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A robot is a controlled manipulator capable of performing complex 
tasks and decision-making like the human beings. Mobility is an 
important consideration for modern robots. The book provides a 
clear exposition to the control and mobility aspects of modern 
robots. 
 
There are good many books on mobile robots. Most of these books 
cover fundamental principles on motion control and path-planning 
using ultrasonic/ laser transducers. This book attempts to develop 
interesting models for vision-based map building in both indoor and 
outdoor environments, precise motion control, navigation in 
dynamic environment, and above all multi-agent cooperation of 
robots. The most important aspects of this book is that the principles 
and models introduced in the text are all field tested, and thus can 
readily be used in solving real world problems, such as factory 
automation, disposal of nuclear wastes, landmine clearing and 
computerized surgery.  
 
The book consists of eight chapters. Chapter 1 provides a 
comprehensive presentation on multi-agent robotics. It begins with 
an introduction, emphasizing the importance of multi-agent robotics 
in autonomous sensor networks, building surveillance, 
transportation, underwater pollution monitoring and in rescue 
operation after large-scale disaster. Next the authors highlight some 
open-ended research problems in multi-agent robotics, including 
uncertainty management in distributed sensing, distributed 
reasoning, learning, task allocation and control, and communication 
overhead because of limited bandwidth of the communication 
channels. The design of multi-agent robotic system can be 
performed by both top-down and bottom-up approach. In this 
chapter, the authors employ the bottom-up approach that takes care 
of designing individual robots first, and then integrate the behavior 
of two or more robots to make the system amenable for real-world 
applications. 
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Chapter 1 encompasses functional architecture of the proposed 
multi-agent robots with special reference to information sharing, 
communication, synchronization and task sharing & execution by 
the agents. The fusion of multi-sensory data received by different 
agents to cooperatively use the fused information is then narrated in 
detail. The problems of cooperative navigation are then undertaken, 
and two possible approaches to solve this problem are presented. 
 
The first approach is based on finite state automata, whereas the 
second approach attempts to formalize a biologically inspired model 
in a stochastic framework. In the latter model, the authors aim at 
optimizing the probability of a group of robots, starting at a given 
location and terminating at a given target region within a stipulated 
time. 
 
The later part of the chapter presents several principles of 
cooperative decision-making. The principles include hybrid 
decision-making involving a logic-based planner and a reactive 
system that together can provide both short-term and long-term 
decisions. An alternative method concerning distributed path-
planning and coordination in a multi-agent system is also presented. 
Examples of application in simulated rescue problem and game 
playing between two teams of robotic agents have also been 
undertaken.  
 
The chapter ends with a discussion on emotion-based architectures 
of robotic agents with an ultimate aim to socialize the behavior of 
the agents. 
 
Chapter 2 presents a scheme for vision-based autonomous 
navigation by a mobile robot. The central idea in this scheme is to 
recognize landmarks in the surrounding environment of the robot. 
Thus landmark serves as a navigational aid for the robot. After a 
landmark is successfully recognized, the robot approximates its 
current position, and derives an optimal path reaching the goal. 
 
The chapter introduces a Selective Visual Attention Landmark 
Recognition (SVALR) architecture, which uses the concept of 
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selective attention from physiological study as a means for 2-D 
shape landmarks recognition. 
 
After giving a brief overview of monocular vision-based robots, the 
chapter emphasizes the need for two different neural networks, such 
as Adaptive Resonance Theory (ART) and Selective Attention 
Adaptive Resonance Theory (SAART) neural networks for shape 
recognition of objects in a given robot’s world. Because of the 
dynamic nature of SAART, it involves massive computations for 
shape recognition. So, the main concept of SAART is re-engineered, 
and is re-named Memory Feedback Modulation (MFM) mechanism. 
The MFM system in association with standard image processing 
architecture leads to the development of SVALR architecture. 
 
Given a topological map for self-localization, the laboratory model 
of the robot can autonomously navigate the environment through 
recognition of visual landmarks. It has also been observed that the 2-
D landmark recognition scheme is free from variations in lighting 
conditions and background noise. 
 
Chapter 3 presents vision-based techniques for solving some of the 
problems of micromanipulation. Manipulation and assembling at 
micro-scale is a critical issue in many engineering and biomedical 
applications. Unfortunately, many problems and uncertainty are 
encountered for design and manipulation at micro-scale. This 
chapter aims at characterizing the uncertainty that appears in the 
design of vision-based micromanipulators. In a micromanipulation 
system, the controlled movement of entities lies in the range of 1 
micrometer to 1 millimeter. 
 
To reduce the uncertainties in micromanipulation, the following 
methods are usually adopted. The environmental parameters such as 
humidity and temperature are to be controlled. Secondly, the 
precision mechanism for tools and fixtures that needs to be 
reconfigured for different applications should be increased.  The 
important aspect in micromanipulation is the man-machine interface 
(MMI). The success of MMI depends on the understanding of the 
uncertainties in the complete system. The chapter addresses three 
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major issues to reduce the scope of uncertainty in micromanipulation 
through appropriate visualization tools, automated visual servoing 
and automatic determination of system parameters. 
 
The chapter introduces vision-based approaches to provide 
maximum assistance to human operators. To enhance resolution for 
precision, multiple views consisting of micro projective images and 
microscopic images together are used. These images together can 
provide global information about objects irrespective of limited field 
of view of the camera. A scheme for multiple view multiple scale 
visual servo is developed. The main emphasis in visual servo design 
is given on feature selection, correspondence finding and correction 
and motion estimation from images. 
 
Chapter 4 provides an evolutionary approach to the well-known 
path-planning problem of mobile robots in a dynamic environment. 
It considers automatic sailing of a ship amidst static obstacles, such 
as lands and canals, and dynamic obstacles, such as other sailing 
ships. Like classical navigation problem, here too the authors 
consider a starting point and a given goal (destination) point of the 
ship, and the trajectory planning is performed on-line. The path-
planning problem here has been formulated as a multi-criteria 
optimization problem that takes into account both safety of sailing 
(i.e. avoidance of collision) and economy of ship-motion. The 
overall path constructed is a sequence of linear paths, linked with 
each other at the turning points. 
 
In the evolutionary planning algorithm introduced in this chapter, 
chromosomes are defined as a collection of genes representing the 
starting point, intermediate turning points and the destination point 
of the ship. The algorithm begins with a initialization of randomly 
selected paths (chromosomes), and then each path is evaluated to 
determine whether it is safe and economic for sailing, taking into 
consideration of both static and dynamic obstacles. The evaluation is 
done by a judiciously selected fitness function, which determines the 
total cost of the trajectory to maintain safe conditions and economic 
conditions (such as total length of sailing). Eight genetic operators 
have been used in the evolutionary algorithm for trajectory planning. 
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These are mutation (velocity selection), soft mutation (such as 
velocity HIGH or LOW), adding a gene, swapping gene locations, 
crossing, smoothing, deleting genes and individual repair. 
Simulation results presented at the end of the chapter demonstrate 
the correctness and elegance of the proposed technique. 
 
Grippers are integral parts of a robot. Low cost robots too have 
grippers, but no sensors are attached to the grippers of these robots 
to prevent slippage. Chapter 5 provides a new direction in gripper 
design by attaching a slip sensor and a force sensor with the robotic 
gripper. A two-fingered gripper model and a simulation system is 
presented to demonstrate the design for complex grippers. The 
control of the end-effector in a two-fingered gripper system has been 
accomplished using a personal computer with a high-speed analogue 
input/output card. The simulation model for a complex gripper 
capable of handling load disturbances has been realized with a 
neuro-fuzzy controller. The main challenge of this work lies in 
augmentation of the neuro-fuzzy learning algorithm by 
reinforcement learning. It is indeed important to note that the 
reinforcement learning works on the basis of punishment/reward 
paradigm, and the employment of this algorithm has shown marked 
improvement in the overall performance of the gripping function. It 
is a well-known phenomenon that with large external (disturbing) 
forces acting on the object under consideration, the effector also 
produces high acceleration leading to slippage of the grasped object. 
The present work, however, has considerably eliminated the 
possibility of such slippage even under significant load variations. 
 
Chapter 6 provides a new approach to model outdoor environment 
for navigation. While the robot is moving, the sensors attached with 
it acquire the information about its world. The information perceived 
by the sensors is subsequently used for localization, manipulation 
and path-planning. Sensors capable of obtaining depth information, 
such as scanner laser, sonars or digital cameras are generally 
employed for modeling traversable regions. Various techniques for 
modeling regions from outdoor scenes are prevalent. Some of these 
are digital elevation maps, geometric models, topological models 
and hybrid topo-geometric models. This chapter attempts to develop 
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a topo-geometric type model, represented by a Voronoi diagram, 
based on the sensory information received from a 3-D scanner laser. 
The environment is thus divided into regions, clearly identifying 
which of these regions can be traversed by the robot. 
 
The regions that can be traversed by the robot are defined as 
traversable regions. The “traversability characteristics” have been 
defined based on the robot and the terrain characteristics. 
Experimental results reveal that the proposed topo-geometric 
representation is good enough to model the outdoor environment in 
real time. A geographical positioning system (GPS), mounted on the 
robot can be used to integrate local models so as to augment the 
environmental database of a global map. 
 
Chapter 7 addresses the problem of localization by a mobile robot in 
an indoor environment using only visual sensory information. 
Instead of attempting to build highly reliable geometric maps, 
emphasis is given on the construction of topological maps for their 
lack of sensitivity to poor odometry estimates and position errors. A 
method to incrementally build topological maps by a robot having a 
handheld panoramic camera to grab images has been developed. The 
robot takes snaps at various locations along its path, and augments 
the already developed map using the new features of the grabbed 
images. The methodology outlined in this chapter is very general, 
and does not impose any restriction on the environmental features 
for handling the localization problem. The feature-based localization 
strategies presented here are analyzed, and experimentally verified. 
 
Precision engineering is steadily gaining momentum for increasing 
demands in high performance, high reliability, longer life, lower cost 
and miniaturization. This chapter takes into account precision 
motion system using Permanent Magnet Linear Motors (PMLM). 
The main advantage of PMLM lies in its high force density, low 
thermal losses, and high precision and accuracy of the system. 
 
To improve reliability of PMLM control systems, the measurement 
system should yield a good resolution. Currently, laser 
interferometers are readily used to yield measurement resolution of 1 
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nanometer. The control electronics should have a high bandwidth to 
cope with high encoder count frequency at high speed of the motor. 
On the other hand, it should have a high sampling rate to circumvent 
anti-aliasing pits at low speed. Thirdly, the geometric imperfections 
of the mechanical system should be adequately accounted for in the 
control system to get high position accuracy. The chapter is 
concerned with the development of an integrated precision motion 
control system on an open-architecture and rapid prototyping 
platform. It attempts to take into account all the problems listed 
above.  
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1 Multi-Robot Systems

Pedro U. Lima, Luis M. Custódio 

Institute for Systems and Robotics,  Instituto Superior Técnico, 
Av. Rovisco Pais, 1,1049-001 Lisboa – Portugal 
{pal, lmmc}@isr.ist.utl.pt 

1.1 Introduction 

Multi-robot systems (MRS) are becoming one of the most important areas 
of research in Robotics, due to the challenging nature of the involved 
research and to the multiple potential applications to areas such as 
autonomous sensor networks, building surveillance, transportation of large 
objects, air and underwater pollution monitoring, forest fire detection, 
transportation systems, or search and rescue after large-scale disasters. 
Even problems that can be handled by a single multi-skilled robot may 
benefit from the alternative usage of a robot team, since robustness and 
reliability can often be increased by combining several robots which are 
individually less robust and reliable [3]. One can find similar examples in 
human work: several people in line are able to move a bucket, from a 
water source to a fire, faster and with less individual effort. Also, if one or 
more of the individuals leaves the team, the task can still be accomplished 
by the remaining ones, even if slower than before. Another example is the 
surveillance of a large area by several people. If adequately coordinated, 
the team is able to perform the job faster and with reduced cost than a 
single person carrying out all the work, especially if the cost of moving 
over large distances is prohibitive. A larger rank of task domains, 
distributed sensing and action, and insight into social and life sciences are 
other advantages that can be brought by the study and use of MRS [22]. 

The relevance of MRS comes also from its inherent inter-disciplinarity. 
At the Intelligent Systems Lab of the Institute for Systems and Robotics at 
Instituto Superior Técnico (ISR/IST), we have been pursuing for several 
years now an approach to MRS that merges the contributions from two  
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fields: Systems and Control Theory and Distributed Artificial Intelligence. 
Some of the current problems in the two areas are creating a natural trend 
towards joint research approaches to their solution. Distributed Artificial 
Intelligence focuses on multi-agent systems, either virtual (e.g., agents) or 
with a physical body (e.g., robots), with a special interest on organizational 
issues, distributed decision making and social relations. Systems and 
Control Theory faces the growing complexity of the actual systems to be 
modelled and controlled, as well as the challenges of integrating design, 
real-time and operation aspects of modern control systems, many of them 
distributed in nature (e.g., large plant process control, robots, 
communication networks). 

Some of the most important, and specific to the area, scientific 
challenges one can identify in the research on MRS are, to name but the 
most relevant:

The uncertainty in sensing and in the result of actions over the 
environment inherent to robots, posing serious challenges to the 
existing methodologies for Multi-Agent Systems (MAS), which rarely 
take uncertainty into account. 
The added complexity of the knowledge representation and reasoning, 
planning, task allocation, scheduling, execution control and learning 
problems when a distributed setup is considered, i.e., when there are 
multiple autonomous robots interacting in a common environment, and 
specially if they have to cooperate in order to achieve their common 
and individual goals. 
The noisy and limited bandwidth communications among teammates 
in a cooperative setting, a scenario which gets worse as the number of 
team members increase and/or whenever an opponent team using 
communications in the same range is present. 
The need to integrate several methodologies that handle the 
subsystems of each individual robot (extended to the robot team in a 
cooperative setting) in a consistent manner, such that the integration 
becomes the most important problem to be solved, ensuring a timely 
execution of planned tasks. 

Our view of the integration problem for teams of cooperative robots, 
detailed in this chapter, is summarized in the sequel. 

Oneof thekey factors of success, for either a single robot or arobot team, 
lieson the capability to perceive correctly the surrounding environment, and 
to build models of the environment adequate for the task the robot (or the 
team) is in charge of, from the information provided by the sensors. 
Different sensors (e.g., vision, laser, sonar, encoders) can provide 
alternative or complementary information about the same object, or  
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information about different objects. Sensor fusion is the usual designation 
for methods of different types to merge the data from the several sensors 
available and provide improved information about the environment (e.g., 
about the geometry, color, shape and relevance of its objects). When a 
team composed of several cooperating robots is concerned, the sensors are 
spread over the different robots, with the important advantage that the 
robots can move (thus moving its sensors) to actively improve the 
cooperative perception of the environment by the team. The information 
about the environment can be made available and regularly updated by 
different means (e.g., memory sharing, message passing, using wireless 
communications) to all the team robots, so as to be used by the other 
sub-systems.

Once the information about the world is available, one can think of 
using it to make the team behave autonomously and machine-wise 
intelligently. Three main questions arise for the team: 

Where and which a priori knowledge about the environment, team, 
tasks and goals, and perceptual information gathered from sensors, 
should be kept, updated and maintained? This involves the issue of 
distributed knowledge representation adequate to consistently handle 
different and even opposite views of the world. 
What must be done to achieve a given goal, given the constraints on 
time, available resources and distinct skills of the team robots? The 
answer to this should provide a team plan.
How is the actual implementation of a plan handled, ensuring the 
consistency of individual and team (sub)-goals and the coordinated 
execution of the plan? This concerns the design of (functional, 
software) architectures suitable for the timely execution by the team of 
a planned task, and the introduction in such architectures of 
communication, information sharing and synchronization mechanisms. 

Underlying the execution of a plan by an autonomous mobile robot is 
necessarily the navigation system. To navigate in an environment, possibly 
cluttered with obstacles, a mobile robot needs to know its posture (position 
plus orientation), either in an absolute or relative coordinate system, and 
when the plan establishes that it must move to a specific location, it must 
know how to do it (e.g., by planning an obstacle-free path or by moving 
towards the goal and keep avoiding the obstacles). In MRS, as will be 
noted below, several other challenging problems arise, related to formation 
control, region coverage and other issues. 
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The research on MRS at the Intelligent Systems Lab of ISR/IST 
concentrates on Cooperative Robots and follows a bottom-up approach to 
the implementation of a cooperative multi-robot team, starting from the 
development of single robot sub-systems (e.g., perception, navigation, 
decision-making) and moving towards behaviours involving more than one 
robot.

The system design has been following a top-down approach. The design 
phase establishes the specifications for the system:

qualitative specifications concerning logical task design so as to 
avoid deadlocks, live-locks, unbounded resource usage and/or sharing 
non-sharable resources, as well as well as to execute subtasks in a 
sequence that does not violate the problem constraints (e.g., robot A 
cannot leave room B without first picking an object in that room); 
quantitative properties concerning performance features, such as 
accuracy (e.g., the spatial and temporal resolution, as well as the 
tolerance interval around the goal, at each abstraction level), reliability 
and/or  minimization of task execution time given a maximum allowed 
cost.

Our past and current research in MRS includes topics related to the 
above issues, such as: 

single and multiple robot navigation; 
cooperative sensor fusion for world modelling, object recognition and 
tracking;
multi-robot distributed task planning and coordination; 
cooperative reinforcement learning in cooperative and adversarial 
environments;
behaviour-based architectures for real time task execution of 
cooperative robot tasks. 

This research has been driven by applications to soccer robots, where 
the environment is fairly structured (well defined dimensions and coloured 
objects), and rescue robots, moving in an outdoors unstructured 
environment is considered, and requiring more complex task planning 
capabilities. Throughout the chapter, other examples of application to toy
problems will also help illustrating the approaches. 

The chapter organization reflects our approach to the problem and is as 
follows:
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Section 1.2 covers architectures for MRS, both from a functional (i.e., 
how are behaviours and functions organized) and from a software (i.e., the 
mechanisms for information sharing, communications, synchronization 
and task execution) standpoints. The architecture developed for the 
SocRob project is described with some detail, as well as some recent 
extensions that aim at making it more general and consistently defined. 

Section 1.3 concentrates on world modelling by cooperative sensor 
fusion. Even though most of the examples concern the cooperative 
localization of objects in soccer robots domain, the Bayesian approach 
followed is described in a general way, suitable for other applications, and 
taking into account some practical implementation issues. 

Section 1.4 tackles different problems related to Cooperative 
Navigation. Navigation controllability, the problem of determining if a 
population of heterogeneous mobile robots is able to travel from an initial 
configuration to a target configuration in a topological map of the 
environment, is solved using controllability results for finite state 
automata. This results in a systematic way of, given a set of robots with 
different skills, and an environment that requires some of those skills, 
checking whether decisions on the distribution of the robots are feasible. 
Formation feasibility is also a methodology to check, given the kinematics 
of a set of heterogeneous robots and the geometric constraints imposed to 
the robots so that they move under a given formation, whether such a 
formation is feasible, further providing the feasible directions of motion 
for the formation. In both the above examples, a static feasibility problem
is solved. The section ends with a biologically inspired formulation, in a 
stochastic framework, of the optimal control problem of moving a 
population of several robots from an initial region to a target region, at a 
given terminal time, with the goal of maximizing the probability of the 
robots ending in the target area, given the constraints on the robots 
dynamics and the environment uncertainty. 

Section 1.5 describes several approaches to cooperative 
decision-making. One such approach is a hybrid decision system, where a 
logic-based planner and a reactive system concur to provide more 
elaborated decisions that can take into account a long-term horizon or to 
provide fast, short-term decisions, respectively. This way, the system can 
choose the best decisions, given time constraints. Another approach 
concerns distributed planning and coordinated task execution, where the 
problems to be tackled are distributed task planning and distributed task 
allocation in a multi-robot rescue system, assuming that teamwork (i.e., 
cooperative tasks) plays an important role on the overall planning system. 
Examples of application to a simulated rescue problem are given. Still 
following a logic-based approach, an implementation of a pass in robot 
soccer as an example of a method based on joint commitments formulation 
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is also described. Finally, optimal decision making for a cooperative team 
playing against another team, based on dynamic programming applied to a 
stochastic discrete event model of the team behaviour, closes this section. 

Section 1.6 refers to a topic where our group has been doing pioneer 
work: the use of the concept of Artificial Emotions as the building block 
for developing emotion-based agent architectures. The aim of this research 
is the study and development of methodologies and tools necessary to 
implement emotional robotic agents capable of dealing with unstructured, 
complex environments. Therefore, the goal is not to try optimizing some 
particular ability, but instead the interest is put on the general competence 
to learn, to adapt itself, and to survive. In order to practically test these 
ideas, many experimental works with simulated environments have been 
performed. Also tests were made with a small autonomous real robot in 
order to evaluate the usefulness of these ideas for robotics. Furthermore, as 
emotions play an important role in human social relationships, a relevant 
extension of this work is its application in multi-agent systems. Section 1.6 
will also describe an application of the emotion-based architecture 
developed within our group in a multi-agent environment where 
interaction among the agents is vital for their survival. 

We end the Chapter in Section 1.7 with conclusions drawn from our 
research on MRS so far and several topics for future work that we are 
pursuing already or intend to pursue in the near term. 

1.2 Architectures for Multi-Robot Systems 

From the very beginning of our work on MRS, one main concern has been 
the development of behaviour coordination and modelling methods which 
support our integrated view to the design of a multi-robot population [50]. 
The literature is crowded with architectures for single and multi-robot 
systems, each of them with its own advantages concerning particular 
aspects. The original architecture considers three types of behaviours to be 
displayed by the team, following the concepts in [11]: 

organizational: those concerning the team organization, such as the 
roles of each player; 
relational: those concerning the display of relations among teammates 
(coordination and cooperation); 
individual: those concerning each robot as an individual. 
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Behaviours are externally displayed and emerge from the application of 
certain operators. This separation between operators and their resulting 
behaviours is one of the key points of our architecture. Operators 
implement actions that lead the robot team to display certain behaviours. 
In order to design operators systematically, it is sometimes relevant to 
distinguish what kind of behaviour they are supposed to display. A typical 
example are individual vs. relational behaviours: both are implemented by 
operators at the individual robot level, but relational behaviours imply the 
establishment of commitments among the involved robots, which in turn 
require implicit or explicit communication among the operators of each 
robot. Popular behaviour-based architectures (e.g., ALLIANCE [32]) do 
not make this distinction, and assume a hierarchy of operators designated 
there as behaviours (e.g., motivational behaviours and behaviour sets).
From an operator standpoint, our architecture considers three levels: 

Team Organization Level, where, based on the current world model, 
a strategy (i.e., what to do) is established, including a goal for the 
team. This level considers issues such as modelling the opponent 
behaviour to plan a new strategy. Strategies may simply consist of 
enabling a given subset of the behaviours at each robot. 
Behaviour or Task Coordination Level, where switching among 
behaviours, both individual and relational, occurs so as to coordinate 
behaviour/task execution at each robot towards achieving the team 
goal, effectively establishing the team tactics (i.e., how to do it). Either 
a finite state automaton or a rule-based system can currently 
implement this level, but other alternative representations are possible, 
such as Petri nets. 
Behaviour Execution Level, where primitive tasks run and where 
they interface the sensors, through the blackboard, and the actuators, 
through the navigation functions at each robot. Primitive tasks are 
linked to each other to implement a behaviour. Currently, each 
behaviour is implemented as a finite state automaton whose states are 
the primitive tasks and transitions are associated to logical conditions 
on events that are detected by the system. Behaviours can be 
individual, if they run in one robot only, or relational, if two or more 
robots are running behaviours that are coordinated through 
commitments and synchronisation messages to achieve a common 
goal.

Fig. 1.1. shows the functional architecture from an operator standpoint. 
In a knowledge representation framework, the blackboard module is a 
knowledge base with all the robot’s current beliefs (processed data 
organized in a convenient structure), goals (intentions) and commitments, 
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represented by first order formulas. Fig. 1.2. zooms the Behaviour 
Execution Level. From the figures, it is noticeable that the organization 
level distributes roles (i.e., sets of allowed behaviours) per team members. 
The coordination level dynamically switches between behaviours, enabling 
one behaviour per robot at a time (similarly to [32]), but considering also 
relational behaviours where some sort of synchronization among the 
involved robots is necessary. The execution level implements behaviours 
by finite state machines, whose states correspond to calls to primitive tasks 
(i.e., actions such as kicking the ball, navigation functions and algorithms, 
e.g., plan a trajectory). 

The functional architecture main concepts (operators/behaviours, 
primitive tasks, blackboard) are not much different from those present in 
other available architectures [32][51]. However, the whole architecture 
provides a complete framework able to support the design of autonomous 
multi-robot systems from (logical and/or quantitative) specifications at the 
task level. Similar concepts can be found in [18], but the emphasis there is 
more on the design from specifications, rather than on the architecture 
itself. Our architecture may not be adequate to ensure specifications 
concerning tightly coupled coordinated control (e.g., as those required for 
some types of robot formations, such as when transporting objects by a 
robot team), even though this class of problems can be loosely addressed 
by designing adequate relational behaviours.
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Fig. 1.1. Functional architecture from an operator standpoint

The software architecture developed for the soccer robots project has 
been defined so as to support the development of the described behavioural 
and functional architecture, and is based on three essential concepts: 
micro-agents, blackboard and plugins.

Each module of the software architecture was implemented by a 
separate process, using the parallel programming technology of threads. In 
this context, a module is named micro-agent [50]. Information sharing is 
accomplished by a distributed blackboard concept, a memory space shared 
by several threads where the information is distributed among all team 
members and communicated when needed.

The software architecture distinguishes also between the displayed 
behaviour and its corresponding implementation through an operator. 
Operators can be easily added, removed and replaced using the concept of 
plugin, in the sense that each new operator is added to the software 
architecture as a plugin, and therefore the micro-agent control, the one 
responsible for running the intended operator, can be seen as a multiplexer 
of plugins. Examples of already implemented operators are: dribble,
score, or go, to name but a few. Each virtual vision sensor is also  

Team Organization: establishes the strategy (what to do) for the team (e.g., 
assigning roles and field zones to each  team member), based on the analysis of 
the current world model.
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Behaviour Coordination: selects behaviours/operators sequences based on 
information from the current world model and the current strategy. Behaviour 
coordination includes event detection and synchronization among robots, when 
relational behaviours are required.

Behaviour Execution
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implemented as a plugin. The software architecture is supported on the 
Linux Operating System. 

1.2.1 Micro-Agents and Plugins 

A micro-agent is a Linux thread continuously running to provide services 
required for the implementation of the reference functional architecture, 
such as reading and pre-processing sensor data, depositing the resulting 
information in the blackboard, controlling the flow of behaviour execution 
or handling the communications with other robots and the external 
monitoring computer. Each micro-agent can be seen as a plugin for the 
code. The different plugins are implemented as shared objects. In the 
sequel, the different micro-agents are briefly described (see also Fig. 1.3.).

Micro-agent VISION: This micro-agent reads images from one of two 
devices. Examples of such devices are USB web cams whose images can 
be acquired simultaneously. However, the bandwidth is shared between the 
two cameras. Actually, one micro-agent per camera is implemented. Each 
of them has several modes available. A mode has specific goal(s), such as 
to detect the ball, the goals, to perform self-localization or to determine the 
region around the robot with the largest amount of free space, in the 
robotic soccer domain. Each mode is implemented as a plugin for the code. 

Micro-agent SENSORFUSION: This micro-agent uses a Bayesian 
approach to the integration of the information from the sensors of each 
robot and from all the team robots. Section 1.3 provides details on sensor 
fusion for world modelling. 
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Fig. 1.2. Functional architecture from an operator standpoint (detail of the 
Behaviour Execution Level) 

Micro-agent CONTROL: This micro-agent receives the 
operator/behaviour selection message from the machine micro-agent and 
runs the selected operator/behaviour, by executing the appropriate plugin.
Currently, each micro-agent is structured as a finite state machine where 
the states correspond to primitive tasks and the transitions to logical 
conditions on events detected through information put in the blackboard by 
the sensorfusion micro-agent. This micro-agent can also select the 
vision modes by communicating this information to the vision
micro-agent. Different control plugins correspond to the available 
behaviours.

Micro-agent MACHINE: This micro-agent coordinates the different 
available operators/behaviours (control micro-agents) by selecting one 
of them at a time. The operator/behaviour chosen is communicated to the 
control micro-agent. Currently, behaviours can be coordinated by: 

a finite state machine, where each state corresponds to a behaviour and 
each transition corresponds to a logical condition on events detected 
through information put in the blackboard by the vision (e.g., found 
ball, front near ball) and control (e.g., behaviour success,  behaviour 
failure) micro-agents.
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a rule-based decision-making system, where the rules left-hand side 
test the current world state and the rules right-hand side select the most 
appropriate behaviour.

Fig. 1.3. Software architecture showing micro-agents and the blackboard 

Micro-agent PROXY: This micro-agent handles the communications 
of a robot with its teammates using TCP/IP sockets. It is typically used to 
broadcast through wireless Ethernet the blackboard shared variables (see 
below).

Micro-agent RELAY: This micro-agent relays the BB information on 
the state of each robot to a “telemetry” interface running in an external 
computer, using TCP/IP sockets. Typically, the information is sent through 
wireless Ethernet, but for debug purposes a wired network is also 
supported.

Micro-agent X11: This micro-agent handles the X11-specific 
information sent by each robot to the external computer, using TCP/IP 
sockets. It is typically used to send through wireless Ethernet the 
blackboard shared variables for text display in an X-window. 

Micro-agent HEARTBEAT: This micro-agent sends periodically a 
message from each robot to its teammates to signal that the sender is alive. 
This is useful for dynamic role changes when one or more robots “die". 
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1.2.2 Distributed Blackboard 

The distributed blackboard extends the concept of blackboard, i.e., a data 
pool accessible to several agents, used to share data and exchange 
communication among them. Traditional blackboards are implemented by 
shared memories and daemons that awake in response to events such as the 
update of some particular data slot, so as to inform agents that require that 
data updated. Our distributed blackboard consists, within each individual 
robot, of a memory shared among the different micro-agents, organised in 
data slots corresponding to relevant information (e.g., ball position, robot1

posture, own goal), accessible through data-keys. Whenever the value of a 
blackboard variable is updated, a time stamp is associated to it, so that is 
validity (based on recency) can be checked later. Some of the blackboard 
variables are local, meaning that the associated information is only 
relevant for the robot where the corresponding data was acquired and 
processed, but others are global, and so their updates must be broadcasted 
to the other teammates (e.g., the ball position). 

Ultimately, the blackboard stores a model of the surrounding 
environment of the robot team, plus variables that allow the sharing of 
information among team members. Fig. 1.4. shows the blackboard and its 
relation with the sensors (through sensor fusion) and the decision/control 
units (corresponding to the machine and control micro-agents) of our 
team of (four) soccer robots. We will be back to the world model issue in 
Section 1.3. 

1.2.3 Hardware Abstraction Layer (HAL) 

The Hardware Abstraction Layer is a collection of device-specific 
functions, providing services such as the access to vision devices, kicker 
(through the parallel port), robot motors, sonars and odometry, created to 
encapsulate the access to those devices by the remaining software. 
Hardware-independent code can be developed on the top of HAL, thus 
enabling simpler portability to new robots. 
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Fig. 1.4. The blackboard and its interface with other relevant units 

1.2.4 Software Architecture Extension 

More recently, we have developed a software architecture that extends the 
original concepts previously described and intends to close the gap 
between hybrid systems [13] and software agent architectures [1, 2], 
providing support for task design, task planning, task execution, task 
coordination and task analysis in a multi-robot system [15].

The elements of the architecture are the Agents, the Blackboard, and the 
Control/Communication Ports.

An Agent is an entity with its own execution context, its own state and 
memory and mechanisms to sense and take actions over the environment. 
They have a control interface used to control their execution. The control 
interface can be accessed remotely by other agents or by a human operator. 
Agents share data by a data interface. Through this interface, the agents 
can sense and act over the world. There are Composite Agents,
encapsulating two or more interacting agents and Simple Agents, which do 
not control other agents and typically represent hardware devices, data 
fusion and control loops. Several agent types are supported, corresponding 
to templates for agent development. We refer to the mission as the 
top-level task that the system should execute. In the same robotic system, 
we can have different missions. The possible combinations among these 
agent types provide the flexibility required to build a Mission for a 
cooperative robotics project. The mission is a particular agent instantiation. 
The agents’ implementation is made to promote the reusability of the same 
agent in different missions. 
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Fig. 1.5. Example of application of the software architecture (extended version) to 
the modelling of (a) control flow and (b) data flow within the land robot of the 
rescue project 
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Ports are an abstraction to keep the agents decoupled from other agents. 
When an agent is defined, his ports are kept unconnected. This approach 
enables using the same agent definition in different places and in different 
ways.

There are two types of ports: control ports and data ports. Control ports
are used within the agent hierarchy to control agent execution. Any simple 
agent is endowed with one upper control interface. The upper interface has 
two defined control ports. One of the ports is the input control port, which 
can be seen as the request port from where the agent receives notifications 
of actions to perform from higher-level agents. The other port is the output 
control port through which the agent reports progress to the high level 
agent. Composite agents also have a lower level control interface from 
where they can control and sense the agents beneath him. The lower level 
control interface is customized in accordance to the type of agent.

Data ports are used to connect the agents to the blackboard data entries, 
enabling agents to share data. More than one port can be connected to the 
same data entry. The data ports are linked together through the blackboard.

Under this architecture, a different execution mode exists for each 
development view of a multi-robot system. Five execution modes are
defined:

Control mode, which refers mostly to the run-time interactions 
between the elements and is distributed through the 
telemetry/command station and the robots. Through the control 
interface, an agent can be enabled, disabled and calibrated. 
Design mode, where a mission can be graphically designed. 
Calibration mode, under which the calibration procedure for 
behaviour, controller, sensor and different hardware parameters that 
must be configured or calibrated is executed. 
Supervisory Control Mode, which enables remote control by a 
human operator, whenever required. 
Logging and Data Mode, which enables the storage of relevant 
mission data as mission execution proceeds, both at the robot and 
telemetry/command station. 

An example of application of this agent-based architecture to the 
modelling of control and data flow within the land robot of the RESCUE 
project [21], where the Intelligent Systems Lab at ISR/IST participates, is 
depicted in Fig. 1.5. More details on the RESCUE project are given in 
Section 1.5. 
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1.3 World Modelling by Multi-Robot Systems 

In dynamic and large dimension environments, considerably extensive 
portions of the environment are often unobservable for a single robot. 
Individual robots typically obtain partial and noisy data from the 
surrounding environment. This data is often erroneous, leading to 
miscalculations and wrong behaviours, and to the conclusion that there are 
fundamental limitations on the reconstruction of environment descriptions 
using only a single source of sensor information. Sharing information 
among robots increases the effective instantaneous visibility of the 
environment, allowing for more accurate modelling and more appropriate 
response. Information collected from multiple points of view can provide 
reduced uncertainty, improved accuracy and increased tolerance to single 
point failures in estimating the location of observed objects. By combining 
information from many different sources, it would be possible to reduce 
the uncertainty and ambiguity inherent in making decisions based only in a 
single information source.

In several applications of MRS, the availability of a world model is 
essential, namely for decision-making purposes. Fig. 1.4. depicts the block 
diagram of the functional units, including the world model (coinciding, in 
the figure, with the blackboard) for our team of (four) soccer robots, and 
its interface with sensors and actuators, through the sensor fusion and 
control/decision units. Sensor data is processed and integrated with the 
information from other sensors, so as to fill slots in the world model (e.g., 
the ball position, or the robot self-posture). The decision/control unit uses 
this to take decisions and output orders for the actuators (a kicker, in this 
application) and the navigation system, which eventually provides the 
references for the robot wheels. 

Fig. 1.6. shows a more detailed view of the sensor fusion process 
followed in our soccer robots application. The dependence on the 
application comes from the sensors used and the world model slots they 
contribute to update, but another application would follow the same 
principles.In this case, each robot has two cameras (up and front), 16 sonars 
and odometry sensors. The front camera is used to update the information 
on the ball and goal positions with respect to the robot. The up camera is 
actually combined with an omnidirectional mirror, resulting into a 
catadioptric system that provides the same information plus the relative 
position of other robots (teammates or opponents), as well as information 
on the current posture of the robot, obtainedfrom a single image [25],and on 
the surrounding obstacles. The sonars provide information on surrounding 
obstacles as well. Therefore, several local (at the individual robot level) and  
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global (at the team level) sensor fusion operations can be made. Some 
examples are: 

the ball position can be locally obtained from the front and up camera, 
and this information is fused to obtain the local estimate of the ball 
position (in world coordinates); 

the local ball position estimates of the 4 robots are fused into a global
estimate;

 the local opponent robot position estimates obtained by one robot are 
fused with the its teammates estimates of the opponent position 
estimates, so as to update the world model with a global estimate of all 
the opponent robot positions; 

the local robot self-posture estimate from the up camera is fused with 
odometry to obtain the local estimate of the robot posture; 

the local  estimates of obstacles surrounding the robot are obtained from 
the fusion between sonar and up camera data on obstacles. 

1.3.1 Sensor Fusion Method 

There are several approaches to sensor fusion in the literature. In our work, 
we chose to follow a Bayesian approach closely inspired in 
Durrant-Whyte’s method [12] for the determination of geometric features 
observed by a network of autonomous sensors. This way, the obtained 
world model associates uncertainty to the description of each of the 
relevant objects it contains. 

Sensors Up Camera Front Camera Sonars Odometry

Observation and 

 State Model 
Up Camera Front Camera Sonars Odometry

BlackBoard local.up.* local.front.* local.sonars. local.odometry.*

Dependency 

Model 

Local Sensor Fusion Algoritm

BlackBoardd global.worldmodel.* World Model 

Global Sensor Fusion Algoritm

Dependency 
Model 

Local Sensor Fusion  

Algorithm of Other Robots 

Fig. 1.6. Detailed diagram of the sensor fusion process for the soccer robots 
application and its contribution to the world model
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In order to cooperatively use sensor fusion, team members must 
exchange sensor information. This information exchange provides a basis 
through which individual sensors can cooperate with each other, resolve 
conflicts or disagreements, and/or complement each other’s view of the 
environment. Uncertainties in the sensor state and observation are modeled 
by Gaussian distributions. This approach takes into account the last known 
position of the object and tests if the readings obtained from several 
sensors are close enough, using the Mahalanobis distance, in order to fuse 
them. When this test fails, no fusion is made and the sensor reading which 
has less variance (more confidence) is chosen.

A sequence of observations },...,{ 1 n

P zzz , of an environment feature 

Pp  (e.g., the ball position in robotic soccer, or a victim in robotic 
rescue), which are assumed to derive from a sensor modeled by a 
contaminated Gaussian probability density function, is considered, so that 

the thi  observation is given by: 

21 ,,1| iiii pNpNpzf (1)

where 1.005.0  and 12
ii .

It is well known that if the prior distribution p  and the conditional 

observation distribution pzf |  are modeled as independent Gaussian 

random vectors ),(~ 0pNp  and ),(~| ii pNpz  respectively, then 

the posterior distribution )|( 1zp after taking a single observation 1z  can 
be derived using Bayes law and is also jointly Gaussian with mean vector 

pzp 1
01

1
1

11
1

1
0' (2)

and covariance matrix 

11
1

1
0' (3)

This method can be extended to n  independent observations. 
In a multi-Bayesian system, each team member individual utility 

function is given by the posterior likelihood for each observation iz :

2,1),,()|()),(ˆ( ipNzppzpu iiiii
(4)

A sensor or team member will be considered rational if, for each 
observation iz  of some prior feature Pzii , it chooses the estimate 
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that maximizes its individual utility pzu iii , . In this sense, 

utility is just a metric for constructing a complete lattice of decisions, 
allowing any two decisions to be compared in a common framework. For a 
two-member team, the team utility function is given by the joint posterior 
likelihood:

22112121 ||,|,,ˆ zpfzpfzzpFpzzpU (5)

The advantage of considering the team problem in this framework is 
that both individual and team utilities are normalized so that comparisons 
can be performed easily, supplying a simple and transparent interpretation 
to the group rationality problem. The team itself will be considered group 
rational if together the team members choose to estimate Pp̂

(environment feature), which maximizes the joint posterior density. 

221121 ||maxarg,|maxargˆ zpfzpfzzpFp (6)

There are two possible results for (6) 

21 ,| zzpF  has a unique mode equal to the estimate p̂ ;

21 ,| zzpF  is bimodal and no unique group rational consensus 
estimate exists. 

Fig. 1.7. Two Bayesian observers with joint posterior likelihood indicating 
agreement
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Fig. 1.8. Two Bayesian observers with joint posterior likelihood indicating 
disagreement

If 21 ,| zzpF  has a unique mode, as displayed in Fig. 1.7., it will 
satisfy:

i21 z|pmax,z|pmax ifzF 2,1i (7)

Conversely, if 21 ,| zzpF is bimodal, as displayed in Fig. 1.8., then: 

2,1,,z|pmaxz|pmax 21i izFfi
(8)

A rational team member will maximize utility by choosing to either 
agree or disagree with the team consensus. If a team member satisfies (8), 
then it will not cooperate with the team estimate. Thus the decision made 
by a team member based of its observations iz  is: 

2,1,,|,|maxargˆ 21 izzpFzpfzp iii
(9)

Whether or not the individual team members will arrive at a consensus, 
the team estimate will depend on some measure of how much they 

disagree 21 zz . If 1z  and 2z  are close enough, then the posterior 

density 21 ,| zzpF  will be unimodal and satisfy (7), with the consensus 

estimate given by (6). As 21 zz  increases, 21 ,| zzpF  becomes 

flatter and eventually bimodal. At this point, the joint density will satisfy 
(8), and no consensus team decision will be reached. To find the point at 
which this space is no longer convex and disagreement occurs, one must 
ensure that the second derivative of the function 21 ,| zzpF is positive. 
Differentiating leads to: 
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For this to be positive and hence 21 ,| zzpF to be convex, we are 
required to find a consensus over the feature of the environment p  which 
satisfies

1
12

2
2

1

2

2
2

21
2

1 zpzp
(11)

Notice that (11) is a normalized weighted sum, a scalar equivalent to the 
Kalman gain matrix. The consensus p̂  that maximizes F  is therefore 
given by 

2
2

2
1

2
2

21
2

1ˆ
zz

p
(12)

Replacing (12) into (11), we obtain 

21122
2

2
1

2121 , zzD
zzzz (13)

where 112D . The disagreement measure 2112 , zzD is called the 
Mahalanobis distance. 

This measure of disagreement represents an advantage of our approach 
(based on Durrant-Whyte’s method) to other probabilistic approaches to 
object localization, such as [39], which uses multiple hypothesis tracking 
to track multiple opponent robots in robot soccer, and the likelihood of 
hypotheses to discard some of them, or [51], where a Markov process is 
used as an observation filter for a Kalman filter which tracks the ball (also 
in robot soccer), assuming that motion is equally possible in all directions, 
with Gaussian distributed velocities. The advantage of having an expression 
to compute (dis)agreement comes at the expense of requiring Gaussian 
distributions, while the referred approaches assume no distribution, 
iteratively updating a probability distribution over a discretization 
grid [44]. 
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1.3.2 Experimental Results for Soccer Robots 

Using the fusion algorithm described in the previous section, we have been 
built a partial world model of the environment where our soccer robots 
evolve: a 12x8m green field, with white line markings, one yellow and one 
blue goal, an orange ball and robots which have different color markings 
around themselves, at a specified height.

The decision process to determine the ball position is made by first 
determining if both observed ball positions from the two cameras can be 
merged locally through the Mahalanobis distance. This is accomplished by 
putting a time stamp in each camera observation, and using the time 
difference between stamps to modify the variance of each observation, in 
order to synchronize the fusion. When this synchronization is possible, the 
ball position will be the result of the fusion; otherwise, the observation 
with the smallest variance is chosen, meaning that the observation with the 
highest confidence is used to determine the ball position. After the local 
ball position estimate has been determined, the estimation of the global 
ball position is attempted, by fusing all local estimates of each robot, to get 
a global sensor fusion, as explained before. Each player acts as a sensor, 
taking observations from its two cameras, modifying the variance based on 
the difference of the observation time stamps, fusing and reporting them to 
the other team members. 

To test the global sensor fusion, three robots were placed on the field. 
We then ran the algorithm in each robot with only local sensor fusion 
working (Fig. 1.9.a) and then with both local and global sensor fusion 
working (Fig. 1.9.b). Each robot has a measure of quality (local fusion 
variance) of its local sensor fusion, using it to decide who has priority in 
the global sensor fusion. The robot with the best measure of quality has 
priority over the others. 

As seen in Fig. 1.9., the global sensor fusion improved the ball estimate.
In Fig. 1.10., although one of the robots cannot see the ball with its own 

cameras, because it is too far away, it knows where the ball is, since all 
robots share the same world information. This is the result of 
communicating all the features that each robot extracts from the 
environment to all the other teammates, and then using sensor fusion to 
validate those observations. Testing the agreement among all the team 
sensors eliminates spurious and erroneous observations. In Fig. 1.10.b),
the robot in the bottom part of the field cannot see the ball, so it gets the 
ball position from the global fusion of the other robot observations. Since 
the other two robots disagree with each other, the global fusion becomes 
equal to the local fusion of the robot with the best variance among the two.  
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In Fig. 1.11.a) two robots showing disagreement are depicted. This 
happened in this case because there were two balls in the field and each 
robot was detecting a ball in different positions. Although each robot has 
its own local sensor fusion estimate, they cannot reach an agreement about 
the global sensor fusion. When this happens, the robot makes its global 
sensor fusion estimate equal to its local sensor fusion estimate. In
Fig. 1.11.b) we see the same two robots showing agreement.

a)                                                       b) 

Fig. 1.9. (a) Local sensor fusion enabled and sensor fusion disabled; (b) Both 
local sensor fusion and global sensor fusion enabled. The larger circles with a 
mark denoting orientation represent the robots, while the small circles represent 
the balls as seen by each of the robots (denoted by the corresponding colors) 

a) b) 

Fig. 1.10. (a) Leftmost robot receives ball position information of the other two; 
(b) Bottom robot receives ball position from top robot, while top and leftmost 
robot disagree 

a)                                                      b) 

Fig. 1.11. (a) Two robots showing disagreement; (b) Two robots showing 
agreement
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a)

b)

c)

Fig. 1.12. Obstacle detection by virtual and real sonar sensor fusion for a single 
robot: (a) 16 real sonar readings; (b) 48 virtual sonar readings; (c) results of fusing 
the readings in (a) and (b) 

Although they have slightly different local sensor fusion estimates, they 
have the same global sensor fusion estimate of the ball, which is a result of 
the fusion of their local estimates.

Before each local fusion is made, each sensor observation and the local 
sensor estimate at the previous step are fused, with an increase in the 
variance of the latter, to reflect the time that has passed since the fusion 
was made. This helps to validate the new observation, because if fusion is 
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successful then the new observation is a valid one and we are predicting 
the same feature as in the previous fusion operation. Otherwise, this means 
that the latest observation was probably a bad one and that we could not 
predict the feature evolution. 

Another application of this method concerns the detection of obstacles 
in the soccer scenario, specifically other robots and the goals. In the 
example shown in Fig. 1.12., the algorithm was applied to the fusion of the 
information from a sonar ring around the robot, composed by 16 sonars, 
separated of 22.5º, and from 48 virtual sonars, separated of 7.5º, resulting 
from splitting the image of the up omnidirectional camera into 48 sectors.

Fig. 1.12.a) shows the readings of the real sonars, Fig. 1.12.b) depicts 
the virtual sonar readings and the final fused result is represented in Fig.
1.12.c). In a) and b), red rays mean that an obstacle was detected, e.g., the 
yellow goal, two robots, a wall located on the image top left and the ball 
(ignored in the final fusion). In c), all relevant obstacles are represented by 
circles connected to the robot by black and white rays. 

1.4 Cooperative Navigation 

The navigation sub-system provides a mobile robot with the capabilities of 
determining its location in the world and of moving from one location to 
another, avoiding obstacles. Whenever a multi-robot team is involved, the 
concept of navigation is extended to several new problems, basically 
concerning how to take the team from one region to another, while 
avoiding obstacles. 

In this section we will present results for three such problems: 
A navigation controllability problem: given N (in general 
heterogeneous) robots distributed by M sites of a topological map, 
determine under which conditions one can drive the robots from an 
initial configuration (i.e., a specific distribution of the N robots by the 
M sites) to a final or target configuration. 
A formation feasibility problem: given the kinematics of several 
robots along with inter-robot constraints, determine whether there exist 
robot trajectories that keep the constraints. 
A population optimal distribution control problem: given a 
population of robots whose motion can be modelled by a stochastic 
hybrid automaton, determine the optimal command sequence that 
brings the population from an initial spatial probability distribution at 
time t = 0 to the closest possible distribution from a target spatial 
probability distribution at time T.
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1.4.1 Navigation Controllability 

Whenever the navigation of MRS is considered, the first question one 
might want to ask before start moving the robots from their initial 
locations to some target locations is whether it will ever be possible to 
reach the latter from the former, and, if possible, under what conditions. 
For several reasons, some due to the environment (e.g., one-way doors or 
roads), others due to the robot capabilities (e.g., some can push doors, 
others can push and pull them, some can climb stairs, others can not) and 
some others due to incorrect robot paths, this may never be possible or be 
only possible if we establish the appropriate path for the robots, given their 
and the environment constraints. Therefore, checking whether a robot team 
can run into a non-recoverable configuration on its way to the target 
configuration and, in case it can, determining whether it is possible to 
supervise the team robot paths in such a way that this will never happen is
an important first step whenever MRS navigation is concerned. 

The approach we followed to solve this problem, in joint work with the 
Mobile Robotics Laboratory at ISR/IST, is described in [26, 27], and 
assumes, so as to reduce the complexity of the problem, that the navigation 
environment is described by a topological map, where nodes represent 
locations of interest and directed edges between 2 nodes represent the 
existence of an oriented path between the locations represented by the 
nodes. Notice that the edges may capture the constraints on the robots or 
on the environment, e.g., if there is a descending stair from the room 
represented by node 1 to the room represented by node 2, a bidirectional 
edge will link nodes 1 and 2 whenever the environment is represented, but 
only a node from 1 to 2 will exist in the model of a robot that can not 
climb stairs moving in that environment.

The robot population is modelled as a finite-state automaton [6] whose 
blocking and controllability properties are checked so as to answer the 
above questions. Each automaton state corresponds to a given 
configuration, and the edges between states are labelled by actions 
corresponding to moving one robot from one location to another. 
Therefore, a blocking automaton state corresponds to a distribution of the 
robots from which the desired target configuration is not achievable, e.g., 
because one of the robots has reached a location from where it cannot exit. 
Finite state automaton controllability means that such blocking states are 
avoidable: it is possible to disable some actions (i.e., some robot 
displacements) to prevent the robots from ever reaching blocking 
configurations.
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a)

b)

Fig. 1.13. Indoors rescue scenario: (a) Physical map; (b) Topological map 
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Fig. 1.14. Navigation automata for the Crawler, Puller and Pusher robots (from 
left to right) 

One problem with such an approach is that the size of the finite state 
automaton modelling an M-robots-N-sites scenario will grow quickly with 
the number of robots and/or sites. Our results allow checking the blocking 
and controllability properties of the (potentially large) automaton 
modelling the multi-robot system with the blocking and controllability 
properties of smaller automata, designated as navigation automata, which 
model the navigation of each individual robot in the population. In 
navigation automata for a given robot, each state corresponds to the site 
where the robot is. 

Due to the available space, we will only refer here the blocking result 
for heterogeneous robots (homogeneous robots are a particular case with 
specific results). For the controllability results and other details consult 
[28].

Theorem: In a generic N-robots-M-sites system, for its modelling 
automaton G to be non-blocking, all the navigation automata Gi, i=1,…,N
must be non-blocking. Each Gi is a marked automaton with a marked state 
per site where there is at least one robot i in the target configuration. 
Similarly, if G is blocking, there is at least one i and one marked state of Gi

such that Gi is blocking. 

One modelling example following this approach concerns a team of 
three heterogeneous robots, with the following individual skills: 

the Crawler has tracker wheels and is capable of climbing and 
descending stairs. It is able to open doors only by pushing; 

the Puller is a wheeled mobile manipulator, able to open doors either by 
pushing or pulling. However, it is not able to climb stairs; 

the Pusher is a wheeled robot, able to open doors only by pushing. It 
cannot climb stairs. 



30      P.U. Lima and L.M. Custódio

The rescue operation takes place in the indoor environment depicted in 
Fig. 1.13. (an indoor rescue scenario). Fig. 1.13.a) represents the physical 
map, and Fig. 1.13.b) the corresponding topological map. Each of the 
robots is described by a different navigation automaton, as represented in 
Fig. 1.14. The robots will leave room 1 to assist three different victims, 
somewhere in the building.

The doors open as shown in Fig. 1.13., thus limiting the robots access to 
the different rooms. Inside rooms 6 or 7, only the Crawler can go upstairs. 
In rooms 3 and 4, all the robots may fall downstairs, i.e., events Go(6) and 
Go(7) are uncontrollable for all robots. Blocking and controllability results 
concerning this result are presented in [27]. 

1.4.2 Formation Feasibility 

Formation control is a relatively recent area of research, e.g., [8], where 
many fundamental questions remain unanswered. The control of a 
formation requires individual robots to satisfy their kinematics while 
constantly satisfying inter-agent constraints. In typical leader-follower 
formations, the leader has the responsibility of guiding the group, while the 
followers have the responsibility of maintaining the inter-robot formation. 
Distributing the group control tasks to individual robots must be 
compatible with the control and sensing capabilities of the individual 
robots. As the inter-robot dependencies get more complicated, a systematic 
framework for controlling formations is vital. 

In a joint work with the GRASP Lab, at the University of Pennsylvania, 
we have proposed a framework to determine motion feasibility of 
multi-robot formations [43]. Formations are modelled using formation
graphs, i.e., graphs whose nodes capture the individual robot kinematics, 
and whose edges represent inter-robot constraints that must be satisfied.

We assume kinematic models for each robot, described by drift free 
control systems. This class of systems is rich enough to capture holonomic, 
nonholonomic, or underactuated vehicles.

Two distinct types of formations are considered: undirected formations
and directed formations. In undirected formations each robot is equally 
responsible for maintaining the formation. For each formation constraint 
between two robots, cooperation is assumed to satisfy the constraint. 
Undirected formations therefore present a more centralized (in the sense of 
the required information) approach to the formation control problem, as 
communication between all the robots is, in general, necessary. In directed
formations, for each inter-robot constraint, only one of the robots (the 
follower)is responsible for maintaining the constraint. Directed formations,
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therefore, represent a more decentralized solution to the formation control 
problem. Not only the required information flow is restricted to the pairs of 
robots linked by an edge but also the synthesis of feedback control laws 
enforcing the constraints is also simpler. 

Two problems are tackled in this work, for which we just summarize the 
main results here, as a detailed explanation would require a mathematical 
background that is out of the context of this book: 

feasibility problem: given the kinematics of several robots along with 
inter-robot constraints, determine whether there exist robot trajectories 
that maintain those constrains. For both directed and undirected (not 
necessarily rigid) formations we obtain algebraic conditions that 
determine formation motion feasibility.
When a formation has feasible motions, the formation control 
abstraction problem is then considered: given a formation with 
feasible motions, obtain a lower dimensional control system that 
maintains formation along its trajectories. Such control system allows 
controlling the formation as a single entity, therefore being well suited 
for higher levels of control. The directions in which a feasible 
formation can be controlled are determined, providing an abstraction 
of the formation that can be controlled as a single entity. 

1.4.3 Population Optimal Distribution Control 

One of the most relevant (and hard) topics in MRS is the modelling of 
large-size robot population behaviour. Under the current state-of-the-art, it 
seems that results for small-sized populations do not scale necessarily well 
for large-scale ones. Therefore, the mathematical modelling of large-size 
agent populations should be useful to predict the evolution of a population 
and subsequently design controllers or supervisors capable of changing the 
population behaviour by the suitable adjustment of appropriate parameters. 
One approach with large potential for this purpose is based on recent 
results on the mathematical modelling of biological systems [33]. In fact, 
our work in this direction has been originally developed for biological 
experiments modelling, jointly with biologists [30]. 

The work concerns a large size population of robots that navigate in an 
environment known with some associated uncertainty [29]. The motion of 
therobots in this environment is modelled by a stochastic hybrid automaton 
with discrete states representing a set of motion commands (e.g., 
representing a set of directions that the robots should follow while 
navigating),and a continuous state space representing the robot motion state 
(e.g., its posture and velocity). This hybrid automaton is stochastic because  
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the transitions between discrete states are governed by transition 
probabilities or, more precisely, under a Markov assumption, by transition 
rates corresponding to the rates of exponential distributions that model the 
times between events that cause the transitions. The transition rates 
represent both the uncertainty about the environment, which causes the 
robots to fail executing some commands (e.g., due to terrain irregularities 
or lack of communication visibility), and the control signals (in the form of 
control rates) that can modify that uncertainty, thus controlling the 
population spatial distribution over time, as the robots move. 

An important result of this work is the following 

Theorem: The continuous time Markov Chain hybrid automaton end- 
owed with one input (a stochastic event sequence) and having as output a 
function of the continuous part of the state, with N discrete states and state 

probability given by )()( tPLtP T  where )(...)()( 1 tPtPtP N is

the probability of the discrete state and 
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where f(x,i)  is the vector of vector field values at state (x,i).
If (x,i) represents the hybrid state of a large population of robots, the 

result in this theorem can be used to predict the evolution of the probability 
density function (pdf) of the population spatial distribution. Fig. 1.15.
represents a 2D example where a large number of land (e.g., rescue) robots 
is left in a given region and are afterwards commanded by 3 aerial robots 
which can order them to move in pre-defined directions. In the same 
figure, the corresponding stochastic hybrid automaton modelling the 
population spatial distribution over time is also represented. Using (14), 
the predicted evolution of the population spatial distribution for a given set 
of transition rates and at several time instants is represented in Fig. 1.16.
by the contours of the pdfs for each discrete state and for the summation of 
the discrete state pdfs. 
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Fig. 1.15. On the left: (a) A robotic population controlled by three aerial robots 
(sources) and (b) the vector fields created by control signal sources. On the right: 
the stochastic hybrid automaton modelling the population spatial distribution over 
time

Fig. 1.16. The pdf contours of the robot population states i(x,t), and the pdf of the 
robots position (x, t), for a given set of transition rates, given the model of Fig. 
1.15. Plots shown at 6 time instants (from left to the right in the pictures), starting 
at time t = 0.  is a region of interest for the mission 

If a given region, such as the one denoted by in Fig. 1.16., is of some 
particular interest for our robotic mission and we want most of the robots 
at time instant T in that region, an optimal control problem can be 
formulated where the control signal u is a vector composed by the 
transition rates between discrete states of the stochastic hybrid automaton 
and the performance function to be maximized is given by 

X

T TxxwuJ ),()()(
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where the dependence in u comes from the dependence of  with the 
transition rates, and w is a window function that spatially weights the state 
pdf, e.g., to confine it to a sub-region  of the state space X.

The solution of this optimal control problem is not trivial, since (14) is a 
partial differential equation. However, for certain cases, it is possible to 
compute an open loop control solution. The derivation of such solution is 
out of the scope of this book, but we provide an example for a 
one-dimensional version of the problem depicted in Fig. 1.15., shown in 
Fig. 1.17. Fig. 1.18. shows a pdf at time T = 3 h for this system very close 
to the desired one. This resemblance depends in general of the control 
amplitude, the system model and the time T.

Fig. 1.17. One-dimensional version of the robotic population example in Fig. 1.15. 
In this example the robots can move left, right or stop 

1.5 Cooperative Decision-Making 

Previously in the chapter, we have already described solutions for MRS 
architectures, cooperative perception and cooperative navigation. But to 
act autonomously and machine-wise intelligently, a MRS team must be 
able to plan action sequences and to take its own decisions autonomously. 
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Fig. 1.18. Pdfs for discrete state 3 (stopped robots) concerning the example in Fig. 

1.17., for k1 = –0.5, k2 = 0.25, )(00)( 3 xwxwT , u  [0, 2], at several 

time instants, including the terminal time T = 3 h 

Of course, the decisions depend on the perception the robot has of its 
surrounding environment, and most actions require navigating from one 
point to another. The literature is rich in planning solutions for single agents, 
but multi-agent task planning, and especially multi-robot task planning are 
relatively recent research subjects. Relevant issues for our group in this 
research is the use of logic-based approaches to ensure the application of  
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formal verification methods, the inclusion of uncertainty in the task, plan 
and action models and the reduction of the search space whenever optimal 
stochastic solutions are sought. Some of the work done in those directions 
is described in the next sections. 

1.5.1 Hybrid Logic-Based Decision System 

The functional architecture described in Section 1.2 allows the 
implementation of operators and the switching among them using different 
approaches, as for example state machines or AI production systems.

Previous implementations of the A machine were done using state 
machines, which basically implemented a reactive decision-making 
system, based on simple reactions to external or internal events. Robots 
using this kind of decision mechanism usually show very primitive 
behaviors, and are not able to accomplish non-trivial goals on complex, 
dynamic, and incomplete domains. On the other side, deliberative 
decision-making systems are able to make decisions based upon past 
experience and by predicting future consequences of its actions. The 
system may even act and decide in a way that was not predicted by the 
designers, but that is actually valid and efficient in order to achieve the 
goal. But deliberative systems are usually computationally heavy. A way 
to take advantage of both kinds of systems is a hybrid decision-making 
system with a reactive component and a deliberative component. The 
system uses, normally, the decisions made by the former component. But, 
when it takes too long to decide, it uses the decision made by the reactive 
component.

So, in order to have a more abstract way to deal with decision-making 
and behaviour switching, the A machine has been implemented using a 
distributed decision-making architecture supported on a logical approach 
to modelling dynamical systems [37], based on situation calculus, which is 
a second-order language specifically designed to representing dynamically 
changing worlds. All the changes to the world are result of named actions. 
A possible world history, which is simply a sequence of actions, is 
represented by a first-order term called a situation. There is a distinguished 
binary function symbol do; do(_, S) denotes the successor situation to S 
resulting from performing the action _. For example, put(x, y) might stand 
for the action of putting object x on object y, in which case do(put(A,B), S) 
denotes the situation resulting from placing A on B when the current 
situation is S. Notice that in situation calculus, actions are denoted by 
function symbols, and situations (world histories) are first-order terms. For 
example, do(score(A), do(takeBall(B), S0)) is a situation term denoting the 
sequence of action [takeBall(B), score(A)].
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Generally, the values of relations and functions in a dynamic world will 
vary from one situation to the next. Relations whose truth values vary from 
situation to situation are called relational fluents and are denoted by 
predicate symbols taking a situation term as their last argument. Actions 
have preconditions, necessary and sufficient conditions that characterize 
when the action is physically possible. World dynamics are specified by 
effect axioms, which describe the effects of a given action on the fluents - 
the causal laws of the domain. Axiomatizing a dynamic world requires 
more than just action preconditions and effect axioms: frame axioms are 
also necessary. These specify the action invariants of the domain, namely 
those fluents that remain unaffected by a given action. But the problem 
with frame axioms is that we can expect a vast number of them – the frame 
problem: only relatively few actions will affect the truth value of a given 
fluent; all other actions leave the fluent unchanged. This is problematic for 
a theorem proving system, as it must efficiently reason in the presence of 
so many frame axioms. 

By appealing to earlier ideas of Haas, Schubert and Pednault, Reiter 
proposed a quasi-solution to the frame problem, through a systematic 
procedure for generating, from the effect axioms, all the frame axioms 
needed.

The hybrid architecture developed for the high level decision-making of 
our MRS comprises several components, from which the most important 
ones are: World Representation, Reactive Component, Deliberative 
Component and Behavior Selection, whereas the deliberative one uses the 
procedure proposed by Reiter. Fig. 1.19. presents this architecture. 

The World Representation Component (WRC) is responsible to build a 
world model using sensorial data. From the sensory inputs and the static 
information about the game, the WRC builds the game model, which 
consists of basic information, like ball position and players’ postures, and 
advanced information, such as cooperative decisions. The variables used to 
define the world model are stored in a blackboard, as described in Section 
1.2.

Based on this information a more pictorial world model is build, and 
shared by all the robots. The idea is to focus the attention on the most 
important moving element in the game, the ball. But to make adequate and 
efficient decisions robots must see the world in a more abstract way. The 
idea is to divide the area surrounding the ball in six cones, and each cone in 
three different zones (near, middle, far). Then we classify every element of 
the game (opponents, teammates, goals, field lines, etc.) using this relative 
positioning, and work with things like ”near goal”, ”has line of pass”, etc.. 
This world model is inspired on an idea from the CMU (Carnegie Mellon  
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University) simulation soccer team [42]. Fig. 1.20. graphically presents an 
example of a possible world situation. 

Fig. 1.19. Hybrid architecture 

Fig. 1.20. World model 
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The reactive component has two main purposes: to guarantee a quick, 
real-time decision to be executed by the robot, and to react to unexpected 
events. On the robotic soccer domain, such things may happen very often: 
if a robot has the ball and plans to take it to the goal, and score, it needs to 
react to an unexpected event (like an opposite robot taking the ball away 
from it, the robot loosing the ball, or bumping against another robot). This 
component, called Basic Logic Decision Unit (BLDU) and supported on 
first-order logic statements, allows us to easily model the reactive 
behaviour of the robot. The BLDU runs in a cyclic manner and, at each 
iteration, it executes some operations related to the decision process and 
the world modeling. First, it broadcasts the status of the robot to its 
teammates. This includes the player role and the play mode (playing, 
paused, going to start position, etc). Then, it checks if it needs or wants to 
change its role. Finally, it decides the next behaviour to be executed (going 
to some place on the field, taking the ball to goal, etc). 

The reactive decision process is based on a set of Prolog rules, 
constituted by a set of preconditions that must be all true in order for that 
rule to be applied. The set of rules of the BLDU has a pre-defined order, in 
the sense that the first rule following that order that has all pre-conditions 
true will be the one used to make a decision. A pre-condition is anything 
that can be represented by a logical formula, like having the ball, or being 
inside a pre-determined area of the field. In Fig. 1.21. there are two 
examples of rules used in BLDU. The first one is related with the defender 
role. This rule tells the control component to move the robot to a specific 
position on the field (given by X, Y, Theta) and it is applied if the robot is 
playing, it sees the ball but does not have it, the ball is outside the 
defenders zone, the robot is not near the position where he wants to go (a 
simple hysteresis), and there is not another robot in that position. The 
second rule is related to the attacker, and tells low-level control to score if 
the robot is playing, if the ball is in the attacker zone, if the robot can see 
the opposite goal, if it sees and have the ball, and if it is near the goal. This 
way it is very easy to design new behaviors, simply by adding new rules to 
the system. The designer just needs to be careful with the rules precedence. 
This is clearly an easier system to work with, compared to the state 
machine.

In order to compare the BLDU with the state machine implementation, 
we performed the following test: the robot starts facing the opposite goal, 
near the penalty mark. The robot must go back to the middle of the field, 
get the ball, return to the opposite goal and score. We applied this test ten 
times using each system (logic based decision system and the original 
state-machine decision system). The results are on Fig. 1.22.
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Fig. 1.21. Two example rules of the Basic Logic Decision Unit

Not surprisingly the results obtained are similar for both systems, since 
the low-level control unit is the same. For the robot performance on this 
test, the control unit is much more important than which tool is used for 
behavior switching. The logic-based system has showed to be fast enough 
(even a little faster than the state machine) to handle the low-level control 
problems, like behavior switching, with the right timings. So, we 
concluded that the BLDU might replace the state machine without 
negative consequences, and leave room for many improvements like the 
one described next. 

Fig. 1.22. Average results for the tests using both decision systems

One good example of the simplicity and power of the BLDU is the 
management of player roles. We defined three roles for our players: 
attacker, defender and full player. It would be very hard to 
model all these behaviours using a state machine, but it would be even 
harder to switch roles in real-time, like BLDU does. This dynamic role 
switching is also an example of the kind of cooperation we intend to have 
with our architecture. The robot keeps checking if it needs or wants to 
switch roles. The need comes from two situations: if a robot stops playing 
(for instance, due to a referee decision, or a software crash), or if another 
robot decides to change its role. In the latter case, it may be necessary to 
switch roles in order to keep the strategy of the team.

But when the robot decides it wants to change roles? Imagine a 
defender in a situation that the ball enters the defensive midfield. It will 
try to approach it, and take it to the opponent goal. But, trying to score a goal 
is anattacker’s task,and, moreover, it would leave the team with no one 
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protecting the goal. So, one of the teammates will switch to defender
and go back in the field, protecting the goal again. The old defender
may become an attacker after a possible shot; it does not need to return 
to its old position and lose time and battery power. Fig. 1.23. shows a 
dynamic change: when the black robot (defender) catches the ball at the 
defense, and takes it to the opponents’ goal, the gray robot (attacker)
switches to defender to replace his teammate.

Fig. 1.23. Dynamic role exchange 

The Deliberative Component, called Advanced Logic Based Unit 
(ALBU), is responsible to determine plans (sequences of behaviours) that 
allow the team to achieve something (like scoring on the opposite goal). 
The development of the ALBU has been made in GOLOG, a language 
built on top of Prolog with the purpose of programming intelligent robot 
behaviour.

This language allows us to use situation calculus in order to produce 
plans. The language semantics is defined through a macro-expansion into 
sentences of the situation calculus. GOLOG offers significant advantages 
over current tools for applications in dynamic domains like the high level 
programming of robots and software agents, process control, discrete event 
simulation, complex database transactions, etc.

More importantly, GOLOG programs are evaluated with a theorem 
prover. The user supplies precondition axioms, one per action, successor 
state axioms, one per fluent, a specification of the initial situation of the 
world, and a GOLOG program specifying the behavior of the agents in the 
system. Executing a program amounts to finding a ground situation term 
such that: 

Axioms |= Do(program, S0, ).

i.e., the fluent Do(program, S0, ) is derivable from the axioms. 
This is done by trying to prove 
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Axioms |= ( s) Do(program, S0, s), 
i.e., there exists a situation s such Do(program, S0, s) is true. If a 
constructive proof is found, such a ground term do(an, ...do(a2, do(a1, S0))...)
is obtained as binding for the variable s, where S0 denotes the initial 
situation. Then the sequence of actions [a1, a2, ..., an] is sent to the primitive 
action execution module. 

Our objective was to develop a tool capable of planning and control task 
execution in a distributed environment. To do so we assumed that: the 
agents (robots) can generate, change and execute plans; a plan can be 
generate, and executed by one or more agents; decisions over the 
generated plans are based on hypotheses, i.e., assumptions over future 
states that cannot be guaranteed; and the agents have the capacity to 
communicate among them, and share information about plans or 
environment states. Since the GOLOG programming logic is oriented to a 
single agent we cannot apply it directly, rather we will have to be careful 
with the task synchronization among plan tasks, among team members, 
and take into account that our world model is based on sensors and 
information shared among the team members, and does not change only as 
result of our actions, since there are also other agents that can affect the 
environment. This last problem will be addressed in future work, for now 
when the environment is affected by an action on other agent in such a 
way that makes the plan invalid, the agent has to generate a new plan. 

The Behaviour Selection (BS) module chooses between the decisions 
produced by Deliberative and Reactive components. It also handles plan 
execution and checks if it is still valid. If a plan is no longer valid (due to 
an action pre-condition being no longer true), it will discard the plan and 
use the reactive decision. This way, the robot may actually react to an 
unexpected event. 

An example of a cooperative plan determined by the deliberative 
component for a soccer game situation where we have two robots, both 
starting at their mid-field, but the ball is near the opponent goal, is given 
next.

The plan for robot 1, denoted “bp”, is: 

[ actionPass(bp,ph), 
actionWaitFor(bp,ph,actionGo2Goal(bp)),
actionWaitFor(bp,bp,actionGetClose2Ball(bp)),
actionGetClose2Ball(bp) ] 

and the plan for robot 2, denoted “ph”, is: 

[ actionScore(ph), 
actionWaitFor(ph,ph,actionTakeBall2Goal(ph)),
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actionTakeBall2Goal(ph),
actionWaitFor(ph,ph,actionGo2Goal(ph)),
actionGo2Goal(ph),
actionHelp(ph,bp) ] 

1.5.2 Distributed Planning and Coordinated Execution 

The work described next was developed in the context of the RESCUE 
project, which aims at the development of novel methodologies for using 
robotic teams in rescue operations. Typically, a rescue operation within a 
situation of catastrophe involves several and different rescue elements 
(individuals and/or teams), none of which can effectively handle the rescue 
situation by itself. Only the cooperative work among all those rescue 
elements may solve it. Considering that most of the rescue operations 
involve a certain level of risk for humans, depending on the type of 
catastrophe and its extension, it is understandable why robotics can play a 
major role in Search and Rescue situations (S&R), especially teams of 
multiple heterogeneous robots. 

The overall goal of the RESCUE project is to develop a robotic team, 
constituted by more than one robot, capable of autonomously handle a 
rescue operation. This project can be seen at different levels of abstraction, 
such as a technological level (e.g., hardware development), a level of 
control (e.g., motor control), a level of robot navigation, and a level of task 
planning, if an individual robot is considered. If we assume also the 
existence of a team of robots, new levels must be added, for instance a 
level of robot cooperation and a level of mission management. At these 
levels, the objectives are making robots cooperate to fulfill their common 
goals, both through cooperative planning and cooperative execution.

This work is mainly focused on the problem of distributed planning and 
task allocation in a multi-robot rescue system, assuming that teamwork 
(i.e., cooperative tasks) plays an important role on the overall planning 
system. However, all considerations, related with technology and 
utilization of real robots, were not an issue in this work. So our rescue 
team is composed of agents, virtual entities interacting within a simulated 
environment and capable of some intelligent actions, both individual and 
cooperative.

For that, an agent architecture has been developed, inspired on a 
Belief-Desire-Intention (BDI) architecture, considering that each agent 
interacts with others in the same rescue scenario, with the same interface 
andontology. Moreover, the proposed architecture takes into account issues 
as agent heterogeneity, failures recover, cooperation, to name but a few. 
Besides that, agents equipped with this architecture are prepared to act in a 
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non deterministic environment (where its state could change without any 
agent action), incomplete (meaning that only information agents have is 
acquired by their sensors which provided only incomplete data about the 
environment state), dynamic (meaning that planning decisions made for a 
certain environment state could be invalid when they are executed, 
claiming for some re-planning). 

Since teamwork is a key aspect of this work, agents need to negotiate 
the execution of certain actions, either because an agent does not have the 
right skills to do it, or it evaluates that another agent could do it better 
(with a lower cost). To implement this, a Contract-Net system was 
developed and integrated in the agent architecture. This system allows 
agents to propose and negotiate contracts with other agents, and gives the 
necessary guarantees for maintaining “signed” contracts consistency (i.e., 
if an agent cannot fulfill a contract it must inform others involved in that 
contract).

The main decision process, the planner, was implemented based on a 
Hierarchical Decomposition Partial Order Planner (HDPOP) approach, 
with an important extension, the possibility to handle (plan) the resources 
needed for each of the tasks. The planner was developed using the STRIPS 
language and is supported on a variation of the well-known A* search 
algorithm, the Iterative Deepening A* (IDA*). 

To experiment and evaluate the proposed planning system, a simplified 
version of a rescue simulator was also developed. This simulator allows 
creating virtual rescue scenarios where rescue teams should face building 
and forest fires, civilians trapped in collapsed buildings, and roads 
blocked. The rescue teams are composed of aerial and land robots, with 
different skills. The former could perform a survey of the affected region 
and are also capable of transporting victims to rescue spots. The latter may 
be a civil protection (CV) agent (responsible for organizing the rescue 
missions and contracting other agents), physician agent (capable of giving 
first aid assistance), firefighters or an agent capable of removing 
roadblocks.
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Fig. 1.24. A simulation scenario with three agents: a civil protection agent, a 
physician agent and a flying agent. There are also a first aid package and stretcher 
needed to rescue the victim 

Fig. 1.24. presents a simulated rescue scenario where three agents have 
to cooperate to search and rescue a victim. After the victim being found, 
the CV agent generates a plan to rescue it, which includes contracting the 
physician agent, finding and getting the stretcher, putting the victim on it, 
and contracting the flying agent to transport the victim to a rescue spot. 
The physician agent makes a plan to get the first aid package, go near to 
and help the victim, and the flying agent generates a transport plan. 

Fig. 1.25. shows the state of the three agents immediately after the 
victim has been found by the flying agent.

In general, the results obtained show that a distributed approach to a 
rescue problem is clearly an interesting solution when compared with a 
centralized one. One might lose some quality of the planning solutions, but 
gains more flexibility, redundancy and the possibility of parallelizing the 
planning process. One key word emerging from this work and its results 
was “delegation”, meaning that agents should delegate as much as possible 
given other agents skills, particularly whenever planning is concerned. 
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0 CtrFirstAid(victim1) 
0 Go(Here, Stretcher)
1 Grab(Stretcher) 
2 Go(Stretcher, Victim1) 
3 PutStretcher(Victim1) 
4 CtrTransport(Victim1) 
5 Finish()

0 AirRecon(HERE)
1 Finish()

0 Go(Here, FirstAid) 
1 Grab(FirstAid) 
2 Go(FirstAid, Victim1) 
3 Aid(Victim1) 
4 Finish()

Fig. 1.25. The state of the three agents immediately after the victim has been 
found by the flying agent (on the right is shown the current plan of each agent). 
Ag. 1 is the civil protection agent; ag. 2 is the flying agent and ag. 3 is the 
physician agent. The green areas represent the regions already explored by each 
agent; the red lines in the plans indicate the action(s) under execution 

1.5.3 Relational Behaviours in Cooperative MRS 

Our research on relational behaviours has been mainly driven by the 
application to soccer robots, but the motivation comes from the need to 
design, implement and test in real robots concepts from teamwork theory, 
originally developed for multi-agent systems. 

One cooperation mechanism that we first implemented in 2000 consists 
of avoiding that two or more robots from the same team attempt to get the 
ball. A relational operator was developed to determine which robot should 
go to the ball and which one(s) should not. In the current implementation,  
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each robot that sees the ball and wants to go for it uses a heuristic function 
to determine a fitness value. This heuristic penalizes robots that are far 
from the ball, are between the ball and the opposite goal and need to 
perform an angular correction to centre the ball with its kicking device. 
Each robot broadcasts its own heuristic value, and the robot with the 
smallest value is allowed to go for the ball, whereas the others execute a 
Standby behaviour. Another example of utilization of this mechanism is 
the decision to dynamically switch roles among players, e.g., the 
defender becomes an attacker when it acquires the right to get the 
ball, and correspondingly the attacker becomes a defender.

A relational behaviour is not seen in our research as a simple matter of 
relating the tasks performed by two or more robots from the team. We 
support relational behaviours on teamwork theory techniques, such as the 
Joint Commitment Theory (JCT) [7]. One such example is the 
implementation of a ball pass between two robots [46]. These behaviours 
have a general formulation based on the JCT and use the individual robot 
navigation methods. The robots are capable of committing to relational 
pass behaviour where one of the robots is the kicker and the other the 
receiver. If any of the robots ends the commitment, the other switches to 
an individual behaviour. 

In Fig. 1.26., several individual behaviours can be found within the 
commitment. At any time the participants have to select the correct 
behaviour individually. Commitments among teammates are established at 
the relational behaviour level of the architecture described in Section 1.2.    
Behaviour selection is done in the logic machine module of the hybrid 
logic-based decision system explained in sub-section 1.5.1. The robot first 
chooses a role, next it selects a commitment, and finally the individual 
behaviour.

Predefined logical conditions can establish a commitment between two 
robots. Once a robot is committed to a relational behaviour, it will pursue 
this task until one or more conditions become false, or until the goal has 
been accomplished. The initiative for a relational behaviour is taken by 
one of the robots, which sets a request for a relational behaviour. A 
potential partner checks if the conditions to accept the request are valid. If 
so, the commitment is established. During the execution of the 
commitment the changing environment can lead to failure or success at 
any time. In that case the commitment will be ended.

In general, within a commitment three phases can be distinguished: 
Setup, Loop and End. During the set up and ending of a commitment, a 
robot is not executing a relational behaviour. The logic machine will not 
select any relational behaviour, and no commitment takes place during the  
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primitive behaviour selection. The participant robots will select the 
behaviours concerning the commitment to achieve their joint goal only 
during the Loop phase. This selection process will now be explained for 
the Pass example in Fig. 1.26. Three individual behaviours can be found 
in the figure diagram: standBy for both participants, aimAndPass for 
the kicker, and intercept for the receiver.

Fig. 1.26. Diagram representing the relational behaviour Pass resulting of the 
teamwork between the kicker and receiver robots 

The pass commitment has been split up in several states, referred to as 
commitment states:

request and accept in the Setup phase. 
prepare and intercept in the Loop phase.
done and failed in the End phase. 

Table 1.1. - Behaviour selection for all pass commitment states 

phase Setup Loop End 
state request accept prepare intercept done failed 

Kicker - - aimAndPass standBy - - 

Receiver - - standBy intercept - - 
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In general, the states in the Setup and End phase will be the same for 
any commitment, other than the Pass example given here. The Loop
phase, however, is problem-dependent. Splitting it in several states allows 
the synchronized execution of the relational behaviour. Each commitment 
state is linked to (a set of) behaviours for both robots, as listed in Table 
1.1. When the commitment proceeds as planned, the pass states will be run 
through sequentially, from request until done. An error at any time can 
lead to the state failed. New commitments for the same or another 
application can be created under the same framework. 

To synchronize the behaviours, the participants use explicit (wireless) 
communication. Four variables, containing the identities of the participants 
and their commitment states, are kept in each participant version of the 
blackboard. Each of these four variables will be sent to the other 
participants in the relational behaviour when it is changed. 

1.5.4 Optimal Decision Making 
for MRS Modelled as Discrete-Event Systems 

Though not tested yet in real robots, formal work on Stochastic 
Discrete-Event Systems modelling of a multi-robot team has been carried 
out within our soccer robots project [10]. The environment space and each 
player (opponent and teammate) actions are discretized and represented by 
several finite state automaton models. Then, all finite state automata are 
composed to obtain the complete model of a team situated in its 
environment and playing an adversarial 2 vs. 2 player game. An example 
of several automata and their composition for this example is depicted in 
Fig. 1.27. Controllable (e.g., shoot_p1, stop_p2) and uncontrollable 
(e.g., lost_ball, see_ball) events (i.e., our robots actions) are 
identified, and exponential distributions are assigned to the uncontrollable 
event inter-event times.

Dynamic programming is applied to the optimal selection of the 
controllable events, with the goal of minimizing the cost function 

0

)(),(min dttutXC

where  is a policy, X(t) the game state at time t, and u(t) is a controllable 
event, with the cost of unmarked states equal to 1, and all the other states 
having zero cost. If the only marked states are those where a goal is scored 
for our team, and there are no transitions from marked to unmarked states, 
this method obtains the minimum (in a stochastic sense) time to goal for our  
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team, constrained by the opponent actions and the uncertainty of our own 
actions. Some of the chosen actions result in cooperation between the two 
robots of the team. 

a)

b)

Fig. 1.27. Ball possession model: (a) at the top, player 1 ball possession model; at 
the bottom, opponent player 1 ball possession model; (b) finite state automaton 
that models the overall game ball possession, resulting from the parallel 
composition of the models in (a) for two players per team 
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1.6 Emotions and Multi-Robot Systems 

Adequate decision-making under difficult circumstances (in unpredictable, 
dynamic and aggressive environments) raises some interesting problems 
from the point of view of the implementation of artificial agents. At the 
first sight, in such situations, the agent should (ideally) be capable of 
performing deductive reasoning rooted on well-established premises, 
reaching conclusions using a sound mechanism of inference, and acting 
accordingly. However, in situations demanding urgent action such an 
inference mechanism would deliver "right answers at the wrong moment." 
To circumvent this problem, some architectures have been proposed (e.g., 
reactive [5], hybrid [17]) together with planning algorithms capable of 
providing courses of action within limited lapses of time. 

An interesting alternative mechanism of decision-making can be found 
in mammals which, when confronted with severe, demanding situations, 
respond "emotionally" to solve difficult problems.  Unfortunately, the 
nearness between urgency and emotion has supported the common-sense 
belief that emotions should not play an important role in everyday rational 
decision-making.

However, recent research findings on the neurophysiology of human 
emotions suggest that human decision-making efficiency depends deeply 
on the emotions machinery. In particular, the neuroscientist António 
Damásio [9] claims that alternative courses of action in a decision-making 
problem are (somatically) marked as good or bad, based on an emotional 
evaluation. Only the positive ones (a smaller set) are used for further 
reasoning and decision purposes. This constitutes the essence of the 
Damásio’s somatic marker hypothesis, where the link between emotions 
and decision-making is suggested as particularly strong for the personal 
and social aspects of human life. The Damasio’s research has 
demonstrated that even in simple decision-making processes, the 
mechanism of emotions is vital for reaching adequate results. In another 
study about emotions, conducted by the neuroscientist Joseph LeDoux 
[19], it is recognized the existence of two levels in the sensorial 
processing, one quicker and urgent, and another slower but more informed. 

Emotions have been considered, for decades, as something that lies on the 
antipodes of rationality.  As a matter of fact, emotional behavior has been 
thought as characteristic of irrational animals and so should be avoided by 
human beings when reaching a certain degree of "perfection." However, 
consider the competence of certain mammals as dogs or cats: they not only 
survive in a demanding environment but they also perform tasks, learn, 
survive, adapt themselves and make adequate decisions even when faced  
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with unfamiliar situations.  And certainly they do not reason (at least in the 
sense that is accepted by the artificial intelligence community infer new 
knowledge, verbally represented, from existing one).  What these animals 
exhibit is a sensory-motor intelligence which none of our robots possesses.  
According to J. Piaget, sensory-motor intelligence is "essentially practical 
that is, aimed at getting results rather than at stating truths - this 
intelligence nevertheless succeeds in eventually solving numerous 
problems of action (such as reaching distant or hidden objects) by 
constructing a complex system of action-schemes and organizing reality in 
terms of spatio-temporal and causal structures.  In the absence of language 
or symbolic function, however, these constructions are made with the sole 
support of perceptions and movements and thus by means of a 
sensory-motor coordination of actions, without the intervention of 
representation or thought." [34]. 

The discussion concerning the relevance of emotions for artificial 
intelligence is not new. In fact, AI researchers as Aaron Sloman [40] and 
Marvin Minsky [31] have pointed out that a deeper study of the possible 
contribution of emotion to intelligence was needed. Recent publications of 
psychology [16] and neuroscience research results suggest a relationship 
between emotion and rational behaviour, which has motivated an AI 
research increase in this area. The introduction of emotions as an attempt 
to improve intelligent systems has been made through different ways. 
Some researchers use emotions (or its underlying mechanisms) as a part of 
architectures with the ultimate goal of developing autonomous agents that 
can cope with complex dynamic environments [47, 48, 41]. 

The ISLab research group has been working since 1997 on developing 
emotion-based agent architectures that incorporate our interpretation of 
artificial emotions. The DARE architecture joins together all the concepts 
that we have been studied and developed related with the application of 
emotional mechanisms in agents (both virtual and real robots). Although 
this research follows a prescriptive research perspective rather than a 
descriptive one, the developed architecture is essentially grounded on the 
above mentioned theories about emotions neurological configuration and 
application [48, 49, 23, 44, 38]. 

1.6.1 Emotion-based Agent Architecture 

The basic idea underneath the DARE architecture is the hypothesis that 
mammals process stimuli simultaneously under two different perspectives: 
a cognitive, which aims at finding out what the stimulus is (by a some 
rational mechanism), and another one, perceptual, intending to determine 
what the agent should do (by the way of extracting relevant features of the 
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incoming stimulus). As this latter process is much more rapid (in terms of 
computation) than the former, the agent can react even before having a 
complete cognitive assessment of the whole situation. 

Following the suggestions of Damásio, a somatic marker mechanism 
should associate the results of both processing sub-systems in order to 
increase the efficiency of the recognition process in similar future 
situations. On the other hand, the ability of anticipating the results of 
actions is also a key issue as the agent should “imagine” the foreseeable 
results of an action (in terms of a somatic mark) in order to make adequate 
decisions.

The DARE architecture for an individual emotion-based agent includes 
three levels: stimulus processing and representation, stimulus evaluation 
and, action selection and execution. Fig. 1.28. represents the architecture 
with the main relationships among blocks represented by solid arrows. 
Dashed arrows represent accessing operations to the agent’s memory or 
body state. 

The environment provides stimuli to the agent, and as a consequence of 
the stimulus processing the agent decides which action should be executed. 
During this stimulus-processing-action iterative process, decisions depend 
not only on the current incoming stimulus and the internal state of the 
agent (body state) but also on the results got from previous decisions, 
stored in the agent’s memory. 

After the reception of a stimulus, a suitable internal representation is 
created and the stimulus is simultaneously analysed by two different 
processors: a perceptual and a cognitive. The perceptual processor 
generates a perceptual image that is a vector that contains the values of the 
relevant features extracted from the stimulus. For instance, for a prey the 
relevant features of the predator image might be the colour, speed, sound 
intensity, and smell, characteristics that are particular to the corresponding 
predator class. The definition of what are relevant features and 
corresponding values is assumed to be built-in in the agent. This 
perceptual, feature-based image, as it is composed of basic and easily 
extracted features, allows the agent to efficiently and immediately respond 
to urgent situations. The cognitive processor uses a cognitive image that is 
a more complex representation of the stimulus (for instance, if dealing 
with visual images, a cognitive image might be an image processed using 
computer vision techniques to identify relevant objects in it). The cognitive 
processing aims at performing a pattern matching of the incoming stimulus 
with respect to cognitive images already stored in memory. As this 
processor might involve heavy computation processing, the cognitive 
image is not suitable for urgent decision-making. 

With the two images extracted from the stimulus, the process proceeds 
through a parallel evaluation of both images. The evaluation of the 
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perceptual image consists of assessing each relevant feature included in the 
perceptual image. From this evaluation results what is called the perceptual 
Desirability Vector (DV). This vector is computed in order to establish a 
first and basic assessment of the overall stimulus desirability. In the 
perceptual evaluation, the DV is the result of a mapping between the 
desirability of each feature and the amount of the feature found in the 
stimulus. The information concerning the feature desirability is assumed to 
be built-in, and therefore defined when the agent is created. Of course, the 
mentioned mapping depends on the considered species (e.g., a lion and a 
bull assign different desirability vector values to the same colour). 

The cognitive evaluation differs from the perceptual in the sense that it 
uses past experience, stored in memory. The basic idea is to retrieve from 
memory a DV already associated with cognitive images similar to the 
present stimulus. Since a cognitive image is a stimulus representation 
including all extractable features of it, two stimuli can be compared using 
an adequate pattern matching method. This process allows the agent to use 
past experience for decision making. After obtaining the perceptual and 
cognitive images for the current stimulus, when the evaluation of the 
perceptual image does not reveal urgency, i.e., the resulting DV is not so 
imperative that would demand an immediate response, a cognitive 
evaluation is performed. It consists of using the perceptual image as a 
memory index to search for past obtained cognitive images similar to the 
current cognitive one.

One of the purposes of using perceptual information to index memory of 
cognitive images is to reduce search. It is hypothesized that it is likely to 
have the current cognitive image similar to others with the same dominant 
features. Each cognitive image in memory, besides having an associated 
perceptual image, also has the resulting DV from past evaluation. If the 
agent has been already exposed to a similar stimulus in the past, then it 
will recall its associated DV, being the result of the cognitive evaluation. 
This means that the agent associates with the current stimulus the same 
desirability that is associated with the stimulus in memory. If the agent has 
never been exposed to a similar stimulus, no similar cognitive image will 
be found in memory, and therefore no DV will be retrieved. In this case, 
the DV coming from the perceptual evaluation is the one to be used for the 
rest of the processing (decision-making). 
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Fig. 1.28. A block diagram of the DARE architecture 

In this architecture, the notion of body corresponds to an internal state 
of the agent, i.e., the agent’s body is modeled by a set of pre-defined 
variables and the body state consists of their values at a particular moment. 
The internal state may change due to the agent’s actions or by direct 
influence of the environment. 

The innate tendency establishes the set of body states considered ideal for 
the agent, through the definition of the equilibrium values of the body 
variables – the Homeostatic Vector (HV). The built-in tendency can be 
oriented towards the maintenance of those values or the 
maximization/minimizationof some of them. In other words, this comprises 
a representation of the agent’s needs. The body state evaluation consists of 
an estimate of the effects of the alternative courses of action, performing an 
anticipation of the possible action outcomes: “will this action help to 
re-balance a particular unbalanced body variable, or will it get even more 
unbalanced?” This action effects anticipation may induce a change on the 
current stimulus DV, reflecting the desirability of the anticipated effects 
according to the agent’s needs. As the agent’s decisions depend on a 
particular body state – the one existing when the agent is deciding, it will 
not respond always in the same manner to a similar stimulus. On the other  
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hand, the existence of a body representation forces the agent to behave 
with pro-activeness–because its internal state drives its actions–and 
autonomy–because it does not rely on an external entity to satisfying its 
needs.

After finishing the evaluation process, the agent will select an adequate 
action to be executed. In the last step of evaluation the effects of all 
possible actions were anticipated based on the expected changes on the 
body state. The action with the best contribution for the agent’s overall 
body welfare will be selected as the one to be executed next. It is assumed 
that there is a set of built-in elementary actions that the agent can execute. 
After the selected action being executed, the changes in the environment 
will generate a new stimulus to be processed. 

The DARE architecture allowed the implementation of an autonomous 
agent, (i) where the goal definition results from the agent’s behaviour and 
needs, i.e., it is not imposed or pre-defined; (ii) where the agent is capable 
of quickly reacting to environment changes due to the perceptual level 
processing; (iii) where the agent reveals adaptation capabilities due to the 
cognitive level processing; and finally (iv) where the agent is capable of 
anticipating the outcomes of its actions, allowing a more informed process 
of decision making. 

However, as mentioned before, the link between emotions and 
decision-making seems particularly strong in the social aspects of human 
life, which is why some emotion theories, mainly in psychology, focus on 
the social aspects of emotion processes. The work presented in the next 
section tries to explore these notions and the importance of emotional 
physical expression on social interactions, as well as the sympathy that 
may occur in those interactions. The goal is to incorporate these concepts 
in MRS in order to improve the system efficiency and competence. 

1.6.2 Emotion-based MRS 

In what concerns emotion expression, it has been claimed that there is not 
another human process with such a distinct mean of physical 
communication, and more interesting it is unintentional. Some theories 
point out that emotions are a form of basic communication and are 
important in social interaction. Others propose that physical expression of 
emotion is the body preparation to act, where emotional response can be 
seen as a built-in action tendency aroused under pre-defined circumstances. 
This can also be a form of communicating to others what will be the next 
action. If the physical message is understood it may defuse emotions in 
others,establishinganinteractiveloop with or without actions in the middle.  
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The AI research concerning multi-agent systems relies mainly on rational,  
social and communication theories. However, the role of emotions in this 
field has been considered important by an increased number of researchers. 

Linked to expressing emotions is the notion of sympathy defined as the 
human capability to recognize others' emotions. This capability is acquired 
by having consciousness of our own emotions. Humans can use it to 
evaluate others’ behaviours and predict their reactions, through a mental 
model learned by self-experience or by observation that relates physical 
expression with feelings and intentions. Sympathy provides an implicit 
communication mean, sometimes unintentional, that favors social 
interactions.

In order to explore these concepts an extension of the DARE 
architecture for a multi-agent environment was developed [24]. The 
decision-making processes were extended for decision-making involving 
other agents. Agents represent others' external expression in order to 
predict their internal state, assuming that similar agents express the internal 
state in the same way (a kind of implicit communication). Sympathy is 
grounded on this form of communication, allowing more informed 
individual decisions, especially when these depend on others. On the other 
hand, it allows the agent to learn, not only by its own experience, but also 
by the observation of others' experience. The new DARE architecture also 
allows the modelling of explicit communication through the incorporation 
of a new layer, the symbolic layer, where relations between agents are 
represented and processed. 

The DARE architecture was applied to an environment that simulates a 
simple market involving: producer agents, that own products all the time; 
supplier agents, that must fetch products from producers or other suppliers 
either for its own consumption or for selling to consumers; and consumer 
agents, that must acquire products from suppliers for its own consumption. 
Agents are free to move around the world, interact and communicate with 
others. Their main goal is to survive by eating the necessary products and, 
additionally, maximize money by selling products. 

Fig. 1.29. shows a global view of the DARE architecture. Stimuli 
received from the environment are processed in parallel on three layers: 
perceptual, cognitive and symbolic. Several stimuli are received 
simultaneously, and they can be gathered from any type of sensor. 
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Fig. 1.29. Global view of the DARE architecture applied in a MRS environment 

The perceptual and cognitive analyses are similar to the ones described 
in sub-section 1.6.1. The novelty is mainly in the introduction of a new 
level of processing – the symbolic analysis.

The symbolic layer was introduced aiming at the capture of concepts 
involved in communication and sympathy. This layer has the same 
conceptual foundation of the cognitive layer in what concerns the 
modelling of the somatic marker hypothesis, allowing the same kind of 
adaptation and learning. In the symbolic layer those concepts are applied 
to more abstract information extracted from stimuli in order to i) establish 
communication between agents, ii) represent explicitly other agents goals 
and interactions and iii) trigger reasoning. This extension leads eventually 
to emergence of imitation behaviours. 

Besides possible imitation behaviours, this mechanism of observing 
expressions and actions of other agents also allows the agent to anticipate 
other agents' actions. Nevertheless, there is the possibility for the agent to 
make mistakes on the assessment of others' internal state. Depending on 
the application, an expression may not be directly mapped to a specific 
internal state but only to a set of internal states. Moreover, some changes 
of expression may not be a direct effect of the last action executed. 

Overall, the extension of the DARE architecture revealed an interesting 
performance in the dynamic multi-agent environment where it was tested, 
showing similar capabilities on individual decision-making, flexibility and 
learning as its previous version, and new abilities to model the social role of 
emotions. For instance, some human-like behaviours were observed when 
agents interact among each others, e.g., a stealing behaviour, when a  
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consumer agent has no money to buy products and the corresponding 
punishment behaviours by the other agents; an ordering behaviour, when a 
supplier does not have the product needed by a consumer, it tries to find 
another supplier or a producer that have the product in order to sell it later 
to the consumer agent that implicitly ordered it. 

1.7 Conclusions 

Cooperative Robotics within a Multi-Robot System is a modern research 
field, with applications to areas such as building surveillance, 
transportation of large objects, air and underwater pollution monitoring, 
forest fire detection, transportation systems, or rescue after large-scale 
disasters. In short, a population of cooperative robots behaves like a 
``distributed'' robot to accomplish tasks that would be difficult, if not 
impossible, for a single robot. In this case, besides all subsystem 
integration problems posed by the development of a single robot capable 
of performing non-trivial tasks, the presence of multiple, possibly 
heterogeneous, robots and the need of having them behaving cooperatively 
establish new research challenges.

Problems such as the development of functional and software agent 
architectures, distributed world modelling, task planning, cooperative 
decision-making and social cognition have been approached mainly by the 
AI community for multi-agent systems.  But, when a real multi-robot 
system is considered, many of the approaches developed by AI researchers 
have to be re-worked and new research topics as cooperative navigation, 
mutual localization and formation control emerge, as well as the problem 
of integrating continuous time and space with event-driven decision 
making and symbolic world modelling.

This chapter surveys several research problems addressed by the ISLab 
research group in the area of Multi-Robot Systems, building on AI 
concepts a Systems Theory standpoint. 

However, MRS is still a young field, with many exciting challenges. 
Even though some steps towards mature results, especially those that 
provide formal methods applicable to different problems, have been taken, 
some of them described in this chapter, much is till to be done. Among 
several interesting research problems, we list here those that appear as 
serious candidates for our future research: 

Cooperative Localization in MRS based on probabilistic methods, so 
as to capture the uncertainty in the observation of one robot by its 
teammates, as well as the self-localization uncertainty. Methods other 
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than the traditional Kalman filter and similar approaches should be 
sought, so as to avoid their well-known associated problems. This 
includes extensions to the Kalman filter and Monte-Carlo / Markov 
Localization like methods [14]. 
Robot Formation Guidance, Navigation and Control is required in 
several situations (e.g., to keep the team robots within line of sight so 
as to ensure a communication path, to distribute the robots in a given 
area while keeping some desired team topology) and is currently a 
very active research field, with applications to land, aerial and 
underwater robots, but especially to space robots, where multi-aperture 
telescopes can be built based on several sub-telescopes carried by 
robotic spacecrafts tightly keeping their relative distances and 
orientations, instead of large unfeasible monolithic solutions, 
achieving the same resolution in remote sensing. A particular 
interesting topic concerns non-rigid formations, especially robot 
formations deformable in the presence of obstacles or in the presence 
of near collision situations. 
In adversarial environments, modelling the opponent behaviour (e.g., 
using Hidden Markov Models) is, per se, an interesting problem. 
Furthermore, opponent models are of utmost importance to solve 
problems modelled as stochastic games [4]. 
Cooperative Reinforcement Learning is a vast field where we have 
already adventured, with results not reported here. The cooperation 
among robots from a team to explore an initially unknown 
environment raises several interesting questions, such as how to 
maximize learning minimizing communications, or what information 
should be shared (world models, policies, state evaluations?). Another 
approach is to model the problem as a stochastic game.  In adversarial 
environments, it is important to have a model of the opponent 
behaviour to reach desired equilibria where our team wins. But even in 
non-adversarial games the optimal solution for a team may be an 
equilibrium point that must be learned. 
Distributed Knowledge Representation and Reasoning under 
Uncertainty is a relevant research issue for developing multi-agent 
systems,especiallywhentheagents are real robots. An agent is typically 
situated in some environmentand usuallycarries are presentationor some 
priorknowledgeof it.Oneof itsgoalsshouldbe keeping the best possible 
representation of the environment given its a priori knowledge and 
observations it makes on the environment. However, as some aspects of
it are often unobservable and must be estimated indirectly, the relations 
among environment events are uncertain, the observations may be 
imprecise, ambiguous or noisy, and the agent might not have adequate  
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resources to observe or process all events, the reasoner’s task is not 
one of deterministic inference but rather uncertain reasoning.  One 
methodology that may be useful for this purpose is probabilistic 
reasoning based on Bayesian Networks. 
The mechanism of emotions seems to play two main roles: a 
decisional, influencing the way agents assess situations and make 
decisions, and a communicational, affecting the way agents express 
their internal state when confronted with their environment. In what 
concerns the decisional aspect the relevant issue is to determine 
whether the framework suggested by Damásio helps in the 
development of more competent agents. The experimental work with 
an agent equipped with the DARE architecture has shown some 
interesting characteristics: purposefulness, as the agent is capable of 
finding ways to fulfill its needs; self-preservation, as it is able to 
survive and circumvent threats; efficiency, as the mechanism of 
decision making is quick (in terms of computation); learning, as the 
agent is capable of learning useful associations which have improved 
its performance; flexibility, as the agent exhibits a different 
competence when faced with a differing instance of the environment. 
However, some aspects of this research have not yet been explored, 
namely: i) its application with multiple real robots, ii) allow agents to 
anticipate action effects on a long-range basis, and iii) incorporate 
rational (logical) inference mechanisms. 
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2.1 Introduction

In the last three decades, there has been a rapid increase in the develop-
ment of vision-based autonomous robots due to the advancement in com-
puter technology. The ability to achieve real-time image processing was 
once considered as a pipe-dream is now made possible. However, the chal-
lenge still remains in the area of extracting relevant navigational data from 
2-D image representations of the 3-D external environments that are robust 
against image distortions, occlusions and environmental conditions. De-
spite the challenge, autonomous robots today have found their way into our 
everyday life through commercially available robots such as autonomous 
vacuum cleaner robots, lawn mower robots, pool cleaner robots, robots 
toys [1] and prominently planetary exploration robots such as a robots se-
ries in the Mars Pathfinder project [2, 3]. These prominent examples of 
successful commercial and exploration robots are the results of thousands 
of researcher’s contributions worldwide.  

In general, vision-based robots must have a vision system to sense and 
observe the external environment. They may equip with additional sensors 
such as infrared, ultrasonic, laser and GPS to enhance their environmental 
perceptions. In contrast to vision systems, three major branches currently 
under intensive research are monocular, omnidirectional and stereo vision 
systems. Monocular and omnidirectional vision systems both consist of a 
single camera, while stereo vision systems have two cameras. The major 
difference among these vision systems is the way in which images are cap-
tured. Monocular and omnidirectional vision systems process single im-
ages obtained from a camera. Images obtained from the camera are 2-D 
images, which represent the 3-D external environment. As a result, depth 
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information cannot be recovered from these images alone. Normally, addi-
tional sensors are required to help recover depth information. Furthermore, 
the major difference between monocular vision and omnidirectional vision 
systems is in the camera arrangement. In monocular vision, the camera is 
mounted horizontally with a field of view less than 180degrees in front of 
the robot. Omnidirectional vision systems on the other hand, the camera is 
mounted vertically, pointed upward at a convex mirror [4, 5]. This ar-
rangement allows the camera to observe a 360 degrees field of view 
around the robot. However, the images retrieved have a much lower reso-
lution than in monocular vision systems. 

Stereo vision systems on the other hand are completely different to mo-
nocular and omnidirectional vision systems. They are inspired by human 
vision system and designed to mimic the functioning of human’s eyes, us-
ing a pair of images from two specially mounted cameras [6, 7]. Due to the 
vast nature of vision-based robots, this chapter limits to the discussion of 
monocular vision-based autonomous robots. 

The central idea to monocular vision-based robots is to be able to recog-
nise landmarks in the surrounding environment. Landmarks are environ-
mental features that are familiar to the robots, which serve as navigational 
aids. Upon successfully recognising a landmark, the robot is able to ap-
proximate its current position and derive an optimum path to reach its goal. 
This chapter describes a selective visual attention landmark recognition 
(SVALR) architecture that uses the concept of selective attention from 
physiological study as a means for 2-dimensional shape landmark recogni-
tions in complex clustered backgrounds. 

This chapter is written with a brief background in monocular vision-
based robots, then focusing on two neural networks, the adaptive reso-
nance theory (ART) and selective attention adaptive resonance theory 
(SAART) neural networks for 2-D shape recognitions. This leads to the 
development of the SVALR architecture and its application in monocular 
vision-based autonomous robots. A small robot is designed and imple-
mented to evaluate the SVALR architecture through real-time laboratory 
experiments.  

2.2 Monocular Vision-Based Robots 

In the area of monocular vision-based robot navigations, many approaches 
have been reported and classified into three distinct categories based on 
their level of dependency on a map of the external environment [8]; map-
dependent robots, map-building robots and map-independent robots. In 
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map-dependent robots, the robots are supplied with a map of the navigat-
ing environment priori to navigation. Similarly, map-building robots navi-
gate based on a map but the map is not given to the robot. The robots have 
to create their own map of the external environment using their sensors. 
The robots then use the constructed map to achieve goal driven tasks.  
Map-independent robots on the other hand, do not use a map. These robots 
have a control information database, where control instructions are associ-
ated with various stimuli in the environment. During navigation, the robots 
base on these stimuli and extract the pre-programmed control instructions 
for navigation. 

In general, vision-based robots have a vision system that perceives the 
external environments. There are five essential components in a vision sys-
tem of an autonomous vision-based robot [9]. 

Maps: The system requires some internal representation or knowl-
edge of the external environment in order to perform goal driven 
tasks.
Data Acquisition: The system collects images from a camera.
Feature Extraction: The feature extraction stage extracts significant 
features from input images such as edge, texture and colour.
Landmark Recognition: The system searches for possible matches 
between the features in the observed images and the expected land-
marks pre-stored in memory with respect to some preset criteria.
Self-Localisation: The self-Localisation stage calculates the robot’s 
current position as a function of detected landmarks and its previous 
position. The system then derives an optimum path for the robot to 
traverse to reach its goal.

2.2.1 Maps 

Maps are essential for navigating an environment and, therefore maps are a 
crucial element in autonomous robot navigations. Maps provide the robots 
with an essential navigational knowledge and awareness of the surround-
ing to guide the robot to desired locations. In the field of vision-based 
autonomous robots, there are essentially two major types of maps; geomet-
rical and topological maps. Geometrical maps provide details of metrical 
information (exact co-ordinates and distances) between objects found in 
the environment, usually in the form of CAD (computer aid design) mod-
els [10, 11]. Topological maps on the other hand are simpler representa-
tions of the environment. They are inspired by human navigational maps. 
The environment is represented in a graphical form, which consists of 
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nodes and arches [12, 13], where nodes represent significant entities in the 
environment and arches represent their relationships. 

2.2.1.1 Geometrical Maps 

There are many approaches to geometrical maps including CAD descrip-
tions of the environment, occupancy maps and vector field histograms. 
CAD representation of geometrical maps is a system of co-ordinate and 
metrical information of objects found in the environment. Originally, geo-
metrical maps were a 2-D CAD [10, 11] representation of the environment. 
Lebegue and Aggarwal later developed an automatic generation of CAD 
model [10, 14]. The robot uses a single camera to capture a sequence of 
images of a structured indoor environment. The robot constructs a CAD 
model of that environment based on the captured images. Alternative rep-
resentations of geometrical maps are occupancy maps. The occupancy map 
represents the environment using a 2-D grid, where objects in the envi-
ronment are represented by a 2-D projection of its volume into a horizontal 
plane [15]. The idea of an occupancy map was further extended by Boren-
stein, who developed a “Virtual Force Fields” map [16]. The environment 
is represented by a certainty grid where each cell has a certainty level that 
represents the certainty that the cell has been occupied [17]. 

2.2.1.2 Topological Maps 

The topological maps are inspired by the way in which human navigates. 
One does not need to know the exact co-ordinates of every object in the 
surrounding to be able to successfully navigate an environment. Re-
searches in Physiological studies have indicated that human selectively pay 
attention to significant and distinct feature in the environment which ap-
pears at critical points along the navigational route. These distinctive fea-
tures are ones that human navigator tends to remember. This concept is 
modelled in topological maps [9, 12, 18]. Topological maps are much eas-
ier to build and have a graphical form with interconnected nodes and 
arches. Each node represents a distinct entity in the environment and arcs 
represent their relationships. 

2.2.1.3 Integration of Topological and Geometrical (TG) Map 

There are advantages and disadvantages for both topological and geomet-
rical maps. Topological maps are much easier to build and they provide 
sufficient and essential information for navigation.  However, topological 
maps fail to recognise nodes, which are previously visited [8]. Geometrical 
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maps on the other hand, contain metrical information that provides accu-
rate and efficient autonomous robot navigation. However, geometrical 
maps are harder and costly to build. The construction of a metrical rich 
geometrical map of an outdoors dynamic environment is almost impossi-
ble. In general, geometrical maps are limited to indoor robot navigations. 

A number of researchers recently proposed methods for integrating 
geometrical and topological maps to utilize the advantages of both topo-
logical and geometrical maps. The idea is investigated by Yung and 
Zenlinsky [19], Tomono & Yuta [20], they developed an integration of  a 
topological and geometrical map named a T-G Map. The T-G is a global 
topological map built by connecting local geometrical maps. It consists of 
nodes that represent geometrical entities, and arches that represent rela-
tionships between entities. Each geometrical local entity contain geometric 
information of objects in a local region of the environment such as doors, 
desks or a room for an indoor environment, and buildings, houses or trees 
for outdoor environment [21], [22]. Similarly, another recent contribution 
for integrating geometrical and topological maps is proposed by Mararka 
and Kuipers, which integrates a CAD model and a topological map of the 
environment [23]. The overall navigating environment is divided into dis-
tinct regions, such as rooms and hallways. A CAD map is used to provide 
metrical information of objects found in each room. A collection of rooms 
is used to create a topological map for high-level path planning. 

2.2.2 Data Acquisition 

Nowadays, image processing still requires significant processing power 
and considers as a slow process, even with fastest computer available. Fur-
thermore, the construction of a robot platform that is able to carry a desk-
top computer can be quite expensive. Therefore, the designs of autono-
mous research robots are targeted at using remote autonomous robot 
navigation. Generally the autonomous robots are designed with the image 
module implemented off-board the robots [24], with video and data 
streams transmit between a local PC and the robot via wireless communi-
cation links. The robot is to be operating within the wireless communica-
tion range. However, other well funded research groups are able to build 
large robots with image processing capabilities implemented on-board the 
robot.

Regardless of the platform, the data acquisition process is similar. It in-
volves the collection of raw visual information from a camera. In general 
the data acquisition process consists of a video camera (normally a
CCD camera), which is connected to a frame grabber in the PC. The frame 



70      Q.V. Do et al.  

grabber slices the real-time video stream into frames, normally at a rate of 
30 frames/sec but varies from different frame grabber hardware. A soft-
ware module then processes the incoming frames to induce control com-
mands for the robot. 

2.2.3 Feature Extraction 

Once the system has successfully acquired image frames from a real-life 
video stream, the main purpose of the feature extraction stage is to extract 
relevant information for the landmark recognition stage. Raw images ob-
tain from standard CCD cameras are normally in colour (red, green, blue) 
or gray-level (black and white) images. The RGB colour images can be 
converted to other colour space such as YUV and HSV colour spaces. De-
pending on the format of raw images use, appropriate techniques have 
been developed to extract relevant information, which is used to match 
with previously learned features stored in memory. In general, raw images 
are subjected to a pre-processing stage, which involves some means of 
domain transformations, edge detections and image segmentations for ex-
tracting relevant edges, lines, corners and shapes. This information are ex-
tracted based some pre-set criteria or guided by other stages in the vision 
system.

2.2.4 Landmark Recognition 

Using landmark recognitions for navigation is a concept that uses by hu-
man navigator. It indicates that only regions or objects present along a 
route that are distinctive from the background and appear at critical point 
long the route needed to be memorised, in order to successfully navigating 
that environment. For instance, objects around a point where the navigator 
needs to make a turn. Thus landmarks serve as navigational references 
with respect to a map of the environment. The navigator’s ability to recog-
nise landmarks enables the navigator to determine their current position in 
the environment and able to make intelligent decisions to reach desired lo-
cations. Similarly, landmarks are used in the same way in autonomous ro-
bots. Thus the landmark recognition stage plays a critical role in a vision 
system. It governs the system ability to recognise features in the surround-
ing environment that are essential to navigation. 

Depending on the application domains, different environmental features 
are chosen to serve as landmarks. The key to landmark selections is to se-
lect environmental features that minimises image distortions with respect 
to scale, rotations, environmental conditions and object occlusions. Thus 
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landmarks are designed to standout from other objects in the environment 
to aid the landmark recognition stage. Nevertheless, virtually anything in 
the environment can be chosen to serve as landmarks and categorised in 
three distinct categories of landmarks: point, scene and shape based land-
marks.

The point-based landmarks are distinct points or group of points in the 
image that are purposely chosen to serve as landmarks. The central idea is 
to search or track the appearance of point-based landmarks in the incoming 
images over time. In general these point-based landmarks are corners, van-
ishing points and points with distinct colour and contrast in the environ-
ments.

Unlike point-based landmarks, scene-based landmarks consist of infor-
mation of an entire image as a landmark. The robot may traverse a route 
and store a sequence of images along the route, memorising the environ-
ment. Due to memory limitations, the memorised images are reduced to a 
relatively small size compared to the full size images. Alternatively, the 
system only memorises images at critical points along the traversed route, 
such as situations where the robot is about to make a turn or encounter a 
distinctive event. The stored images are associated with control commands 
that focus on leading the robot to its final position. 

For instance, a scene-based landmark recognition system is proposed by 
Matsumoto et al [25], which operated in two modes: a recording run and 
an autonomous run. In the recording run, the robot used a camera to cap-
ture a sequence of images at a fixed time interval. These images were used 
to construct a database or ‘memory’ of all the images observed during 
learning trial. Each image in the database is associated with motion com-
mands that led the robot from the current position to the final destination. 
This is called View-Sequence-Route Representation (VSRR). In autono-
mous run, the robot compared each input image with the memorised im-
ages stored in memory to determine its current position. 

Shape-based landmarks on the other hand, are 2-D objects in the envi-
ronment, which are purposely chosen to serve for navigational aids. The 
range of objects use spread from small toys in indoor environment to 
shapes of houses and buildings in outdoor environment. The objects se-
lected are domain dependent. They are generally chosen such that the ob-
jects are standout from the other objects in the background to aids the 
landmark detection stage. For instance, Cheng and Zelinsky used an image 
processing hardware to recognise circular objects in clean background 
such as tennis and soccer balls [26].  Luo et al. designed landmarks with 
retro-reflective material so that only desired landmarks are visible in the 
observed image due to the reflection of light [27]. Furthermore Li [28] 
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used numerical signs (0-9) as landmarks which placed along the route. A 
genetic algorithm is used to recognise these numerical landmarks. 

2.2.5 Self-localisation 

The answer to the question “Where am I” is extremely important for mo-
bile robots to achieve many independent tasks [29]. The answer to this 
question lies in the self-localisation process. Thus self-localisation is 
essential to robot navigation. It provides the pose and orientation of the 
robot at any given time during navigation with respect to the global 
environment. Upon successfully determining the pose and orientation, the 
robot generates or corrects an existing path in order to reach the final 
destination. This is known as path planning. It is a high level process in 
which the robot bases on its current knowledge and situation awareness of 
the surrounding environment to formulate an optimum path for the robot to 
follow to reach its goal. This optimum path is revised every time the robot 
recognises a landmark, as its current position and the environment are 
constantly changing during navigation. Some of the self-localisation 
methodologies are discussed in further details. 

The most basic approach to robot self-localisation is dead-reckoning 
methods. The robot is equipped with internal sensors to measure the 
amount of wheel rotations, which is directly related to the robot travelled 
distance. The robot’s current pose and orientation are approximated with 
respect to its initial position. However, the measurements of the amount of 
wheel rotations suffer significant error due to wheel slippage and errors in 
data measurements. Eventually, the robot will lose track of its position and 
the self-localisation will fail [30] as these errors are accumulative. In order 
to overcome this problem, external sensors are used to gather extra infor-
mation to correct the accumulative errors once it reaches a pre-defined 
threshold. As suggested by Hardt et al [31], self-localisation using dead 
reckoning method can be improved with the addition of gyroscopes, mag-
netic compass and ultrasonic sensors [32]. Alternatively combining vision 
sensor and dead reckoning [33], [29].  

2.3 Real-time Visual 2-D Landmark Recognitions 

This section describes the development of a 2-D visual landmark recogni-
tion architecture. It is based on two neural networks, adaptive resonance 
theory (ART) and selective attention adaptive resonance theory (SAART).  
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The new architecture is named selective visual attention landmark recogni-
tion (SVALR). It is developed based on the following assumptions: 

Single landmark detection (only one landmark is detected at a time). 
Landmarks are not occluded.
Landmark recognition is based on contour or edge information.
Single 2-D objects are used as landmarks. 

2.3.1 Adaptive Resonance Theory (ART) 

ART was originally introduced as a physical theory of cognitive informa-
tion processing in the brain [42, 43]. The theory was derived from a simple 
feedforward real-time competitive learning system called Instar [47], in re-
sponse to a problem that real-time competitive learning systems face the 
plasticity-stability dilemma. The dilemma is that a real-time competitive 
learning system must be plastic to learn significant novel events, while at 
the same time it must be stable to prevent the corruption of previously 
learned memories by erroneous activations. The adaptive resonance con-
cept suggests that only the resonant state, in which the reverberation be-
tween feedforward (bottom-up) and feedback (top-down) computations 
within the system are consonant, can lead to adaptive changes. Since the 
introduction of ART in the late 1970’s and early 1980’s a large family of 
ART based artificial neural network architectures have been proposed. 
These include: ART-1 for binary inputs [44], ART-2 for binary and analog 
inputs [45], ART-3 for hierarchical neural architectures [46], ARTMAP 
for supervised self-organisation of memory codes [48, 49] and various 
other versions. 

The ART model shown in Fig. 2.1 embeds bottom-up and top-down 
adaptive pathways in a competitive network that containing two subsys-
tems that regulate learning: (i) an attentional subsystem where top-down 
expectancies (recalled memories) interact with the bottom-up information; 
and (ii) an arousal (orienting or vigilance) subsystem that is sensitive to the 
mismatch between the two. Interactions between these two subsystems en-
sure that memory modification occurs under exceptional circumstances. 
Memory can only be modified when an approximate match has occurred 
between the neural pattern at the input and the resultant pattern across F1. 
This state is called adaptive resonance.
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Fig. 2.1 Schematic of the ART model. F0, F1 and F2 are competitive neural Fields 
whose neural pattern of activity is represented by x1

(0), x1

(1)  and x1

(2) respectively. If 
x1

(0)  and  x1

(1)  match above the preset threshold level then resonance is estab-
lished between F1 and F2 and this leads to learning in the memory pathways be-
tween the active cells in F1 and F2 

2.3.2 Limitation of ART 

The 2-D pattern recognition problem illustrates in Fig. 2.2 has exposed a 
limitation of ART’s attentional subsystem. Considers a problem of recog-
nising a 2-D shape in a cluttered input, it can be demonstrated via com-
puter simulations [41] that if a conventional ART model (such as ART-2 
or ART-3 neural network) has previously learned a 2D pattern, it will not 
be able to recognise that pattern when it is presented in a complex back-
ground of other patterns and clutters. In other words, the ART networks 
learn pattern x1. as shown in Fig. 2.2(a). In Fig. 2.2(b), the pattern x1 is now 
presented in a cluttered background. This is transferred to Field F1 to acti-
vate F2. In Fig. 2.2(c), before the network reaches the steady state, the top-
down memory of the learned pattern is transferred to F1 where it replaces 
the previous activity in F1. A mismatch is detected between F0 and F1 and 
the network is reset leading to the recognition failure of x1 in input x2.

Attentional
subsystem

Adaptive bottom-up and 
top-down   
memory pathways 
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  Fig. 2.2 illustrates the processing stages of the conventional ART model.  
As shown, whenever Field F0 is activated by an input pattern in which the 
known pattern is embedded, the network does not have the capability to se-
lectively pay attention to the known portion of the input. Thus, even if the 
correct top-down memory is activated, the ART model fails to match it 
with the input because it compares the whole pattern across F0 with the 
whole pattern across F1. The next section shows how the model can be ex-
tended to enable selective attention to known portions of the input pattern. 

Fig. 2.2. Illustration of processing stages in a conventional ART model 

2.3.3 Selective Attention Adaptive Resonance Theory  

Instead of resetting the ART network as in Fig. 2.2, Lozo [42, 43] has pro-
posed that the clutter problem can be solved by extending the capability of 
the attentional subsystem with an additional, functionally different set of 
top-down feedback pathways. These new pathways run from F1 to F0,
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allowing the recalled memory across F1 to selectively focus on the por-
tions of the input, which it can recognize. This is illustrated in Fig. 2.3. 
The new model is named selective attention adaptive resonance theory 
(SAART) neural network. The feedback pathway from F1 to the input 
Field F0-A is modulatory, and acts on the signal transmission gain of the 
bottom-up input synapses of F0-A (and F0-B). Thus, each cell in F1 sends 
a top-down facilitatory gain control signal to the input synapse of the cor-
responding cell in F0-A. Lateral competition across F0-A will suppress the 
activity of all neurons whose input gain is not enhanced by the correspond-
ing neurons in F1. These feedforward-feedback interactions enable selec-
tive resonance to occur between the recalled memory at F1 and a selected 
portion of the input at F0-A. Because the facilitatory signals and the com-
petitive interactions in F0-A do not act instantaneously, the resonant steady 
state develops over a period of time during which the network may be in a 
highly dynamic state. To follow the progress of these interactions, it be-
comes necessary to measure the degree of match between the spatial pat-
terns across the Fields F0-A and F1 as well as the time rate of change of 
this match. To protect the long-term memory from unwarranted modifica-
tion by non-matching inputs during these rapid changes, long-term mem-
ory is updated when the system is in a stable resonant state. Similarly, the 
certainty of the network's pattern recognition response increases as the 
steady state is approached. Thus, what may initially be taken as a bad 
mismatch may eventually end up as a perfect match with a selected portion 
of the input pattern. The unmatched portion of the input will appear across 
Field F0-B, where it has direct access to the bottom-up memory (this fea-
ture of the model also enables familiar inputs to activate their memory di-
rectly by bypassing Field F1). 

2.3.4 Limitations of SAART 

The SAART neural network has demonstrated through numerous simula-
tion by Lozo [41, 50-52] to be able recognise 2-D shapes when present in 
clustered backgrounds. However, the SAART neural network is a dynamic 
network and therefore very computationally intensive. Thus it is incapable 
of providing real-time landmark recognitions for robotics applications. 
  In order to apply SAART into robotics applications, it has to be re-
engineered to achieve real-time landmark recognitions. The central con-
cept to the SAART neural network is the addition of the modulatory top-
down feedback pathways into the existing ART network, for selectively at-
tending to relevant input data. Using this concept in combination with
conventional image processing architecture a new landmark recognition 
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architecture is developed. The new architecture is named selective visual 
attention landmark recognition (SVALR) architecture. The following sub-
sequences describe in details the development of the SVALR architecture. 

Fig. 2.3. Schematic of the SAART neural model 

Modulatory top-
down feedback 
pathways
(synaptic gain 
control)
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2.3.5 Selective Visual Attention Landmark Recognition 
Architecture

The prominent characteristic of the SVALR architecture lies in the incor-
poration of selective visual attention in conventional image processing ar-
chitecture. This enables architecture to selectively attending to relevant 
while ignoring irrelevant input data. As a result, enables the SVALR archi-
tecture to reliably achieve object background separation at the feature ex-
traction stage, which leads to the ability of visual landmark recognitions in 
cluttered backgrounds. Selective visual attention is implemented using a 
mechanism named memory feedback modulation (MFM). The SVALR ar-
chitecture is illustrated in Fig. 2.4. 

Fig. 2.4. The selective visual attention landmark recognition architecture 

2.3.5.1 Memory Selection 

The SVALR architecture recognises visual landmarks based on template 
matching, where an input pattern is matched with a pre-stored memory im-
age of the target landmark. Two images are stored in memory for each vis-
ual landmark, a memory image and binary memory filters (BMF). Both 
images are considered as prior knowledge of the system about an external 
environment. Memory images are used in the recognition stage, while 
BMF filters are used in the MFM mechanism. These will be discussed in 
later sections. 

Pre-Attentive
Stage

Landmark
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Memory      
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Each landmark has its own corresponding memory image and BMF fil-
ter. There are three steps involved in creating memory images and BMF 
filters. The first step is to obtain a clean gray level image of objects that are 
chosen to serve as visual landmarks (place each object on a clean back-
ground with high level of contrast). The landmark must be adjusted to fit 
into a memory image of size 50x50 pixels by varying the distance between 
the camera and the chosen landmark. The second step is to apply Prewitt 
edge detection to each gray level image to produce an edge image of each 
landmark shown in Fig. 2.5(b). These images are used as memory images. 
The third step is to apply a small threshold to the Prewitt edge images us-
ing eq.2.1 to produce BMF filters as show in Fig. 2.5(c). 
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),(
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 (2.1) 

Where E(i,j) is the Prewitt edge detected image, is a small threshold and 
F(i,j) is the BMF filter. 

Fig. 2.5. Samples of objects used as Landmarks. (a) Gray level image of land-
marks in clean backgrounds. (b) Memory images and (c) Binary memory filters 

2.3.5.2 Memory Feedback Modulation Mechanism 

The core concept of the SVALR architecture is the memory feedback 
modulation (MFM) mechanism. The MFM mechanism has the ability to 
suppress irrelevant edge activities and enhance relevant activities in the

(a)

(b)

(c)
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input images, achieving object background separation at the feature extrac-
tion stage. This is achieved by selectively amplifying relevant regions in 
the input image using a BMF filter. This process is selectively guided by 
feedback information from memory using eq.2.2.

)),(*),((),(),( jiFjiSGjiSjiEx  (2.2) 

Where F(i, j) is the feedback BMF filter, S(i, j) is  a region within the in-
put image, Ex(i, j) is the modulated image - the output of the feature ex-
traction stage and G is a gain control 

Notice that a BMF filter contains approximately 20% of high value pix-
els that describe the shape of a landmark. Therefore the edge activities in 
the BMF filter are used to selectively amplify pixels that corresponding to 
the landmark shape in the input image. Input pixels that have elementary 
alignment with active pixels in the MBF filter will experience high ampli-
fication. The amount of amplification is controlled by the gain control, G 
of eq.2.2. Similarly, input pixels that have elementary alignment with non-
active pixels in the MBF filter will experience no amplification as the term 

),(*),( jiFjiS  in eq.2.2 equal to zero. The regions that receive no am-
plification are potential background clutters. These background clutters are 
removed by a lateral completion.  The lateral completion between pixels 
in the modulated image, Ex(i,j) is achieved by  L2 normalisation. During 
the competition, high value pixels are experiencing a small amount of sup-
pression by the smaller value pixels, while small value pixels are experi-
encing larger suppression from large value pixels simultaneously. Thus, 
pixels with small value will be suppressed to an extremely low level. If 
they are suppressed below a preset threshold, they are discarded using 
eq.2.3.

The prominent effect of the MFM mechanism is achieving object back-
ground separation. This is further illustrated in Fig. 2.6, where a selected 
input region in the input edge image, containing the target landmark em-
bedded in a cluttered background. If this region is compared directly with 
the memory it will not result in match due to background clutters, the sys-
tem will fail to recognise the target landmark. However, if this region un-
dergoes memory feedback modulation to obtain object-background separa-
tion, obtaining a clean image, Ex(i,j), of the landmark without background 
clutters as shown at the bottom of Fig. 2.6, this will result in a perfect 
match with memory. 
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Where Ex(i, j) is the normalised form of the modulated region and  is a 
small threshold 

2.3.5.3 Landmark Recognition Stage 

The landmark recognition stage matches each normalised region, Ex(i,j) 
with the corresponding memory image. The degree of match between the 
input region Ex(i,j) and the memory image is measured using the cosine 
angle between two 2D arrays. The equation used for the comparison is 
shown in eq.2.4.
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Where Ex(i,j) is the selected normalised input region, M(i,j) is the memory 
image, is a small constant to prevent the equation from divided by zero, 
when both Ex(i,j) and M(i,j) are blank images. 

Fig. 2.6. The memory feedback modulation mechanism 

The advantage of using the cosine between two images is that it pro-
vides a degree of match in a range from 0-1, where 1 represent 100% 
match. This makes it easier to set a match threshold. However, with every 
advantage there is an encounter disadvantage. It is found that by using the 
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cosine angle between two images results in a high degree of match be-
tween planar regions in the input image and the memory image. This is due 
to the fact that planar regions in the input image are flat surfaces such as 
walls and floors. These regions have very low edge activity in the input 
edge image. Since the majority of pixels in the memory image are low 
value pixels, with approximately 20% of the pixels are high value pixels 
that describe the shape of a landmark. It is clear that there is a high level of 
similarity between the memory image and planar regions in the input im-
age. Furthermore, when applying memory feedback modulation pixels in 
the input planar regions that have elementary alignment with active pixels 
in the BMF filter will be amplified and become strong edges. Thus, the 
comparisons between memory and these planar regions resulted in a high 
degree of matches leading to fault landmark detections as illustrated in Fig. 
2.7(d).

In order to overcome the fault matches in planar input regions, an addi-
tional vertical shift component is introduced into the MFM equation, 
eq.2.2. The new memory feedback modulation equation is shown in eq.2.5.
By carefully selecting the value for the vertical shift in the memory feed-
back modulation equation, this reduces the system sensitivity toward input 
planar regions and at the same time maintaining the overall correlation be-
tween the input image and memory as illustrated in Fig. 2.7(e). 

),(*1),(),( jiFGjiSjiEx  (2.5) 

Where  is a global vertical shift for reducing the system sensitivity in 
planar regions in the input image. 

2.3.5.4 Landmark Searching Process 

The searching process of the SVALR architecture is based on window-
scan searching mechanism illustrated in Fig. 2.8(a). The searching process 
is initially started at the top left corner, with a search window of size equal 
to the size of the memory image. This search window slides cross the im-
age horizontally (horizontal scan), upon completion the search window 
moves down vertically by one pixel and the horizontal scan repeated until 
every pixels position is searched. As the search window slides across the 
image, regions of 50x50 pixels are extracted for landmark recognition. The 
advantage of this searching method is that it ensures that the landmark 
cannot be missed if the landmark is in the image. However, the disadvan-
tage of this searching method is that it is computationally intensive. In or-
der to reduce the computational requirements, this search method is
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extended to incorporate a concept of pre-attentive stage in human visual 
system to obtain a fast searching mechanism. 

Fig. 2.7. System high sensitivity in planar regions (a) Gray-level input image, (b)
Memory image and BMF filters, top and bottom respectively (c) edge input image, 
(d) High match obtained in planar regions and (e) System improvement with the 
addition of the global vertical shift 

Human visual system tends to pay more attention to the most “eye-
catching” regions. One tends to focus on regions of most conspicuous and 
highly features regions first. This suggests that human visual system per-
form objects recognition in two stages; a pre-attentive stage and an atten-
tive stage [53, 54]. The pre-attentive stage is a quick, effortless process 
that identifies and allocates computational resources to the most relevant 
regions in the visual input. The attentive stage, on the other hand, is a 
slower and thorough process, which identifies and understands the physical 
features in the visual input.  

The developed pre-attentive searching mechanism models the pre-
attentive processing stage of human visual system. Its core task is to selec-
tively allocate available computational resource to the relevant regions in 
the input image. The overall pre-attentive stage is illustrated in Fig. 2.8(b). 
The effectiveness of the pre-attentive stage depends on the determination 
of potential regions (PR) [55]. There are two steps involved in determining 
PR regions. The first step is to determine the regions of interest (ROI). The 
knowledge of edge activities in the pre-stored memory images are used to 
set a ROI threshold, such that ROI regions are of the same size as the 
memory image and have edge activities greater than the ROI threshold. 

(a) (b) (c) 

(d) (e)

Match
94%

Match 95% Fault matches  
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The ROI threshold is calculated based on the knowledge of the landmark 
stored in memory. The following steps are used to determine the ROI 
threshold:

Calculate the number of significant pixels within the memory image 
pixels with activity greater than 20% of the maximum pixel value is 
considered as significant pixels. 
The ROI threshold is set at 50% of the total number of significant  
pixels.

Fig. 2.8. The search mechanism. (a) The basic window-based search mechanism.   
(b) The pre-attentive landmark searching mechanism 
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ROI regions are further processed to determine whether they have a po-
tential of matching with the memory image based on a signature threshold. 
The signature threshold is calculated from unique regions. These unique 
regions are smaller regions within the memory image that represent the in-
ternal unique features of each landmark. These regions are fixed regions 
and unchanged from a robot field of views as illustrated in Fig. 2.9. The 
edge activities in the unique regions are calculated to determine a land-
mark signature threshold. The total number of significant pixels in all of 
the selected unique regions is set as the signature threshold. The ROI re-
gions that satisfy the signature threshold will be considered as potential re-
gions and will be promoted into the attentive stage, where they are sub-
jected to intensive processes for landmark recognition. Other ROI regions 
are discarded. 

Fig. 2.9. Memory unique regions identification 

2.4 Mobile Robotics Applications 

This section describes an implementation of a monocular vision-based 
autonomous robot, which is used to demonstrate the applicability and ro-
bustness of the SVALR architecture. An additional extension to the 
SVALR architecture named SMIS mechanism is developed to cope with 
image distortions, size and view invariant real-time landmark recognitions. 

2.4.1 Robot Navigational Topology 

The navigational topology used in this robot mimics the way in which hu-
man navigates. One does not need a detailed geometrical map of the envi-
ronment to successfully navigating an environment. Instead only distinc-
tive things or infrastructures at critical points along the route are 
memorised. These features are essential to navigations and are known as 
landmarks. This is also known as topological navigations. 

Unique Regions 
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In order to use the concept of topological navigation, a topological map 
is required to be built and given to the robot prior to navigation. The con-
struction of the topological map involves the placement of the selected 
landmarks in arbitrary locations in the laboratory, with measurement of 
their relative distances and directions. The locations of landmarks are de-
noted as nodes, where relative distances and directions are represented by 
arrows. This is illustrated in Fig. 2.10. Each node has its own correspond-
ing memory image pre-selected as shown in Fig. 2.5.  

Fig. 2.10. A simple topological map consists of three landmarks

2.4.2 Robot Constructions 

The robot has been designed and implemented in considerations as a proto-
type system with minimal cost. This research has a potential to be imple-
mented on a larger scale outdoor robot by the Defence Science and Tech-
nology Organisation (DSTO), which will use real-life outdoor landmarks 
such as cars, road signs, trees, buildings and houses. 

Therefore, the robot is designed and constructed based on an existing 
framework of a small wireless remote control toy car with additional elec-
tronics hardware. On-board the robot, there are a PC/104 AMD GX1-300 
MHz embedded PC with a serial 4-ports extension module, a TCM2 mag-
netic compass and an odometer to measure the robot’s heading with re-
spect to the Earth’s magnetic field and distance travelled by the robot re-
spectively. The embedded PC is running under a Linux operating system. 
Additionally, the robot is equipped with three GP2YA02Yk infrared range 
sensors for obstacle detection. The hardware implementation of the robot 
is shown in Fig. 2.11. 

The navigational algorithm is implemented on-board the robot using 
C++ programming language. The algorithm has a motor control selector 
and three distinct independent behaviours: navigation, obstacle detection 
and self-localization behaviours as illustrated in Fig. 2.12. The navigation 
behaviour controls the robot’s speed and heading based on the compass 
and odometer readings. It ensures that the robot navigates in the direction 
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given in the provided map. Upon a detection of an obstacle using infrared 
sensors, the robot is stopped. Future work will implement an obstacle 
avoidance behaviour. The self-localization behaviour is executed whenever 
a pre-specified visual landmark is detected. 

Fig. 2.11. The monocular vision-based autonomous robot 

Fig. 2.12. The robot navigation control block diagram 
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2.4.3 Landmark Recognitions 

In autonomous robot navigations, it is critical that the vision system is able 
to achieve reliable and robust visual landmark recognitions in real-time. 
Fault landmark recognitions will lead to ‘the robot is lost’ situation, where 
the robot loses its perception and its current location in the environment. In 
general, fault recognitions are cased by image distortions. Therefore, the 
challenge is to develop techniques to overcome image distortions due to 
noises introduced through wireless video links. Furthermore, as the robot 
navigates the size and shape of landmark are changing constantly. These 
changes are directly proportional to the robot’s speed and the robot’s ap-
proaching angles with respect to the target landmark during navigation. 
The following sections describe techniques used to overcome image distor-
tions, and changes in landmark’s size and shape. 

2.4.3.1 Distortion Invariant Landmark Recognition 

The SVALR architecture recognises landmarks based on their shapes. 
Therefore if the shape of a landmark is affected by noises causing image 
distortions, changing the size and shape of the landmark will result in a 
recognition failure. The architecture employs two concepts named band 
transformation and shape attraction to overcome image distortions and 
small change in the landmark’s size and shape. 

The central idea to band transformations is to thicken the shape of the 
landmark by means of a Gaussian filter [56] or an averaging mask [57] us-
ing eq.2.6. This will produce a blurred edge image. The blurred image is 
then subjected to a shape attraction process. The shape attraction process 
uses the memory template to selectively attract the corresponding edge ac-
tivities in the blurred shape and project them into the original undistorted 
shape. The concept of shape attraction is further illustrated in Fig. 2.13. 
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Where IB is the burred image, r & c are the size of the averaging window 
and I is the input edge image. 

2.4.3.2 Sizes and Views Invariant Landmark Recognition 

The SVALR architecture requires the recognition of landmarks that are 
continuously changing in size and shape during navigation. This leads to 
the development of a simultaneously multiple-memory image search 
(SMIS) mechanism. This mechanism is capable of providing real-time size 
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and view invariant visual landmark recognition [58]. The central idea to 
the SMIS mechanism is to pre-store multiple memory images of different 
landmark’s sizes and from different views and compares each input image 
with multiple memory templates. 

Fig. 2.13. The shape attraction process 

Through experiment it was found that the landmark’s size is directly 
proportional to the distance between the landmark and the robot. As a re-
sult, the shape attraction method is capable of providing a small detectable 
region for each memory image stored in memory as illustrated in Fig. 
2.14(a). The first memory image is taken from a distant, K1, away from the 
landmark. This provides a detectable region around the location, X1, and a 
detectable angle, . Thus, multiple memory images can be selected with 
adjacent detectable regions joined together to provide landmark recogni-
tion over larger distances and hence larger changes in landmark’s size. 
Therefore, by storing multiple memory images of different landmark’s 
sizes, with detectable regions joined together will provide the system with 
full size invariant landmark recognitions. The numbers of memory images 
required depend on the rate of change in the landmark’s size, which is di-
rectly proportional to the robot’s speed. 

Similarly, each memory image provides a detection angle, . Therefore, 
multiple views covering 3600 around the landmark with the angle between 
these views equal to  are stored for each landmark to provide full view 
invariant landmark recognitions as shown in Fig. 2.14(b). The number of 
views required to cover 3600 are given by the eq.2.7.
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No. of views = 3600/  (2.7) 

Fig. 2.14. The SMIS mechanism for achieving size and view invariant landmark 
recognitions. (a) Size invariant landmark recognition using two memory images. 
(b) View invariant landmark recognition using views memory images 

  The central idea of the SMIS mechanism is to search for multiple mem-
ory images simultaneously. Thus, it allows the SVALR architecture to rec-
ognise landmarks of different sizes and from different views. However, the 
SMIS mechanism is very computational intensive as many views are 
evaluated simultaneously. Therefore the SMIS mechanism employs a view 
selector to select a limited number of views to use in the searching process 
for reducing the computational requirement. The view selector determines 
appropriate views based on the robot’s heading, which is provided by the 
magnetic compass on-board the robot via wireless data link, illustrated on 
the top in Fig. 2.14(b). This reduces to only the current view and two left-
right adjacent views are activated instead of simultaneously searching 
through all the views associated with a landmark. 
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2.4.3.3 Light Invariant Recognition 

The SVALR architecture processes input images based on pre-processed 
edges or boundary information of an edge detection stage. Therefore, the 
efficiency of the architecture is directly depending on the quality of edge 
information obtained. Common edge detection methods such as Sobel, 
Prewitt and Robinson edge detections, all detecting edges based on the dif-
ferences between the sums of pixels values on the left and right regions of 
a target pixel. This is generally achieved by applying an appropriate edge 
detection convolution mask. The strength of the detected edges using these 
methods is directly affected by the amount of light in the environment. 
Changes in light intensity have an immediate impact on the strength of 
edges obtained at the edge detection stage. This section describes a new 
method for edge detection named contrast-based edge detection. This edge 
detection method enables the SVALR architecture to recognise landmarks 
under different lighting conditions. 

The contrast-based edge detection is developed based on Grossberg’s 
theory on shunting-competitive neural networks [59, 60]. The equation for 
dynamics competition of biological neurons is given in eq.2.8.  Where A 
is the rate of decay, B and D are some constant that specify the range of 
neurons activities. Eij and Cij are excitatory and inhibitory inputs respec-
tively.

ijijijijij
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At equilibrium 0
dt

dxij , there exists a steady state solution for the  

neuron, ijx  given in eq.2.9.
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In order to design the contrast-based edge detection, the Cij  and Eij

terms are replaced with the left and right columns of an edge detection 
mask instead of the excitatory and inhibitory inputs in dynamic competi-
tive neurons as shown in Fig. 2.15. Since B and D are constants. Let B & 
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D =1, this gives the contrast-based edge detection equation as shown in 
eq.2.11.

||||

||||
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ij
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x                           (2.11) 

Where A is a small constant preventing the equation from dividing by zero 
and Iij is the input gray level image. Notice that both Sobel and Robinson 
edge detection masks can be used in the contrast-based edge detection. 

In general, the contrast-based edge detection uses a conventional edge 
detection convolution mask for detecting the difference between 
neighbouring left and right regions of a target pixel. The calculated differ-
ence is divided by the total sum of all edge activities from both left and 
right regions within the edge detection mask 

Fig. 2.15. Contrast-based vertical edge detection masks 

2.4.3.4 Final SVALR Architecture 

The final SVALR architecture is illustrated in Fig. 2.16. Initially, a gray 
level image is pre-processed using the contrast-based edge detection to 
generate an edge image. This image is blurred using a 5x5-averaging win-
dow for achieving distortion and small size and view invariant landmark 
recognitions using shape attraction. A window-based searching mechanism 
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is employed to search the entire input blurred image for a target landmark. 
The search window is sized, 50x50 pixels, each region within the search 
window is processed in the pre-attentive stage using both the ROI and the 
signature thresholds as illustrated at the bottom of Fig 2.16. The selected 
regions are passed into the attentive stage, where they are modulated by 
the memory feedback modulation given in eq.2.5. Then, lateral competi-
tion between pixels within the selected region is achieved by applying L2 
normalisation. This results in a filter effect, which enhances common edge 
activities and suppresses un-aligned features between the memory image 
and the input region achieving object background separation. 

The SMIS mechanism selects appropriate views based on the robot’s 
heading as illustrated on the top of Fig. 2.16. It is found that the SVALR 
architecture requires a minimum of two memory images for each view and 
eight views to achieve size and view invariant landmark recognition re-
spectively. This is achieved at a moderate robot’s speed. The selected 
memory images are used to compare with the selected input region. The 
matching between selected input regions and corresponding memory im-
ages are determined based on two criteria. 

Firstly, each selected input region is compared with two selected mem-
ory images (belonging to one view) separately using the cosine between 
two 2-D arrays. The cosine comparison results with a match value range 
from 0 to 1, where 1 is the 100% match, which is evaluated against a 
match-threshold of 90% match. If either results are greater than the match 
threshold, then the second criterion is evaluated. The second criterion is 
based on a concept of top-down expectancy from physiological study. 
Based on a given map, the landmark is expected to appear at a certain dis-
tance and direction. These two constraints are used to further enhance the 
robustness of the landmark recognition stage. Therefore, a match only oc-
curs when the robot has travelled a minimum required distance and head-
ing in the approximate expected direction. 

2.5 Results 

The autonomous mobile robot is evaluated in indoor laboratory environ-
ment. The robot is provided with a topological map, which consists of the 
relative directions and approximate distances between objects placed on 
the laboratory floor. A number of autonomous navigation trials were con-
ducted to evaluate the SVALR architecture ability to recognise landmarks 
in clean, cluttered complex backgrounds and under different lighting con-
ditions. Four trials were selected for discussion in this chapter. 
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Fig. 2.16. The Selective Visual Attention Landmark Recognition Architecture 

In the first trial, objects that are chosen to serve as landmarks were 
placed in front of clean backgrounds and critical points where the robot 
needs to make a turn. During navigation each input images is pre- proc-
essed by the contrast-based edge detection and then blurred using a 5x5 
averaging window for achieving distortion invariant landmark recognition 
as shown in Fig. 2.17(b) and Fig. 2.17(c) respectively. The landmark 
search and recognition is performed on the blurred image, where each 
50x50 region is compared with the memory image. The results are
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converted into a range from 0-255 and displayed as an image form in Fig. 
2.17(d). The region with highest intensity represents the highest match 
with the memory image. The dot indicated by an arrow at the bottom cen-
tre of Fig. 2.17(d) highlights location of maximum match value and is 
greater than the match threshold (location where the object is found). This 
location is sent to the robot via wireless data link. The navigational algo-
rithm on-board the robot based on the provided map to perform self-
localisation and more toward the next visual landmark. In this trial, the re-
sults show that the SVALR architecture is capable of recognising all visual 
landmarks in clean backgrounds, successfully performing self-localisation 
and autonomous navigation. Finally, black regions in Fig. 2.17(d) are ones 
that have been skipped by the pre-attentive stage. This has increased the 
landmark searching process significantly [55]. 

In the second trial each landmark is placed in front of a complex back-
ground with many other objects behind it. This is to demonstrate the 
SVALR architecture ability to recognise landmarks in cluttered back-
grounds. Similarly, incoming images are processed as discussed previously 
with the landmark recognition results illustrated in Fig. 2.18, which shows 
a sample processed frame during navigation. The dot indicated by the ar-
row highlights the location where the landmark was found in Fig. 2.18(d). 
The robot is able to traverse the specified route, detecting all visual land-
marks embedded in complex backgrounds. 

In the third trial, the same experimental setup as trial two was used ex-
cept all the lights in the laboratory were turned off with windows remain 
open to simulate sudden change in image conditions. All landmarks are 
placed in complex cluttered backgrounds. A sample processed frame dur-
ing the navigation is illustrated in Fig. 2.19. Similarly, the system is able to 
successfully traverse the route, recognising all landmarks under insuffi-
cient light conditions and embedded in cluttered backgrounds. 

2.6 Conclusion 

This chapter has provided an insight into autonomous vision-based 
autonomous robot navigations, focusing on monocular vision and naviga-
tion by 2D landmark recognitions in clean and cluttered backgrounds as 
well as under different lighting conditions. The essential components of 
monocular vision systems are described in details including; maps, data 
acquisition, feature extraction, landmark recognition and self-localisation. 
Then a 2-D landmark recognition architecture named selective visual 
attention landmark recognition (SVALR) is proposed based on a detailed 
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analysis of how the Adaptive Resonance Theory (ART) model may be ex-
tended to provide a real-time neural network that has more powerful atten-
tional mechanisms. This leads to the development of the Selective Atten-
tion Adaptive Resonance Theory (SAART) neural network. It uses the 
established memory to selectively bias the competitive processing at the 
input to enable landmark recognitions in cluttered backgrounds. Due to the 
dynamic nature of SAART, it is very computationally intensive. Therefore 
the main concept in the SAART network (top down presynatic facilitation) 
is re-engineered and is named memory feedback modulation (MFM) 
mechanism. Using the MFM mechanism and in combination with standard 
image processing architecture leading to the development of the SVALR 
architecture.  

A robot platform is developed to demonstrate the SVALR architecture 
applicability in autonomous vision-based robot applications. A SMIS 
mechanism was added to the SVALR architecture to cope with image dis-
tortions due to wireless video links and the dynamic changing in land-
mark’s size and shape. The SMIS mechanism uses the concepts of band 
transformations and the shape attraction to achieve image distortions, small 
size and view invariant landmark recognitions. The experiments show that 
the SVALR architecture is capable of autonomously navigating the labora-
tory environment, using the recognition of visual landmarks and a topo-
logical map to perform self-localisation. The SVALR architecture is capa-
ble of achieving real-time 2-D landmark recognitions in both clean and 
complex cluttered backgrounds as well as under different lighting condi-
tions.

The SVALR architecture performance is based on the assumptions that 
all visual landmarks are not occluded and only one landmark is searched 
for and recognised at a time. Thus the problems of partial and multiple 
landmarks recognitions haven’t been addressed. Furthermore, the robot 
platform is designed and implemented with the primary purpose of validat-
ing the SVALR architecture and therefore omitting the obstacle avoidance 
capability. In addition, the memory used in the SVALR architecture is pre-
selected prior to navigation and cannot be changed dynamically. This give 
rises to a need for developing an obstacle avoidance capability and an 
adaptive mechanism to provide some means of learning to the SVALR ar-
chitecture to cope with real-life situations, where landmarks move or 
change its shape and orientations dynamically. These problems are re-
mained as future research. 
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Fig. 2.17. A processed frame from the first trial, encountered in the navigational 
phase. (a) Grey level image, (b) Sobel edge image, (c) Blurred image using a 5x5-
averaging mask and (d) The degree of match of the input image with the memory 
image at each location 

Fig. 2.18. A processed frame from the laboratory environment, encountered in the 
navigational phase. (a) Grey level image, (b) Sobel edge image, (c) Blurred image 
using a 5x5-averaging mask and (d) The degree of match of the input image with 
the memory image at each location 
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Fig. 2.19. A sample processed frame during the second trial with all light turned 
off, with minimal light enters from the laboratory windows.  (a) Gray level input 
image, (b) contrast-based edge detection, (c) Blurred image, (d) degree of 
matches, converted into image scale and (e) Memory image and BMF filter, top 
and bottom respectively 
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3.1 Introduction 

In this article, we present vision-based techniques for solving some of the 
problems of micromanipulation. Manipulation and assembly at the micro 
scale is a critical issue in a diverse of industries as the trend for miniaturi-
zation continues. We are also witnessing a proliferation of biomedical ap-
plications that require precise manipulation of delicate living material. 
However, there are many problems and uncertainties encountered when  
working at the micro scale. There is therefore a dependence on human in-
teraction for reduction of this uncertainty. There is an urgent need to re-
duce this dependency or at lease enhance the performance of operators in 
tasks which are unsuitable for automation. Many promising businesses in 
the biomedical sector are struggling due to problems of yield and produc-
tivity, whereas in the MEMS industry devices never leave the research 
laboratories because the practicalities of manufacture remain unsolved. 
   The work presented here is part of a program of collaborative research 
at Nanyang Technological University (NTU) and the Singapore Institute of 
Manufacturing Technology (SIMTech). The aims are to characterize and 
understand the uncertainties as well as build demonstration systems that 
implement solutions to the problems of micromanipulation. A key to this is 
the interaction of humans and systems across the large differences of scale. 
The strategy is to find optimum division of tasks according to the relative 
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capabilities of human and machine/system. We want the human to concen-
trate on high level task decisions and data interpretation whilst the machine 
handles the tracking and precision manipulation at a lower level. In the 
longer term, the autonomous system will take on more of the perception 
and decision making functions as levels of automation increase. 
   There is a clear role for visual servoing when we want the machine to 
finish the fine positioning task initiated as a high level command. The dis-
tinction in this work, is that the command and servoing can be take place 
over different views at differing scales. This is similar to a coarse-fine mo-
tion strategy except that the availability of multiple data is exploited in the 
reduction of overall system uncertainty. In the ensuing sections, the multi-
ple view and multiple scale algorithms will be presented. Before that, it is 
necessary to clarify what is understood by the term micromanipulation and 
highlight the difficulties that make manipulation tasks so difficult at the 
micro scale. 

Understanding of the term micromanipulation varies because applica-
tions are diverse and the dimensions of object and work volume differ in 
scale. Micromanipulation is commonly defined in terms of the object as 
``the controlled movement of entities with dimensions ranging from  
1 m to 1 mm scale using any method.'' 

This definition is very broad in scope and it embraces objects that are 
still visible to the human eye. Applications of micromanipulation include 
the handling of biological cells and even DNA and molecules. Some argue 
that once the dimensions of the objects are less than 1 m the realm be-
comes nanomanipulation. 

An explanation from a biomedical perspective relates to the dimensions 
of the tools and the fact that the task is performed under the view of a mi-
croscope. A dictionary definition is ``the technique of using delicate in-
struments, such as microneedles and micropipettes, to work on cells, bacte-
ria, etc., under high magnification, or of working with extremely small 
quantities in microchemistry.''  In micro-injection [1] the tool is fixed on 
the micromanipulator, which has multiple degrees of freedom, and is 
guided to pierce the target micro object. The task is difficult because the 
objects (cells, seeds etc) are small and delicate. 

The term is also applied to manipulation tasks to position micro ojects. 
In a micro assembly task, the alignment is precise but the objects may be at 
the meso scale. For example, in 3D micro assembly tasks, between 4 or 6 
degrees of freedom are required. In [2], the tasks are distributed are ditrib-
uted on a 100 mm wafer, and the assembly tolerance is typically in the or-
der of microns. The micromanipulator has to traverse a long range and 
achieve high resolution as well. Another aspect of micromanipulation is 
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found in the assembly of structures from many micro sized parts. [3] de-
scribed the approach to design and fabricate scaffold/cell constructs for tis-
sue engineering.  
There are many problems which make micromanipulation very difficult for 
both man and machine. Generally, it is the uncertainty resulting from huge 
scale differences that cause the major problems. 

Micro physics Objects behave very differently at the micro scale when 
compared to our physical experiences of handling. As object dimensions 
fall below 100¹m forces other than gravity start to dominate and govern the 
behavior of the object. 

Perception Perception is troublesome because the observation is remote. 
Detecting, sensing and visualization are all very difficult. 

Environmental effect small changes in temperature induce great effects in 
micromanipulation, which are negligible at the macro scale. Humidity 
and extraneous particles (dust) both cause serious problems. 

To reduce the uncertainties in micromanipulation, a common approach is 
to: (1)control the environmental variables with clean rooms, humidity and 
temperature control; (2) increase the precision for mechanisms, tools and 
fixtures, which is associated with necessary procedures of recalibration and 
re-configuration for different applications. Development of elements for 
achieving high performance requires different principles and designs for 
different tasks [4, 5]. Efforts in these directions are certainly necessary but 
they increase cost and conflict with the need to increase flexibility (ease of 
reconfiguration) and productivity. As the scale decreases, uncertainties 
caused by practical limits of these devices still needs to be compensated. 
So complementary methods are needed to achieve reconfigurability and 
ease of use. 

Another approach is to accept that there will be uncertainty and learn 
how to cope with it. For example by sensing and adapting the task strategy 
accordingly. However this takes us back to the aforementioned problems 
of perception. Vision and haptic are the two main sensing techniques for 
manipulation. Both play an important and complementary role in micro-
manipulation but this program of work concentrates on visual techniques. 
The aim is to develop automatic system that facilitate human operator in-
teraction. The man-machine interface(MMI)is the most apparent feature of 
the system but its success depends on the underlying understanding of the 
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uncertainties of the complete system and task. The work has three main 
aspects:

Visualisation and interface tools. 
Visual servoing. 
Automatic determination of system parameters. 

The first part is based on ARGUS, computational software based on the al- 
gebraic geometry of multiple views. This software resolves uncertainty 
across multiple viewpoints and frames but does not implement any control. 
Control is the responsibility of the visual servo modules. The distinction 
between these modules is not clear cut as they work together to provide the 
evidence needed to reduce uncertainty and tune system parameters. It is 
this integration that is so important in handling the problems of differing 
scales and multiple views. 

Fig. 3.1. Illustration of the System Hierarchy 

  In the following sections, we introduce the vision based approaches used 
to provide the human operator assistance for solving the above mentioned 
problems. In vision based methods, multiple views which consist of macro 
projective image and microscopic image provide global information be-
yond the limited field of view as well as detailed information to provide 
suffcient resolution for precision. We will describe this multiple view mul-
tiple scale image based visual servo. In this vision based method, feature 
detection, correspondence finding and correction, and motion estimation 
from images are very important. Many of the techniques are beyond the 
scope of this article but when necessary reference will be made to these 
functions too. The chapter is structures as follows as follows. In section 
3.2, the difficulties for micromanipulation are listed. The problems of ex-
isting vision based methods are covered in section 3.3. The approaches for 
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multiple view multiple scale image based visual servo is developed in sec 
tion 3.4. The simulation set up will be introduced in section 3.5. The ex-
periment results are presented in section 3.6. Conclusions are drawn in sec-
tion 3.7. 

3.2 Difficulties in Micromanipulation

The development of an automated and efficient manipulation system is de- 
manded to improve the industrial productivity and release the burden for 
the human operators. However, there are several problems concerning 
micromanipulation.

3.2.1 Scaling Effect 

When the objects are less than 1mm in size, the physics that dominates is 
completely different [6]. The conventional manipulation can be modelled 
based on Newtonian mechanics, however, when the scaling decreases 
physical phenomena in micro world become substantially different from 
macro world, which make system performance of conventional techniques 
degrade or even fail. For this reason, the physical differences and their ef-
fect in micromanipulation systems have to be considered. Many surface 
forces as van der Waal's, electrostatic, and surface tension become domi-
nant over gravity in micro scale. Van der Waals forces are caused by quan-
tum mechanical effects. Electrostatic forces are due to charge generation or 
charge transfer during contact. Surface tension effects arise from interac-
tions of layers adsorbed moisture on the two surfaces. When conducting 
manipulation in conventional world, we can place and pick up object as 
desired, while in micro world, the object will stick to the gripper due to the 
surface forces, see Fig. 3.2; free standing micro structures tends to stick to 
the substrate after being released during processing. Attempts to reduce the  
adhesive forces in micro world can be found in [7, 8].  
   Environmental conditions, such as temperature and humidity can also 
influence the adhesion forces and microbiologically properties of micro 
parts and cause many uncertainties [9]. 
   Besides, when manipulating on several objects, the area may in the or-
der of several millimeters, while the requirement of accuracy may be in the 
order of nanometer. if we transport the end effector between objects and 
manipulate on different objects, the manipulator must have centimeter
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or-der moving mechanism and nanometer order position accuracy. There 
will be need for tradeoff between efficiency and accuracy [10]. 

Fig. 3.2. Manipulation in macro/micro world 

3.2.2 Spatial Uncertainty 

Spatial uncertainty means that objects are not where we expect them. Spa-
tial uncertainty causes many difficulties in manipulation of micro-scale ob-
jects. One cause of spatial uncertainty in micromanipulation is thermal 
drift between the tip and the sample. For the AFM, working at room tem-
perature, in ambient air and without careful temperature and humidity con-
trol, a typical value for drift velocity is 0.05 nm/s. So after a certain period 
of time for scanning, the object will drift a distance that is approximately 
the size of the particles usually manipulated [11]. Hysteresis, creep, and 
other nonlinearities also cause problems not only in positioning error but 
also in instability. 

3.2.3 Perception 

Perception is another problem. Observed through microscope, the depth in-
formation of the object would be lost, the field of view becomes very small 
and much data is out of view. The perspective relation which we can make 
judgment of the spatial information does not hold, making the image am-
biguous and confusing. In micromanipulation, observer is removed from 
the task, so the uncertainty of sensors has great effect on the operation and 
decision making, thus precision becomes very difficult to be achieved.  
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Furthermore, the operator is in macro world, while the object is in micro 
scale, so the propagation of errors and uncertainty over scale becomes cru-
cial for micromanipulation. However, this is not a fully understood area.  
    Uncertainty effects and imprecision can be compensated using feed-
back control. [12, 13] proposed non-linear models for close loop control of 
piezoelectric actuators, [14, 15, 16] developed different position feedback 
techniques with calibration, visual servo, etc. Bilateral control, which re-
flect back the forces of operation environment to the operator, is reported 
can aid the operator to improve performance and even perform tasks that 
otherwise are beyond his capabilities [17, 18]. Sensors are needed to detect 
position errors, then suitable control laws are developed for compensation. 
A sensor based system can improve precision and reduce the need of ex-
pensive mechanisms and fixtures. Visual and haptic are two main sensors 
for micromanipulation. Haptic interface allows operator to feel and control 
the forces in the micro world [19], and compensate frictions [20]. while vi-
sion based method prevents any mechanical contact of the measurement 
system, capture multi dimensional nature of scene, easy to store, retrieve 
and memorize, besides, vision based method has the ability to bridge long 
distance transportation, making it suitable to be coded for tele-operation. 
And also because vision is a more mature and better understood technol-
ogy, we will concentrate on visual sensing in this chapter.  

3.3 Vision Based Methods 

Vision can provide several functions to assist the operator for microma-
nipulation: It can detect features in the image; verify the input data and pa-
rameter estimation; and aids automatic tracking of feature and guided 
search.
  However, vision strategies also suffer at this scale because the high 
magnification results in a very small field of view (FOV) and very small 
depth of field. It is therefore difficult to obtain a clear image if the object 
of interest is not planar or is subject to movement. If the amplitude of vi-
bration of the object is large it may be impossible to obtain an image. If the 
sensor itself vibrates the problem is greatly magnified. 
  Often it is difficult to obtain any image of the region of interest (ROI) be 
cause it is occluded by tools and fixtures. Even if the ROI is imaged, there 
is still the problem of identifying where on the object the region coreponds 
to. The region may be very small in comparison with the working area (or 
volume).
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The uncertainties can be reduced by calibration. F. Arai and T. Fukuda 
tried to compensate uncertainty by calibrating the absolute position by 
relative movement of the manipulator [21, 22]. They calibrated a three di-
mensional tool position against misalignment of the system components 
and tool exchange with the geometrical error directly. Visual feedback is 
used to detect the position of the micro tool tip, the error of the stepping 
motor stage is measured by the linear scale. In [23], a method to calibrate 
the orientation of the tool tip is proposed. 

People are also trying to model the uncertainties with virtual models. In 
[14, 15, 16], virtual reality (VR) was developed for micromanipulation.
Difficulty of manipulating in 3D space with 2D microscopic image infor-
mation was reduced by virtual reality [15, 16] with parallel to calibration. 
However, modeling the micro object with virtual reality itself already in-
cludes many uncertainty. However, to model the physics and the micro ob-
ject itself is very difficult due to the lacking of well understood knowledge 
of micro physics. The parameters for modeling become uncertain, and will 
change due to the problems listed in the last section. So the difference be-
tween the model and the real situation will lead to imprecision for manipu-
lation task. 

Comparing to VR, augmented reality(AR) provide visual augmentation 
to a real world environment, unlike VR which replaces the real environ-
ment, AR enhance the real world view of the user with real images. The 
validity of the model can be seen, the limitation of the real images can be 
overcame. In the following section, the augmented reality will be intro-
duced to our method. 

Visual servo is another technique to compensate uncertainties. Several 
visual servo strategies have been successfully implemented in microma-
nipulation. [24, 25] present a visual servo system with optical microscope 
which does not use the system calibration and a model of the observed 
scene. Since the single field-of-view of optical microscope is limited to a 
very small area, the method does not provide information sufficient  
enough to solve ambiguities in the scene, so systems with multiple views 
are developed. Multiple magnification based micro vision feedback system 
was presented in [26, 27], in which pattern matching was preprocessed on 
a low magnification vision data to position the object in the center of a 
high magnification vision data. In [1, 28, 29,30], stereo microscopic im-
ages provide information for visual feedback. A micromanipulation system 
was proposed in [31], in which supervisory logic-based controller that se-
lects feedback from multiple visual sensors in order to execute a micro as-
sembly task is used. 

In the next section, the proposed method will be presented. 
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3.4 Multi View Multi Scale Image Based Visual Servo 

3.4.1 System 

In the concept system, images from the microscope and other cameras are 
made available to the operator with graphical enhancement of visual cues 
and outof-view data. The workstation schematic is illustrated in Fig. 3.3.
The manmachine-interface (MMI) provides the following functionality: 

1. Subpixel feature referencing for operator interaction on perspective 
view points.

2. Out-of-view reconstruction on microscope views.
3. Map-type views using geometric primitives reconstructed from image 

data.
4. Issue of motion commands using the local coordinate frame of the 

chosen view (i.e. image or map coordinates).

The visualization system performs precise tracking and estimation so 
that commands can be executed based on features that are determined at a 
resolution beyond the specification of the camera and display. The MMI 
also overcomes many of the problems of microscope visualization such as 
loss of information from limited depth-of-field and field-of-view. How-
ever, these concepts will fail unless particular care is taken to ensure reli-
able modeling and transformation of data. The total system will have in-
creased uncertainty because priority is given to user-preferences over 
rigidity of fixtures and component lay-out. 

In the experiment setup, the sample is located on a 3 degrees of freedom 
(DOF) stage, and observed from the optical microscope which is mounted 
by a CCD camera. Another CCD camera is positioned arbitrarily in the 3D 
space to get the full view of the work space.(See Fig. 3.4)
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Fig. 3.3. The Concept of Micro-Assembly Workstation 

The proposed strategy is that visual methods will be used for object 
tracking, identification and localization within a `Coarse-Fine' strategy. 
Visual servoing will be used to provide the precise 2D servoing needed to 
compensate for system uncertainty. Vision will also form the core of the 
Man-Machine-Interface (MMI). The real images from the microscope and 
tracking cameras will be made available to the operator with graphical en-
hancement of visual cues and out-of-view data. This will assist the opera-
tor in interpretation and command issue thus increasing productivity and 
reducing fatigue. 
  The system concept is summarised as follows. One (or more) standard 
CCD camera(s) provides views of the object (and global scene). These 
views are used to track the motion of the sample and tools relative to the 
microscope viewing window. Another camera integrated with the micro-
scope provides the fine de-tail for precise tracking of motion. 
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Fig. 3.4. System Setup 

3.4.2 Methodology 

Visual control of manipulators promises substantial advantages when 
working with targets whose position is unknown or with manipulators 
which may be flexible or inaccurate. Visual servoing control structures 
have been categorized as being either image-based or position based [32]. 
The essence of image-based feedback is the image Jacobian vJ , which is 

a linear transform relating the velocity of image feature motion to the ve-
locity of the motion in 3D space with respect to camera coordinates. 
  In our case, the target region is not in the field of view of the microscope 
at first. So the image based visual servo is started with the 
macro image from the macro camera. This is an eye-to-hand configuration 
[33], which should consist of a transform of the velocity screw 
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( T

zyxzyx TTTr ],,,,,[ ) of manipulator motion from camera coor-

dinate system to world coordinate system. 
The eye-in-hand image Jacobian (3 degree of freedom) relationship for 

the macro visual servoing is: 

rJx v  (1) 

z

c

y

c

x

c

c

c

c

c

c

c

T

T

T

Z

Y

Z

Z

X

Z

y

x

2

2

0

0
x  (2) 

where x  is the derivative of image feature, [ x
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cT ] T  is the con-

trol vector with respect to the camera coordinates. We use the control law 
[24] below: 
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vĴ  is the pseudo inverse of the estimated image Jacobian in macro view, 

k  is the proportional control gain, *
x is the target feature coordinates in 

macro image. Note that tR, defines a mapping from camera frame c

to the target frame . The control vector can be converted  to  

[ xT , yT , zT ] T  with respect to the target frame by: 
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In this case, we are considering 2 degrees of freedom(DOF), hence, from 
the above transform, we have: 
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Force zT  to be 0 (assume the motion is planner), the velocity screw of 
2DOF can be generated as: 
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We can obtain the micro image Jacobian similar to that of macro image 
[35]:
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where
s

  is the total magnification of the microscope, and s

is the effective size of micro image pixel. So the micro image Jacobian can 
be estimated as a constant. 
  We use the micro image features and micro image Jacobian to update the 
estimation of the stage position when correspondence can be found. 
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  When the feature is difficult to be registered to the global view image, 
area based techniques can be used to estimate )1()( kk xx .
  When the interested object enters the switch area, fine positioning can be 
carried out. Micro image based visual servo is first undertaken with micro-
scope image features. As the microscope coordinate is aligned with the 
target frame, this is an eye-in-hand configuration. We can get the velocity 
screw with respect to the world coordinates: 
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vĴ  is the pseudo inverse of the estimated image Jacobian in micro view, 

k is the proportional control gain, *
x  is the target feature coordinates in 

micro image. 
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  This time, the macro view image will be used to constrain the the sample 
object to be in the field of view regardless of vibration and drift. This is 
formulated as: 

J
*

v  (11) 
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and *Z is an approximate value of cZ  at the desired target position with 

respect to the macro view camera,  is the maximum distance micro 
view can cover in world space. 
   During the fine process, when the distance between current and former 
image features in macro view exceed , the process will be forced back to 
coarse positioning to relocate the interested sample. The positioning task 
will not switch to fine stage until the sample is relocated in the field of 
view.

3.4.3 Image Tracking 

The multi view multi scale method is based on the estimation of motion 
from image scenes between macro and micro views. In practice, these are 
very difficult. In this section, we will introduce image tracking methods. 

Optical flow is a commonly used method in object tracking [35, 36, 37]. 
The optical flow based algorithms extract a dense velocity field from an 
image sequence assuming that image intensity is conserved during the dis-
placement. This conservation law is expressed by a spatiotemporal differ-
ential equation which is solved under additional constraints of different 
form.
  Suppose that the image intensity is given by ),( txI , where the intensity 
is now a function of time t , as well as of displacement x
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  Now, suppose that part of an object is at a position ),( 21 xx  in the im-
age at time t , and that by a time  later it has moved through a distance  

v

u
d ¸ in the image. 

  By Taylor expansion, the intensity can be presented as: 
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where the dots stand for higher order terms. 
  Given a feature window W, we want to find the displacement which 
minimizes the sum of squared differences: 
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By imposing that the derivatives of with respect to d are zero, we ob-
tain:
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We can compute 
v

u
d from (15). Optical flow can perform well in 

short motion but it's not suitable for long distance as the assumption that 
the image intensity is conserved will not hold. So we are looking for more 
robust methods for image tracking, Markov Random Fields is a promising 
one. The tracking result with optical flow is shown in Fig. 3.5.



120      R. Devanathan et al. 

Fig. 3.5. Left: Optical Flow in X., Right: Optical Flow in Y 

  Markov Random Fields Markov Random Fields theory is a branch of 
probability theory for analyzing the spatial or contextual dependencies of  
physical phenomena. It was first used in visual labelling to establish prob-
abilistic distributions of interacting labels [38]. Resent research has shown 
promising application to recovering of motion information under various 
environments [39, 40, 41]. Markov network is used to propagate likeli-
hoods to best explain image data by inferring the underlying scene. 
  The problem of estimating displacement between image frames has been 
introduced to motion vector space as early as 1980s [42]. 
  The observed image, g , which is related to the true underlying image, 

I , by some random transformation is considered to be a sample of a ran-
dom field, G .
  Disregarding occlusions and newly exposed areas, for every point in the 
preceding image, 1tt , there exists a corresponding point in the fol-
lowing image, tt . Let the 2-D projection of the straight lines connect-
ing these pairs of points be referred to as the displacement field, U , asso-
ciated with the underlying image I . The true displacement field 

)),(),,((~ jivjiuu , is a set of 2-D vectors such that for all x , the pre-

ceding point has moved to the following point )),,(),,(( tjivjjiuix

[43]. u~ is assumed to be a sample from a random field U . Let u  be an 
estimate of u~  and u  denote any sample field from U . (This relation-
ship is shown in Fig. 3.6). By MRF, we can use the random field G , to 
find the displacement u  between images from U .
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Fig. 3.6. Illustration of Motion Vector 

The scene can be defined as the displacement space. Image sequences 
are connected with underlying scene patches; scene patches also connect 
with neighboring scene patches, while the neighboring relationship is with 
regard to different positions. The posterior distribution is modeled through 
the Gibbs distribution )(dP :
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where d  is the matrix of all displacements jid , and Z is a normalizing 

factor. The posterior distribution of displacement( P ) between two images 
( 21, II ) can be derived from the prior( pP ) and measurement( mP ) models 

using Bayes' rule: 

)|,()(),|( 2121 ddd IIPPIIP mp  (18) 

which can be written as a matching energy function: 

),|(lg)( 21 IIPE dd  (19) 

By maximizing ),|( 21 IIP d  (minimizing )(dE ), the proper solution of 

displacement ( d ) can be found. 0E  is modeled as the initial matching 

cost for iteration by: 

),,( ,0 jidjiE )),(),(( 12 iiyixiM yxIdydxI
 (20) 
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where M is a contaminated Gaussian model (a mixture of a Gaussian dis-

tribution and a uniform distribution) [44], ),( ii yx refers to the pixel coor-

dinates in image,  and xd , yd is defined as the first and second element of 

jid , . The prior model is developed based on the Markov Random Fields 

theory that: if the joint probability distribution of all interacting neighbors 
is known, the local probability distribution of a site is completely deter-
mined. For facilitation, the smoothed probability distribution is generated: 

),,())(exp(),,( ,, djiPdddjip ji

d

Pjis

 (21) 

where P is also a contaminated Gaussian model [44] and d   represents 

the neighbor site of jid , . The smoothed energy is: 

),,(lg),,( ,, jisjis djipdjiE
 (22) 

),,(),,( ,0, jiji djiEdjiE

4),(
,, ),,(),,(

Nlk

ljkisjis dljkiEdjiE

 (23) 

where  decides the speed of the process. This is also mentioned as a 
special nonlinear diffusion [44]. The statistical models of MRF character-
ize images, and allow computations of distances, yet are relatively insensi-
tive to translation. In fact, MRF relates the spacial and temporal informa-
tion together, to find the most likely displacement between image frames. 

3.5 Simulation Setup

In this section, the simulation environment is set up for verification of the 
algorithm. We use simulation to control the noise and propagate noise 
across different views.  

The simulation environment is shown in Fig. 3.7, Fig. 3.8, and Fig. 3.9.
The rectangle in Cartesian space and macro view image is the view from 
microscope,whichisshownin thesimulatedmicroviewimage. The initial and 
target position of the interested object is also drawn in the image
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The relation between world space and image spaces can be formulated 
by camera models. The related camera models are listed as follows. 

Fig. 3.7. The Simulated Cartesian Space 

Fig. 3.8. The Simulated Macro Image 
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Fig. 3.9. The Simulated Micro Image 

Macro View Modeling The camera model is shown in Fig. 3.10. Suppose 
there is a point ),,( ccc ZYXP  with respect to the camera coordinates in 

3D work space. The corresponding point in the macro camera image p  is 

described by the pixel value ),( yx , so we get: 

c

c

ps
Z

X
xxx

 (24) 

c

c

ps
Z

X
xxx

 (25) 

s
f

 (26) 

where ),( ss yx  is the new coordinates in the image, f is the focal length,  

s is the effective size of the pixel, and ),( pp yx is the principal point. 
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Fig. 3.9. Illustration of camera model 

Micro View Modeling The simplified ray diagram for a typical optical mi 
croscope is shown in Fig. 3.10. g  is called the optical tube length and is 
the distance between the posterior principal focal plane of the objective 
and the anterior principal focal plane of the projective eyepiece. For typical 
microscopes g is a constant. 0f  is the posterior objective focal length, tf

is the projective eyepiece focal length. c  is the distance between the CCD 
receptor and posterior principal focal plane of the projective eyepiece. 

Fig. 3.10. Simplified Ray Diagram for Typical Optical Microscope 

  The intermediate image is projected at a distance g behind the posterior 
principal focus of the objective: 
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0f

Mg
m

 (27) 

tf

cm
m

 (28) 

then the total linear magnification is given by 

tff

gc

M

m

0  (29) 

m  is the point in image plane with coordinates of Tyx ],[ , M  is the 

point in 3D work space with the coordinates of TZYX ],,[ .
   The above transformations between world space and image spaces are 3 
by 4. For simplicity, we assume the manipulator is operating on planar ob-
jects. Thus the projection between a world point X and an image point 
x can be formulated as 2D -2D projective mapping. 

HXx  (30) 

where H is the homography mapping, and is invertible. The proposed 
method uses image features to control, thus inheriting the advantages of 
image basedvisual servo (reduse computation delay eliminate the necessity 
for image interpretation, and eliminate errors due to sensor modeling and 
camera calibration), while at the same time, the position error in 3D space 
is implied in the transform homography from images to 3D work space. 

3.6 Experimental Results 

In this section, the experiment results of the multi view multi scale method 
will be presented. 
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Fig. 3.11. The Simulation Results of the proposed MVMS Method w/o Image 
Noise

Fig. 3.11 shows the simulation process, the position reached a near 
neighborhood of the target very fast after the 7th step. This is achieved by 
coarse tracking with macro view image, but the transformational matrix is 
updated and regulated with information from micro view. The stage is 
moved to let the interested object approach the micro field of view,
Fig. 3.12 shows the tracking result. 

Fig. 3.12 Servoing Result with Macro Image Features 
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Then MVMS becomes slower for the fine tracking, when the interested 
object enters the micro field of view, see Image 1 in Fig. 3.13. During the 
fine tracking, visual servo is done by micro view image, but with con-
straint from macro view, which confines the tracking to be within the mi-
cro field of view. See Fig. 3.13. The circle is the predefined switching 
area, the red cross is the interested object. 

Fig. 3.13. Servoing Result with Micro Image Features 

To quantify the sensitivity of the proposed method to noise, image noise 
of 0.1,0.2,0.3 standard deviation are added to the system in Fig. 3.15 re-
spectively, the sensitivity of vibration and other disturbances are compen-
sated by testing the boundary condition in every iteration, while the multi 
view and multi scale scheme is still carried on to update the transforms. 
The sensitivity of image noise to the system is also shown. 

Fig. 3.14. The Simulation Results of MVMS Method 

  Testing sensitivity of the problems that we have highlighted relies on the 
features. It is important to detect the features robustly, find correspondence 
across views and track these features. ARGUS software can provide the 
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robust feature detection with 0.4 pixels noise level even with occlusion, 
see Fig. 3.15 and Fig. 3.16.

Fig. 3.15. Estimation of features (ellipse and centroid detection) 

Fig. 3.16. A selection of close-ups illustrating degrading focus and contrast as 
well as occlusion 

To estimate motion from images, the motion estimation performance 
from successive frames of images is tested. Fig. 3.17 shows the compara-
tive results among performance of optical flow (OF) and Markov Random 
Fields (MRF). The root-mean-square(RMS) error is compared. 
  From the results, the MRF method shows good estimation accuracy 
even for long displacement compared to the optical flow method. The ex-
periment result shows that after 10 frames, the estimation error of optical 
flow increases sharply, that is because the optical flow based algorithms 
extract a dense velocity field from an image sequence assuming that image 
intensity is conserved during the displacement. This conservation law does 
not hold when the error of distance estimation between images accum-
ulates, and the distance becomes large. Successive frames of the same scene 
are typically views of the same objects whose images are shifted in the 
frames due to the motion. By MRF we can assess that displacement despite 
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very different local frame pixel values after large motion, since such 
frames are still similar. The statistical models of MRF characterize images, 
and allow computations of distances, yet are relatively insensitive to trans-
lation. In fact, MRF relates the spatial and temporal information together, 
to find the most likely displacement between image frames. 

3.7 Conclusion 

The experiments show the validity of the proposed method. By using both 
macro view and micro view at the same time, the proposed method appears 
to be good at solving some of the problems caused by uncertainty in 
micromanipulation system as demonstrated by the experiments. This 
method eliminates the burden to compute 3D position, but it keeps the po-
sition information in the transformational matrix, achieving precision 
without complex computation. The efficiency is achieved by coarse to fine 
tracking. The reliability is achieved by compensation between two sensors 
and updating the transforms among the two views and the work space. The 
results also shows that the complimentary nature between macro and micro 
views due to the consistency of motion structure is essential for enhancing 
precision without considering too much of the physics and kinematic un-
certainty sources. The research work of reducing uncertainty with multiple 
view and multiple scale data based on human machine cooperation is still 
undergoing.
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4.1 Introduction 

The motion planning problem for mobile robots is typically formulated as 
follows: given a robot and a description of an environment, plan a path of 
the robot between two specified locations, which is collision-free and sat-
isfies certain optimization criteria. Traditionally there are two approaches 
to the problem: off-line planning, which assumes perfectly known and sta-
ble environment, and on-line planning, which focuses on dealing with un-
certainties when the robot traverses the environment. On-line planning is 
also referred to by many researchers as the navigation problem. Additional 
difficulty in approaching navigation problem is that some environments 
are dynamic, i.e., the obstacles which are present there, need not be static. 
In this chapter we consider a particular instance of a navigation problem, 
namely, a problem of computing a near-optimum trajectory of a ship. By 
taking into account certain boundaries of the maneuvering region, along 
with navigation obstacles and other moving ships, the problem of avoiding 
collisions at sea was reduced to a dynamic optimization task with static 
and dynamic constrains. The chapter presents a modified version of the
Evolutionary Planner/Navigator algorithm, EP/N++, to address the prob-
lem. The introduction of a time parameter, the variable speed of the ship, 
and time-varying constraints representing movable ships, are the main fea-
tures of the new system. Sample results, having the form of ship trajecto-
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ries obtained using the program for navigation situations are also pre-
sented.

The chapter is organized as follows. In Section 4.2, the definition of the 
ship navigation environment is provided. Some aspects of evolutionary al-
gorithm used in our implementation are discussed in Section 4.3, while 
Section 4.4 presents an example of a modified on-line version of the evolu-
tionary safe path search algorithm. Section 4.5 concludes this chapter. 

4.2 Background 

The motion planning problem for mobile robots is typically formulated as 
follows [19]: given a robot and a description of an environment, plan a 
path of the robot between two specified locations, which is collision-free 
and satisfies certain optimization criteria. Traditionally there are two ap-
proaches to the problem: off-line planning, which assumes perfectly 
known and stable environment, and on-line planning, which focuses on 
dealing with uncertainties when the robot traverses the environment. On-
line planning is also referred to by many researchers as the navigation

problem. 
A great deal of research has been done in motion planning and naviga-

tion (see [19] and [6] for surveys). However, different existing methods 
encounter one or many of the following difficulties: 

high computation expenses, 
inflexibility in responding to changes in the environment, 
inflexibility in responding to different optimization goals, 
inflexibility in responding to uncertainties, 
inability to combine advantages of global planning and reactive 
planning.

In order to address these difficulties, we initiated the study of an Evolu-
tionary Planner/Navigator (EP/N) system [7,18,17]; the inspiration to use 
evolutionary techniques was triggered by the following ideas/observations: 

randomized search can be the most effective in dealing with NP-
hard problems and in escaping local minima, 
parallel search actions not only provide great speed but also pro-
vide ground for interactions among search actions to achieve even 
greater efficiency in optimization, 
intelligent behavior is the result of a collection of simple reactions 
to a complex world, 
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a planner can be greatly simplified, much more efficient and flexi-
ble, and increase the quality of search, if search is not confined to 
be within a specific map structure, 
it is more meaningful to equip a planner with the flexibility of 
changing the optimization goals than the ability of finding the ab-
solutely optimum solution for a single, particular goal. 

The EP/N embodied the above ideas by incorporating some problem 
specific knowledge into evolutionary algorithm. With such an approach, 
the EP/N is pursuing all the advantages as described above. Less obvious 
though, is that with the unique design of chromosome structure and genetic 
operators, the EP/N does not need a discretized map for search, which is 
usually required by other planners. Instead, the EP/N “searches” the origi-
nal and continuous environment by generating paths by various evolution-
ary operators. The objects in the environment can simply be indicated as a 
collection of straight-line “walls”. This representation accommodates both 
known objects as well as partial information of unknown objects obtained 
from sensing. Thus, there is little difference between off-line planning and 
on-line navigation for the EP/N. In fact, the EP/N unifies off-line planning 
and on-line navigation with the same evolutionary algorithm and chromo-
some structure. 

In this chapter we discuss a generalization of EP/N: its version, called 
EP/N++, to address additional issues present in dynamic environments.  

The introduction of a time parameter, the variable speed of the ship, and 
time-varying constraints representing movable ships, are the main features 
of this version. The system was tested for particular environments: naviga-
tion of ships in collision situations. 

When determining a safe trajectory for so-called own ship, we look for a 
trajectory that balances the cost of necessary deviation from a given route, 
or from the optimum route leading to a destination point, and the safety of 
passing all static and dynamic obstacles, called here strange ships (or tar-

gets). In this chapter the following terminology is used: the term own ship

means the ship, for which the trajectory must be generated, and strange

ship or target mean other ships in the environment, which must be 
avoided. All trajectories, which meet safety conditions (thus the risk of 
collision is reduced to a satisfactory degree) constitute a set of permissible 
trajectories. The safety conditions are, as a rule, defined by the operator, 
based on the speed ratio between the ships involved in the passing maneu-
ver, as well as the actual visibility, weather conditions, navigation area, 
maneuverability of the ship, etc. The simplest way of determining the safe 
trajectory seems to use additional device – a decision supporting system, 
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which would make an extension of the conventional Automatic Radar 
Plotting Aids (ARPA) system. 

Dove et al. [2] presented a guidance concept for a ship entering a harbor, 
in which two autonomous systems (VTS and the system on board of the 
ship) were applied for evaluating the trajectory along given seaways, with 
simultaneous evaluation of the time correlation of subsequent positions of 
the ship, taking into account dynamic characteristics of the ship. The guid-
ance principles were defined using an adaptation multi-dimensional opti-
mum controller basing on the square quality factor, and taking into account 
both the minimization of the actual position and course deviation for a 
given time instant, and the minimization of the overall economic costs of 
guidance, represented by rudder positions and engine activity. In that pa-
per, a non-linear discrete model of the ship was assumed. Process state 
variables were estimated using a linear Kalman filter.  Dove et al. concept 
was developed further by Burns [1], who extended the guidance problem 
to a set of ships moving along a given voyage route. The proposed reac-
tions in the collision situation were found with the theory of fuzzy sets. An 
autonomous ship guidance system was presented by Iijima and Hagiwara 
[5]. In order to evaluate the collision situation, make a decision, and give 
maneuvering orders, the authors developed the computer expert system. 
The system was tested on a training maneuvering ship in Tokyo Bay. Dur-
ing 1990-1994, a complex application prototype was worked out based on 
expert system technology applied for oceanic and coastal navigation. The 
integrated intelligent system consisted in a number of sub-systems which 
executed particular functions (e.g., optimum navigation, course planning, 
and automatic anchorage). The sub-systems were connected, via local area 
network, to the “Captain Expert'” – an expert system based on the knowl-
edge and experience of navigators with long practice. The system was de-
veloped for guiding ships in oceanic an coastal navigational conditions in a 
fully automated manner, without crew interference, only being in touch 
with land-based services. A collision avoiding system restricted waters 
was developed by Hayashi et al. [4]. The system made use of an electronic 
map and the radar operation for evaluating the actual position and giving 
an assessment of the overall navigational situation. Sudhendar and 
Grabowski [16] discussed possible directions of further development, for-
mulated requirements for an intelligent pilot system, and presented the ac-
tual state of work intended to meet particular requirements of coastal ser-
vices in the United States and Canada. The inner structure of the expert 

4.2.1 Previous Work 
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system was discussed on the basis of a piloting system for the St. Law-
rence Seaway in Canada. A detailed analysis of models and the synthesis 
of algorithms for safe, optimum steering were described in [13]. In their 
works the problem of determining a safe trajectory as a non-linear pro-
gramming task was formulated, where a kinematics model of the own ship 
was applied. Another possible approach to this problem is the reduction of 
the solution space to a finite-dimensional one by creating so-called digi-
tized matrix of permissible maneuvers for a given collision situation and a 
certain time instant [13]. In [9,10,11] the problem of avoiding collisions 
was formulated as the multi-criteria optimization task. Three separate cri-
teria were used. The attempt to estimate the safe trajectory using classifier 
systems was presented in [3]. The collision situation was modeled as a 
fuzzy process with many inputs; for selecting the steering rules the authors 
made use of a fuzzy classifier system. 

In the overwhelming majority of the reviewed publications on automatic 
ship guidance, the navigational process in the areas of intensive traffic was 
supported by expert systems. In this work, we report on experiments with 
evolutionary system, which takes into consideration the motion of other 
ships; see also [12,14,15]. 

4.2 Environment 

The ship sails in an environment with some natural constraints (e.g., lands, 
canals, shallow waters) as well as other constraints resulting from formal 
regulations (e.g., traffic restricted zones, fairways, etc). These constraints 
are assumed stationary and are defined by polygons – in a similar manner 
to that used in creating electronic maps. When sailing in a stationary envi-
ronment, the own ship meets other sailing strange ships/targets (some of 
which constitute a collision threat). 

The degree of the threat of collision with dangerous targets is not con-
stant and depends on the approach parameters: DCPA (Distance at Closest 
Point of Approach) and TCPA (Time of Closest Point of Approach), as well 
as on the speed ratio of both ships, and the distance and bearing of the tar-
get.

It is assumed that the dangerous target is each target that has appeared in 
the area of observation and can cross the estimated course of the own ship 
at a dangerous distance. Actual values if this distance depend on the as-
sumed time horizon. The ranges of 5-8 nautical miles in front of the bow, 
and 2-4 nautical miles behind the stern of the ship are assumed. In the 
evolutionary task, the targets threatening with a collision are interpreted as 

4
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moving dangerous areas having shapes and speeds corresponding to the 
targets determined by the ARPA system. The moving constraints represent 
approaching ships, and the shape of each constraint depends on the safety 
conditions: on an assumed value of the safe approach distance (Dsafe), as-
sumed safe distance, speed ratio, and bearing of the moving target. A safe 
distance is selected by the operator depending on the weather conditions, 
sailing area, and speed of the ship. When planning the safe trajectory, the 
evolutionary algorithm should take into account both the fixed constraints, 
and the areas of danger representing the moving targets, which dynami-
cally change their locations [12,14]. Figures 4.1 and 4.2 display models of 
the environment where: 

fixed navigation constraints are modeled using convex and con-
cave polygons,  
moving targets are modeled as moving hexagons,  
the dimensions of the own-ship are neglected due to small length 
of the own-ship with respect to the maximum length of the areas 
representing the moving targets. 

Fig. 4.1. Navigation situation in Dover Straits. There is an own-ship, four strange 
ships, and several navigational constraints 
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Fig. 4.2. Approaching two moving targets – hexagon constraint shapes 

According to transport plans, the own ship should cover a given route R0 in 
some assumed time. On the other hand, it has to move safely down a given 
trajectory, i.e., it must avoid navigation obstacles and cannot come too 
close to other moving targets. Estimation of a ship's trajectory in a colli-
sion situation represents a difficult trade-off between a necessary deviation 
from a given course and the safety of sailing. Hence it is a multi-criterion 
planning problem which takes into account the safety and economy of the 
ship motion. 

The estimation of the own ship trajectory in the collision situation con-
sists of determining a path, S, as the part of the given route R0, from the 
present location (starting point) (x0, y0)  R0  to the actual end point (xe,

ye)  R0. This path has the form of a sequence of elementary line segments 
si (i = 1,...,n), linked with each other in turning points (xi, yi). The choice of 
the actual starting and end point depends on an assumed sensible horizon 
and is made by the operator. The boundaries of the environment are de-
fined as 

4

4.2.1 Planning the Trajectory in a Collision Situation 
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E = {x  R2: ai  xi  bi for i=1,2 } (1)

O_statj (j = 1,...,k) and O_dynj(t) (j = k+1,...,l) represent the sets of static 
and dynamic constraints, respectively. Note that each dynamic constraint, 
O_dynj(t) is time-dependent; i.e., it defines different sub-areas of E for dif-
ferent values of t. Clearly, static constraints represent time-independent 
constraints (e.g., lands, canals, restricted zones, etc), whereas dynamic 
constraints represent strange-ships. 

The space SF(t) of safe (anti-collision) paths is defined as 

SF(t) = E – 

k

j 1  O_statj - 

l

kj 1  O_dyn j(t) (2)

In other words, a path S is safe (i.e., it belongs to the set of safe paths SF(t)
if any segment si (i = 1,…,n) of S stays within the limits of environment E,
does not cross static constraints O_statj, and at the time instances t deter-
mined by the current locations of the own ship, does not come in contact 
with moving areas O_dynj(t) representing targets. Paths which cross the re-
stricted areas generated by static and dynamic constrains are called unsafe, 
or dangerous paths. 

The task of estimating the own-ship trajectory in a collision situation 
(so-called the steering goal) is performed as an evolutionary search for 
safe paths in the permissible space E, with subsequent selection of a near-
optimum path S* from the set SF with respect to the fitness function (de-
fined by the path cost). 

A crucial step in the development of an evolutionary trajectory planning 
system was made by the introduction of dynamic parameters: the time, and 
the moving constraints. In the evolutionary algorithm for trajectory plan-
ning eight genetic operators were used, which were: soft mutation, muta-
tion, adding a gene, swapping gene locations, crossing, smoothing, delet-
ing a gene, and individual repair [14]. The level of adaptation of the 
trajectory to the environment determines the total cost of trajectory. The 
trajectory costs include both the safety cost Safe_Cost(S) and that con-
nected with the economy Econ_Cost(S) of the ship motion along the trajec-
tory of concern. The total cost of the trajectory is defined as: 

Total_Cost(S) = Safe_Cond(S) + Econ_Cond(S) (3)

4.3 Evolutionary Algorithm EP/N++
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The safety conditions are met when the trajectory does not cross fixed 
navigational constraints, nor moving areas of danger. The actual value of 
the safety cost function Safe_Cost(S) is evaluated as the maximum value 
defining the quality of the turning points si with respect to their distance 
from the constraints: 

Safe_Cond(S) =  wc * clear(S), (4)

where: clear(S) = n
1imax  ci, wc is weight coefficient, ci is the difference in 

length between the distance to the constraint-closest turning point si and 
the safe distance d. The trajectory cost connected with economic condi-
tions Econ_Cost(S) includes: total length of trajectory S consisting of n

line sections si, function of maximum turning angle between particular tra-
jectory sections at turning points si time needed for covering the trajectory 
S. The total cost of the trajectory adaptation to the environment, resulting 
from the economic conditions, is equal to: 

Econ_Cond(S) = wd dist(S) + ws smooth(S) + wt time(S), (5)

where: wd, ws, wt are weight coefficients. 
In many cases, the most effective maneuver for the own ship seems to 

be where the course changes and the speed is reduced. The speed reduction 
of the own ship can make it possible to pass a target without significant 
changes in its course. The analysis of examples where the speed of the 
own ship was initially assumed constant clearly shows the need for making 
this parameter variable along particular trajectory sections. In practice the 
speed is modified using an additional genetic operator: the speed mutation 
[13,15]. A set of permissible speed values was defined as  = {3.6, 8.6, and 
13.6 knots}; the mutation operator can select from this set an appropriate 
speed for any trajectory section under consideration. Those speeds corre-
spond to the following telegraph settings: slow ahead, half ahead, and full 
ahead. Additionally, the total time of trajectory passing, time(S), was 
added to the function of the trajectory fitness, which took into considera-
tion changes in the own ship's speed. 

The next aspect of the evolutionary algorithm EP/N++ is the on-line 
work, in which changes in parameters of motion of particular targets are 
taken into account. An interesting experiment was to check how the algo-
rithm would determine the passing trajectory when one of the targets re-
duced its speed or its course. 

The operation of the evolutionary trajectory planning algorithm system 
has been examined for a number of collision situations. Tests of the modi-
fication version of algorithm which changes the own ship's speed along the 
trajectory sections were discussed in previous works [13,14,15]. This 

4
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chapter is focused on the discussion of experiments of on-line algorithm 
version. In all experiments reported here, the population size is 40, i.e., the 
evolutionary system processes 40 paths. 

In our initial experiments the own-ship moves with a speed  (along the 
safe path S) from the starting point (x0, y0) to the end point (xe, ye), and at 
the initial instant t0, the motion of the strange-ships is defined as uniform. 
For each target, its motion is represented by the following parameters: 
bearing, distance, speed, and course, estimated by the ARPA system. The 
path of the own ship has the form of a sequence of elementary line seg-
ments si (i = 1,...,n), linked with each other in turning points (xi, yi).

These initial experiments considered the speed of the own ship constant; 
however, it is possible to gain additional efficiency while varying the 
speed. We return to this issue later in the chapter. 

It is relatively easy to initialize the population of paths: each path (indi-
vidual) can be generated randomly. Next, each path is evaluated. To de-
termine whether a path is safe, the path is examined with respect to the set 
of static and dynamic constraints. The instantaneous locations of the dy-
namic areas with respect to the evaluated path depend on time tc, deter-
mined by the first crossing point (xc, yc) between the own ship's path S and 
the trajectory of the target. For example, in the Figure 4.3, these crossing 
points are the points of the biggest collision threat for paths 1, 2, and 3. 
Having known the length of the line segment from the starting point        
(x0, y0)  to the crossing point (xc, yc) and assuming that the own  ship will 
keep moving with the uniform speed , it is possible to determine time tc

which the own  ship needs in order to cover this distance. 
After time tc, the instantaneous location of the target with respect to the 

own ship is modeled as a dangerous area of hexagonal shape. Referring 
again to Figure 4.3 three locations of the target (at times t1, t2, and t3) are 
given for three paths; note that the path segment of path 1 between the own  
ship and the intersection with the trajectory of the target is the longest one 
(i.e., longer than similar path segments of paths 2 and 3); consequently, t1

is larger than t2 and t3, and the hexagonal shape of the target for t1 is the 
leftmost one. Of course, as explained earlier, the detailed shape and di-
mensions of the hexagon depend on the safety conditions given by the op-
erator.

4.4 Simulation Studies 
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Fig. 4.3. Crossing paths and the corresponding dangerous areas 

After the paths are evaluated, selected paths are modified by specialized 
set of operators (for details, see [18]). 

The values assumed in here are the following: 
the distance in front of the bow which guarantees avoidance of 
the collision is equal to 3Dsafe (in practice, safe distance Dsafe is 
taken from the range between 0.5 and 3.0 nautical miles)  
the distance behind the stern is equal to Dsafe

the width of the dangerous area on each side of the own  ship 
is chosen with the preference of the ship's passage behind the 
stern of the target, which depends on the course and bearing of 
the target. 

Before we present the results of the evolutionary system on several test 
cases, we provide two simple examples, where the set of static constraints 
is empty and the dynamic constraints are defined by one or two strange-
ships, respectively. 

The first example (Figure 4.4) shows the situation when the own  ship 
approaches a single target on its right side. As usual, time horizons for col-

4

4.4.1 Simple  Example 
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lision avoidance are around 30 minutes, we assumed x = y = 8 nautical 
miles. The population consisted of 10 individuals (paths), and the system 
converged after 300 generations. It is clear that the own ship, steering 
along the developed trajectory, will pass the target safely, passing it behind 
the stern. It is interesting to note that initially (see Generation=50) the own 
ship tried to move “left” (somewhat along the target), but clearly, much 
better maneuver is to go slightly right (as it is the case for Genera-

tion=300).

Fig. 4.4 Evolution of paths for the case of approaching one moving target 

Note that in all three motion diagrams of Figure 4.4 (as well as in all 
further figures) the locations of the dynamic areas are shown (black hexa-
gons) with respect to the best path, these locations depend on time deter-
mined by the first crossing point between the own ship's path and the tra-
jectory of the target). 

In order to test the operational correctness of the on-line version of algo-
rithm EP/N++, certain trajectories were calculated using the off-line and 
on-line versions and then compared with each other. The test was divided 
into three phases. During the first phase, paths obtained in the off-line 
mode were tested.  Then, during the next phase, the real motion of the 
own ship was studied; the ship was traveling along the trajectory assumed 

4.4.2 On-line Path Planning 
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in the off-line mode. For the on-line version (phase number three), a qual-
ity assessment for the calculated trajectory was made on the basis of on-
line calculations performed after changing the parameters of motion of one 
or more dynamic constraints – targets. The comparison was made for two 
sample environments with a relatively high level of complexity. 

The first case presents the navigational situation in which the own ship 
passes around three islands and four moving targets from different direc-
tions and at different speeds. Input parameters for the simulation are 
shown in Figure 4.5. The speed of the own ship was defined as equal to 
3.6, 8.6, or 13.6 knots. The progress of trajectory adaptations, made in the 
off-line mode for the case of the own ship meeting four moving objects in 
a collision situation, is shown in Figure 4.5, after 200, 500, and 1,000 gen-
erations, respectively. 

During the computational process, after 1000 generations (computing time 
12 seconds on a standard PC) no trajectory changes in the population were 
observed. Moving along the determined trajectory with changing speed,
the own ship can pass the targets in front of their bows or behind their 
sterns, sailing between the islands. The ship speed is changed along subse-
quent trajectory sections. Initially, the ship reduces the speed to pass first 
two targets and then, after sailing between the islands it sails faster as it is 
not restricted by excessive approach to Target 3 and Target 4, at the same 
time making it possible to reach the final destination point in the shortest 
time. The execution of the proposed trajectory gives the optimum cost of 
trajectory passing with respect to the safety and economic criteria. 

The next phase examines the real motion of the own ship traveling along 
the assumed (in off-line mode) trajectory and passing targets (Figure 4.6). 
During this phase it is possible to assess more accurately the correctness of 
positions of the passed targets with respect to the own ship. Figure 4.6 pre-
sents the navigational situation in the real motion at 10, 30, 40, and 50 
minutes. 

4
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Fig. 4.5 Trajectory evolution in the off-line mode after 200, 500 and 1000 genera-
tions, respectively, for the case of approaching four moving targets in the presence 
of static navigation constraints (population 40 paths). The speed of own ship var-
ies

In contrast to the relative presentation (Figure 4.5) the positions of the 
targets here (shaded areas representing dynamic constraints) and the posi-
tion of the own ship on the trajectory are determined at times 10, 30, 40, 
and 50 minutes, which elapsed after the simulation has started. Addition-
ally, the system simulates possible changes of parameters of motion (speed 
or/and course) of the targets. Changing parameters of the targets creates a 
new navigational situation – a new environment which triggers the adapta-
tion of the own ship trajectory calculated in the on-line mode. Switching to 
the on-line mode, the system EP/N++ adapts trajectory to the new 
environment. 

For the test environment defined in Figure 4.5, the algorithm switched 
to the on-line mode at time of 20 minutes. Then selected environment pa-
rameters were changed, namely the course of the target seen in the right-
hand part of the screen was changed from 45 degrees to 210 degrees, and 
the speed of motion of the target seen in the upper left part of the screen 
was changed from 5.2 to 17.6 knots. Figure 4.7 shows a newly calculated 
safe trajectory (after 1,000 generation) which has taken into account the 
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above changes. After comparing Figures 4.5 and 4.7, it is clear that the 
path calculated in the on-line mode is similar to the trajectory obtained in 
the off-line mode, with certain differences resulting from trajectory correc-
tions made due to environment changes introduced. This demonstrates the 
operational correctness of the on-line version. 

Fig. 4.6 Navigational situation in real motion at 10, 30, 40, and 50 minutes after 
start

The second case (Figure 4.7, left) presents a situation when the own ship 
leaves the channel and meets three targets moving from different direc-
tions and at different speeds. Input parameters for the simulation made for 
this environment are shown in Figure 4.8 (left). The speed of the own ship 
is equal to = 18.7 knots. The adaptation of the own ship trajectory calcu-
lated in the off-line mode (first phase) for collision meeting of three mov-
ing objects is shown in Figure 4.8 (right), after 1,000 generations. 

4
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Fig. 4.7 Changing parameters of motion of two targets at time of 20 minutes (left) 
and newly calculated safe trajectory after 1,000 generations (right). 

Fig. 4.8 Situation of meeting with the own ship and three targets (left). Trajectory 
evolution in the off-line mode after 1,000 generations (right) 

Figure 4.9 refers to the second phase of the algorithm operation. In this 
phase the real motion of the own ship traveling along the assumed (in off-
line mode) trajectory and passing strange targets is presented. For the 
tested environment and navigational situation, the positions of own ship 
and targets are displayed at times of 10 and 20 minutes after the start. 
In order to examine the operation of the on-line mode in the test environ-
ment, at 20 minutes, selected parameters were changed in the motion of 
the target seen in the lower left-hand part of the screen. The speed was 
changed from 12.7 knots to 25 knots, and its course from 45 degrees to 
103 degrees. The time of switching the system to the on-line mode is 
shown in Figure 4.10 (left). The newly calculated safe trajectory taking 
into account changes introduced to the motion of the target is shown in 
Figure 4.10 (right). 
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Fig. 4.9 Navigational situation in the real motion at times of 20 and 30 minutes af-
ter start 

Fig. 4.10 Changing parameters of motion of one target at time of 20 minutes (left) 
and newly calculated safe trajectory after 1,000 generations (right) 

For the test environment, the comparison of the solutions shown in Fig-
ure 4.8 (right) and Figure 4.10 (right) leads to the conclusion that the path 
calculated in the on-line mode is safe and close to optimum. This demon-
strates the correctness of operation of the on-line program version. It 
should be stressed here that two most complex environments were selected 
for the present tests, out of all environments earlier studied by the authors 
(see [13,14,15]).  

4.5 Conclusions 

The evolutionary method of estimating the safe and optimum passing path 
being the own ship's trajectory in the environment with static and dynamic 
constraints is a new approach to the problem of avoiding collisions at sea. 

4
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A number of preliminary tests presented here make it possible to formulate 
the following conclusions: 

evolutionary algorithms can be effectively used for solving prob-
lem of avoiding collisions at sea when the environment is modeled 
as a set of polygons representing navigation constraints and mov-
ing targets,  
the task of evolutionary estimation of the own ship trajectory in a 
collision situation is reduced to an adaptive search for a set of safe 
paths S in a permissible space X, with subsequent selection of the 
optimum trajectory with respect to the fitness function,  
the strange ship (target) is modeled in the evolutionary environ-
ment as a dynamic constraint, a moving area of danger having a 
hexagonal shape. The detailed shape and dimensions of the hexa-
gon depend on safety conditions and parameters of motion entered 
by the operator. 

The introduction of additional elements (on-line mode) to the present 
program in order to include other environment changes does not impose 
any significant problems for the evolutionary path planning, and undoubt-
edly make the process more similar to real navigation situations. Each 
newly occurred situation can be in a natural way added to the operational 
diagram of the evolutionary algorithm. 
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5.1 Introduction 

One of the major challenges of robotics is the grasping and manipulating 
of objects in an unstructured environment, in particular where the physical 
properties of the object are not known a priori. The resultant uncertainty 
makes it difficult to control contact forces, and the relative position bet-
ween the object and the gripper’s point of contact. As part of the grasping 
process, force control is required. This will avoid the risk of the object 
slipping out of the end effector as well as any possible damage to the ob-
ject. The means of defining the required grasp force is crucial and can be 
posed as an optimisation problem, [1]. 

Various techniques have been applied to solve this problem [2-4] Some 
approaches are analytic and cannot be easily implemented in real-time ap-
plications, when dynamic adaptation to external disturbances is an impor-
tant requirement. Also, the analytic approach cannot be used if variables 
such as the object’s weight and end effector acceleration are unknown. To 
overcome this situation, other approaches using fuzzy controllers have 
been developed using a number of different sensors to measure the physi-
cal variables which provide feedback to the system. Fuzzy systems have a 
number of advantages over traditional techniques that make them an at-
tractive approach to solve this type of problem. Some of these general ad-
vantages are their ability to model complex and/or non-linear problems, to 
mimic human decisions handling vague concepts, rapid computation due  
to intrinsic parallel processing, capacity to deal with imprecise informa-
tion, improved knowledge representation and better uncertain reasoning 
than traditional techniques. However, fuzzy systems have also several dis-
advantages including mathematical opaqueness, they are highly abstract 
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and heuristic, and they need an expert (or operator) for rule discovery. 
They are unable to adapt by themselves in response to changes in process 
parameters because in a purely fuzzy system the parameters do not appear 
in an analytical form so they cannot be easily modified for learning and 
tuning the fuzzy rules, [5]. Nevertheless, fuzzy control can be used in con-
junction with powerful automatic learning methods (i.e., neural networks) 
as a neurofuzzy system [6-8]. 

In this chapter, we explore these issues using a very simple two-fingered 
gripper as an experimental system. Work is conducted both using a real 
gripper and, because of the high degree of flexibility it affords, in software 
simulation. The structure of the chapter is as follows. In Section 5.2, we 
describe these two experimental systems. Section 5.3 then outlines aspects 
of neurofuzzy systems as they impact on this study. Since machine learn-
ing methods to allow such systems to adapt to their environment are a ma-
jor concern, these are discussed in some detail in Section 5.4. Results of 
applying our methods to the design of an adaptive neurofuzzy controller 
for the real gripper are described in Section 5.5. We then turn to the simu-
lation of the gripper mounted on a six degree of freedom robot in Section 
5.6, before concluding in Section 5.7.  

5.2 Experimental Systems 

The work reported in this chapter has used two different experimental sys-
tems: a simple, low-cost two-fingered gripper and a simulation system 
written by the first author. Ideally, we would have liked to do all our work 
with real robotic systems but this is inflexible and expensive in terms of 
hardware. Hence, the simple system was used to prove our ideas which 
were then further explored in simulation.  

5.2.1 Two Fingered Gripper 

The simple, low-cost, two-finger gripper is shown in Figure 5.1; which has 
one degree of freedom: the fingers can either open or close. It is fitted with 
a slip sensor [9] and force sensors. The slip sensor is located on one finger 
and is based on a rolling contact principle. Slip induces rotation of a 
stainless steel roller on a spring mounting, which is sensed by an optical 
shaft encoder. The slip sensor has an operational range of 0 to 80 mm s-1

and sensitivity of 0.5 mm s-1. The applied force is measured using a strain 
gauge bridge on the other finger. The force sensors have a range of 0 to 
2500 mN with a resolution of 2 mN. Control of the end effector was 
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achieved using a personal computer (Pentium 75 MHz, 64 MB RAM) fit-
ted with a high-speed analogue input/output card (Eagle Technologies 
PC30GAS4). Control software ran under the MS-DOS operating system. 
The sampling period for the system was set conservatively to 17 ms to al-
low adequate time for all processing to be complete between consecutive 
samples.

Fig. 5.1 The experimental, two-fingered gripper. The slip sensor appears on the 
left of the picture, attached to one of the fingers. The force sensors (strain gauges) 
are attached approximately midway along the finger shown on the right of the 
picture

Fig. 5.2 A metal can being gripped by the experimental system 
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Figure 5.2 shows metal can being gripped by the experimental system. 
The roller of the slip sensor is clearly visible, together with its spring 
mounting which prevents the sensor from seizing during gripping. This 
metal can was found to be an effective vehicle for our experiments, as the 
total weight of the gripped object could be conveniently manipulated by 
placing various weights in it (see Section 5.5).  

5.2.2 Simulation 

In this part of the work, a simulated gripper was subjected to a range of 
identical load disturbances. The gripper was the simple two-fingered, sin-
gle degree of freedom system with slip and force sensors, as described 
above. Full details of the simulation’s kinematics equations can be found 
in Appendix A of [10]. The simulation was validated against results of the 
real gripper handling a range of weights.  

The gripper was simulated holding a 0.1kg object. An external transient 
force of 10 N was applied to the load 3 seconds into the simulation, and a 
second force of -10 N was applied at 5 seconds. Between 6 and 10 sec-
onds, the gripper was moved, thereby applying acceleration forces along 
its z-axis.

5.3 Neurofuzzy Systems 

Neurofuzzy systems combine the advantages of fuzzy systems, such as 
transparent representation of knowledge, and those of neural networks, 
which deal with implicit knowledge that can be acquired by means of 
learning [8, 11, 12]. They mimic human decision processes, in that they 
manage imprecise, partial, vague or imperfect information. Also, they are 
able to resolve conflicts by collaboration and aggregation. Moreover, they 
have self-learning, self-organising and self-tuning capabilities, with no re-
quirement for prior knowledge of relationships of data although they can 
use this if it is available. They have fast computation using fuzzy number 
operations. As do fuzzy systems, neurofuzzy systems embody rules (de-
fined in a linguistic way) so that system operation can be interpreted in a 
transparent fashion.  
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Figure 5.3 shows the implementation of a neurofuzzy system as a feed 
forward network with three layers, namely: the fuzzification layer, the 
fuzzy rule layer and defuzzification layer. The mapping between the first 
two layers is nonlinear and linear between the last two layers [13]. The 
fuzzification layer consists of two components: the measurements ix ,
which are the input signals from the system under control and the envi-
ronment, and the computation of the antecedent membership function 
value, )x( iAij

 termed the grade of membership. The fuzzy rule layer then 

calculates the rule firing strength, which indicates how well the conditions 
in the antecedent are satisfied. An input x fires a rule to a degree, 

]1,0[w . The calculation of the rule firing strength is performed using 
the membership function values for fuzzy sets used in the rule antecedent. 
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It is dependent on how the antecedents are combined (i.e., using AND, 
OR). The product combiner is the fuzzy implication method, used because 
it preserves the original shape of the fuzzy set and it is differentiable. Fi-
nally, the defuzzification layer converts the values delivered by the fired 
rules at the previous layer into analogue output values. Centre of sums 
(CoS) and centre of gravity (CoG) are the most often used defuzzification 
techniques. The CoS approach has some advantages over CoG; in particu-
lar, CoS is faster because it is simpler to program [14]. The resulting de-
fuzzified values are combined by some averaging method (denoted OR in 
Figure 5.3).  

The antecedent and consequent weights ( kia  and mnb  respectively), 

and the rule confidences )w( ij  can be updated. In fact, there are two main 

possibilities for learning: adjust these weights, or adjust the shape of the 
membership functions. The latter can be achieved only if the membership 
functions are parametric. In this work, we fix all antecedent and conse-
quent values, and membership functions; only rule confidences are 
learned.  

5.4 Training Methods 

A neurofuzzy controller is able to learn about its environment through a 
process of adjusting its weights and bias levels. The learning paradigms 
used to tune the network weights are commonly divided into three main 
classes: supervised, unsupervised and reinforcement [15]. These learning 
algorithms can be used individually or in conjunction[16, 17]. In super-
vised learning, a teacher gives the system a representative collection of in-
put-output examples constituting knowledge of the problem environment. 
For unsupervised learning, no such specification is made of which output 
should be associated with particular inputs. Rather, the system bases its 
free-parameter updating on some quality measure of the representation of 
the learning goal. Reinforcement learning (RL) is a broad class of machine 
learning techniques in which the ‘teacher’ is replaced by an evaluative sig-
nal (or signals) derived from the environment. Hence, it is eminently suit-
able for on-line robot learning applications in which continuous interaction 
with the environment is all-important. Furthermore, RL is fully automatic, 
doing away with the need for intervention of an expert (the ‘teacher’) to 
provide a suitable training dataset. The evaluative (or reinforcement) sig-
nals do not specify what the correct answer should be, since this is un-
known. Rather, they specify whether the system output is right or wrong, 
as well as (possibly) providing a scalar indication of the degree of 
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correctness. This evaluative signal is often couched in terms of a reward or 
a punishment, for being right or wrong respectively. Because there is no 
explicit provision of a correct answer by a ‘teacher’, we take RL to be dis-
tinct from supervised learning—although some researchers do treat it as 
supervised “because the network does, after all, get some feedback from 
the environment” [18, p188].  

In our work, we have used both supervised and reinforcement learning 
to produce neurofuzzy controllers for the gripper. We have also used a hy-
brid of the two. Hence, we have a total of three learning systems: off-line 
supervised learning, reinforcement on-line learning and a hybrid of super-
vised and reinforcement on-line learning.  

5.4.1 Supervised Learning 

In supervised learning, knowledge of the problem environment is repre-
sented by a set of input-output examples—the training dataset. The task of 
the learning algorithm is to adjust the system parameters in response to the 
given inputs so as to reproduce the desired output [15, p63]. To achieve 
high system performance, the training data must be consistent and com-
plete. This is an obvious shortcoming of the supervised learning approach 
for our problem. In the real environment, we will not be able to anticipate 
all conditions which will be met, so it is not possible to guarantee com-
pleteness.  

To collect the training data, a simple C program was written to control 
the gripper manually using several keys of the PC keyboard. Six keys were 
used for a fixed applied motor voltage (i.e., -5, 0, 1.5, 2.7, 3.9, 5V) and 
four to increase/decrease the applied voltage by 0.1V or 0.25V. The opera-
tor (the first author), using personnel judgment and the current object 
status (e.g., gripper or not, crushed, etc.), manually increased/decreased the 
applied voltage so the gripper could grasp the object properly (i.e. fast, 
stable, with minimum finger force and without allowing the object to fall). 
An extra (stop) key was included to allow the operator to pause and rethink 
the action to be taken to be taken as well as to check the object status. The 
data collected during the stopped time was not used for training because 
they are not actually part of the control action. 

Several trials were carried out to obtain several collections of training 
data. Every trial started with the gripper fingers completely opened. The 
object used was an empty can with uneven surface and variable weight. 
The weight was varied using cans with different mass (i.e., 50, 125 and 
210 grams). During the manual control, several disturbances of different 
magnitude were applied on the object to induce slip. Each experiment was  
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finished once the gripper was gripping the object properly. In total, 15 col-
lections were selected to be used as training data because very good man-
ual control was achieved. Some other collections were eliminated because 
the operator failed to control the gripper properly (i.e., the object fell or 
was crushed).  

The parameters of the network are updated under the combined influ-
ence of the available training examples, and the error signal, )n(ey

which is defined as the difference between the desired response, )n(ŷ

and the actual response, y(n) at iteration n,   

)n(y)n(ŷ)n(e jjj

This error signal, )n(e j  is used to apply a sequence of corrective ad-

justments to the weights. This sequence is carried out until a stopping cri-
terion is met. The commonest and best-understood approach for off-line 
supervised learning is the gradient descent method: back-propagation [19]. 
Also, its computational cost is lower than the other methods (i.e., Newton, 
conjugate gradient) which leads to a faster convergence[20]. The weight 
correction, )n(w ji  applied to the weights connecting neuron i to neuron 

j is defined by the delta rule:  

)1n(wm)n(x)n(j)n(w jijji

where is the learning-rate parameter, )n(j  is the local gradient, m is

the momentum constant, and )n(x j the input signal of neuron j in the de-

fuzzification layer. In this work, and m  are both set to 0.5. Network 
training is considered converged when the average squared error (between 
desired and actual output voltages) is less than or equal to 0.2V2.

5.4.2 Reinforcement Learning 

Reinforcement learning (RL) is the natural framework for the solution of 
the on-line learning problem [21]. It encompasses a broad range of tech-
niques with the common feature that a goal-oriented system adapts its on-
line behaviour in such a way as to maximise some ‘reward’ signal derived 
from its environment. Because the reward reflects the system’s interaction 
with its environment, learning can be unsupervised, without manual inter-
vention to indicate correct versus erroneous behaviour. Negative rewards, 
i.e., ‘punishments’, can also be conveniently incorporated into the 
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paradigm. In view of its generality and on-line nature, RL has found wide 
application in robotics and autonomous system studies (e.g., [22-24]).  

In many formulations of RL, the system is supposed to decide the best 
action to select based on its current state. When this step is repeated, the 
problem is known as a Markov decision process [25]. A finite Markov de-
cision process (MDP) is defined by the state and action sets, and by the 
one-step dynamics of the environment. The components of an MDP are:  

a set of states S;
a set of actions A;
a reinforcement function AS:R ; and  
a state transition function )S(AS:T  where )S( is a prob-
ability distribution over the set S.

At each decision point, the controller has to select an action based on the 
environmental information (i.e., state). After performing the action ia  the 

system receives an immediate reinforcement, ir . The action taken affects 

the subsequent state, 1is . The probability distribution of the reinforce-

ment
t

r and the subsequent state 1is .depends only on the starting state 

1is  and the taken action ia . The objective of the system is to maximise 
the sum of discounted rewards [26, 27]. The reinforcement at time t is 
given by:  

0i
1i

i
i rr

where 10 is a discount factor that determines the relative contribu-
tions of delayed rewards. If 0 only the immediate reward is consid-
ered. Long-running systems that learn from delayed rewards generally 
achieve the best state-action [28].  

The dynamics of a finite MDP can be summarised in a high-level form, 
namely an MDP transition graph, which has to be designed ‘by hand’ to 
suit the system’s intended purposes. Figure 5.4 illustrates the transition 
graph for the gripper system. For our problem, the state set is defined as:  
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Fig. 5.4 Transition graph specifying the dynamics of the finite MDP. The large 
open circles denote state nodes and the small filled circles denote action nodes. 
Arcs are labelled with an ordered pair consisting of a transition probability and a 
reward. Punishments are implemented as negative rewards. In this work, we sim-
plify the MDP by making all transition probabilities functions of just two parame-
ters,  and

S = {S0, S1, S2, S3}

= {not_touching, slipping, crushing, OK}

and the system decisions (actions) are given by the action set:   

A = {grip, release} 

There is a state node (a large open circle labelled by the name of the 
state) for each possible state, and an action node (a small solid circle la-
belled by the action name) for each action associated with those states. 
Each arc is labelled with an ordered pair consisting of the transition prob-
ability of moving from state S  to state S  with associated action A , and 
the expected reward for that transition, SSR  . 

Two transition-probability parameters,  and , are used. Note that 
at least 2 parameters are required because the maximum outdegree of an 
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action node is 3, and 1 degree of freedom is fixed since the transition prob-
abilities must sum to 1. Accordingly,  is set relatively high, as it de-
notes a transition probability into a desired state (i.e., OK), while  is set 
relatively low. In many cases, but not all, indicates a transition prob-
ability into a undesirable state (i.e., slipping or crushing). In some 
cases, the transition probability into these states will be )(1 , so a 
further requirement is that 1 to ensure that these transition prob-
abilities do not vanish. In this work, and have been set by trial and 
error to 0.85 and 0.12, respectively.  

Rewards and punishments are either fixed, or made to depend upon the 
time spent in the originating state for that transition. This is to increase the 
rewards and punishments if the system keeps in a good or bad state-action, 
respectively. Rewards are attached to transitions into the OK state. Punish-
ments are attached to transitions into the undesirable (slipping,
crushing and not_touching) states. Time-dependent rewards have 
the effect of increasing the reward for moving to the OK state according to 
the length of time spent in an undesirable state, and conversely for pun-
ishments. Both time-dependent and fixed rewards/punishments have been 
set empirically. Transitions with a -16  punishment are included in the 
MDP specification for completeness; it is envisaged that they would never 
occur in the trained network. When the object is being satisfactorily 
gripped, i.e., the system remains in the state OK for tOK, the rewards for the 
two associated actions grip and release are:  

)t1(
2500

F2500
cRR OK

RELEASE
SS

GRIP
SS 3333

where tOK is the time without both slipping and crushing, F is the applied 
force and c is a constant empirically set equal to 20 in this work. With this 
scheme, the rate of increase of the reward decreases as the applied force 
approaches its upper limit of 2500, corresponding physically to 2500 mN. 

There are three fundamental classes of methods that tackle the rein-
forcement learning problem: dynamic programming (DP), Monte Carlo 
methods and temporal difference (TD) learning. TD methods are based on 
learning the difference(s) between temporally-successive predictions. As 
TD learning combines characteristics of dynamic programming (i.e., pol-
icy evaluation, value iteration) and Monte Carlo methods, it can approxi-
mate the value function using update estimates from other learned esti-
mates, like those found from dynamic programming. Also, like Monte 
Carlo methods, TD methods can learn from experience following a policy 
without the dynamics of the environment. Accordingly, TD has some 
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advantages over the other methods [21]. The most important ones are: TD 
methods do not require a model of the environment, rewards and next-state 
probability distribution while DP methods do; TD methods can be imple-
mented in an on-line fashion while Monte Carlo methods can not.  

Policy

Value

Function

Environment

ActionState

Critic

Actor

TD

Error

Reward

Fig. 5.5 Block diagram of the actor-critic reinforcement learning system 

In this work, we have used an actor-critic framework. Actor-critic 
methods are temporal difference learning methods [29]. To solve the pre-
diction problem, TD methods compute the state-value function using the 
experience of following a policy (i.e., the mapping between states and ac-
tions). At the next time step, based on the obtained reward or punishment, 
the estimated value function for a given policy is updated. Actor-critic 
methods have two separate memories in order to represent the policy inde-
pendently of the value function. This leads to the following most important 
advantages of actor-critic methods over other TD techniques: minimal 
computation required to select actions and its ability to learn an explicitly 
stochastic policy, allowing the optimal probability of selecting appropriate 
actions to be learned [21, p153]. Figure 5.5 shows the architecture of the 
actor-critic method. The policy structure is the actor and the estimated 
value function is the critic. The former selects actions and the latter criti-
cises those actions. This criticism has the form of an ‘internal’ (TD-error) 
signal to drive the learning process.  
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The GARIC (Generalised Approximate Reasoning-based Intelligent 
Control) architecture of [30] is used here as the basis for the developed 
controller. Figure 5.6 shows the block diagram of this architecture which 
has been widely used in intelligent control because of the facility it gives 
to implement a neurofuzzy controller in an actor-critic framework. GARIC 
consists of a fuzzy controller, the Action Selection Network (ASN), which 
operates as the actor, and a neural network, the Action Evaluation Network 
(AEN), which criticises the actions made by the ASN. Outputs of these 
two networks feed into the Stochastic Action Modifier (SAM) which 
solves stochastically the exploration-exploitation dilemma: Neither explo-
ration nor exploitation can be pursued exclusively. Exploiting experience, 
a reward can be obtained but perhaps missing a possibly larger reward. 
Exploring the space of actions, a better action may be found but with the 
risk of failing and, consequently, getting a punishment.  
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Action Selection Network 

The Action Selection Network is the fuzzy controller that performs all the 
control operations. The fuzzy controller is expanded into a neurofuzzy 
controller so its parameters can be updated according to the signal received 
from the Action Evaluation Network. The employment of a (neuro)fuzzy 
network as critic gives transparency to the system. That is, the behaviour 
of the physical system is described by a set of easily-interpreted linguistic 
rules. These can then be used to understand and validate the process under 
control, or to modify it.  

The ASN output is )t(f , which determines the ‘provisional’ voltage to 
be applied to the gripper motor. By ‘provisional’, we mean that this value 
is subject to random modification by the Stochastic Action Module as de-
scribed immediately below. The updating of the ASN modifiable parame-
ters (i.e., the rule confidence vector of connection weights between rule 
and defuzzification layers) is in the direction which increases the future 
reward )t(v , predicted by the AEN. Hence, to effect gradient descent op-

timisation, the weight update should be proportional to
)t(w

)t(v

ij

, giving:  

n

0k ij

kn
ij

)n(w

)k(v
)k(s)k(r̂m)n(w

(1)

where k is an index that runs from the initial time 0 up to the current time 
n , [15], )t(r̂  is the ‘internal’ reinforcement signal, )t(s is an output of 
the SAM, and and m  are the learning and momentum constants which 
were empirically set to 0.75. Equation (1) is similar to equation (29) of 
[30], except that they modify the antecedent and consequent membership 
functions whereas here we are updating the rule confidence vector. 

Action Evaluation Network 

The Action Evaluation Network (AEN), or critic, is a neural predictor. Its 
structure is shown in detail in Figure 5.7. The AEN indicates the current 
state ‘goodness’, mapping the input state vector to the reward signal from 
the environment, )t(r . This mapping produces a scalar score, which is a 
prediction of future reinforcements, )t(v . This is combined with )t(r to

generate an ‘internal’ reinforcement signal, )t(r̂ :
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otherwise)1t(v)t(v)t(r

statefailure)1t(v)t(r

statestart0

)t(r̂

(2)

where , set here to 0.47, is a discount rate used to control the balance be-
tween long-term and short term consequences of the system’s action [15, 
p606]. Here, ‘start’ sate means the sate encountered on power-up, and 
‘failure’ state indicates that the system has to restarted, i.e. the gripper has 
to grip the object anew because it is either crushing it or dropped it. The 
system detects that is has dropped the object when the force signal changes 
from a positive value to zero. Unfortunately, however, crushing is not so 
easy to detect automatically. We hope to develop methods for this in the 
future. In the meantime, to allow progress to be made, we simplify the 
problem for the failure situation of crushing: The operator indicates to the 
system that it has crushed the object. 

This network fine-tunes the rule confidence vector. Its input variables 
are the normalised measurements of the slip rate, the applied force to the 
object and the applied motor voltage. The hidden layer activation function 
is sigmoidal. Using a gradient descent algorithm, the formulae for updating 
the AEN weights are:  

5.....1jand3,2,1ifor

)1t(y)t(r̂)1t(cc

)1t(x)t(r̂)1t(b)t(b

)1t(x))1t(csgn())1t(y1)(1t(y)t(r̂)1t(a)t(a

j2j)t(j

i2ii

ijjj1ijij

where 1  and 2  were set empirically to 0.68 and 0.45 respectively. 
The signum function, sgn(), takes the value 1 when its argument is positive 
and 0 otherwise. 
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Fig. 5.7. The Action Evaluation Network consists of a neural network predicting 
future reward, )t(v , which is combined with the reward signal, )t(r , from the 

environment to produce an ‘internal’ reward signal, )t(r̂ , as described by equa-

tion (2) 

Stochastic Action Modifier 

The Stochastic Action Modifier gives a stochastic deviation to the output 
of the ASN, so the system can have a better exploration of the state space 
and a better generalisation ability [16]. The numerical amount of deviation, 
which is used as a learning factor for ASN, is given by, 

)1t(r̂

**'

e

)t(y)t(y
)t(s

where instead of using  )t(y* as output, the control action applied to the 

system is )t(y*'  a Gaussian random variable with mean )t(y* and stan-

dard deviation )1t(r̂e  This leads to the action having a large deviation 
when the last taken action was bad, and conversely when the action was 
good.
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Supervised Learning Network (SLN), trained on pre-labelled data, is added to the 
basic GARIC architecture 

5.4.3 Hybrid Learning 

Looking to have a faster adaptation to environmental changes, we have 
implemented a hybrid learning approach which uses both supervised and 
reinforcement learning. The combination of these two training algorithms 
allows the system to have a faster adaptation [16]. The hybrid approach 
has not only the characteristic of self-adaptation but the ability to make 
best use of knowledge (i.e., pre-labelled training data) should they exist. 
The proposed hybrid algorithm is also based on the GARIC architecture. 
An extra neurofuzzy block, the supervised learning network (SLN), is 
added to the original structure (Figure 5.8). The SLN is a neurofuzzy con-
troller which is trained in non-real time with (supervised) back-
propagation. When new training data are available, the SLN is retrained 
without stopping the system execution; then it sends a parameter updating  
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signal to the action selection network. The ASN parameters can now be 
updated if appropriate. 

As new training data become available during system operation (see be-
low), the SLN loads the rule-weight vector from the ASN and starts its 
(re)training, which continues until the stop criterion is reached (average er-
ror less than or equal to 0.2V2, see Section 5.4.1). The information loaded 
(i.e, rule confidence vector) from the ASN is utilised as a priori knowledge 
by the SLN. Once the SLN training has finished, the new rule weight vec-
tor is sent back to the ASN. Elements of the confidence vector (i.e., 
weights) are transferred from the SLN to the ASN only if the difference 
between them is lower than or equal to 5%:  

i
SLN
i

ASN
i

SLN
i

ASN
i

SLN
i

ASN
i

w95.0wthen

)w05.1w()w95.0w(if (3)

where i counts over all corresponding ASN and SLN weights.  
Neurofuzzy techniques do not require a mathematical model of the sys-

tem under control. The major disadvantage of the lack of this model is the 
impossibility to derive a stability criterion. Consequently, the use of a 5% 
threshold as in equation (3) was proposed as an attempt to minimise the 
risk of system instability. This allows the hybrid system to ‘ignore’ pre-
labelled data if they were inconsistent with current-encountered conditions 
(given by the AEN). The value of 5% was set empirically, although the 
system was not especially sensitive to this value. For instance, during a se-
ries of tests with the value set to 10%, the system still maintained correct 
operation.  

5.5 Results with Real Gripper 

To validate the performance of the various learning systems, various ex-
periments have been undertaken to compare the resulting controllers used 
in conjunction with the simple, low-cost, two-finger end effector (Section 
5.2.1). The information provided by the force and slip sensors forms the 
inputs to the neurofuzzy controller, and the output is the applied motor 
voltage. Inputs are normalised to the range [0, 1]. 

Experiments were carried out with a range of weights placed in one of 
the metal cans (Figure 5.2). Hence, the weight of the object was different 
from that utilised in collecting the labelled training data (when the cans 
were empty). This is intended to test the ability of neurofuzzy control to  
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maintain correct operation robustly in the face of conditions not previously 
encountered. In addition, information concerning the object to be gripped 
and the end effector itself were never given to the control system.  
To recap, three experimental conditions were studied:  

i. off-line supervised learning with back-propagation training;  
ii. on-line reinforcement learning;  
iii. hybrid of supervised and reinforcement learning.  

In (i), we learn ‘from scratch’ by back-propagation using the neurofuzzy 
network depicted in Figure 5.9. The linguistic variables used for the term 
sets are simply value magnitude components: Zero (Z), Very Small (VS), 
Small (S), Medium (M) and Large (L) for the fuzzy set slip while for the 
applied force they are Z, S, M and L. The output fuzzy set (motor voltage) 
has the set members Negative Very Small (NVS), Z, Very Small (VS), S, 
M, L, Very Large (VL) and Very Very Large (VVL). This set has more 
members so as to have a smoother output. In (ii), reinforcement learning is 
seeded with the rule base obtained in (i), to see if RL can improve back-
propagation. The ASN of the GARIC architecture is a neurofuzzy network 
with structure as in Figure. 5.9. In (iii), RL is again seeded with the rule 
base from (i), and when RL discovers a ‘good’ action, this is added to the 
training set for background supervised learning. Specifically, when tok
reaches 3 seconds, it is assumed that gripping has been successful; and in-
put-output data recorded over this interval are concatenated onto the la-
belled training set. In this way, we hope to ensure that such good actions 
do not get ‘forgotten’ as on-line learning proceeds. Typical rule-base and 
rule confidences achieved after training are presented in tabular form in 
Table 5.1. In the table, each rule has three confidence values corresponding 
to conditions (i), (ii) and (iii) above. We choose to show typical results be-
cause the precise findings depend on things like the initial start points for 
the weights [31], the action of the Stochastic Action Modifier in the rein-
forcement and hybrid learning systems, the precise weights in the metal 
can, and the length of time that the system runs for. Nonetheless, in spite 
of these complications, some useful generalisations can be drawn.  

One of the virtues of neurofuzzy systems is that the learned rules are 
transparent so that it should be fairly obvious to the reader what these 
mean and how they effect control of the object. For example, if the slip is 
large and the fingertip force is small, it means that we are in danger of 
dropping the object and the force must be increased rapidly by making the 
motor voltage very large. As can be seen in the table, this particular rule 
has a high confidence for all three learning strategies (0.9, 0.8 and 0.8 for 
(i), (ii) and (iii) respectively). Network transparency allows the user to 
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verify the rule base and it permits us to seed learning with prior knowledge 
about good actions. This seeding accelerates the learning process [16].  

Motor

Voltage

VVL
Rule

20
L

NVS

Force

Slip

Fuzzification

Layer
Fuzzy Rule Layer Defuzzification Layer OutputInputs

Rule
2

Rule

3

Rule

1

M

S

Z

L

M

S

AN

Z

VL

L

M

S

VS

Z

Fig. 5.9 Structure of the neurofuzzy network used to control the gripper. Connec-
tions between the fuzzification layer and the rule layer have fixed (unity) weight. 
Connections between the rule layer and the defuzzification layer have their 
weights adjusted during training 
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To answer the question of which system is the best, the three learning 
methods were tested under two conditions: normal (i.e., same conditions as 
they were trained for) and environmental change (i.e., simulated sensor 
failure). The first condition evaluates the systems’ learning speed while the 
second one tests their robustness to unanticipated operating conditions. 
Performances were investigated by manually introducing several distur-
bances of various intensities acting on the object to induce slip. For all the 
tests, the experimenter must attempt to reproduce the same pattern of man-
ual disturbance inducing slip at different times so that different conditions 
can be compared. This is clearly not possible to do precisely. (It was aided 
by using an audible beep from the computer to prompt the investigator and 
to act as a timing reference.)  To allow easy comparison of these slightly 
different experimental conditions, we have aligned plots on the major in-
duced disturbance, somewhat arbitrarily fixed at 3 s. 

The solid line of Figure 5.10 shows typical performance of the super-
vised learning system under normal conditions; the dashed line shows op-
eration when a sensor failure is introduced at about 5.5 s. The system 
learned how to perform under normal conditions but when there is a 
change in the environment, it is unable to adapt to this change unless re-
trained with new data which include the change. 

Figure 5.11 shows the performance of the system trained with rein-
forcement learning during the first interaction (solid) and fifth interaction 
(dashed) after the simulated sensor failure. To simulate continuous on-line 
learning but in a way which allows comparison of results as training pro-
ceeds, we broke each complete RL trial into a series of ‘interactions’. After 
each such interaction, lasting approximately 6 s, the rule base and rule con-
fidence vector obtained were then used as the start point for reinforcement 
learning for the next interaction. (Note that the first interaction after a sen-
sor failure is actually the second interaction in real terms.) Simulated sen-
sor failure were introduced at approximately 5.5 s during the (absolute) 
first interaction. As can be seen, during the first interaction following a 
failure, the object dropped just before 6 s. There is a rapid fall off of resul-
tant force (Figure 5.11(b)) while the control action (end effector motor 
voltage) saturates (Figure 5.11(c)). The control action is ineffective be-
cause the object is no longer present, having been dropped. By the fifth in-
teraction after a failure, however, an appropriate control strategy has been 
learned. Effective force is applied to the object using a moderate motor 
voltage. The controller learns that it is not applying as much force as it 
‘thinks’. This result demonstrates the effectiveness of on-line reinforce-
ment learning, as the system is able to perform a successful grip in re-
sponse to an environmental change and manually-induced slip.  
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Fig. 5.10 Typical performance with supervised learning under normal conditions 
(solid line) and with sensor failure at about 5.5s. (a) slip initially induced by man-
ual displacement of the object; (b) control action (applied motor voltage); (c) re-
sulting force applied to the object. Note that the manually induced slip is not pre-
cisely the same in the two cases because it was not possible for the experimenter 
to reproduce this exactly 
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Fig. 5.11. Typical performance with reinforcement learning during the first inter-
action (solid line) and the fifth interaction (dashed line) after sensor failure: 
(a) slip initially induced by manual displacement of the object; (b) control action 
(applied motor voltage); (c) resulting force applied to the object 
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Fig. 5.12 Comparison of typical results of hybrid learning (solid line) and super-
vised learning (dashed line) during the first interaction after a sensor failure: 
(a) slip initially induced by manual displacement of the object; (b) control action 
(applied motor voltage); (c) resulting force applied to the object 
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Figure 5.12 shows the performance of the hybrid trained system during 
the first interaction after a failure (solid line) and compares it with the per-
formance of the system trained with supervised learning (dashed line). 
Note that the latter result is identical to that shown by the full line in Fig-
ure 5.10. It is clear that the hybrid trained system is able to adapt itself to 
this disturbance where the supervised trained system is unable to adapt and 
fails, dropping the object.  

The important conclusions drawn from this work on the real gripper are 
as follows. For the system to have on-line adaptation to unanticipated con-
ditions, its training has to be unsupervised. (For our purposes, we count re-
inforcement learning as unsupervised.)  The use of a priori knowledge to 
seed the initial rules helps to achieve quicker neurofuzzy learning. The use 
of knowledge about good control actions, gained during system operation, 
can also improve on-line learning. For all these reasons, a hybrid of unsu-
pervised and reinforcement learning should be superior to the other meth-
ods. This superiority is obvious when the hybrid is compared against off-
line supervised learning.  

5.6 Simulation of Gripper and Six Degree 
of Freedom Robot 

Thus far, the gripper studied has been very simple, with a two-input, one-
output control action and a single degree of freedom. We wished to con-
sider more complex and practical setups, such as when the gripper is 
mounted on a full six degree of freedom robot and has more sensor capa-
bilities (e.g., accelerometer). A particular reason for this is that neurofuzzy 
systems are known to be subject to the well-known curse of dimensionality
[32, 33] whereby required system resources grow exponentially with prob-
lem size (e.g., the number of sensor inputs). To avoid the considerable cost 
of studying these issues with a real robot, this part of the work was done 
by software simulation.  

A simulation of a 6 DOF robot was developed to have the effects of the 
robot movements and orientation on the gripping process of the end effec-
tor and to avoid the considerable cost of building the full manipulator. The 
experiments reported here were undertaken under two conditions: external 
forces acting on the object (with the end effector stationary), and vertical 
end effector acceleration.  

Four approaches are evaluated for the gripper controller with the pres-
ence of end effect or acceleration:  
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i. traditional approach without accelerometer;  
ii. traditional approach with accelerometer;  

iii. approach with accelerometer and hierarchical modelling;  
iv. hierarchical approach with acceleration control.  

These are described in the following sections. As the situation studied is 
virtual, we do not have any labelled data suitable for supervised training. 
Hence, the four approaches are trained using reinforcement learning. The 
Markov decision process is the only component which remains identical 
for all the approaches. The action selection network and the action evalua-
tion network are modified to reflect the new input.  

5.6.1 Approach without Acceleration Feedback 

Figure 5.13 shows the high-level structure of the neurofuzzy controller 
used in the previous section (Figure 5.9). This controller is the simplest of 
all the approaches discussed here: It has only information of the object slip 
rate and the force applied to the object, so it ‘sees’ the end effector accel-
eration as any other external disturbance.  

Inference
machine

Applied
force

Slip
rate

Motor
voltage

Fig. 5.13 High-level structure of the neurofuzzy controller used in conjunction 
with the real (two-input) gripper 

We now wish to add a new input: the end effector vertical acceleration 
(i.e., in the z-direction). This has the memberships Negative Large (NL), 
Negative Small (NS), Z, S and L. The density of this fuzzy set is medium 
[8, p108] so it should be possible to avoid having an excessively complex 
rule base. For the current conditions, the total number of combinations in 
the antecedent part is 100 and the possible number of rules is P = 700, ac-

cording to 3
1i iNP (see caption of Figure 5.3). Because of the addition 

of the extra input, a different Action Evaluation Network is required, as 
shown in Figure 5.14. Again, the input state vector is normalised so the in-
puts lie in the range [0,1]. 
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The rule base and confidences obtained after training the neurofuzzy 
controller without accelerometer for 20 minutes, after which time learning 
had stabilised, are shown in Table 5.2. The dashed line of shows a typical 
performance of this neurofuzzy controller. While the end effector was sta-
tionary, an external force of 10N was applied to the object at 3 seconds 
with an other external force of -10N being applied to the object as 5 sec-
onds as described in Section 5.2.2. Both external forces induce slip of 
about the same intensity but with opposite directions. The system is able to 
grasp the object properly despite the induced disturbances. After 6 sec-
onds, the end effector was subjected to a particular pattern of vertical ac-
celerations as shown in Figure 15(d). The disturbances are standard for 
testing all four controllers. As the system does not have acceleration feed-
back, it sees acceleration as any other external disturbance, like a force on 
the object. Although, the system manages to keep the object grasped, the 
continual presence of acceleration had made the object slip considerably. 

v(t)
x2

Acceleration

Force

Voltage

x3

x4

x1

Slip

1y

2y

3y

4
y

5
y

6y
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a47

c1

c2
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c7

b2

b1

b3

b4

Fig. 5.14 Action evaluation network for the three-input neurofuzzy controller 
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Table 5.2 Rule-base and rule confidences (in brackets) found after reinforcement 
learning for the controller without acceleration feedback 

Fingertip forceVoltage
Z S M L 

Z
VL(0.4)
VVL(0.6)

M (0.4)  
L (0.6)

NVS (0.4) 
Z (0.6)

NVS (0.8) 
Z (0.2)  

AN
L (0.2) 
VL (0.8)

S (0.25) 
M (0.5)  
L (0.25)

Z (0.3) 
VS (0.6) 
S (0.1) 

Z (0.8) 
VS (0.2)  

S
M (0.2)  
L (0.6) 
VL (0.2) 

M (0.3) 
 L (0.7)

S (0.4) 
M (0.6) 

VS (0.5) 
S (0.5)  

M
L (0.1) 
VL (0.8) 
VVL(0.1)

L (0.3) 
VL (0.7)

M (0.3) 
L (0.6) 
VL (0.1) 

S (0.4)  
M (0.6)  

Slip

L
VL (0.2) 
VVL(0.8)

L (0.1) 
VL (0.9)

L (0.7) 
VL (0.3) 

M (0.8)  
L (0.2) 

5.6.2 Approach with Accelerometer 

The controller described in Section 5.6.1 cannot distinguish the end effec-
tor vertical acceleration from any external disturbance acting on the object. 
If the controller had knowledge of the acceleration such as would provided 
by an accelerometer, it might be able to react in advance to that distur-
bance. Accordingly, in this section, a controller which uses acceleration in-
formation is developed. The proposed controller is shown in Figure 5.15. 
This is the traditional approach: It integrates all the inputs into one single 
fuzzy machine.  

For neurofuzzy controllers with more than two inputs, to express the ob-
tained rule base in tabular form, the rule base has to be separated into sev-
eral tables. The minimum number of tables required is equal to the number 
of memberships of the smallest fuzzy set. The smallest fuzzy set is the one 
which has the least number of memberships. Another option (for the three-
input case) is to put the rule base into a single table with several rule con-
fidences, each one corresponding to a fuzzy set of the third fuzzy variable. 
A problem with this approach is that there may be many rules with zero 
confidence. Table 5.3 shows the obtained rule base after training for 38 
minutes, after which time learning had stabilised. Each rule has four confi-
dences corresponding to (i) applied force is Zero; (ii) applied force is 
Small; (iii) applied force is Medium; and (iv) applied force is Large.  
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Inference
machine

Applied
force

Slip
rate

Motor
voltage

End effector
acceleration

Fig. 5.15. Traditional approach for a neurofuzzy controller with three inputs 

The solid lines of Figure 5.16 show typical performance of the system 
without acceleration feedback, whereas the dashed lines depict the situa-
tion with such feedback. Again, the standard pattern of disturbances is ap-
plied: an external force of approximately 10 While the end effector was 
stationary, an external force of 10N was applied to the object at 3 seconds 
with an other external force of -10N being applied to the object as 5 sec-
onds with the end effector stationary. These external forces induce slip of 
about the same intensity but with opposite directions. The system is able to 
grasp the object properly despite the induced disturbances. After 6 sec-
onds, the end effector was subjected to a particular pattern of vertical ac-
celerations as shown in Figure 5.16(d). The neurofuzzy controller with ac-
celeration feedback increase the motor terminal voltage and so the applied 
force when the end effector starts accelerating, and does so earlier than the 
system without such feedback (Figures 5.16(b) and 5.16(c)). This reduces 
the extent of the slippage, as shown in the latter part of Figure 5.16(a). The 
system prevents almost perfectly the object slippage due to negative accel-
eration: Only the positive acceleration is able to induce significant slip. 
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Fig. 5.16 Simulated results for the system without information of the end effector 
vertical acceleration (solid) and the system with (dashed): (a) object slip behav-
iour; (b) control action (applied motor voltage); (c) resulting force applied to the 
object; (d) end effector vertical acceleration 
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Comparing the performances of the system with and without acceleration 
feedback, we conclude the following. When there is no end effector accel-
eration, both systems perform similarly. In the presence of end effector ac-
celeration, the system with acceleration feedback is able to eliminate or re-
duce the slippage. However, this improvement has come at the price of 
having now 700 possible rules whereas before there were only 140 possi-
ble rules. So, there is a trade-off between simplicity of the system and a 
better performance. Nevertheless, this application involving three inputs is 
still considered a low-dimensional problem [8, p108]; the 700 possible 
rules demand modest memory and processing time. Accordingly, the me-
chanical response is not affected by undue processing delay.  

5.6.3 Approach with Accelerometer and Hierarchical Modelling 

Hierarchical control divides a problem into several simpler subproblems: 
High dimensional complex systems are divided into several low dimen-
sional subsystems. Hence, this is an attractive technique to identify parsi-
monious neurofuzzy models [34-37].  

Inference
machine

Applied
force

Slip
rate

Motor
voltage

End effector
acceleration

Inference
machine

Inference
machine

Subnetwork X

Subnetwork Y

Subnetwork Z

Fig. 5.17 Traditional hierarchical model for the neurofuzzy controller with three 
inputs.

Inference
machine

Applied
force

Slip
rate

Motor
voltage

End effector
acceleration

Inference
machine

+

Motor
voltage

% increase

Subnetwork B

Subnetwork A

Fig. 5.18 Proposed hierarchical model for the three-input neurofuzzy controller 
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In the previous section, we saw how the addition of one input to the 
neurofuzzy controller results in a bigger and more complex rule base. Fig-
ure 5.17 shows a neurofuzzy hierarchical structure commonly used to 
overcome the curse of dimensionality, adapted for the control of our grip-
per with acceleration feedback. The outputs of the subnetworks X and Y
form the inputs of the subnetwork Z. With this approach, the addition of an 
input variable increases linearly the number of rules. However, the overall 
network training is difficult as the outputs are complex nonlinear functions 
of the weights [37, 38]. Consequently, the idea of multiplying the outputs 
of the subnetworks to generate the overall network output is used here, see 
Figure 5.18. This design is based on previous results, which have shown 
that the gripper controller has to increase the motor voltage when the ac-
celeration increases. 
In a neurofuzzy hierarchical structure, the rule base increases linearly, so 
the density of the end effector acceleration fuzzy set can be finer. Conse-
quently, this fuzzy set has now seven memberships: NL, Negative Medium 
(NM), NS, Z, S, M and L, and the (new) subnetwork B output set (i.e., per-
centage increase in motor voltage) has the memberships Z, S, M and L. 
The total possible number of rules of the entire network is equal to 188. 
Accordingly, there has been a considerable reduction of the rule base in 
comparison with the approach of Section 5.6.2. 

v(t)

x1

Acceleration

% increase
x2

1y

2y

3y

4
y

5
y

c1

c2

c3

c4

c5

b1
b2

a12
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a25

Fig. 5.19 Action Evaluation Network for the neurofuzzy subnetwork B
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Table 5.4 Rule-base and rule confidences (in brackets) found after reinforcement 
learning for the neurofuzzy subnetwork A

Fingertip forceVoltage
Z S M L 

Z
VL(0.4)
VVL(0.6)

M (0.5)  
L (0.5) 

NVS (0.4) 
Z (0.6) 

NVS (0.75) 
Z (0.25)  

AN
L (0.2) 
VL (0.8)

S (0.3)  
M (0.6)  
L (0.1) 

Z (0.4) 
VS (0.6) 

NVS (0.1) 
Z (0.8)  
VS (0.1)  

S
M (0.1) 
L (0.6) 
VL (0.3) 

M (0.3) 
L (0.6)  
VL (0.1)

S (0.5)  
M (0.5) 

VS (0.5)   
S (0.5)  

M
L (0.1) 
VL (0.8) 
VVL(0.1)

L (0.3) 
VL (0.7)

M (0.4) 
L (0.6) 

S (0.3)   
M (0.6)   
L (0.1) 

Slip

L
VL (0.1) 
VVL(0.9)

L (0.1) 
VL (0.9)

L (0.6) 
VL (0.4)

S (0.1)  
M (0.8)   
L (0.1)  

Table 5.5 Rule-base and rule confidences (in brackets) found after reinforcement 
learning for the neurofuzzy subnetwork B

End effector vertical acceleration
 NL NM NS Z S M L 
Z 0.0 0.05 0.2 0.95 0.1 0.0 0.0
S 0.0 0.25 0.7 0.05 0.8 0.25 0.0
M 0.2 0.6 0.1 0.0 0.1 0.6 0.1

%
increase

L 0.8 0.1 0.0 0.0 0.0 0.15 0.9

The training of subnetworks A and B is identical to the training of the 
previous neurofuzzy systems, but subnetwork B has a different Action 
Evaluation Network, as shown in Figure 5.19. In the neurofuzzy hierarchi-
cal controller, each subnetwork has an independent rule base. Tables 5.4 
and 5.5 show the rule bases obtained after 30 minutes of training, for the 
subnetworks A and B, respectively. The two subnetworks were trained si-
multaneously.

In, Figure 5.20 the dashed line shows typical performance of the neuro-
fuzzy hierarchical controller compared with that of the controller described 
in Section 5.6.2. Again, with the end effector stationary, two external  
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Fig. 5.20 Simulated results for the system with information about the end effector 
vertical acceleration (solid) and the neurofuzzy hierarchical controller with end ef-
fector acceleration feedback (dashed): (a) object slip behaviour; (b) control action 
(applied motor voltage); (c) resulting force applied to the object; (d) end effector 
vertical acceleration 

forces are applied to the object to induce slip: 10 N at 3 seconds and -10 at 
5 seconds. The system is capable of performing a stable grip despite these 
disturbances, After 6 seconds, the end effector is subjected to the same 
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patern of acceleration as before. Again, this controller is able to mange ex-
cellently the negative acceleration, and reduce slippage for the positive ac-
celeration. The  neurofuzzy hierarchical system was not only able to re-
duce the number of rules but also give a slight improvement in the system 
performance.  

Neurofuzzy
controller

(2)

Neurofuzzy
controller

(1)
Applied force

Slip rate

Acceleration Applied motor
voltage (gripper)

Suggested
end effector
acceleration

Limiter

Desired
end effector
acceleration

maximum
acceleration| |

Fig. 5.21 Hierarchical framework to improve the performance of the end effector, 
controlling its maximum acceleration 

5.6.4. Hierarchical Approach with Acceleration Control 

As end effector acceleration can induce slippage, it is worth considering 
controlling the end effector acceleration. Object slippage can be reduced if 
more force is applied to the object. However, there is a limit to the force 
that the gripper can apply because:  

the object can be crushed if large force is applied;  
the object can slip if the gripper cannot apply more force because 
of mechanical limits. 

As result, there is also a limit in the end effector acceleration to ensure a 
stable gripping. Accordingly, a hierarchical framework to limit the maxi-
mum end effector acceleration is proposed, as shown in Figure 5.21. This 
design features two neurofuzzy controllers. Neurofuzzy controller (1) is 
the neurofuzzy hierarchical controller described in Section 5.6.3. Neuro-
fuzzy controller (2) is responsible for calculating the maximum end effec-
tor acceleration that the gripper can exert yet still guarantee stable grip-
ping.  

The output set of Neurofuzzy controller (2) is the maximum absolute 
acceleration

max
a . The absolute value of the maximum acceleration is  
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used to have a more transparent network. It has four memberships: Z, S, M 
and L. The output of the limiter, i.e., the suggested end effector accelera-
tion,

s
a as, is given by:  

)asgn()a,amin(a ddmax

where da is the desired end effector vertical acceleration. This value 
comes from another level of the robot controller, for instance, path or task 
planning. Figure 5.22 shows the AEN of Neurofuzzy controller (2).  

v(t)

1

x1

Suggested
acceleration

Force

Voltage

x2

x3

y

2y

3y

4
y

5
y

c1

c2

c3

c4

c5

a12

a11

a35

b1
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b3

Fig. 5.22. Action evaluation network for Neurofuzzy controller (2) shown in 
Figure 5.21 
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Fig. 5.23 Simulated results for the hierarchical controller with (solid) and 
without (dashed) end effect or acceleration limitation: (a) object slip be-
haviour; (b) control action (applied motor voltage); (c) resulting force ap-
pliedtotheobject; (d) end effect or vertical acceleration 
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Both neurofuzzy controllers share the same Markov decision process. Neu-
rofuzzy controller (1) is trained first; once its training has been completed, 
Neurofuzzy controller (2) is trained. If the two neurofuzzy controllers were 
trained simultaneously, it would be impossible to determine which control-
ler was responsible for either failure or success. Table 5.6 shows the Neu-
rofuzzy controller (2) rule base and rule confidences found after 45 min-
utes of reinforcement learning. The rule base of Neurofuzzy controller (1) 
corresponds to that of the neurofuzzy hierarchical controller (Tables 5.4 
and 5.5). Figure 5.23 shows typical performance with and without accel-
eration limitation, subjected to the the standard pattern of disturbances. As 
illustrated by the dashed line in Figure 5.23(a), the hierarchical end effec-
tor controller was able to eliminate the object slippage due to end effector 
vertical acceleration.  

5.7 Conclusions 

Robotic grippers are commonly used to restrain and manipulate a variety 
of objects under a wide range of conditions. Accordingly, robotic end ef-
fectors are required to be capable of considerable gripping dexterity within 
an unstructured environment. The variety of objects and working condi-
tions that might be met in practice make it impossible to foresee all the 
situations the system might encounter. Therefore, robotic systems need to 
be capable of dynamic adaptation to external disturbances, changing cir-
cumstances and unforeseen situations. Ideally, the system should learn its 
adaptive behaviour on-line, through interaction with its environment, 
without the supervision of a ‘teacher’. This becomes vital when labelled 
training data are not available. However, when such training data are 
available, they can profitably be used to provide seed weights for on-line 
learning. Reinforcement learning is an effective way to train the neuro-
fuzzy system on-line, facilitating adaptation to unexpected conditions. Its 
use led to successful control in situations where the supervised learning 
system failed.  

Looking to have a faster adaptation to environmental changes, we have 
implemented a hybrid learning approach which uses both supervised and 
reinforcement learning. The combination of these two training algorithms 
allows the system to make good use of effective control actions discovered 
during operation. These can be considered as ‘labelled’ data since a record 
of inputs and outputs is continually kept over a preceding (three-second) 
period. The supervised learning scheme ran ‘in the background’ and was  
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only allowed to overwrite the results of reinforcement learning if the corre-
sponding neurofuzzy network weights were not too dissimilar. In this way, 
the hybrid system can ‘ignore’ inconsistent (labelled) data. In addition, 
stability can be maintained (although not guaranteed) in the absence of a 
precise mathematical model of the system. The performance of the hybrid 
system was surprisingly good, recovering from simulated sensor failure 
much faster than the ‘pure’ reinforcement learning system.  

In practice, all robot applications require end effector movement, so 
there will be end effector acceleration, which can induce slippage. Conse-
quently, it is vital to validate the gripper controller under that condition. A 
controller without any information of the end effector acceleration treats 
this disturbance as any other (i.e., external force acting on the object). Al-
though this controller is able to respond adequately over short time peri-
ods, the continuous presence of acceleration could lead to the object slip-
ping from the gripper. We therefore developed an approach using end 
effector acceleration feedback, integrating this extra input in the same 
fuzzy machine. This controller is indeed able to discover that in the exis-
tence of acceleration, it has to apply more force. Thus, slippage is reduced. 
However, this improvement is at the cost of increasing the rule base, so re-
ducing network transparency. At this point, the dilemma between model 
simplicity and model accuracy is evident. Hence, a parsimonious neuro-
fuzzy hierarchical controller was proposed. With this approach, the num-
ber of rules was smaller than required by the traditional neurofuzzy con-
troller with acceleration feedback. The parsimonious controller had an 
excellent performance, allowing only slight slippage.  

As with any large external force acting on the object, high accelerations 
of the effector will lead to slippage of the grasped object. The control 
technique proposed to solve this problem is again hierarchical. The addi-
tion of a controller in charge of limiting the end effector acceleration im-
proved noticeably the overall performance. However, such limitation 
strategies may have other unintended effects on the general performance of 
the robot. For instance, if the robot is path following, imposing a limit on 
acceleration places restrictions on the robot capabilities.  

In conclusion, it is apparent that when the system has knowledge of a 
disturbance (i.e., acceleration), it is able to take a better action than when it 
is ignorant of such a disturbance. In the same way, when the system is able 
to modify the disturbance, it can help the controller to perform properly. 
Finally, the curse of dimensionality affects not only the system transpar-
ency but also its learning speed and effectiveness. If the number of inputs 
increases, the system complexity increases too. A more complex system 
means that there are more possible neurons, weights and rules. 
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Consequently, the learning problem is made harder. These drawbacks can 
be reduced using parsimonious adaptive/product models. 
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6.1 Introduction

Nowadays, the interest in mobile robotics working in outdoor environ-
ments is increasing due to the new applications focussed on aiding hu-
mans. To collaborate with humans in transportation, or evolve in danger-
ous or unknown places it is necessary to develop new skills [20]. To give 
the robot the autonomy skill, knowledge about the environment, where the 
robot is going to evolve, to manipulate objects, to navigate without colli-
sion or to plan trajectories, is needed. The environment modelling is one of 
the main tasks to develop in mobile robotics. Path planning, localization 
and control tasks, need a model which represents the environment around 
the robot.  

To model outdoor environments for navigation, a methodology must be 
developed. The model obtained with the methodology must be useful for 
navigation, and it must be computed in real-time. The model will be 
adapted to the terrain type and to the robot’s characteristics.  

Previous to the model building, the development of a suitable sensor 
system is very important for the robot’s autonomy. While the robot is mov-
ing, the information about the environment is being acquired by the sensor 
system. In each perception, the information sensed is processed to obtain 
useful information for the decisional systems. The robot’s autonomy will 
depend on the information richness and the data interpretation. The infor-
mation perceived by the sensor system is used for localization, manipula-
tion or path-planning. In general, to model environments, those sensors 
that obtain depth information such as the scanner laser, sonars or digital 
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cameras will be of interest. As it is explained in [18], when an outdoor en-
vironment has not regular properties (as indoor has), the perception system 
must provide a generic characterization of the obstacles in the environ-
ment. To avoid the obstacles when the robot evolves, more information 
than in an indoor environment is needed. Therefore, the use of three-
dimensional information sensors is of great importance. Two different 
methodologies are found in literature, those based on scanner laser 
[9,36,26,24] and stereovision [37,28,29,12].  

6.1.1 Modelling 

The data perceived by the sensor system are transformed in models to rep-
resent the environment. The environment modelling allows the robot, be-
sides knowing its location, to identify the different alternatives to accom-
plish its mission with success. There are different techniques developed to 
model the environment.  

The most basic representation is the space discretization in cells which 
provides a flexible obstacles representation [51]. This representation is 
easy to manipulate and the discretization facilitates sorted and specific 
information for the robot tasks. For the discretization construction, the 
sensor information is transformed using techniques such as occupancy 
grids [19], digital elevation maps (as in figure 6.1) [26] or spatial rep-
resentations such as octrees, quadtrees [33], etc.  

Fig. 6.1. Digital Elevation Map

Geometrical representation approximates the measurements by 
mathematical functions, easy to manipulate by a computer. The geo-
metrical model is used to represent objects and compute its attributes. 
This type of models is of interest for manipulation, virtual spaces con-
struction for tele-operation and geometrical localization. There are dif-
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ferent techniques to build geometrical maps, such as super-quadrics or 
hyper-quadrics, functional models (polinomial, splines, etc.) or de-
formable surfaces [31]. Geometrical models generate accurate maps, 
close to the real environment, but these representations are not used in 
maps for outdoor navigation due to its high time computing and the 
bulky models which generate.  

In topological models, the numerical information is replaced by sym-
bolic data, and the map is represented as a graph. Topological models 
have been proved to be useful in navigation along corridors and in 
topological localization. Topological model applications in outdoor 
environments have not been found, despite of its effectiveness in large 
environments [43], [40]. It allows path-planning in a fast way and it 
reduces the amount of data and the computing time. But the graph rep-
resentation needs repetitive elements (such as doors, walls, corners, 
etc.) [7], that in outdoor environments do not exist. This technique is 
interesting to model large indoor environments where a great deal of 
common objects exists. The objects allow the robot to localize and to 
evolve. But for outdoor environments, a-priori unknown, these models 
are not successful.  

Fig. 6.2. Topological maps extraction [49]. (a) Cell map, (b) Voronoi Diagram, (c)
critical points, (d) critical lines, (e) topological regions, and (f) topological graph

Hybrid representations are a good alternative to the methods de-
scribed above. This method combines different modelling tech-
niques to take advantage of each method and to solve the disadvan-
tages. Currently, it is a good choice for navigation map modelling. 
Some authors work with topo-geometrical models [4], where they 
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carry out a terrain discretization, using a sensor based model. Thrun 
in [49] builds a topological graph based on an occupancy grid. 
Betgé-Brezetz in [2] describes, in a topological way, the locations, 
starting with the geometrical information. The author builds planes 
to represent the flat and super-quadrics for the obstacles representa-
tion. With digital image techniques and border extraction, the ob-
jects are separated from the environment to obtain the topological 
model. This description is limited to easy environments with circu-
lar-form obstacles on the terrain. Other authors build topological 
models from the geometrical information provided by the sensor 
system. Simhon and Dudeck, which propose in [46] a global hybrid 
topological model, built from local maps called Islands of reliability,
where each local map has quantitative information about the envi-
ronment, based on the metric information from the sonar. The same 
sensor is used by Choset et al. in [15], which describes the sensor-
based exploration with Voronoi diagrams. The system builds, in-
crementally, a connected graph with points that belong to the Vo-
ronoi edges. This technique is used by Blanco et al. in [6] with a la-
ser scanner.  

In next sections a technique for modelling traversable regions will be 
developed. The model is a topo-geometric type and can represent large 
outdoor environments. The model will be represented as a Voronoi Dia-
gram based on the sensor information provided by a three-dimensional 
scanner laser. The environment is divided in regions that can be crossed by 
the robot or not. The regions that are crossable by the robot will be called 
Traversable regions, and the traversability characteristic will be defined 
based on the robot and the terrain characteristics.  

6.1.2 Traversability 

The traversability attribute represents the terrain suitability to navigate. 
Several authors study this attribute. The traversability concept was intro-
duced by Langer in [16], and it highlights the region capacity to be cross-
able or not by a robot.  

Most of the works, related to outdoor navigation, try to divide the per-
ceived terrain in regions with different characteristics (in a segmentation 
process). Langer in [29] performs a terrain segmentation and generates a 
list of crossable regions for the robot, with depth images provided by a ste-
reovision system and the sorted information with a Digital Elevation Map 
(DEM). The classification allows the robot in [16] to navigate over roads 
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and highways, we mean, easy environments, partially structured. For 
planetary environments, Seraji in [45] introduces the concept of traver-

sability index. The index expresses the suitability of a terrain to be crossed, 
based on physical properties such as the slope and the roughness. Gennery 
in [22] uses this concept and a set or fuzzy rules to classify the terrain in 
difficulty degrees.  

A great deal of authors work with two base parameters: the terrain slope 
and the roughness degree. To obtain the slope, algorithms have been al-
ready developed. For example the general slope calculation using the hori-
zon line obtained in three-dimensional coordinates, with a stereovision 
system and interpolating only one plane, as Howard el al. present in [25], 
or the use of neural networks with a complex training, based on the presen-
tation of different terrain patterns to obtain a numerical slope [1].  

The last two works presented before, have been developed specifically 
for planetary type environments, we mean, flat terrain with defined form 
obstacles (basically rocks over the flat), different to unknown terrestrial 
environments. Other authors compute the slope in each point. The number 
of operations is higher but it is not necessary to perform interpolations or 
to pre-process the sensor information. Among these methods we highlight 
the interpolation of four connected points performed by Nashashibi in [39], 
and the use of vision masks in a neighbourhood of a point [3]. The last 
method has been chosen to evaluate the slope in each point.  

On the other hand, the roughness is treated as a measurement of the sur-
face variation. Most of the authors evaluate the roughness as the height 
variation. For example Nashashibi in [39] and Langer in [29] evaluate the 
discontinuities with the gradient calculation and the sorted data provided 
by a telemeter. Other authors calculate the dispersion points with respect to 
an interpolated plane [22]. For Seraji [23], the roughness depends on the 
number of rocks in the environment and the parameter is computed using 
artificial vision techniques and fuzzy rules.  

In this work, the Traversability Numerical Model is built in a low level. 
The terrain is divided in crossable and non crossable areas for the robot. It 
must be taken into consideration that the traversability characteristic not 
only depends on the terrain properties, but it also depends on the robot 
physical restrictions and the robot task.  

The philosophy of the modelling system proposed in this chapter, and in 
[11], is to divide the general task in three abstraction levels (as shown in 

6
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figure 6.3). The idea is to choose a method which is able to build a concep-
tual model that allows representing the terrain difficulty for robot naviga-
tion. The levels are described as follows:  

Fig. 6.3. Modelling system scheme 

1 In a first level, the three-dimensional information is captured by the 
sensor system, (the experimental tests have been done with a scanner 
laser), and it is computed with the aid of a compass in a snapshot rep-
resentation.

2 In a second level, the model is enhanced with the traversability infor-
mation. The model obtained will be called Traversability Numerical 
Model (TNM), which will be defined in section 6.3. The TNM divides 
the 3D environment in regions that can be crossable or not crossable 
by the robot. Inside this level, the 3D measurements are projected in a 
XY  plane and are discretized in a digital elevation map to obtain a 

region representation. Besides, the borders of the non traversable re-
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gions are extracted. This information will be useful for the local and 
global Traversable Region modelling technique chosen.  

3 At last, in the third level, and thanks to the global information pro-
vided by a Global Positioning System (GPS), a global integration with 
the previous local models obtained in the successive perceptions, while 
the robot is moving, will be done.  

In outdoor navigation is interesting to estimate some parameters which de-
fine the terrain difficulty to be crossed. Path-planning in large and outdoor 
environments is a complex task, because there are a lot of parameters 
which define the traversability, for example:  

The task the robot is going to perform over the environment. Ma-
nipulation, planetary exploration, etc., need different models and in-
formation. In outdoor navigation, the robot task is to build a sensor 
based model to evolve in a large outdoor environment, a priori un-
known. The model chosen is of topo-geometric type.  
The experimental platform characteristics, its locomotion system 
and physical restrictions affect in future decisions-taking. In the 
outdoor navigation case, the locomotion system, which shows the 
maximum height the robot can go through in its movement, and the

robot size, that allows to determine the minimum elevation the robot 
can go under (the 3D free space), are the most important robot 
characteristics (but others can be considered).  
The terrain characteristics, which determine the terrain difficulty to 
be crossed. Most authors focused their research in two basic pa-
rameters to specify the terrain characteristics, the terrain slope and 
the roughness degree. The two parameters not only are used in ro-
botics, but also in the topography field, and specifically in Geo-
graphical Information Systems (GIS) but in another level and with 
different sensor systems. Currently, two basic characteristics are 
used to define the traversable zone for the robot and for an outdoor 
environment that can be non-structured. These parameters are the 
slope and the roughness.

Based on this, and taking into account the general modelling structure, 
the Traversability Numerical Model (TNM) is defined as the 3D snapshot 
model enhanced with the traversability characteristic. The 3D points, per-
ceived by the sensor system, will be considered as traversable or non tra-

6
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versable by the robot. It must be considered reminded that the traversabil-
ity characteristic strongly depends on the terrain and robot features.  

To obtain the TNM, four different methodologies can be presented:  
1 Elevation analysis.  
2 Slope analysis.  
3 Slope and roughness analysis with:  

(a) elevation gradient analysis,  
(b) slope gradient analysis.  

The elevation analysis is an easy and classic method, which allows deter-
mining free 3D spaces. It consists of considering as non traversable points 
those that have an elevation or z  coordinate between thresholds minT

and maxT  obtained by the following reasoning:  

minT  depends on the robot locomotion system and gives the 

higher obstacle value the robot can go through. 

maxT  depends on the maximum robot height and it is used to 

detect aerial obstacles (such as aerial beams or door-hinges)  

In the mathematical expression for this analysis, we name NTR  the 
Non-Traversable-Region and it is defined as:  

Definition 1. Given a 3D points image { ( )}i i i iI p x y z  we define the 

set NTR  (Non Traversable Region) as the sub-set of I , such as it ful-
fills the following traversability property : 

1 { ( ) }test

i i i i min i maxNTR p x y z T z T  (6.1) 

Defining as TR  the Traversable Region, it will be fulfilled in all cases 
that:

NTR TR I  (6.2) 

NTR TR  (6.3) 
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We mean, the NTR is defined as the set of points ip , such as the eleva-

tion iz  is placed between borders, which will depend on the robot’s 

physical characteristics [10]. In figure 6.4 the NTR for a generic outdoor 
robot is presented.  

Fig. 6.4. NTR definition

The consideration of this parameter detects, exclusively those aerial or 
terrain obstacles which can collide with the robot, such as: aerial beams or 
door-hinges.

For example, in figure 6.5 a partially structured environment with aerial 
obstacles is shown. The environment presents a low roughness degree and 
accessible for the robot. In figure 6.6 the TNM obtained with the test 1

evaluation is presented. In dark colour, points belonged to the NTR are 
presented, and in light colour, those belonged to the TR. The aerial obsta-
cle is evaluated as belonged to the TR, because the aerial beam is place 
higher than the robot height. Besides, the terrain has a low roughness de-
gree, so this test, in this case, provides a suitable result.  

6
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Fig. 6.5. Environment with aerial obstacles. Real image

Fig. 6.6. Environment with aerial obstacles. TNM

Nevertheless the elevation analysis is restricted to generally flat envi-
ronments, with certain degree of roughness, but without slope. Sloped ter-
rain will be considered by the robot as obstacles. So it will be necessary in 
these cases to do a slope analysis.  

C. Castejón et al.
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The surface inclination or slope can be defined as the existing angle be-

tween the surface normal vector N  and the vector W , perpendicular to 

the horizontal surface, as we represent in figure 6.7. 

Fig. 6.7. Terrain slope definition

Lots of methods can be found in literature to obtain the terrain slope: in 
each point [39] or interpolating planes and calculating the normal vector in 
each one [25]. Betgé-Brezetz in [2] calculates the normal vector in each 
3D point. The number of required operations is greater than in previous 
cases, but it is easier to obtain because it is not necessary to apply compli-
cated interpolation methods or pre-processing the information.  

The algorithm used to calculate the slope in each point developed by 
Betgé-Brezetz in [3] consists of applying, over a sorted data image, a So-
bel filter in the horizontal and vertical directions, to obtain the tangents in 
each point along the two scanning directions, defined in figure 6.8 as 
and  scans.

Each 3D point ( P ) is represented in a Cartesian reference system:  

( )

( )

( )

x

P y

z
 (6.4) 

The slope in each point is calculated based on the previous normal vec-

tor calculation, represented in figure 6.8 as PN .

6
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Fig. 6.8. Normal in the point P estimation

We define the lines  and  as the horizontal and vertical scans re-

spectively. And the 3D points image is defined as ( , )I , such as the 
value in each pixel is the depth . In figure 6.8, the normal vector is ob-
served to be the normalized cross product of the tangent vectors to the 
lines  and  (called P  and P ). We mean:  

( )P

P P
N

P P
 (6.5) 

with

xx

y y
P P

z z

 (6.6) 

The surface orientation depends on the cross product sign; the orienta-

tion is chosen such as PN  goes always to the sensor direction.  
Mathematically, the tangent vector is obtained when the curve in the 

point is derived. If a discretization is done and we apply digital image 
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processing techniques, the continuous derivatives that appear in P  and 

P  are calculated by multiplying the mask and adding the elements.  

As can be seen in figure 6.7, the slope is the angle between the normal 
vector in a point, and the vector perpendicular to the XY , situated in the 
robot base. The angle that defines the slope in the point P  is calculated 
in the following equation:  

cosN W N W
 (6.7) 

where,

cos
N W

N W
 (6.8) 

and then,  

arccos
N W

N W
 (6.9) 

This method gives the possibility to calculate the normal vector in each 
3D point in a fast and easy way. It is suitable in unknown outdoor envi-
ronments and non-structured, because the operations are performed in a lo-
cal neighbourhood. Besides, the algorithm can be parallelized. Further-
more, despite the slope values are not exact, due to the filter applied; its 
accuracy is enough for solving the navigation problem.  

In order to the robot physical restrictions, basically the robot mass and 
its locomotion system, a maximum and minimum slope, that the robot can 
go up and go down, exist. With the robot information, the traversable slope 
analysis is performed as follows:  

Definition 2. Given a three-dimensional points image { ( )}i i i iI p x y z

the Non Traversable Region (NTR) is defined as the subset of 3D points 

ip I , such as the slope in each point i  fulfil the following property:  

2 ( )test

i i i i min i i maxNTR p x y z AND
 (6.10) 

We mean, the slope analysis considers as non traversable areas (NTR) 
those regions where the slope in each 3D point exceeds two thresholds.  

6
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In figure 6.9 a semi-structured environment is presented. As the most 
relevant characteristics the big differences in the slopes, drawn in figure 
6.9, and the high positive slope, the tree on the left hand side present, can 
be highlighted.  

Fig. 6.9. Real environment with different slopes

In figures 6.10 and 6.11, the TNM built with the test 1 and test 2 respec-
tively is presented. In dark colour, those points labelled as non traversable 
are represented, and in light colour, those belonging to the traversable re-
gions.
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Fig. 6.10. TNM. Elevation analysis (test 1)

Fig. 6.11. TNM. Slope analysis (test 2)

In these results can be appreciated that the first analysis is not good 
enough for terrains with slopes. The model constructor identifies as non 
crossable the positive slope, such as the zones marked with 1  and 3

slopes in figure 6.9. Nevertheless, the robot can go through it, as can be 
demonstrated in the second analysis, where a slope computing has been 
carried out. 

The elevation analysis is useful in flat terrains with different slopes, but 
this is not enough to define a natural terrain and the method presents some 

6
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problems with surfaces such as steps (non traversable by a robot but con-
sidered as traversable by this method), or little rocks (easy to cross for the 
robot locomotion system, but considered as obstacle by the method).  

For example, in figure 6.12 a complex environment, due to the number 
of obstacles, is shown. And in figure 6.13 the TNM with test 2 is pre-
sented. It can be seen, that the bank has not been detected, due to its hori-
zontal slope.  

Fig. 6.12. Real complex environment

C. Castejón et al.
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Fig. 6.13. TNM. slope analysis (test 2)

In that case it will be necessary to study another parameter to determine 
the traversability. In following approximations a terrain roughness analysis 
is considered as a complement to the current slope analysis. In figure 6.14 
a TNM with roughness study is presented to compare with figure 6.13. In 
this case the obstacle has been detected.  

6
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Fig. 6.14. TNM with a roughness analysis

Most of the definitions found in literature about roughness make reference 
to irregularity measurements in the terrain surface, and usually it refers to 
elevation irregularities. Classical techniques to calculate this measurement 
are: the gradient elevation analysis [39,29] and the dispersion points calcu-
lation with respect to the plane [22]. In the topography field, the roughness 
measurement has been studied in depth. Gadelmawla et al. present a large 
amount of all possible parameters, which represent the characteristic [21]. 
Two methodologies for the roughness study are presented: first, a classical 
method, transforming the information in a digital image and second, a new 
study based on a topographical parameter.  

The elevations are considered, in this case, in a local level. For each point, 
the local height gradient is calculated in a neighbourhood, and the result is 
considered as the roughness parameter. Big differences in the gradient, 
mean differences in the terrain surface or that an obstacle exists.  

C. Castejón et al.
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Based on the sorted information provided by a scanner laser, the eleva-
tion in each point can be treated as an image, and the gradient is calculated 
with fast and classical vision techniques. The digital image is defined as a 
two-dimensional matrix I  with the elevation information in each ele-
ment. To obtain the gradient with vision techniques, we apply the digital 
mask presented in equation 6.11:  

0 0 0

1 5 1

1 1 1
 (6.11) 

where, only the information between the point and its right and left hand 
side neighbour, and their neighbours in the previous vertical scan are con-
sidered (meant in the measurement sense).  

To calculate the TNM two thresholds are considered, which determine, 
in a roughness study point of view, if the robot can cross the areas. These 
thresholds depend on the locomotion system, and they are defined as maxT

and minT , with the same values than those considered in section 6.3.1. 

Meaning, little differences in elevation between points mean that the robot 
can go over the object. Big differences elevations means that the robot can 
go through them (for example in case of aerial obstacles).  

So: ir  is defined as the roughness parameter in a point ( )i i i ip x y z

calculated when the mask presented in equation 6.11 is applied. 3testNTR

is considered as the subset of I , such as the following traversability prop-
erty is fulfilled:  

3 2 ( )test test

i i i i i min i maxNTR NTR AND p x y z r T AND r T
 (6.12) 

with this approach, discontinuities in obstacles can be detected, and aerial 
obstacles, which are not real obstacles, can be separated.  

This method calculates the roughness degree with a non classical method 
in the robotics field, but widely used in the topography field. The method 
is based on the normal vector deviation in each point, with the calculus of 
a statistic called spherical variance [35].  

In this case, we take advantage of the previous normal vector calculation 
to evaluate the variation inside a local region.  

6

Slope Gradient Analysis 



220

The spherical variance is obtained from the orientation variation of the 
normal vector in each point. The study uses the following reasoning:  

In a uniform terrain (low roughness), the normal vectors in a 

surface will be approximately parallel and, for this reason, they 

will present a low dispersion (see figure 6.15 left).

On the other hand, in an uneven terrain, the different changes 

in the orientation normal vectors will present great dispersion 

(see figure 6.15 right ).

Fig. 6.15. Spherical variance analysis

Definition 3. Spherical Variance 

Given a set of vectors { }iN , corresponding to the normal vectors in a 

neighbourhood, inside the perceived space, the spherical variance i  is 

defined as the complementary to the normalized mean vectors module.  

1 i
i

R

n  (6.13) 

Where i  is a measure of the vectors dispersion. The vectors are defined 

by their module and direction, in the 3D space. The method to obtain the 
parameter is detailed below:  

1. Given a set of n  normal vectors to a surface, defined by their three 

components ( )i i i iN x y z , the module of the sum vector R  is cal-

culated in equation 6.14: 

C. Castejón et al.
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2 2 2

0 0 0

n n n

i i i

i i i

R x y z

 (6.14) 

2. The mean value is normalized by dividing between the number of data 
n , in this way the result value is between the range [0,1] :

0 1
R

n  (6.15) 

3. Finally, the complementary of the result is calculated to give sense to 
the statistic in equation 6.13.  

Therefore, the values are standardized and they are distributed in a theo-
retical range between 0 and 1. When 1 there exists a maximum dis-
persion that can be considered as the maximum roughness degree, and 
when 0 , a full alignment exists and the terrain will be completely 
flat.

The spherical variance has not been used before in the robotics field. It 
is of great interest to consider the normal vector variation as a roughness 
measurement, instead of the elevation gradient as different authors do 
[39,16]. A comparative study between the spherical variance and gradient 
elevation techniques can be seen in [8]. The advantage of our method over 
the traditional ones can be found, above all, in the 3D points sensed by the 
scanner laser, where the density information decreases with the distance. 
An example of this can be clearly found in those environments with nega-
tive slope [9], where the scanner does not sense too much information.  

Therefore, the 3D traversability model is defined, in equation 6.16, as 
follows:

4 2 ( )test test slope

i i thNTR NTR AND p x y z TR
 (6.16) 

The terrain will be considered as non traversable, due to its roughness, 
when the spherical variance in a point overcomes a threshold ( th ) de-

pending on the robot’s locomotion system.  
The image 6.16 represents a rough terrain. The robot is able to go 

through the rough terrain but it is not able to go through the obstacles 
found on the left hand side of the image.  

6
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Fig. 6.16. Real environment. roughness terrain

In figures 6.17, 6.18, 6.19 and 6.20 the TNM top view, performed with 
the four tests are shown.  

Fig. 6.17. TNM test 1, top view Fig. 6.18. TNM test 2, top view

Fig. 6.19. TNM test 1, top view Fig. 6.20. TNM test 1, top view

C. Castejón et al.



These results cannot be appreciated well if we don’t represent the Tra-
versable Region Models above, where in red the non traversable regions 
for each test are represented in figures 6.21, 6.22, 6.23 and 6.24.  

Fig. 6.21. Traversable regions 
model, test 1

Fig. 6.22. Traversable regions 
model, test 2

In this figures it can be highlight the different results obtained. Above 
all, the test 1 results (figure 6.21) where there are obstacles in traversable 
regions. Best results are obtained in the two last figures (6.23 and 6.24).  

Fig. 6.23. Traversable regions 
model, test 3

Fig. 6.24. Traversable regions 
model, test 4

To compare all the methodologies, another experiment is carried out in a 
terrain with a negative slope, perfectly traversable by the robot (the de-
scent to a garage in figure 25 right hand side), in this case, we can prove, 
the non viability of the first analysis in outdoor environments. 
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Fig. 6.25. Real environment, nega-
tive slope

Fig. 6.26. Snapshot, top view

This environment is one of the worst cases because of the sensor system 
used. As can be seen in figure 6.26, where the top view snapshot represen-
tation is shown, the number of scans in the negative slope area is less than 
the left hand side scans, where a horizontal terrain is. In these cases, the 
data density is low and furthermore, the model built is less reliable.  

The TNMs obtained in this environment are shown in figures 6.27, 6.28, 
6.29 and 6.30. In figure 6.27 can clearly be seen how a simple elevation 
analysis is not able to distinguish a traversable zone. The rest of the tests 
(2, 3 and 4) are improved with the slope analysis.  

Fig. 6.27. TNM. Elevation analysis (test 1)
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Fig. 6.28. TNM. Slope analysis (test 2)

In figure 6.29 the sensor problem is shown. Despite of detecting the de-
scent as a traversable slope, the roughness analysis detects it as a non tra-
versable area. This is due to the fact that increasing the distance between 
vertical scans, which obtains a difference in elevation higher than the es-
tablished threshold.  

Fig. 6.29. TNM. Elevation gradient analysis (test 3)

6
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Fig. 6.30. TNM. Slope gradient analysis (test 4)

6.4 Traversable Region Model

When the 3D model is defined (as the one presented in figures 6.31 and 
6.32), the free space can be extracted to build a traversable region model 
for the robot navigation and path-planning. For regions representation, a 
Voronoi Diagram (VD) technique has been chosen.  

The TNM provides geometrical information that can be useful for object 
modelling or virtual models construction. Besides, the bulky information 
provided by the sensor system makes the model difficult to manipulate be-
cause of the time computing cost. Previous to obtain the traversable region 
model, 3D information must be reduced and simplified. The information 
needed for the model constructor is the two-dimensional coordinates of the 
borders that separate the TA from the NTA. To achieve this goal, digital 
image processing techniques has been chosen.  

In this case, the image is defined as a two-dimensional matrix where 
each pixel is defined by its traversability characteristic. The 3D image is, 
in this way, transformed in a binary image of traversable and non travers-
able regions. The image defines the robot free space.  

To achieve the model is necessary to follow these steps:  

1. Starting from the TNM, a Digital Elevation Map is obtained by divid-
ing the workspace in cells, and storing in each of them the elevation 
characteristic (see figure 6.33). This characteristic is defined based on 
the previously calculated traversability characteristic in each point 
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and the calculus of the number of obstacles presented in the cell. To 
obtain the number of objects the chain map algorithm is applied.  

2. With the DEM, only those cells that the sensor system perceives can 
be labelled. Then, there are some cells in the discretized environment 
without information, because the sensor maximum range has been 
overload or because another cell is occluding it. For this reason, the 
visibility map is built (see figure 6.34). To obtain the information in 
all the cells, an elevation and the traversability estimation is assigned 
to the occluded cell. The estimation is performed with the extrapola-
tion of the three-dimensional segment that joins the sensor with the 
visible cell. The classical digital vision techniques have been imple-
mented to obtain the two maps presented before. These techniques 
have been chosen for its simplicity and robustness. The DEM allows 
sorting the 3D information, obtained in the TNM, in cells projected 
over the XY  plane and in each cell only the useful information 
needed to represent the environment is stored. Its structure, in the ma-
trix form, allows the use of artificial vision algorithms.  

Fig. 6.31. TNM. Top view Fig. 6.32. TNM. Side view

Fig. 6.33. DEM Fig. 6.34. Visibility map

6



Fig. 6.35. Binary image. Fig. 6.36. Morphological operation. 
Closing.

Fig. 6.37. Edge detection 
Fig. 6.38. Real image

3. With the workspace divided in cells with the traversability informa-
tion, the image is transformed in a binary matrix (see figure 6.35), 
that represents the traversable regions (0) or not traversable regions 
(1). The image is filtered with the classical morphological operations 
(closing operation) to smooth the shapes without loosing the geomet-
rical information (see figure 6.36). This pre-processing technique en-
hances the subsequent edge detection. The boundaries that separate 
the traversable regions from the non traversable ones are needed to 
build the traversable region model (TRM). In this case different filters 
have been tested giving good result the Prewitt, Robert and Isotropic 
filters. These filters are developed as matrix with dimension 3 3
and a convolution is performed with the binary image (the result is 
presented in figure 6.37).  

In previous steps the information needed to represent the TRM is ob-
tained.

6.4.1 Traversable Region Modelling Algorithm

There exist many methods to obtain a model useful to navigation and mo-
tion planning. Among classical methods proposed for two-dimensional 
space, a roadmap approach has been selected. The roadmap represents the 
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robot’s free space in a one-dimensional representation. There are various 
types of roadmaps. Specifically, to obtain a model from the traversable re-
gions segmentation a Voronoi Diagram (VD) technique has been chosen. 
This approach is used for the following reasons:  

The model is built based on the sensor information, its construction 
is fast and the model can be used in real time.  

The VD, by definition, gives safe trajectories that maximize the 
clearance between the robot and the obstacles. The obtained model 
is very useful for navigation.  
The environment model is a simplification of the robot’s free space 
or represents a free space scheme. It does not imply memory storing 
problems.  

The Voronoi Diagram is a classical technique that splits up the space 
into non uniform regions. The more intuitive and simple definition for the 
Voronoi construction is: given a finite set of distinct, isolated points in the 
space, all locations in that space are associated with the closest member of 
the point set [42].  

Voronoi Diagrams 

The Voronoi Diagram (VD) divides the free space in a set of different 
regions called Voronoi regions; each of one is formed by the set of loca-
tions that is placed closer to an object than the rest [13]. This basic concept 
has been applied to solve problems concerning a variety of disciplines; the 
robotic is one of them. The Voronoi Diagram can be seen as a type of 
roadmap approach. This roadmap algorithm is used generally for the topo-
logical map construction because it uses regions segmentation.  

The use of this technique in the robotic field started at the beginning of 
the 80’s in two-dimensional path planning [41,32,30]. In those approaches 
a complete knowledge of the workspace’s geometry was available; the VD 
was constructed from a priori established model of the space with polygo-
nal obstacles. Then in the 90’s, with the sensor information incorporation, 
the VD has been used in robot navigation and planning task. In [44], an in-
cremental method based on sensor data is introduced to construct the VD 
of a terrain whose model is not a priori know, this algorithm is still limited 
to polygonal objects. The technique presented in [13] to incrementally 
construct the hierarchical generalized Voronoi graph uses local sensor in-
formation, without restrictions about to obstacle’s shape.  
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There are different methods to build VD from sensor data. For example, 
the approximation by points suggested in [48], where each object belonged 
to the workspace has a defined shape and is replaced by a set of 
representative points. In [34], objects are represented by set of points that 
are the measurements from a laser scanner. The use of artificial vision 
techniques is presented in [47], the objects are replaced as pixels and a 
skeletization of the free space is performed to obtain the Voronoi Edges. 
The approaches shown in [13] and [52], are based on the incremental 
construction of Voronoi Diagrams, moving the robot along the estimated 
Voronoi edges. Distances to objects in the environments are calculated 
from the current robot position, in the first case objects are represented by 
points and by segments, in the second. Blanco in [6] represents the 
discretization of the free space in cell as an approximation to a digital 
image to build Local Voronoi Diagrams (LVD). This is the technique 
chosen to obtain the TRM, but with modifications in the information 
treatment because the two-dimensional information provided by the laser 
in [6] is shorted and only the free space is needed to be discretized. In this 
work all the workspace is discretized because we are starting from 3D 
information. In the majority of previous works, the robot is supposed to be 
equipped with a two-dimensional sensor (scanner laser) with a 180º field 
of vision in horizontal scans, as also in [34].  

We take the advantage of the digital image obtained in the previous 
steps to work with the algorithm proposed, where the input is an image 
with the borders between the traversable and non traversable zones. The 
visibility model information determines which cells belong to the free 
space and which not.  

VD is based on a simple concept. Given a set of generators, [6] different 
and isolated, in a continuous space, every location in this space is associ-
ated to the closest generator in the set. The result is a space partition in a 
set of regions mutually exclusive except for the limits that we call Voronoi 
regions. All the locations assigned to each member forms the Voronoi re-
gion associated with that generator. The boundaries of the Voronoi regions 
are the locations assigned to two or more generators.  

According to the geometric feature of the generators, ordinary and gen-
eralized Voronoi diagrams have been defined.  

C. Castejón et al.
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Definition 4. Ordinary Voronoi iagram

For a set of n points, 1 2{ }nP p p p , with 2 n , in the bi-

dimensional Euclidean space, the Voronoi region associated to one point 
( )iV p  is defined as all those points of bi-dimensional space having ip

as the nearest point in the set P. Thus:  

2( ) { ( ) ( ) }i E i E jV p p p d p p d p p j i
 (6.17) 

Where ( )E id p p  denotes the Euclidean distance between the points p

and ip , and the sequence give as:  

1 2{ ( ) ( ) ( )}nV V p V p V p  (6.18) 

will be the VD generated by the set P .
The VD generated by a set of points in the Euclidean space divides the 

space in connected regions that have only one point closest under any met-
ric (normally the Euclidean distance) [14].  

Fig. 6.39. Ordinary Voronoi Dia-
gram

Fig. 6.40. Voronoi Diagram for set 
of points

The previous abstract definition of the ordinary VD has been general-
ized to facilitate practical applications. Some of those generalizations have 
considered different assignment rules that Euclidean distance. Another 
type of generalization is based on the generators, considering a generator 
may be a point, a set of points, a line, an area, etc. The specific generalized 
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Voronoi diagram referred in this work is the VD generated for sets of 
points, where a generator is defined as a set of points. In this case, the re-
gion segmentation based on the minimum Euclidean distance computation 
between a location and a set of points is called Generalized Voronoi Dia-
gram (GVD).  

Definition 5. Generalized Voronoi  iagram

Given 1 2{ }nG g g g  a collection of n point series in the plane 

which do not overlap  

2 1 2ig i n  (6.19) 

i jg g i j
 (6.20) 

for every point 2p , the minimum Euclidean distance from p  to an-

other point belonging to the series ig  is called ( )ip g
E

d .

( ) min( ( ) )i E i i ip g d p p p g
E

d  (6.21) 

The Voronoi region will be defined as:  

2( ) { ( ) ( ) }i i jV g p p R p g p g j i
E E

d d
 (6.22) 

and the given sequence:  

1 2{ ( ) ( ) ( )}nV V g V g V g  (6.23) 

will be the generalized Voronoi diagram generated by G .
From now on, the GVD term is used when the generators are series of 

points instead of isolated points. Those series of points will be defined as 
generator group.

The algorithm we present in this work is based on the GVD and is im-
plemented in a sensor based way because it is defined in terms of a metric 
function ( ( )ip g

E
d ), that measure the Euclidean distance to the closest 

object ( ig ), represented as a set of points supplied by a sensor system.  
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Supposedly the robot is modelled as a point operating in a subset belong-
ing to the two-dimensional Euclidean space (in our particular case, al-
though this is true with n-dimension too). The space W  which is called 
Workspace, is obstacle populated 1 2{ }nC C C  that will be considered 

as a close set. The set of points where the robot can manoeuvre freely will 
be called free space and is defined in [5] as:  

1

i n

i

i

FS W \ C

 (6.24) 

The workspace W  is represented as a two-dimensional binary im-
age ( , )B i j , where each position ( , )i j  has assigned a field value (0 or 1), 
that indicates if a pixel belong to a generator (field 0) o not (field 1). For 
each point belonged to the free space ( , )i j FS  is, at least, one point 

closest to the occupied space FS that will be called base point [50].  
The LVD is obtained from the distances to the generated points which 

belong to the objects’ borders. To obtain the local model, the algorithm is 
executed in the three steps presented in next paragraphs.  

1. Clustering  

Data representing borders between traversable and non-traversable regions 
are grouped in clusters. The cluster determination, in the three-dimensional 
information case, is not trivial. In other works, the sorted two-dimensional 
information, from a scanner laser, is easily separated in clusters, using the 
distances between successive scanned points [6], [27]. In this approach, the 
3D information cannot be treated as other authors do, and a labelling tech-
nique is used to obtain the clusters. The kernel applied is a circumference. 
The radius is the robot’s size. If there is a distance greater than the robot’s 
size between two points which belong to the non-traversable region border, 
then the robot can cross between them, and the points will be considered as 
belonging to different clusters.  

In figure 6.41 the data grouping of the real environment presented in 38 
is presented. The result of this step is three generators called A, B and C.  
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Fig. 6.41. Data grouping to obtain generators

For the VD construction, the assignment rule is the Euclidean distance to 
generators. Generators are the clusters. For each free space cell 
( , )i j FS , we mean whose cells where the robot can evolve, the dis-
tance between the cell and each point, which belongs to each clusters, is 
calculated. The minimum Euclidean distance between the cell and the 
points to one cluster will be considered to assign the cell to the correspond-
ing Voronoi region.

The label cell is evaluated, based on the minimum distance, as follows (see 
figure 6.42):  

If the distance to an A cluster is less than the rest, the cell is evaluated as 
belonging to the Voronoi region associated to the cluster A.  
If there are two equidistant clusters in a cell (for example A and B), then 
the cell is labelled as Voronoi edge.
For bigger equidistant it will be labelled as Voronoi node.

C. Castejón et al.
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Fig. 6.42. Label cell evaluation

The labelled of each cell belonged to the FS  is carried out computing 
the distance between the centre of the cells. Nevertheless, the real meas-
urement can be located in any position inside the cell. This must be taken 
into account when the distance to the generators is calculated. The maxi-
mum discretized error is calculated, based on figure 6.43:  

2 2
max 2 1 2 1( ) ( )d x x y y  (6.25) 

Fig. 6.43. Maximum distance between two cells

In the same figure 43 can be seen that:  
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and replacing 6.26 in 6.25 we obtain:  

2 2
max 2 1 2 1( ) ( )c cd x x R y y R

 (6.27) 

Therefore, maxd  is the maximum distance that we must consider when 

the labelling step is performed. We mean, the maximum error E  when 
two cells are evaluated is:  

maxE d d  (6.28) 

And the LVD generation step is modified as follows:  
For each cell ( , )i j  belonging to the free space:  

1. The distance to all the points belonged to each generator is computed. 
2. The minimum distance to each generator is obtained. We consider, for 

example in figure 6.42, the distance difference between two generator 
A  and B  as ( , ) ( , ) ( , )c A BE A B g p g p

E E
d d , where p  is the 

centre of the cell ( , )i j  with coordinates ( , )x y , then:  

If ( , ) 2cE A B E  for all A B , the cell is considered as be-

longed to the Voronoi region associated to the object A .
If ( , ) 2cE A B E  and ( , ) 2cE H B E  for all H A B ,

the cell is considered as Voronoi edge between two objects A  and 
B .
For bigger equidistant the cell will be considered as Voronoi node.  

In figure 6.44 the result of the DVL computing from figure 6.41 is 
shown. In the figure the Voronoi edges and nodes are highlighted.  

C. Castejón et al.
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Fig. 6.44. DVL representation

A priori, the cell size has influence on time computing and on the model 
accuracy. To test the influence, two cell sizes (suitable for the environ-
ment, the robot size and the robot speed) have been chosen. The cell sizes 
are 20 cm and 50 cm. The experimental results have been carried out in an 
environment presented in figure 6.45 and the TNM in figures 6.46 and 
6.47.

Fig. 6.45. Environment with high obstacles density

6
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Fig. 6.46. TNM. Top view

Fig. 6.47. TNM. Side view

The LVD obtained are presented in figures 6.50 where a 20 cm cell 
resolution is implemented, and 6.51 with a 50 cm resolution. And in fig-
ures 6.48 and 6.49 the visibility maps are presented to compare the cell 
size.

Fig. 6.48. Visibility Map. Cell size 
of 20 cm

Fig. 6.49. Visibility Map. Cell size 
of 50 cm
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Fig. 6.50. DVL for 20 cm cell size Fig. 6.51. DVL for 50 cm cell size

Apparently, the graphical result does not change, we mean, the LVD 
form has not been loosen, only the number of points have decreased. In 50 
cm cell size the number of nodes decreases and, above all, we notice that 
the difference between the two resolutions increases with the distance to 
the sensor system. Of course, the processing time in steps with digital im-
age processing algorithms, is reduced because of the increases in cell size. 
The image changes the size from 100 200  to 40 80  (see table 6.1). 

In table 6.1 the time computing for 50 cm cell size is reduced to the 20% 
of the time for the 20 cm cell size.  

In order to explore a large unknown environment, the robot needs to build 
a global model, to know where it is at each instant, and where it can go. 
The model can be introduced a priori in the robot or it can be built while 
the robot is travelling, fussing local models. The model merge consist of 
assembling a set of data, obtained in different acquisitions in a unique 
model [17]. In this article, an incremental global map is built merging the 
different LVD while the robot is moving.  

6 Voronoi-Based Outdoor Traversable Region Modelling      239 

6.5 Incremental Model Construction

Tab. 6.1. Different cell size time computing  
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To obtain an incremental model, based on the robot successive percep-
tions, the following steps must be carried out [38]:  

1. Environment information sensing: The robot, stopped, uses its exter-
nal sensors (in this case a 3D scanner laser and a compass) to acquire 
all the needed information and build a local model (LVD).  

2. The local model (LVD), useful for navigation, is transformed in a 
global coordinates system, with a differential GPS, and the local 
model is integrated with the global current model.  

3. The robot moves to the next position, by path-planning or guiding, 
and goes back to the step 1.  

The exact global model construction, based on the successive percep-
tions, is in general difficult to obtain due to the sensor uncertainty. Be-
sides, in the majority of the cases, it is not interesting not only for the im-
precision, but also the CPU time computing and the high memory storing 
makes the model not interesting for real-time objectives.  

For the integration, a transformation in the global Cartesian system is 
needed. A Global Positioning System (GPS) is used to perform the trans-
formation for each LVD point ( , )i ix y . The algorithm is the following:  

For the first local map (transformed into global reference system):  

1. To obtain a seed point ( , )CM CMP x y LVD , and to set it as Centre 

of Mass ( CM ).
2. Calculate the Euclidean distance between all the points 

( , )i i iP x y LVD  and theCM . If the distance is less than an error 

value called maxr , the point iP  is included in the list belonging to the 

CM  and a new CM  is calculated. If the distance is greater than 

maxr , then a new list is formed and it is set as another CM .

For the rest of the LVD maps (transformed into global reference sys-
tem):  

1. For each point iP LVD  we try to find the CM  in the global 

map to which iP  belongs (the Euclidean distance between iP  and 

CM  is less than maxr ).

2. If we do not find it a new list is formed with iCM P .
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Equation 6.29 calculates the CM  for a set of N  points. The Euclid-
ean distance is calculated in equation 6.30 to know if a point belongs to 
theCM .

1 1,

N N

i ix y
CM

N N
 (6.29) 

2 2

i CM i CMr x x y y
 (6.30) 

The maxr value must be chosen considering the map cell resolution, and 

it always depends on the robot’s velocity movement.  
In figures 6.52, 6.53 and 6.54 the steps performed to build the global 

map are presented.  

Fig. 6.52. LVD Fig. 6.53. Data map clustering 

Fig. 6.54. Incremental Voronoi map

6
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In next figures (first, see figure 6.55), an exploration task for an outdoor 
robot is presented. The robot senses the environment and builds the LVD 
(figure 6.56), then it moves three meters ahead and repeats the process 
eleven times, building the incremental model (in figures 6.57 to 6.66).  

In the global model built, the good results can be appreciated thanks to 
the additional information provided by the GPS that supply global meas-
ures. The local model integration is easy and allows building topo-
geometrical models in real time. 

Fig. 6.55. Real environment Fig. 6.56. Robot exploration 
sequence. Position 1

Fig. 6.57. Robot exploration 
sequence. Position 2

Fig. 6.58. Robot exploration 
sequence. Position 3 
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Fig. 6.59. Robot exploration 
sequence. Position 4

Fig. 6.60. Robot exploration 
sequence. Position 5

Fig. 6.61. Robot exploration 
sequence. Position 6

Fig. 6.62. Robot exploration 
sequence. Position 7 

Fig. 6.63. Robot exploration 
sequence. Position 8

Fig. 6.64. Robot exploration 
sequence. Position 9 
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Fig. 6.65. Robot exploration
sequence. Position 10

Fig. 6.66. Robot exploration 
sequence. Position 11

During the sequence, we can see that the robot acquires new local mod-
els and regions that in previous maps were considered as non traversable 
or not visible, change to traversable regions with the increase of new data 
and the different robot point of view. With this algorithm, the global model 
can be built off-line, based on different local models or in real time, as the 
robot is travelling in autonomous or guiding mode.  

6.6 Conclusions

A new methodology to model outdoor environments, based on three-
dimensional information and a topographical analysis, has been done. The 
model can be built in real time while the robot is moving and it is possible 
to carry out local models integration in order to build an environment’s 
knowledge data base in a global map, using a GPS system onboard the ro-
bot as work [9] presents. The computing time is low, taking into account 
the cell size used (20 cm), that is, the minimum size considered for an out-
door environment and for a long size robot. The computing time decreases 
in 80% for a 50 cm cell size.  

As conclusions based on the experimental results presented in this pa-
per, we can highlight the followings:  

The 3D scanner laser is a good choice, to obtain information to model 
environments with a certain degree of complexity. It senses with pre-
cision the terrain surface, and obtains a 3D dense map.  
Nevertheless, the sensor system presents problems in negative sloped 
terrains, where the information density is fewer when the distance be-
tween the measurements and the sensor increases. This is because of 
the scanner laser non linearity, when a vertical scan with constant in-
crement is done. Different solutions can be set out to solve this prob-
lem, such as: the local model size reduction or the sensor placing (in a 
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more elevated position) and the use of a non constant increment in the 
vertical scans, to obtain more information in the slope area.  
The cell size used in the model discretization has influence on time 
computing. For a same size environment, the increase in the resolu-
tion cell will decrease the number of cells presents on the map and 
then, all the digital image algorithms will reduce the process time. 
Based on the experimental results, we have conclude that, for the ro-
bot size and the environment type we are going to work, a good size 
cell will be between 20 and 50 cm.  
The DVL process time, increases when the number of free space cells 
increases and when the number of points belonged to the generators 
increases.
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Abstract

This paper addresses the problem of localization and map con-
struction by a mobile robot in an indoor environment using only visual
sensor information. Instead of trying to build high-fidelity geometric
maps, we focus on constructing topological maps because they is less
sensitive to poor odometry estimates and position errors. We propose a
method for incrementally building topological maps for a robot which
uses a panoramic camera to obtain images at various locations along
its path and uses the features it tracks in the images to update the its
position and the map structure. The method is very general and does
not require the environment to have uniquely distinctive features. We
analyze feature-based localization strategies and present experimental
results in an indoor environment.

7.1 Introduction

We are interested in building maps of indoor environments using small robots
that have limited sensing. Since the robot must physically carry any sensors
that it will use, laser range finders or stereo camera systems cannot be used.
Cameras with omnidirectional lenses are better suited in terms of size, but do
not provide the same amount of information about the environment. In addi-
tion, small robots typically have extremely poor odometry. Slight differences
in the speeds of the wheels and small debris or irregularities on the ground
will degrade the performance of any dead-reckoning position estimate and
make accurate localization or mapping very difficult.

Any method for map construction must take into account the large amount
of error in the robot’s sensing and odometric capabilities. We propose the
construction of a topological map as a graph where each node represents a
location the robot visited and took a sensor reading of its surroundings. Ini-
tially, the map will contain a node for each sensor snapshot that the robot
acquires. Thus, if the robot has traversed the same location more than once,
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there will be multiple nodes in the map for a single location. These nodes
will have to be identified and combined in order to generate a map which
correctly matches the topology of the environment.

In this paper we present a method for building such topological maps
using monocular panoramic images of the robot’s surroundings as sensor
data. We take a purely qualitative approach to landmarks by which a location
“signature” is used to match robot poses. In this approach, landmarks corre-
spond to sensor readings taken at various (x, y) positions along the robot’s
path. The specifics of the sensor modality are not important as long as the
derived signature can be compared against another sensor signature to deter-
mine whether the robot has visited that location before.

For the specific implementation of this algorithm in this paper, we use
two different kinds of information extracted from camera images as fea-
tures. The first kind of features are extracted using the Kanade-Lucas-Tomasi
(KLT) feature tracking algorithm [18, 27] that automatically extracts and
matches visual features from the images. The second kind make use of 3D
color histograms. Specific details of the features are described later in Sec-
tion 7.4.1.

Section 7.3 describes the proposed method, explaining how to model the
map as a physics-based mass and spring system. Linear distances between
each of the nodes are represented as linear springs while rotational differ-
ences between nodes are represented as torsional springs. The spring con-
stants capture the certainty in the odometry estimates. Stiff springs represent
high measurement certainty while loose springs represent low certainty. To
identify nodes that correspond to the same physical location, we use Markov
localization [8] to determine the probability of the robot’s position at each
timestep. When a pair of nodes in the map is merged, the graph finds a sta-
ble energy configuration so that each of the local displacements between the
nodes is maintained properly. As individual nodes are merged, the struc-
ture of the map changes and the relative distances and headings between the
nodes are affected.

In Section 7.4 we report experimental results obtained with a mobile
robot in an indoor office environment and we measure the quality of the
results in image-based localization and mapping experiments.

7.2 Related Work

Physics-based models that involve spring dynamics have been used quite ef-
fectively to find minimum energy states [6, 10]. The work most similar to
ours is by Andrew Howard et al. [11] where spring models are used to lo-
calize mobile robots equipped with laser range finders. All of the landmarks
used in their work are unique, and precise distances to objects are identified
using the range finders. In contrast, we only assume we have bearing read-
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ings to landmarks and that the landmarks may not be distinguishable. Other
maximum-likelihood based methods such as Konolige [14], Folkesson and
Christensen [7], and Lu and Milios [17] describe how to minimize an energy
function when registering laser scan matches. Our work differs from this
in that we linearize the energy function. While this simplification may not
generate an optimal solution, the method is not likely to be affected by local
minima in the energy space during relaxation.

Sim and Dudek [22] describe a visual localization and mapping algo-
rithm which uses visual features to estimate the sensor readings from novel
positions in the environment. In practice, our vision system could be re-
placed by any other kind of boolean sensor modality which can report whether
the robot has re-visited a location.

In [29], a map is learned ahead of time by representing each image by its
principal components extracted with Principal Component Analysis (PCA).
Brian Pinette [19] described an image-based homing scheme for navigat-
ing a robot using panoramic images. Kröse et al. [15] and Artac̆ [3] built
a probabilistic model for appearance-based robot localization using features
obtained by PCA. In [28], a series of images from an omnicamera is used to
construct a topological map of an environment. Kuipers [16] learns to recog-
nize places by clustering sensory images obtained with a laser range finder,
associating them with distinctive states, disambiguating distinctive states in
the topological map, and learning a direct association from sensory data to
distinctive states. A color “signature” of the environment is calculated using
color histograms. Color information, which is provided by most standard
cameras, is receiving increasing attention. Swain and Ballard [24] address
the problem of identifying and locating an object represented by color his-
tograms in an image. Cornelissen et al. [4] apply these methods to indoor
robot localization and use color histograms to model predefined landmarks.

We use the KLT algorithm to identify and track features. Lucas and
Kanade [18] proposed a registration algorithm that makes it possible to find
the best match between two images. Tomasi and Kanade [27] proposed a
feature selection rule which is optimal for the associated tracker under pure
translation between subsequent images. We use an implementation of these
feature selection and tracking algorithms to detect features in the environ-
ment [13]. Similarly, Hagen [25] has described a method by which a local
appearance model based on KLT features were combined with a local hom-
ing technique to generate a pose-free mapping system. This method differs
from ours in that we are primarily interested in recovering the robot’s pose
from its environmental exploration.
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7.3 Localization and Map Construction

We are interested in constructing a spatial representation from a set of obser-
vations that is topologically consistent with the positions in the environment
where those observations were made. The goal is to reduce the number of
nodes in the map such that only one node exists for each location the robot
visited and where it took an image.

More formally, let D be the set of all unique locations (di) the robot
visited. Let S be the set of all sensor readings that are obtained by the robot
at those positions. Each st

i ∈ S represents a single sensor reading taken at a
particular location di at time t. If the robot never traveled to the same location
twice, then |D| = |S| (the cardinality of the sets is the same). However,
if the robot visits a particular location di more than once, then |D| < |S|
because multiple sensor readings (stm

i ,stn
i ,...) were taken at that location.

The problem then is to determine from the sensor readings and the sense
of self-motion which locations in D are the same. Once identified, these
locations are merged in order to create a more accurate map.

When using small, resource-limited robots, there are several assumptions
about the hardware and the environment that must be made. First, we assume
that the robot will operate in an indoor environment where it only has to keep
track of its 2D position and orientation. This is primarily a time-saving as-
sumption which is valid because (for the most part) very small robots can
only be used on flat surfaces. Second, we assume that the robot is capable
of sensing the bearings of landmarks around it. This is a valid assumption
even for small robots because the cameras and omnidirectional mirrors can
be made quite small [5]. Third, we assume that the robot has no initial map
of its environment and that we make no assumptions on the mechanism by
which it explores its environment (it might be randomly wandering in an
autonomous fashion, or it might be completely teleoperated) [23]. As the
robot moves, it keeps track of its rotational and translational displacements.
Finally, we assume that the robot moves in a simplified “radial” [9] fash-
ion where pure rotations are followed by straight-line translations. This is
not an accurate representation of the robot’s motion because the robot will
encounter rotational motion while translating, however in practice we have
found that we can discount this for small linear motions.

7.3.1 Spring-Based Modeling of Robot Motion

Following each motion, a reading from the robots sensors is obtained. This
sequence of motions and sensor observations can be represented as a graph
where each node initially has at most two edges attached to it, forming a
single chain (or a tree with no branches). The edges represent the trans-
lational and the rotational displacement. This can be visualized using the
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analogy of a physics-based model consisting of masses and springs. In this
model, translational displacements in the robot’s position can be represented
as linear springs and rotational displacements can be represented as torsional
springs. The uncertainty in the robot’s positional measurements can be rep-
resented as the spring constants. For example, if the robot were equipped
with high precision odometry sensors, the stiffness in the springs would be
very high.

By representing the locations as masses and the distances between those
locations as springs, a formulation for how well the model corresponds to the
data can be expressed as the potential energy of the system. The Maximum-
Likelihood Estimate (MLE) of the set of all sensor readings S given the
model of the environment M can be expressed as P (S|M) =

∏
s∈S P (s|M).

By taking the negative log likelihood of the measurements, the problem
goes from trying to maximize a function to minimizing one. Additionally,
by expressing the allowable compressions of the spring as a normal prob-
ability distribution (i.e., the probability is maximized when the spring is at
its resting state), the log likelihood of the analytical expression for a Gaus-
sian distribution is the same as the potential energy equation for a spring, or
−log(P (s|M)) = 1

2(e − ê)2k.

In this formulation, e is the current elongation of the spring, ê is the relax-
ation length of the spring and k is the spring constant. In order to minimize
the energy in the system, direct numerical simulation based on the equations
of motion can be employed. Figure 1 shows a simple example of how the
linear and torsional springs are used to represent the difference between the
current model and the robot’s sensor measurements.

φ
0

0e

φ
1

e 2

1e

0d
2d

1d

3d

torsional springs. Locations of sensor readings, lengths of linear robot trans-
lation, and angles of robot rotation are represented as di, ej , and φk, respec-
tively.

Fig. 7.1. Examples of relative poses of the robot connected by linear and
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When the sensor readings of two nodes are similar enough to be classi-
fied as a single node, the algorithm will attempt to merge them into a single
location. This merge will increase the complexity of the graph by increasing
the number of edges attached to each node. This merge will also apply addi-
tional tension to all of the other springs, and the structure will converge to a
new equilibrium point.

If the landmarks observed at each location are unique, such as in the work
of Howard et al. [11], then the task of matching two nodes which represent
the same locations is fairly straightforward. However, in real world situations
and environments, this is extremely unlikely to occur. Without pre-marking
the environment and/or without extremely good a priori information, a robot
cannot assume to be able to uniquely identify each location. This requires the
robot to use additional means for determining its most likely location given
its current sensor readings and knowledge of its past explorations encoded in
the topological map.

7.3.2 Linear vs. Torsional Springs

Since the linear and torsional springs are separate, their error measurements
must be considered individually. The importance of the two kinds of springs
should also be considered separately. Several simulation experiments were
performed to analyze the relative importance of the linear and torsional spring
strengths. A set of simple three-node paths were generated such that the
robot returned to the starting point after tracing out a regular polygon. The
linear and rotational odometry estimates were corrupted by Gaussian ran-
dom noise with variance ranging from 0 to 1.0. The constants for the linear
and torsional springs were set to be the inverse of the noise. Thus, in these
experiments, the assumption was made that the robots had a good estimate
for the amount of error in both cases.

Figure 2 illustrates the process with two different variances. In this fig-
ure, the initial true path of the robot is described as a regular polygon where
the first and last node close the polygon. The odometric estimates are cor-
rupted by Gaussian noise. The first and last nodes are attached (merged)
and the whole spring model is allowed to relax. Finally, a transformation is
found which minimizes the total distance between the corresponding points
in each dataset. This removes errors based on global misalignments and only
illustrates the relative errors in displacement between the points in space. As
can be seen, the distortion of 0.7 variance Gaussian noise in both linear and
torsional springs produces a relaxed path that is very different from the true
path and thus has a very low sum of squared difference match.

The results for the three-node experiment can be seen in Figure 3(a).
A similar experiment was run for four- and five-node paths. The resulting
curves are extremely similar to the shown three-node path. The results indi-
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Fig. 7.2. Linear vs torsional constant comparison experiment. A three-node
circular path (triangle) has its linear and rotational components corrupted by
noise. The start and endpoints are merged (as they are the same location) and
the model is allowed to relax. Two sample variances, 0.1 and 0.7, are shown

cate that the torsional spring constant is far more important than the linear
spring constant. As long as the torsional spring constant is strong (and thus
has a correspondingly low error estimate), the linear spring constant can be
very weak (with a correspondingly high error estimate), and the final model
will still converge to a shape that is very similar to the original path.

7.3.3 Torsional Constants vs. Error

The relative strengths of the spring constants must reflect the certainty of
the robot’s sensor measurements. The more certain the robot is of its sensor
readings, the stronger the spring constants should be. This adds rigidity to
the structure of the map and limits the possible distortions and displacements
that could occur.

If the torsional error estimates are very high, then it does not matter
how strong the spring constants are. Very large rotational errors introduce
too much distortion into the map to be corrected by correspondingly strong
spring constants. Thus, it is vital that the robot’s rotational estimate errors
be low.

Figure 3(b) illustrates the results from this experiment. As can be seen,
a  good  error  estimate  for  the  torsional  results is absolutely   critical.   The 
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Fig. 7.3.  Simulation study of the effects of spring constants on the accuracy
of the estimated relative node positions. (a) Results for the three-node lin-
ear vs torsional spring constant experiment. (b) Results for the three-node
torsional spring constant vs torsional error experiment

error estimate completely dominates the accuracy of the final relaxed model,
regardless of the strength of the spring.

An interesting conclusion from these experiments is that linear odome-
try estimates are not nearly as important as rotational odometry estimates.
Unfortunately, this is where the majority of the errors in robot odometry
propagation estimates occur. Methods for augmenting the robot’s odometric
estimates such as with visual odometry tracking or with a compass, such as
in [6], would thus greatly assist in estimating the robot’s position.

7.3.4 Sensor and Motion Models

The robot’s sensor model can be described as P
(
st|Lt, M

)
. This is an

expression for the probability that at time t, the robot’s sensors obtain the
reading st assuming that the estimate for the robot’s position is Lt. We rep-
resent the probability distribution over all possible robot poses through a
non-parametric method called Parzen windows (a similar approach is used
by [15]). Parzen windows are typically used to generate probability densities
over continuous spaces, in this instance, we use the technique to generate a
probability mass over the the space of likely robot poses. Following the def-
inition of conditional probabilities, the equation for the sensor model can be
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described as

P
(
st|Lt, M

)
=

P
(
st, Lt, M

)
P (Lt, M)

=
1
N

∑N
n=1 gs

(
st − st

n

)
gd

(
dt − dt

n

)
1
N

∑N
n=1 gd(dt − dt

n)

where gs and gd are Gaussian kernels. The value
(
st − st

n

)
represents the

difference between two sensor snapshots and is described in Section 7.4.1
below. The value

(
dt − dt

n

)
represents the shortest path between two nodes.

Similarly, the robot’s motion model can be expressed asP
(
L(t+1)|s(t), L(t)

)
,

which represents the probability that the robot is in location L(t+1) at time
t + 1 given that its odometry registered reading s(t) after moving from loca-
tion L(t) at time t. This is represented as

P
(
L(t+1)|s(t), L(t)

)
= ge(e − ê)gφ(φ − φ̂)

where e and φ represent the linear and torsional components of the robot’s
motion in the current map and ê and φ̂ represent the originally measured
values.

7.3.5 Map Construction

The sequence of observations that is generated by the robot’s exploration
represents a map whose initial topology is a chain where each node only con-
nects to at most two other nodes. To construct a more representative topol-
ogy, the localization algorithm must identify nodes that represent the same
location in space, i.e. where the robot has closed a cycle in its path. Markov
localization will compute, for each timestep, a distribution which shows the
probability of the robot’s position across all nodes at a particular time. Tradi-
tionally, Markov localization cannot handle the “kidnapped robot” problem
because a robot localizing itself is essentially tracking incremental changes
in its own position. In order to recognize when two nodes are the same, the
robot must acknowledge the possibility of being in two different locations in
the map at once so that the nodes can be joined. To handle this situation, the
robot must solve the localization problem starting with a uniform distribution
over all possible starting positions in the graph. Thus, the robot must solves
the complete Markov localization problem from an unknown starting pose.
This way, the robot is able to identify the multi-modal case, assuming that
its path had enough similarity over the parts where the robot crossed its own
path. This localization algorithm must be run every time the robot attempts
to find nodes that are the same location. Fortunately, the relative sparseness
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of a topological map as compared to a grid-based map (which is tradition-
ally used for Markov localization), keeps the computational complexity at a
minimum.

After the Markov localization step, the robot now has a probability dis-
tribution over all possible poses for each timestep. In cases where the prob-
ability distribution is multi-modal, or where it is nearly equally likely that
the robot was in more than one node at a time, there exists a good chance
that those nodes are actually a single node that the robot has visited multiple
times. The hypothesis with the highest probability of match from all of the
timesteps is selected and those nodes are merged. Merging nodes distorts
the model and increases the potential energy of the system. The system then
attempts to relax to a new state of minimum energy. If this new state’s po-
tential energy value is too high, then the likelihood that the hypothesis was
correct is very low and must be discarded. Additionally, merges that are in-
correct will affect the certainty of the the localization probability distribution
after a Markov localization step. This can be observed by an increase in en-
tropy H(X) = −

∑n
i=1 p(xi)log(p(xi)) of the probability distribution over

the robot’s pose in the topology. An increase in entropy can also be used as
an indicator that the merge was incorrect.

This process runs through several iterations until it converges on the most
topologically-consistent map of the environment. This iterative process is
similar in spirit to the algorithm proposed by Thrun et al. [26]. Since this
algorithm relies on local search to find nodes to merge, there is no guarantee
that the map constructed from this algorithm will be optimal. As the robot
continues to move around, more information about the environment will be
gathered and can be used to get a more accurate estimate of the robot’s posi-
tion.

7.4 Real-World Validation

In order to determine the effectiveness of the proposed method for image
based localization and map construction, two separate experiments were
performed in the office environment shown in Figure 4. The first was a
localization-only experiment where the KLT algorithm was used in two dif-
ferent ways, termed feature matching and feature tracking, in addition to
a third method based on a 3D color (RGB) histogram feature extraction.
The second experiment combined the KLT algorithm with the spring sys-
tem to test the ability of the MLE algorithm to converge to a topologically-
consistent map.
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7.4.1 Extraction of Visual Features

Three different methods for extracting features from the images were tried:
(1) KLT feature matching, (2) KLT feature tracking, and (3) 3D color his-
togram feature extraction.

1. In the feature matching approach, features are selected in each his-
togram normalized image using the KLT algorithm. The undirected
Hausdorff metric H(A,B) [12] is used to compute the difference be-
tween the two sets. Since this metric is sensitive to outliers, we used
the generalized undirected Hausdorff metric and looked for the k-th
best match (rather than just the overall best match), where k was set to
12. This is defined as

H(A, B) = max
kth

(h(A, B), h(B, A)) (1)

h(A, B) = max
a∈A

min
b∈B

‖ ai − bj ‖ (2)

where A = {a1, a2, ..., am} and B = {b1, b2, ..., bn} are two feature
sets. Each feature corresponds to a 7x7 pixel window (the size of
which was recommended in [27]) and ‖ ai − bj ‖ corresponds to the
sum of the differences of the pixel intensities.

To take into account the possibility that two images might correspond
to the same location but differ in rotation, the test image was rotated
to eight different angles to find the best match.
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2. In the feature tracking approach, KLT features are selected from each
of the images and are tracked from one image to the next taking into
account a small amount of translation between the two positions where
the images were taken. The degree of match is the number of features
successfully tracked from one image to the next.

3. In the 3D color histogram feature extraction method, features repre-
senting interesting color information in the image are extracted. Col-
ors that are very sparse in the image are considered to be interesting
since they carry more unique information about features. We have
derived the following index for windows of pixels in an image:

value(w) =
∑

i

h(i) ∗ (1 − P (i)) (3)

where i is a color value, h is the histogram bin of window w for color
i and P (i) is the probability that color i is observed in the image.
We approximate P (i) by the actual distribution of colors in the image
normalized to the range [0,1]. Thus the higher the value of a window
w the more valuable we assume the feature to be.

After finding interesting features, we extracted a feature set from an
image at the current position and compared it to the feature sets for
positions of our topological map using the Hausdorff metric. To mea-
sure the distance between single histograms, ‖a − b‖ in Equation 2,
we take the histogram intersection index

intersection (hk(i), hj(i)) =
∑

i

min(hk(i), hj(i)) (4)

We then localize to that map position for which the feature set is clos-
est in the above sense to the one for the current position. To enhance
the performance of the color histogram approach, we have imple-
mented an adaptation of the data-driven color reduction algorithms
presented in [2].

Each of the approaches has different advantages and disadvantages. Ex-
tracting features using the KLT algorithm but not accounting for the trans-
lation of the feature from one image to the next has the advantage of being
faster and requiring less memory than using the associated tracker. However,
it is less precise due to the fact that there is no model for how the features
move in the images. The KLT tracker required 10.22 s per position esti-
mation compared to 360 ms for the KLT matcher on a 1.6 GHz Pentium 4
with 512 MB RAM. The color histogram method required 1.3 s. Feature
extraction required 330 ms for KLT and 1.25 s for the color histogram.
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7.4.2 Determining the Number of Features to Track

Determining the number of features to track is very important since this
choice can represent a major tradeoff in accuracy and performance. Typi-
cally, as the number of features increases, the accuracy of the localization
algorithm will increase at the expense of computation time.
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To evaluate how many features to track, we obtained a set of 320 images
taken at 0.3 m intervals in the office environment used for the robotics ex-
periments. Figure 5 shows a plot of the Euclidean distance estimate between
each pair of locations as a function of the number of features that the KLT
algorithm can track between the respective images. As can be seen, until the
number of features tracked drops to between 40-50, the likelihood that the
two images are within 0.5 m of each other is extremely high. With fewer
features, it becomes extremely hard to tell whether a location is the same or
not. In this graph, there were no values of matched features of 60 and higher.
A match of 100 features would indicate that the the robot was in exactly the
same location. From this experiment, it was determined that operating over a
set of 15 features was an adequate trade off between performance and accu-
racy since all three of the algorithms performed at an acceptable speed with
this number of features.

This metric can also be used by the exploration algorithm to determine
when to take a new image. When the robot takes an image as a landmark,

Fig. 7.5.  Comparison of the number of features tracked vs. the Euclidean
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it would attempt to track the features in subsequent images while simultane-
ously moving to a new location. Once the number of tracked image features
drops below the above threshold, a new landmark image can be stored.

7.4.3 Image-Based Localization Experiments

A set 26 of panoramic images were obtained in the office environment. The
room has a checkerboard floor while the corridor has a floor of uniformly-
colored tiles. The dotted lines show the outline of the office and the furniture
within it while the solid lines show the path along which the images were
taken.

Images were taken at 1.07 m increments by a panoramic camera mounted
on the back of a Pioneer 2 [1] mobile robot. Images have 640x480 pixels and
are unwrapped into images of 816x155 pixels. This set of images was used
to construct the topological map shown previously in Figure 4 and serves as
the reference set.

Fig. 7.6. The 50 best features selected with the KLT feature matcher on a
panoramic image. In our experiments, only the 15 best features were used

The KLT feature matcher was used to extract features from the panoramic
images. 15 features were selected from each image, since, as described in
Section 7.4.2, this offered the best compromise between performance and
accuracy. Figure 6 shows a set of features obtained by applying the feature
matcher to a panoramic image. As can be seen, features corresponding to
corners and prominent edges are selected.

Two sets of test images were acquired along the paths shown in Figure 7
and 8. Triangles show the positions of the original test set of images. Circled
arrows show the positions of the images taken for the test sets. The images
in the first test set were mostly taken along the original path from which
the training set was obtained. The images in the second set were taken in a
zig-zag pattern that moved mostly perpendicular to the path of the training
set. These two sets were used to test the ability to localize the robot in the
previously constructed topological map using only the visual information.

Table 1 illustrates the performance of the three vision algorithms on the
two different sets of data. The average distance error is the average Eu-
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Test set 1 Test set 2
Error Feature Feature Color Feature Feature Color
metric matcher tracker Hist. matcher tracker Hist.

Avg. distance 1.58 0.51 3 2.97 1.34 2.9
in meters

Multiple pos. 0 1 1 0 6 2
estimates

Table 1: Average errors for the tests

clidean distance between the correct position and the reported position. The
second metric is the number of position matches that reported multiple pos-
sible positions of the robot with equal certainty (this is caused by perceptual
aliasing). The correct position to be attributed to a test position is assumed to
be the nearest position (by Euclidean distance) of the reference path. When
multiple position estimates are available, the worst possible position is used.
The reason that the tracker and color histogram algorithms had multiple po-
sition estimates when the matcher did not was due to the scale difference in
the error metrics. The feature matcher compared the difference in pixel im-
age intensity which could range between [0 − 12495] while the tracker and
color histogram matcher had far fewer possible values.

As can be seen from the results, the static KLT feature matching algo-
rithm was worst at finding the best match between an image in the training
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Images for test set 2 were taken on a zigzag path across the training path.
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Fig. 7.8. Paths in the environment where test2 was conducted. The training
positions are labeled with triangles, the test positions with circled wedges.
The heading of the robot at each node is shown by the direction of the triangle
or wedge

set and an image in the test set. When the training and test images were
nearly identical (taken from virtually the same location in space), the static
feature matcher was very good at finding the correct match. However, as the
spatial difference between the images increased, the resulting match rapidly
degraded. The feature tracking algorithm did a much better job of match-
ing images in the test set to the training set. This algorithm was also much
better at handling changes in feature position caused by the motion of the
robot since it takes into account the translational motion of the features in
the image. Unfortunately, the KLT feature tracking algorithm is much more
complex in terms of computing time and memory/storage requirements.

7.4.4 Mapping Experiment

The set of training images taken in the previous experiments was used to
test the MLE map construction algorithm. Noisy odometry estimates were
assigned to each of the paths between images in the training set. The KLT
feature tracking algorithm was used to compare features in pairs of images
and only the training set of images was used. This corresponds to the case
where a robot explores an unknown environment. As the robot explores, it
attempts to find the most likely structure by merging nodes from its map
which appear to correspond to the same sensor data.

Figure 9 illustrates the process of how the algorithm works. The original
data reflects the errors in the odometric readings of the robot. In Step 1,
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Markov localization identifies a high probability of the robot’s position in
nodes at timestep 6 and 19. These two are merged and the spring model is
allowed to relax. In Step 2, Markov localization is run again on the map
and nodes 11 and 14 are merged. By this point, the map has obtained a
shape that better matches the topology of the environment. Each possible
merge candidate is evaluated by how the merge affects the entropy of the
pose distribution. Bad merges will create inconsistent topological structures
and have a tendency to increase the robot’s pose entropy. This means that it
is less sure of its position in the environment.

Initial configuration

Iteration 1 Iteration 2 (final)

Fig. 7.9. Several iterations of the convergence algorithm. Circled nodes are
to be merged in the next iteration. Only the accepted node merge candidates
are shown in this example. Node merge candidates that increased the en-
tropy of the pose distribution (and thus were rejected) are not shown. After
iteration 2, all other node merge pairs were rejected

7.5 Conclusions and Future Work

Several different sensor approaches were tried for image based localization.
Feature tracking was found to be better than simple feature matching since
the positions of the features move in non-linear fashions around the image
as the robot moves around its environment. The tradeoff is that the feature
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tracking algorithm is much slower to operate than the simple feature com-
parison algorithm.

Feature tracking was also better than the color histogram feature extrac-
tion. The main reason for the poor performance of the histogram method is
the lack of distinctive colors in the environment where the experiments were
conducted, which was exacerbated by the poor quality of the images. The
tarnishing of the mirror introduced reflection stripes in some of the images.
The reflections were very bright, similar to ceiling lights, causing confusion.
Additional tests done with higher quality images have shown improvement,
but the method is still not as reliable as the KLT tracker. The KLT tracker
is too slow for real time performance, while both the KLT matcher and the
color histogram have a chance to become real-time with additional optimiza-
tion.

The KLT-based approaches operate on the intensity of pixels found in
grayscale images. The features found with this method tend to differ greatly
from the features found with the color-based histogram method. An inter-
esting direction for future work would be to determine how to find good
features that exhibit good qualities for both the KLT and color histogram
methods. By using a combination of intensity and color information for the
features, we would expect that the individual features would be even more
readily distinguishable from the image background and thus easier to track
overall.

The mapping algorithm has been found to be very sensitive to certain
parameters. The spring and dampening constants used by the spring conver-
gence step must be selected carefully to ensure convergence. To address this,
other methods have been examined, include weighted least squares [21], and
the Kalman filter [20]. Another parameter that could affect the performance
of the localization algorithm are the widths of the Gaussian distributions used
in the Parzen windows. Empirical studies are being done to determine good
values for these parameters.

The entropy of the pose distribution is used as a method for tracking the
progress of the algorithm. The specific thresholds for determining when a
distribution’s entropy is too high are empirically determined but more work
needs to be done to fully make this a robust empirical metric. Finally, we do
not “reset” the relaxation constants after the merge as the total energy after all
merges have been completed represents how much error exists in the robot’s
odometry. Should we decide to “undo” a merge later on, we would want the
map to retain the original information so that new merges could be handled.
Future work will consider methods by which old merges can be undone in
lieu of better information.
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8.1 Introduction 

Precision engineering [3] has been steadily gathering momentum over the 
last century in terms of research, development, and application to product 
innovation. The driving force in this development appears to arise from re-
quirements for much higher performance of products, higher reliability, 
longer life, lower cost, and miniaturization. In the new millenium, ultra 
precision manufacture is poised to progress further and it is expected to en-
ter the nanometer scale regime (nanotechnology). Increasing packing den-
sity on integrated circuits and sustained breakthrough in minimum feature 
dimensions on semiconductor set the pace in the electronics industry. 
Emerging technologies such as MEMS (Micro-Electro-Mechanical Sys-
tems), otherwise known as MicroSystems Technology (MST) in Europe 
expand further the scope of miniaturisation and integration of electrical 
and mechanical components. 
    One enabling technology which has made these and more modern appli-
cations possible is the advance and development in precision mechanisms 
and motion control. An increasing number of the precision motion systems 
today, general purpose or application specific, are based on the use of DC 
permanent magnet linear motors (PMLM) [1] for the main reason that 
among the electric motor drives available, the PMLMs are probably the 
most naturally akin to applications involving high speed and high precision 
motion control. The increasingly widespread industrial applications of 
PMLMs in various semiconductor processes, precision metrology and 
miniature system assembly are self-evident testimonies of the effectiveness 
of PMLMs in addressing the high requirements associated with these ap-
plication areas. The main benefits of a PMLM include the high force 
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density achievable, low thermal losses and, most importantly, the high pre-
cision and accuracy associated with the simplicity in mechanical structure. 
Unlike rotary machines, linear motors require no indirect coupling mecha-
nisms as in gear boxes, chains and screws coupling. This greatly reduces 
the effects of contact-type nonlinearities and disturbances such as backlash 
and frictional forces, especially when they are used with hydrostatic, aero-
static or magnetic bearings. However, the advantages of using mechanical 
transmission are also consequently lost, such as the inherent ability to re-
duce the effects of model uncertainties and external disturbances. An ade-
quate reduction of these effects, either through a proper physical design or 
via the control system, is of paramount importance in order to achieve the 
end objectives of high-speed and high precision motion control. 
    There are several important challenges to the precision motion control 
system. First, the measurement system must be capable of yielding a very 
fine resolution in position measurements. Today, laser interferometers can 
readily yield a measurement resolution of down to one nanometer. Where 
cost is a concern, a high grade analog optical encoder in conjunction with 
an efficient interpolator can be used to provide sub-micrometer resolution 
measurements [4]. In the latter case, interpolation factors of up to 4096 
times have been reported. This will effectively yield a resolution in the 
nanometer regime, given the fine scales manufacturing tolerance currently 
achievable. However, one should be cautious of interpolation errors asso-
ciated with limited wordlength A/D operations, and imperfect analog en-
coder waveform with mean, phase offsets, noise as well as non-sinusoidal 
waveform distortion. The interested readers may refer to [15] for more de-
tails on these aspects and possible remedial measures. 
    Secondly, the control electronics must have a sufficient bandwidth to 
cope with the high encoder count frequency associated with high speed 
motion on one hand, and a sufficiently high sampling frequency to cir-
cumvent anti-aliasing pits when motion is at a very low speed. Consequent 
of these requirements, the control algorithms must also be efficient enough 
to be executed within each time sample, and yet possess sufficient capacity 
to provide precision motion tracking and rapid disturbance suppression. 
This calls for a good weighted selection of efficient control components to 
address not only the specific dynamics of the servo system in point, but 
also exogenous disturbances arising from the application, including load 
changes, and drives-induced electro-magnetic interference. 
    Thirdly, the geometrical imperfections of the mechanical system should 
be adequately accounted for in the control system, if absolute positioning 
accuracy is crucial to the application concerned [7]. A 3D cartesian ma-
chine, for example, has 21 possible sources of geometrical errors (linear, 
angular, straightness, orthogonality errors from the 3 axes combined). Yet, 
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many control engineers may evaluate positional accuracy solely with re-
spect to encoder measurements, assuming ideal geometrical properties of 
the mechanical system. This assumption can lead to drastic and undesir-
able consequences when a high absolute positioning accuracy of the end 
object (e.g. machine tool) is required, since a very small tracking error 
with respect to encoder counts can be magnified many times over, when 
verified and calibrated in terms of absolute accuracy using a laser interfer-
ometer. These errors, arising from geometrical imperfections, can be cali-
brated and compensated for, if they are repeatable. The present common 
mode to deal with this problem is to build a look-up table model of the 
geometrical errors. The table maps an encoder reported position into the 
actual absolute position, and it can thus be used as the basis for geometri-
cal offset compensation.
    In high precision motion control applications, vibrations induced from 
the mechanical system should be minimised as far as possible. Ideally, this 
calls for a highly rigid mechanical design, active damping and stable sup-
port structures. In the control system, this issue is commonly addressed by 
having in place a notch filter which will terminate the transmission of fre-
quencies which will cause a resonance. Environmental issues, inducing ef-
fects which result in a change in machine parameters, should be carefully 
considered too. These should include stability in local and ambient tem-
perature, humidity, air-flow, air-particle, even possibly uniformity of light-
ing.
   This chapter is concerned with the development of an integrated preci-
sion motion control system on an open-architecture and rapid prototyping 
platform. It will attempt to address the abovementioned challenges. The 
various selected control components, which constitutes the final overall 
strategy, will be elaborated in terms of their purposes and designs. The 
theoretical aspects associated with these components can be found in the 
respective literature and work of the authors which will be highlighted to 
the readers in due course. Detailed implementation aspects, including the 
hardware architecture, software development platform and user interface 
design, are given to provide a general reference of the key issues which 
should be addressed in the design of a precision motion control system.

8.2 Overall Control Strategy 

The overall control structure is shown in Figure 8.1.
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   In what follows, the purpose and design of each component depicted in 
Figure 8.1 will be elaborated. Since the design of several of these compo-
nents will be based on a model of the PMLM, the initial part of this section 
will attempt to provide a concise system description of PMLM-based servo 
systems.

Fig. 8.1.  Overall structure of control system 

8.2.1 PMLM System Description

The type of motor predominantly addressed in this chapter is a DC perma-
nent magnet linear motor (PMLM). The dynamics of the PMLM can be 
viewed as comprising of two components: a dominantly linear model, and 
an uncertain and nonlinear remnant which nonetheless must be considered 
in the design of the control system if high precision motion control is to be 
efficiently realised.
    In the dominant linear model, the mechanical and electrical dynamics of 
a PMLM can be expressed as follows: 
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where x denotes position; M, D, loadm FF ,  denote the mechanical parame-

ters: inertia, viscosity constant, generated force and load force respectively; 
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u, aaa LRI ,,  denote the electrical parameters: input DC voltage, armature 

current, armature resistance and armature inductance respectively; tK  de-

notes an electrical-mechanical energy conversion constant; eK  is the back 

EMF constant of the motor. It should be noticed that loadF  also includes 

some bounded disturbances, such as connecting cables, vibration due to 
external sources and machine configurations and self-excited vibration.
    Since the electrical time constant is typically much smaller than the me-
chanical one, the delay due to electrical transient response may be ignored, 
giving the following simplified model: 
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Clearly, this is a second-order linear dynamical model. 

Fig. 8.2.  Model of PMLM 

   The dominant linear model has not included extraneous nonlinear effects 
which may be present in the physical structure. Among them, the two 
prominent nonlinear effects associated with PMLM are due to ripple and 
frictional forces, arising from the magnetic structure of PMLM and other 
physical imperfections. Figure 8.2 depicts a block diagram model of the 
motor, including explicitly the various exogenous disturbance signals pre-
sent.
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8.2.1.1  Force Ripples 

The thrust force transmitted to the translator of a PMLM is generated by a 
sequence of attracting and repelling forces between the poles of the per-
manent magnets when a current is applied to the coils of the translator. In 
addition to the thrust force, parasitic ripple forces are also generated in a 
PMLM due to the magnetic structure of PMLM. This ripple force exists in 
almost all variations of PMLM (flat, tubular, moving-magnet etc.), as long 
as a ferromagnetic core is used for the windings.
    The two primary components of the force ripple are the cogging (or de-
tent) force and the reluctance force. The cogging force arises as a result of 
the mutual attraction between the magnets and iron cores of the translator. 
This force exists even in the absence of any winding current and it exhibits 
a periodic relationship with respect to the position of the translator relative 
to the magnets. Cogging manifests itself by the tendency of the translator 
to align in a number of preferred positions regardless of excitation states. 
There are two potential causes of the periodic cogging force in PMLMs, 
resulting from the slotting and the finite length of iron-core translator. The 
reluctance force is due to the variation of the self-inductance of the wind-
ings with respect to the relative position between the translator and the 
magnets. Thus, the reluctance force also has a periodic relationship with 
the translator-magnet position.
   Collectively, the cogging and reluctant force constitute the overall force 
ripple phenomenon. Even when the PMLM is not powered, force ripples 
are clearly existent when the translator is moved along the guideway. 
There are discrete points where minimum/maximum resistance is experi-
enced. At lower velocity, the effects are more fully evident due to the 
lower momentum available to overcome the magnetic resistance. 
    Due to the direct-drive principle behind the operation of a linear motor, 
the force ripple has significant effects on the position accuracy achievable 
and it may also cause oscillations and yield stability problems, particularly 
at low velocities or with a light load (low momentum).  The ripple perio-
dicity has a fixed relationship with respect to position, but the amplitude 
can vary with velocity. 
    A first order model for the force ripple can be described as a position 
periodic sinusoidal type signal: 

)sin()()( xxAxFripple                                          (8.2)

Higher harmonics of the ripple may be included in higher order models. 
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8.2.1.2  Friction

Friction is inevitably present in nearly all moving mechanisms, and it is 
one major obstacle to achieving precise motion control. Several character-
istic properties of friction have been observed, which can be broken down 
into two categories: static and dynamic. The static characteristics of fric-
tion, including the stiction friction, the kinetic force, the viscous force, and 
the Stribeck effect, are functions of steady state velocity. The dynamic 
phenomena include pre-sliding displacement, varying breakaway force, 
and frictional lag. Many empirical friction models have been developed 
which attempt to capture specific components of observed friction behav-
iour, but generally, it is acknowledged that a precise and accurate friction 
model is difficult to be obtained in an explicit form, especially for the dy-
namical component. For many purposes, however, the Tustin model has 
proven to be useful and it has been validated adequately in many success-
ful applications. The Tustin model may be written as:
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where sF  denotes static friction, cF  denotes the minimum value of Cou-

lomb friction, sx  and vF  are lubricant and load parameters, and  is an 

additional empirical parameter. Figure 8.3 graphically illustrates this fric-
tion model. 
   Considering these nonlinear effects, the PMLM dynamics may be de-
scribed by: 
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The effects of friction can be greatly reduced using high quality bearings 
such as aerostatic or magnetic bearings.

    A common nonlinear function ),(*
1 xxF  may be used to represent the 

nonlinear dynamical effects due to force ripple, friction and other unac-
counted dynamics collectively.  The servo system (8.4) can thus be alterna-
tively described by: 
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Fig. 8.3.   The Tustin friction model 
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 With the tracking error e  defined as:
xxe d ,

(8.6) may be expressed as: 
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8.2.2  Feedforward Control 

The design of the feedforward control component is straightforward. From 

(8.8), the term of )(
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B may be neutralised using a  feed-

forward control term in the control signal. The feedforward control is thus 
designed as: 
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Clearly, the reference position trajectory must be continuous and twice dif-
ferentiable, otherwise a pre-compensator to filter the reference signal will 
be necessary. The only parameters required for the design of the feedfor-
ward control are the parameters of the second-order linear model.
    Additional feedforward terms may be included for direct compensation 
of the nonlinear effects, if the appropriate models are available. For exam-
ple, if a good signal model of the ripple force is available (8.2), then an ad-

ditional static term in the feedforward control signal )(
1

2
drippleFFx xF

K
u

can effectively compensate for the ripple force. In fact, in the proposed 
overall strategy, an adaptive feedforward control component for ripple 
compensation (to be elaborated in Section 8.2.4) has been included. 
   In the same way, a static friction feedforward pre-compensator can be in-
stalled if a friction model is available. In [14], an efficient way of friction 
modelling using relay feedback is proposed where a simple friction model 
(incorporating coulomb and viscuous friction components) can be obtained 
automatically.This model can be used to construct an additional feed forward controlsig-
nal, basedonly on the reference trajectories. In addition, if the motion con-
trol task is essentially repetitive, an iteratively refined addi-tional feedfor-
ward signal can further reduce any control-induced tracking error. 
A possible scheme based on iterative learning control (ILC) can be 
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found in [5], [6]. The basic idea in ILC is to exploit the repetitive nature of 
the tasks as experience gained  to compensate for the poor or incomplete 
knowledge of the system model and the disturbances. Essentially, the ILC 
structure includes a feedforward control component which refines the feed-
forward signal to enhance the performance of the next cycle based on pre-
vious cycles. A block diagram of the ILC scheme is depicted in Figure 8.4.

Fig. 8.4.  Iterative learning control 

   Characteristic of all feedforward control schemes, the performance is 
critically dependent on the accuracy of the model parameters. Therefore, 
feedforward is usually augmented with suitable feedback control schemes, 
one of which is given in the next subsection. 

8.2.3  PID Feedback Control 

In spite of the advances in mathematical control theory over the last fifty 
years, industrial servo control loops are still essentially based on the three-
term PID controller. The main reason is due to the widespread field accep-
tance of this simple controller which has been effective and reliable in 
most situations when adequately tuned. More complex advanced control-
lers have fared less favourably under practical conditions, despite the 
higher costs associated with implementation and the higher demands in 
control tuning. It is very difficult for operators unfamiliar with advanced 
control to adjust the control parameters. Given these uncertainties, there is 
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little surprise that PID controllers continue to be manufactured by the hun-
dred thousands yearly and still increasing. In the composite control system, 
PID is used as  the feedback control term. While the simplicity in a PID 
structure is appealing, it is also often proclaimed as the reason for poor 
control performance whenever it occurs. In this design, advanced optimum 
control theory is applied to tune PID control gains. The PID feedback con-
troller is designed using the Linear Quadratic Regulator (LQR) technique 
for optimal and robust performance of the nominal system. The feedfor-
ward plus feedback configuration is often also referred to as a two-degree-
of-freedom (2-DOF) control.
   The nominal portion of the system (without uncertainty) is given by:

)()()( tButAXtX                                               (8.10)

where

32211 xkxkkxKXu dd .                                  (8.11) 

This is a PID control structure which utilises a full-state feedback.
    The optimal PID control parameters are obtained using the LQR tech-
nique that is well known in modern optimal control theory and it has been 
widely used in many applications. It has a very nice robustness property, 
i.e., if the process is of single-input and single-output, then the control sys-
tem has at least a phase margin of  60 degree and a gain margin of infinity.  
Under mild assumptions, the resultant closed-loop system is always stable. 
This attractive property appeals to the practitioners. Thus, the LQR theory 
has received considerable attention since 1950s. 
    The PID control is given by: 

)()1( 0 tXBru T

PID                                           (8.12) 

where is the positive definite solution of the Riccati equation: 

QBBAA TT                                        (8.13)

and HHQ T  where H relates to the states weighting parameters in the 
usual manner. In general, if (A,B) is controllable and stabilizable, the solu-
tion of the positive definite  always exists. Note that 0r  is independent 

of  and it is introduced to weigh the relative importance between control 
effort and control errors. Note for this feedback control, the only parame-
ters required are the parameters of the second-order model and a user-
specified error weight 0r .

    Where other state variables are available (e.g., velocity, acceleration 
etc.), a full state feedback controller may also be used for the feedback 
control component. Interested readers may refer to [16] for the implemen-
tation of such a scheme on PMLMs. Adaptive and robust control has also  
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been investigated in a previous study as an alternative to the PID feedback 
control, where the feedback control signal is adaptively refined based on 
parameter estimates of the nonlinear system model, using prevailing input 
and output signals. The achievable performance is highly dependent on the 
adequacy of the model, and the initial parameter estimates. Furthermore, 
full adaptive control schemes can greatly drain the computational re-
sources available. Interested readers may refer to [8] for more details on 
adaptive and robust control schemes. 

8.2.4 Ripple Compensation 

From motion control viewpoints, force ripples are highly undesirable, but 
yet they are predominantly present in PMLMs. They can be minimised or 
even eliminated by an alternative design of the motor structure or spatial 
layout of the magnetic materials such as skewing the magnet, optimising 
the disposition and width of the magnets etc. These mechanisms often in-
crease the complexity of the motor structure. PMLM, with a slotless con-
figuration is a popular alternative since the cogging force component due 
to the presence of slots is totally eliminated. Nevertheless, the motor may 
still exhibit significant cogging force owing to the finite length of the iron-
core translator. Finite element analysis confirms that the force produced on 
either end of the translator is sinusoidal and unidirectional. Since the trans-
lator has two edges (leading and trailing edges), it is possible to optimise 
the magnet length so that the two sinusoidal force waveform of each edge 
cancel out each other. However, this would again contribute some degree 
of complexity to the mechanical structure. A more practical approach to 
eliminate cogging force would be to adopt a sleeve-less or an iron-less de-
sign in the core of the windings. However, this approach results in a highly 
inefficient energy conversion process with a high leakage of magnetic flux 
due to the absence of material reduction in the core. As a result, the thrust 
force generated is largely reduced (typically by 30 % or more). This solu-
tion is not acceptable for applications where high acceleration is necessary. 
In addition, iron-core motors, which produce high thrust force, are ideal for 
accelerating and moving large masses while maintaining stiffness during 
the machining and processing operations.
   In this section, a simple approach will be developed which is based on 
the use of a dither signal as a “trojan horse'' to cancel the effects of force 
ripples. The construction of dither signal requires knowledge of the charac-
teristics of force ripples which can be obtained from simple step experi-
ments. For greater robustness, real-time feedback of motion variables can 
be used to adaptively refine the dither signal characteristics.
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    It is assumed that the force ripple can be equivalently viewed as a re-
sponse to a virtual input described in the form of a periodic sinusoidal sig-
nal:

)cos()sin()sin( 21 xaxaxAuripple .

The dither signal is thus designed correspondingly to eradicate this virtual 
force as: 

).cos(ˆ)sin(ˆ 21 xaxauAFC                                  (8.14)

Perfect cancellation will be achieved when
.ˆ,ˆ 2211 aaaa

Compensation schemes are well-known to be sensitive to modeling errors 
which inevitably result in significant remnant ripples. An adaptive ap-
proach is thus adopted so that 1â  and 2â  will be continuously adapted 
based on desired trajectories and prevailing tracking errors.
    Possible update laws for the adaptive parameters will be

),sin()(ˆ 11 xWBXta T                                                (8.15) 

),cos()(ˆ 22 xWBXta T                                               (8.16)

where W is a positive definite matrix to be defined shortly. In other words, 
the adaptive update laws (8.15) and (8.16) can be applied as an adjustment 
mechanism such that )(1 ta  and )(2 ta  in (8.14) converge to their true val-
ues. Interested readers may refer to [13] for full details on this adaptive 
ripple compensation scheme. 
    Substituting the feedback and ripple compensation, the closed-loop sys-
tem without other disturbance is given by 

))cos(~)sin(~( 21 xaxaBXAX

where .BKAA  As shown in the feedback loop, the gain K is de-
signed to ensure the stability of  A+BK. Thus, the following Lyapunov 
equation holds 

,QAWWAT                                                              (8.17) 

where W is a positive definite matrix and Q > 0 has the same meaning as 

in (8.13). For a stable matrix A , the solution of W always exists if Q >0.
Define the following Lyapunov function 
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The derivative of the Lyapunov function is given by 
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Substituting the adaptive laws (8.15)-(8.16) yields 
2

min ||||)( xQV                        (8.18)

Since 0)(min Q , it follows that 0V . This implies that 21 ˆ,ˆ, aaX  are 
uniformly bounded with respect to t.

    Furthermore, with 21 ˆ,ˆ, aaX  being bounded, X  is bounded. Equation 
(8.18) and the definiteness of V will imply that
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Applying Barbalat's lemma, it follows that
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8.2.5 Friction Compensation 

Friction is another important aspect to be addressed in the control systems 
of high quality servo mechanisms. With a  friction model such as the one 
given in (8.3), friction compensation schemes can be designed. Unfortu-
nately, such friction models are unknown a priori in practice. In this sec-
tion, an adaptive technique will be described for friction compensation.
   Consider the system model
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A suitable compensation law is
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where 321 ˆ,ˆ,ˆ  are the estimates of the true parameters 321 ,, , re-

spectively. An adaptive law can be designed so that 321 ˆ,ˆ,ˆ  will con-

verge to actual values as t . The following update laws can be used
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where W is the same as in (8.17) , 321 ,,  are the adaptation factors. 

A similar proof to the force ripple can be derived to ensure the stability. 
For uncertain models, robust control schemes can be considered. Interested 
readers may refer to [9] for details. 

8.2.6 Disturbance Observer 

The achievable performance of PMLMs is also unavoidably limited by the 
amount of disturbances present. These disturbances may arise due to load 
changes, system parameter perturbation owing to prolonged  usage, meas-
urement noise and high frequencies generated from the amplifiers (espe-
cially when a Pulse Width Modulated (PWM) amplifier is used), or inher-
ent nonlinear dynamics such as the force ripples and frictional forces 
mentioned. Incorporating a higher resolution in the measurement system 
via the use of high interpolation electronics on the encoder signals can only 
achieve improvement in positioning accuracy to a limited extent. Thereaf-
ter, the amount of disturbances present will ultimately determine the 
achievable performance. In this subsection, this important issue of distur-
bance compensation for precision motion control systems will be ad-
dressed.
    Figure 8.5 shows the block diagram of the ``Disturbance Observer'' part 
of the proposed control system which uses an estimate of the actual distur-
bance, deduced from a disturbance observer, to compensate for the distur-

bances. x, u, d and d̂  denote the position signal, control signal, actual and 
estimated disturbance respectively. The disturbance observer, shown de-
marcated within the dotted box in Figure 8.5, estimates the disturbance 
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based on the output x and the control signal u. P denotes the actual system. 
Pn  denotes the nominal system which can be  generally described by: 

           Pn

)...( 1
1

1

0

lmlm

lmlml asasass

a
,

where Pn is a m-th order delay system and has l poles at the origin. In this 
chapter, as mentioned, we will use a third order model, i.e., l=1, m=3.

                                              Pn

)( 21
2

0

asass

a
.

Fig. 8.5.   Control system with disturbance observer 

The disturbance observer incorporates the inverse of the nominal system, 
and thus a low pass filter F is required to make the disturbance observer 
proper and practically realizable. For our choice of a third order model Pn,
a suitable filter is 

32
2

1
3

3)(
fsfsfs

f
sF

321 ,, fff  can be adjusted to satisfy a satisfactory compromise between 

tracking and disturbance rejection.
    Interested readers may refer to [11], [18] for full details on the distur-
bance observer scheme. 
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8.2.7 Self-Tuning Schemes 

Most of the aforementioned control components would require a sys-
tem/sub-system model. Thus, performance degradation can be expected 
when model becomes inadequate due to changes in system dynamics with 
time, following prolonged usage and machine deterioration. Self-tuning 
schemes which can update the models efficiently are useful and necessary 
to ensure performance over time. Many high-end controllers appearing in 
the market now come equipped with auto-tuning and self-tuning features. 
For the feedback and feedforward control presented, an efficient self-
tuning approach can be found in [12]. Using an equivalent relay feedback 
configuration, both a dominant linear system model and a nonlinear fric-
tion model can be obtained. 

8.2.8 Vibration Control and Monitoring 

Mechanical vibration in machines and equipment can occur due to many 
factors, such as unbalance inertia in spindles, motors, drives and unstable 
fluid supplies etc, poor kinematic design resulting in a non-rigid support 
structure, component failure and/or operations outside prescribed load rat-
ings. The machine vibration signal can be typically characterised as a nar-
row-band interference signal anywhere in the range from 1 Hz to 500 kHz. 
To prevent equipment damage from the severe shaking that occurs when 
machines malfunction or vibrate at resonant frequencies, a filter which 
terminate signal transmission at these frequencies will be very useful. 
When the machine is used to perform highly precise positioning functions, 
undue vibrations can lead to poor repeatability properties, impeding any 
systematic error compensation effort. This results directly in a loss of pre-
cision and accuracy achievable.

8.2.8.1 Adaptive Notch Filter 

One approach to eliminate/suppress undesirable narrow-band frequencies 
can be efficiently accomplished using a notch filter (also known as a band-
stop filter). Ideally, the filter highly attenuates a particular frequency com-
ponent and leaves the others relatively unaffected. Thus, an ideal notch fil-
ter has a unity gain at all frequencies and a zero gain at the null frequen-
cies. A single-notch filter is effective in removing a single frequency or a 
narrow-band interference; a multiple-notch filter is useful for the removal 



      K.K. Tan et al. 290

of multiple narrow-bands, necessary in applications requiring harmonics 
cancellation.
    Complete narrow-band disturbance suppression requires an exact ad-
justment of the filter parameters to align the notches with the resonant fre-
quencies. If the true frequency of the narrow-band interference to be re-
jected is stable and known a priori, a notch filter with fixed null frequency 
and fixed bandwidth can be used. However, if no information is available a
priori or when the resonant frequencies drift with time, the fixed notch 
may not coincide exactly with the desired null frequency if the bandwidth 
is too narrow (i.e. 1). In this case, an adaptive technique is highly rec-
ommended where FFT (Fast Fourier Transform) is used to iteratively de-
rive the signal spectrum (and thus resonants) from the latest n samples of 
the control signal to update the signal spectrum. Based on the updated 
spectrum, the filter characteristics can be continuously adjusted for notch 
alignment. The block diagram of the adaptive notch filter which has been 
developed, with its adjusting mechanism, is shown in Figure 8.6.

Fig. 8.6.  Adaptive notch filter 

   Interested readers may refer to [2], [17] for full details on the derivation 
and other aspects of the adaptive notch filter.

8.2.8.2 Real Time Monitoring Device 

A notch filter is a dynamical element. It will inevitably change and com-
plicate the original system dynamics. Apart from the targeted signal fre-
quencies to be eliminated, the filter affects also other signal frequencies. 
This may cause a deterioration in control performance. An alternative to-
wards vibration monitoring can be to use a separate monitoring entity 
working in real-time to continuously derive and analyse vibration signals.  
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    The main idea behind this approach is to construct a vibration signature 
based on pattern recognition of ``acceptable'' or ``healthy'' vibration pat-
terns. The device is expected to enter an initial learning mode, to yield a 
set of vibration signatures based on which the monitoring modes will oper-
ate. In the monitoring mode, with the machine under normal closed-loop 
control, the analyser only uses a naturally occurring vibration signal to de-
duce the condition of the machine. No test excitation is deliberately added 
to the input signal of the machine. More than one criterion may be used in 
the evaluation of the condition of the machine, and in which case, a fusion 
approach would generate a combined output (machine condition) based on 
the multiple inputs.
    A possible block diagram of the monitoring device is shown in Figure 
8.7. It consists of an accelerometer, which is mounted on the machine to be 
monitored. The accelerometer measures a multi-frequency vibration signal 
and transmits it to an intelligent DSP module, after performing appropriate 
signal conditioning. This module can be a standalone device, or one inte-
grated to a Personal Computer (PC) host. The vibration analysis algorithm 
is downloaded to this DSP module. With this algorithm, it can establish as 
to whether the condition of the machine is within a  pre-determined ac-
ceptable threshold. If the condition is determined to be poor, the DSP 
module will trigger an alarm to the operator, or automatically activate a 
corrective action (e.g., change the operating conditions of the machine, 
modify the parameters of the controller or shut down the machine).

Fig. 8.7.  Schematic of vibration monitoring device 

   The construction of the real-time vibration analyser is inexpensive and 
requires only commercially available, low cost components. The installa-
tion can be hassle-free, as the accelerometer is able to gather vibration sig-
nals, independent of the machine's own control system. Thus, there is no 
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need to disrupt the operation of the machine. For more details on the de-
velopment of the device as well as possible fusion techniques used in the 
analysis, the readers may refer to [17].

8.2.9 Geometrical Error Compensation 

In automated positioning machines such as Co-ordinate Measuring Ma-
chines (CMMs) and machine tools, the relative position errors between the 
end-effector of the machine and the workpiece directly affect the quality of 
the final product or the process concerned. These positioning inaccuracies 
arise from various sources, including static/quasi-static sources such as 
geometrical errors from the structural elements, tooling and fixturing er-
rors, thermally induced and load induced errors, and also dynamic ones 
due to the kinematics of the machine. These errors may be generally classi-
fied under two main categories: 

systematic errors which are completely repeatible and reproduci-
ble, and
apparently random errors which vary under apparently similar op-
erating conditions.

Although a complete elimination of machine errors is physically unachiev-
able, these errors may be reduced to a level which is adequate for the par-
ticular application of the machine with a sufficiently high investment in 
machine design and construction. It is widely reckoned that for an increase 
in the precision requirements, the corresponding increase in cost will be far 
steeper. Thus, rather than relying solely on the precision design and con-
struction of the machine which is expensive, this performance-cost di-
lemma set the motivation for a corrective approach instead in the form of 
an appropriate error compensation in the machine control to achieve com-
parable machine precision at a much reduced cost.
    The basis of all soft compensation approaches is a geometrical error 
model which relates the positioning error to the measured position of a fo-
cused point. In this section, these relations will be given for commonly en-
countered configurations of positioning stages. 

8.2.9.1 Single Axis Stage 

For this simple stage, the linear motion along one axis and the linear error 
resulting along this axis arising (e.g., inherent encoder calibration errors) 
are of interest. Consider the single axis stage as shown in Figure 8.8, mov-
ing along the X direction. When the focused point (P) translates from the 
origin O to a nominal distance OP, it follows that
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,xxOP

where x is the desired position and x  represents the linear error along x
axis. The geometrical error along the x is therefore given by

xx .

Fig. 8.8.   Single axis stage 

8.2.9.2  Dual Axis (Gantry) stage 

In some installations, one axis is controlled by two drives and two feed-
back control systems, e.g., and H-type gantry stage. In this instance, the 
second axis brings about another source of linear displacement error. It is 
necessary to do calibration for this additional error source.

Fig. 8.9.  Dual axis stage 

Consider a dual axis stage as shown in Figure 8.9, moving a focus point 
along an axis which is still X in this example. The focus point moves from 
the origin 1O  to PO1 , while the other axis moves from the origin 2O  to 

PO2 . It follows that 

,1111 PPPOPO

and

,2222 PPPOPO

for the 21, xx  axis respectively. Thus,
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xxxxPO
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where )(),( 21 xx  are the linear errors of 21, xx  axes, respectively, and 

),( 21 xx  refers to the cross-coupled linear error arising after each indi-
vidual axis error is calibrated. A two-phase calibration process may thus be 
used for such a dual-axis stage. During phase 1, the individual error along 
either axis ( )(),( 21 xx ) is first calibrated. Then the axes are individually 
compensated. After compensation of the individual axis,  Phase 2 of cali-
bration will seek to derive the cross-coupled linear error ),( 21 xx  and 
subsequently compensate for it.

8.2.9.3  General XY stage 

A general XY stage with three independent planar systems is shown in 
Figure 8.10. The planar systems are associated, respectively, with the table 
(0, X, Y), the bridge ),,( 111 YXO , and the carriage ),,( 222 YXO . For con-
ceptual purposes, the measurement systems for the bridge and carriage are 
shown in Figure 8.10 as being attached to the bridge and X carriage 
respectively, via small, non-existent connecting rods. It will be assumed 
that, initially, all three origins coincide and the axes of all three systems 
are aligned. Thus, when the bridge moves a nominal distance Y, the actual 
position of the bridge origin 1O , with respect to the table system, is given 
by the vector:

,
)(

)(
1

yy

y
OO

x

x                                             (8.19)

Fig. 8.10.  XY stage 
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At the same time, the bridge coordinate system rotates with respect to the 
table system due to the angular error motion. This rotation can be ex-
pressed by the matrix: 

,
1

1
1

y

y
R                                              (8.20)

Similarly, when the X carriage moves a nominal distance X, it follows that 

1

1
,

)(

)(
221

x

x

y

x
R

xx

xx
OO                         (8.21) 
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PO                               (8.22) 

where x, y are the nominal positions; pp yx ,  represent the offsets of the 

tool tip (Abbe error); )(vu  is the translational error along the u-direction 

under motion in the v direction; u  refers to the rotation along the u axis; 

and represents the out-of-squareness error. Therefore, a volumetric error 
model can be derived with respect to the table system: 

PORROOROOOP 2
1

2
1

121
1

11                       (8.23)

Substituting (8.19)-(8.22) into (8.23) and noting that 
0,0)(,0 uuuvu v  since ),(, vuu  are very small, the 

geometrical error compensation along the x and y directions are respec-
tively:

pyxpxx xyyxx )()()(

pxypyy yxyxy )()()(

This is a 2D error model. For a more general 3D error model, readers can 
review in [7, 19] for a detailed presentation. It should be noted that the er-
ror sources are all calibrated using only appropriate combinations of linear 
displacement measurements.
    Common to a geometrical error compensator is a model of the machine 
errors, which is either implicitly or explicitly used in the compensator. A 
common mode of modelling these errors is via a look-up table which will 
store the positional offsets. This table will store the overall positional off-
sets arising from the individual geometrical error components obtained 
through a typical laser and electronic leveller calibration exercise. For a 3D 
cartesian machine, there are 21 sources of geometrical errors associated 
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with linear, angular, straightness and squareness errors. Figure 8.11 shows 
a 2-dimensional look-up mapping along X-Y axes, where the assumed 
ideal geometrical properties are mapped to the actual ones. 

Fig. 8.11.  2-D geometrical error map

    The look-up table is built based on points collected and calibrated in the 
operational working space of the machine. Among the limitations, a look-
up table incurs an extensive memory space, is incapable of nonlinear inter-
polation, and it possesses a rigid structure which is not amenable to con-
sider other factors which may cause the geometrical error model to change, 
such as ambient temperature and humidity. Dispensing with the look-up 
table, a radial basis function (RBF) error model based on the calibrated 
points [7] has been developed to serve as the basis for error compensation. 
The overall error can then be directly computed from the output of these 
RBFs based on a geometrical overall model for the machine in point. Fig-
ure 8.12 shows the adequacy of using a RBF in the modeling of the linear 
error along the X axis of an XY table. A multilayer artificial neural net-
works (ANN), as another possible geometric error model, has also been 
explored. Details may be found in [7], [10].

Fig. 8.12.  RBF modeling of the linear error 
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8.3 Implementation 

The final implementation of the overall control system is a non-trivial and 
important process. This development process can be time consuming, lead-
ing many to simply settle for off-the-shelves proprietary solutions which 
may not satisfy all requirements specific to the particular application.
    Manually line programming a control system from scratch requires an 
enormous amount of time and effort to be spent. The high susceptibility in 
coding errors causes further delay to the development process. Thus, the 
flexibility, quality, functionality and development time are crucial factors 
driving the selection of the hardware and software development platform 
for the control system. In this case, the dSPACE development platform is 
selected due to three main features and provisions: rapid control prototyp-
ing, automatic production code generation, and facilities for hardware-in-
the-loop testing.
    Rapid control prototyping implies that new and customised control con-
cepts can be directly and quickly developed, and optimised on the real sys-
tem via the rich set of standard design tools and function blocks available 
in MATLAB/SIMULINK. Controllers can be directly and graphically de-
signed in the form of functional block diagrams with little or no line pro-
gramming necessary. Real-time code can be automatically generated from 
the functional block diagram and implemented on the machine through the 
automatic production code generation feature provided. The hardware-in-
the-loop facilities further allow for a reliable and cost-effective method to 
perform system tests in a virtual environment. Peripheral components can 
be replaced by proven working mathematical models, while the actual 
physical components to be evaluated are inserted systematically into the 
loop. In addition to savings in time and costs, the modularity and repro-
ducibililty associated with hardware-in-the-loop simulation greatly simpli-
fies the entire development and test process.
    In this section, the hardware and software of the system will be de-
scribed in subsections 8.3.1 and 8.3.2. The user interface for the overall 
system will also be briefly illustrated in subsection 8.3.3.

8.3.1 Hardware Architecture

The overall system hardware architecture is shown in Figure 8.13. To meet 
simultaneous high speed and high precision requirements, the control unit 
is configured with high speed processing modules. A dSPACE DS1004 
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DSP board is used together with a DS1003 DSP board. The DS1004 DSP  
board uses a DEC Alpha AXP 21164 processor capable of 600 MHz/1200 
MFlops. This board is used to fully concentrate on the computationally in-
tensive tasks associated with control algorithms execution. The DS1003 
DSP board  uses the TMS320C40 DSP which is capable of 60 MFlops. It 
can effectively deal with all the I/O tasks because of its high-speed connec-
tion to all I/O boards via the Peripheral High-Speed (PHS) Bus.
    In addition to the processor boards, a DS2001 board  is used which has 
five parallel high-speed 16 bit A/D channels. The sampling and holding of 
signals along all channels can be executed  simultaneously, with a short 
sampling time of 5. s A DS2102 high-resolution D/A board is used to 
drive the actuators. It has six parallel D/A channels, each with a 16-bit 
resolution. The typical settling time (full scale) is 1.3-2 s and output volt-
age ranges (programmable) of 5 V, 10 V, or 0-10 V are all supported.

Fig. 8.13.   Overall hardware architecture 
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    To allow fine measurement resolution via analog incremental optical 
encoders, the DS3002 incremental encoder interface board with a maxi-
mum input frequency of 750 kHz is chosen. Sinusoidal encoder signals are 
captured through six channels in DS3002, converted to 12 bits digital sig-
nals and then phase decoded by special highly optimised software func-
tions to extract the relative position from these data. A search block will 
seek the encoder index lines and updates the corresponding counter when a 
new index is reported to give an absolute position information. Theoreti-
cally, in this way, an interpolation of 4096 can be achieved. This in turns 
implies that a measurement resolution of less than 1 nm can be achieved if 
the grating-line pitch is 4 m. However, one should be cautious of the con-
straints in terms of interpolation errors associated with limited wordlength 
A/D operations, and imperfect analog encoder waveform with mean, phase 
offsets, noise as well as non-sinusoidal waveform distortion. The interested 
readers may refer to [15] for more details on these aspects and possible 
remedial measures. 
    A timer and digital I/O board, DS4001, with 32 in/out channels is used 
for status checking of limit switches and other safety enhancing digital de-
vices. The 32 in/out channels can be divided into 8-bit groups.

8.3.2 Software Development Platform 

The processor boards are well supported by popular software design and 
simulation tools, including MATLAB and SIMULINK, which offer a rich 
set of standard and modular design functions for both classical and modern 
control algorithms. The overall SIMULINK control block diagram custom-
ised for a cartesian 3D gantry machine is shown in Figure 8.14. The block 
diagram can be divided into three parts according to their functions:

control and automatic tuning,
geometric error calibration and compensation, and
safety features, such as emergency stops, limit switches, etc. 
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Fig. 8.14.  Overall SIMULINK control block diagram 

The control algorithms are included in the subsystem x-ctrl, y-ctrl and z-
ctrl. Figure 8.15 shows the SIMULINK control block diagram for the x 
axis. Apart from the PID feedback control which is fixed, the other ad-
vanced control schemes are configurable by the operator. An automatic 
tuning operation mode is also provided for the controllers. The operation 
modes  (control or automatic tuning) can be selected through the switch 
blocks X-Output-Switch, Y-Output-Switch and Z-Output-Switch.
   The geometric error calibration and compensation for the axes are inte-
grated with the controllers via an S-Function interface. These features are 
enabled through switches Comp-x and Comp-y, as shown in Figure 8.14.
    All the limit switch signals from the three axes are acquired through 
DS4001 board. These limit switch signals serve as the control input of the 
three switches shown in Figure 8.14, to nullify the system control signal 
when the limit switch is activated.  An operator emergency stop function is 
also provided in the overall SIMULINK control block diagram.
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Fig. 8.15.   The SIMULINK control block diagram for X axis 

   A software component, running on MATLAB/SIMULINK is written for 
the geometrical error compensation. Using this software, an S-function 
comprising RBF-based error compensation can be automatically produced 
given the raw data set obtained from the calibration experiments, and sim-
ple user inputs on the RBF training requirements. Thus, little prior techni-
cal knowledge of RBFs is required of the operator. 
   Upon a successful automatic code generation from the SIMULINK con-
trol block diagram, the controller will run on the dSPACE hardware archi-
tecture configured. The user interface, designed using dSPACE 
CONTROLDESK, allows for user-friendly parameters tuning/changing 
and data logging during the operations. The control parameters can be 
changed on-line, while the motion along all axes can be observed simulta-
neously on the display. 

8.3.3 User Interface 

The user interface is designed as a virtual instrument panel based on the 
dSPACE CONTROLDESK instrumentation tool. CONTROLDESK is a  
comprehensive design environment where designers can intuitively man-
age, instrument, and automate their experiments and operations. 
CONTROLDESK is seamlessly integrated within the dSPACE develop-
ment platform. It can realise real time data acquisition, online parameter-i 
sation and provide an easy access to all model variables without having to 



      K.K. Tan et al. 302

interrupt the running operations. The entire user interface design is 
achieved simply via drag and drop operations from the Instrument Selector 
provided. This greatly speeds up the design process and helps to avoid 
standard design pitfalls associated with line  programming. Figure 8.16
shows the user interface customised for the gantry motion system.

Fig. 8.16.   User interface 
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8.4 Results 

The precision motion control strategies developed have been applied to 
and tested on various systems, including ANORAD and Linear Drives 
(U.K.) servo systems based on PMLMs, as well as other more conven-
tional servo systems. A high level of performance has been achieved in 
these applications and tests. For illustration purposes for this chapter, an 
extract of the  results from  the application of the control system to a Lin-
ear Drive direct thrust servo system is provided below. The system uses a 1 

m resolution encoder and it is driven by PWM amplifiers.
   The tracking performance, given a sinusoidal type of reference trajec-
tory, is shown in Figure 8.17 with the system under the control of the pro-
posed system. A maximum tracking error of less than 7 m is achieved. It 
should be pointed out that this is achieved with the encoder resolution of 
1 m. The controller performs satisfactorily even when a significant load 
disturbance (50 kg) is deliberately introduced into the system (Box B in 
Figure 8.17).  For comparison purposes, Box A highlights the performance 
of the system before the introduction of the load disturbance. The changes 
in the control signal due to the introduction of disturbance are not reflected 
in the error signal. In other words, the control system is able to effectively 
reject the external disturbance and the performance is not significantly af-
fected.

Fig. 8.17.  Experimental results with proposed system 

   The control results achieved with an existing industrial control system 
are shown in Figure 8.18. The deliberate load disturbance introduced into 
the system is clearly manifested in the error signal (Box B in Figure 8.18).
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A comparison between Figure 8.17 and Figure 8.18 shows the significantly 
better performance achieved using the developed control system. Further-
more, perhaps unnoticed by many, the implicit geometrical error compen-
sator has achieved a four fold reduction in geometrical errors present in the 
system to help achieve the above results.

Fig. 8.18.  Experimental results with an existing industrial control system (a) De-
sired trajectory ( m); (b) Error ( m); (c) Control signal (V)

8.5 Conclusions

The chapter has presented the development of an integrated and open-
architecture precision motion control system. The control system is gener-
ally applicable, but it is developed with a particular focus on direct drive 
servo systems based on linear motors. The overall control system is com-
prehensive, comprising of various selected control and instrumentation 
components, integrated within a dSPACE DS1004 DSP board. These 
components include a precision composite controller, a disturbance ob-
server, an adaptive notch filter, and a geometrical error compensator. The 
hardware architecture, software development platform, and the purpose 
and design of the constituent control components have been duly elabo-
rated on in the chapter.
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