q to the Cartesian velocity y as defined by
(A.3.4). Then J(q) is a 6×n matrix.

Let us consider a few examples showing how to compute the arm Jacobian
to demonstrate that the procedure is not complicated. A methodical technique
for computing J(q) will then be given.

EXAMPLE A.3–1: Arm Jacobian for Three-Link Cylindrical Arm

Let us use the kinematics derived in Example A.2.1 to compute the Jacobian
for the three-link cylindrical arm. We shall call the joint variables (�, z, r)
instead of (�, h, r) to avoid confusion with the nonlinear function h(q).

Since there is no wrist on this three-link arm, the orientation of the last
coordinate frame is fixed in terms of (�, z, r), so that is not necessary to
specify Cartesian orientation. This simplifies things for this example.

Denote the linear Cartesian position of the end effector in base co-ordinates
(i.e., the first three components of y) as yp. Then, according to Example A.2.1,
yp is the last column of the arm T matrix, so that

(1)

Omitting the orientational information has allowed us to define a (positional)
transformation function hp(q) simply as the last column p of the T matrix.

Using (A.3.2) and the definition of hp(q) given in (1), the Jacobian is

A.3 The Manipulator Jacobian
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(2)

Therefore, the velocities of the joints are converted into Cartesian velocities
using

(3)

The determinant of J is (r cos2 �+r sin2 �)=r, so that J is nonsingular as long as
r�0.

Note that the definition (1) of the positional function hp(q) means that the
Jacobian is equal to ∂hp/∂q. This is a result of neglecting the orientation
portion of y.

�

EXAMPLE A.3–2: Arm Jacobian for Two-Link Planar Elbow Arm

In Example A.2.2 the joint variable was q=[�1 �2]T. As in Example A.3.1, the
orientation of the last coordinate frame is fixed once q is given, so that we are
not concerned with the orientational portion of y, but only its linear position
portion yp.

The linear Cartesian position of the end effector in the (x1, x2)-plane is
given by the last column of the arm T matrix as

(1)

Since the motion is constrained to the plane, we have suppressed the x3

component of yp.
The Jacobian is

(2)

Note that the definition of hp(q) in (1) means that the Jacobian is equal to
∂hp/∂q.
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The determinant of J is (verify!) equal to a1a2 sin�2, so that J is nonsingular
unless �2=0 or �; that is, unless the arm is fully extended or link 2 is folded
back on top of link 1.

�

EXAMPLE A.3–3: Jacobian for Transformation to Camera Co-ordinates

Consider the three-link cylindrical arm of Examples A.2.1 and A.3.1 with a
camera mounted vertically above the arm that measures only the position (x1,
x2) of the end effector in the horizontal plane (in base coordinates). Call this
position y. Then, according to those examples, the transformation from joint
coordinates (�, z, r) to camera coordinates (x1, x2) is

(1)

and the associated Jacobian is

(2)

The determinant of J with the second column deleted is equal to -r, so that
J has full row rank as long as r�0. The pseudo-inverse of J is

(3)

Since the camera cannot measure the distance x3 perpendicular to the plane,
that coordinate must be selected in any control scheme using an independent
means that does not involve trajectory following control in the horizontal
plane.

�

Algorithm for Computing the Arm Jacobian. We are finally in a position to
show how to compute the arm Jacobian given the joint variables qi. The
procedure follows.

Given qi, compute the matrices Ti defined in Section A.2 as

(A.3.29)

whose corresponding rotation matrices will be denoted

A.3 The Manipulator Jacobian
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(A.3.30)

Define To=I, Ro=I, and the arm T matrix

(A.3.31)

The vector zi represents the z-axis of frame i in base coordinates. The
vector p represents the location of the origin of link frame n (the end-effector
frame) in terms of base coordinates. The Jacobian is computed using the
vectors p and zi as follows.

The generalized Cartesian velocity is . Therefore, we may
partition the Jacobian matrix into a linear and an orientational part by
writing

(A.3.32)

with Jp(q) the first three rows of J(q) and Jo(q) its last three rows.
First, consider the computation of the linear position Jacobian Jp(q). Given

that the linear portion of the generalized Cartesian position y is just p, we
may write

(A.3.33)

Therefore, Jp(q) is given by

(A.3.34)

It should be clearly understood that this is exactly what we used in Examples
A.3.1 and A.3.2.

Let us now turn to the orientational portion Jo(q) of the Jacobian. Exactly
as for linear velocities, one may add angular velocities as long as they are
represented in the same coordinate frame. Let us therefore add the individual
angular velocities of the links in the arm to obtain the angular velocity of the
end effector. A prismatic joint does not contribute to the angular velocity of
the end effector.

For a revolute joint, the joint rotation qi=�i occurs about joint axis zi-1 (see
Section A.2, especially Figure A.2.1). The angular velocity for joint variable
i is therefore given by . To add the effects of all the links, it is necessary
to express zi-1 in a common frame; we select base coordinates. However, the
last column of Ri-1 is exactly zi-1 in base coordinates. Therefore, we may write
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(A.3.35)

where z0=[0 0 1]T and the selection parameter 
i is zero if qi is prismatic and 1
if qi is revolute. Thus

(A.3.36)

The complete Jacobian is now given by stacking Ji(q) on top of Jo(q). It
should now be clear that the arm Jacobian must be found from the joint
vector q using a significant amount of computation. Therefore, whenever the
Jacobian is required in a robot arm control scheme, it should be computed
using a computer subroutine.

It is a good exercise to rework Examples A.3.1 and A.3.2 to determine the
complete Jacobian, including the angular portion (see the problems).

EXAMPLE A.3–4: Jacobian for Spherical Wrist

In Example A.2.4 we derived the kinematics for a spherical wrist. Although
the wrist would normally terminate an arm, for illustration let us take link 3
as the base link in this example. See Figure A.2.6. Thus we shall determine
the Jacobian in the coordinates of the link 3 frame of reference.

To find the Jacobian, we compute the matrices

A.3 The Manipulator Jacobian
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Using the approach just derived, we compute directly that

�
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Appendix B

Software for Controller
Simulation

An excellent way to gain an intuitive feel for control systems design and
performance is to perform computer simulations. It is conceptually a short
step from simulation to actual implementation, since the subroutines that are
used on today’s digital signal processors are very similar to those used for
simulation. This appendix contains the software used in the text for robot
controller simulation.

There are some good software packages available for design and simulation
of systems, and one should be aware of them and employ them. Examples are
MATLAB, MATRIXX, Program CC, SIMNON, and so on. However, it is
very instructive to use one’s own software during the learning phase, especially
since it is sometimes not clear exactly what is going on in some of these
packages when dealing with digital control.

For the time-response simulation of continuous systems, a Runge-Kutta
integrator works very well. In Figure B.1.1 is shown program TRESP, which
uses a fourth-order Runge-Kutta subroutine to implement the simulation
procedure discussed in Section 3.3. It integrates linear or nonlinear systems in
the state-variable form

 

In Section 2.4 we showed how to place the robot dynamics into this form.
Note that MATLAB’s functions ode 23 and ode 45 are adaptive step size
Runge-Kutta integrators that need the same form for the dynamics.

TRESP requires a subroutine F(time, x, xp), which computes x (denoted
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xp, or “x prime”) from the current state x(t) and control input u(t). The control
u(t) and any outputs of the form

 

are placed into COMMON storage [e.g., u(t) can be computed outside
F(time, x, xp), and y(t) is needed for plotting in TRESP]. Samples of the use of
TRESP are given in examples throughout the book.

A parameter array PAR( ) in common makes it easy to perform successive
runs with different parameter values (e.g., PD gains). A time delay can be
injected into the continuous dynamics if desired (e.g., using a ring buffer).

It is important to realize the following. To update x(kTR) to x((k+ 1)TR),
the Runge-Kutta integrator calls subroutine F(time, x, xp) four times during
each Runge-Kutta integration period TR. During these four calls, the control
input should be held constant at u(kTR). Using subroutine SYSINP to compute
u(kTR) accomplishes this.
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Figure B.1–1: Program TRESP for time response of nonlinear continuous systems.

For digital control simulation, TRESP needs subroutine DIG(IK, T, x),
which contains the discrete controller equations; it is called once in every
sample period T. The time TR should be selected as an integral divisor of T.
Five or 10 Runge-Kutta periods within each sample period is usually sufficient.

The program also allows digital filtering (e.g., for reconstruction of ve-
locity estimates from joint position encoder measurements). Note that for
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digital controls purposes, subroutine DIG is called before the Runge-Kutta
routine, while for digital filtering, DIG is called after the call to Runge-Kutta.

For some systems the Runge-Kutta integrator in the figure may not work;
then an adaptive step-size Runge-Kutta routine (e.g., Runge-KuttaFehlburg)
can be used [Press et al. 1986]. (Note: The program given here works for all
examples in the book.)
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Appendix C

Dynamics of Some
Common Robot Arms

In this appendix we give the dynamics of some common robot arms. We
assume that the robot dynamics are given by

(C.1.1)

where the matrix M(q) is symmetric and positive definite with elements mij(q),
that is,

 

and N (q, q) is an n×1 vector with elements ni, that is,

 

Note in particular that the gravity terms are indentified in the expressions of
ni by the gravity constant g=9.8 meters/s2. We will also adopt the following
notation:

Length of link i is Li in meters
Mass of link i is mi in kilograms
Mass moment of inertia of Link i about axis u is Iuui in kg-m-m
Si=sin qi and Ci=cos qi

Sij=sin(qi+qj) and Cij=cos(qi+qj)
Sijk=sin(qi+qj+qk) and Cijk=cos(qi+qj+qk)
SSi=sin2 qi, CCi=cos2 qi, and CSi=cos qi sin qi;
SSij=sin2(qi+qj)
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C.1 SCARA ARM

The first robot we consider is a general SCARA configuration robot shown in
Figure C.1.1. These equations will apply to the AdeptOne and AdeptTwo
robots. The dynamics include the first four degrees of freedom and are
symbolically given by

Figure C.1.1: SCARA manipulator.
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C.2 Stanford Manipulator

The Stanford manipulator shown in Figure C.2.1 has the following dynamics
[Bejczy 1974], [Paul 1981]:

C.2 Stanford Manipulator
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Figure C.2.1: Stanford manipulator.
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C.3 PUMA 560 Manipulator

The PUMA 560 is shown in Figure C.3.1. Many simplifications can be made
for this particular structure in order to obtain the following dynamics which
appeared in [Armstrong et al. 1986].

Figure C.3.1: PUMA 560 manipulator.

C.3 PUMA 560 Manipulator
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