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Abstract— A robust dynamic feedback controller is designed
and implemented, based on the dynamic model of the six-wheel
skid-steering RobuROC6 robot, performing high speed turns.
The control inputs are respectively the linear velocity and the
yaw angle. The main object of this paper is to elaborate a sliding
mode controller, proved to be robust enough to ignore the
knowledge of the forces within the wheel-soil interaction, in the
presence of sliding phenomena and ground level fluctuations.
Finally, a 3D simulation is performed with an accurate physical
engine to evaluate the efficiency of this designed control law.

I. INTRODUCTION

The main objective of this paper is to control precisely
a six wheel drive skid-steering vehicle for path following.
Nevertheless, vehicle systems are not usually easy to control
owing to unknowns about their model and owing to the
difficulty to evaluate the forces in the wheel-soil interaction.
Many interaction models developped by Bakker [3] or by
Pacejka [13] try to represent the complexity of the physical
phenomena using empirical models. However, wheel-soil
interaction is still one of the great unknowns in mobile
robotic systems. The dynamic of skid-steering mobile robots
has been studied by Caracciolo in [5], with the use of a
dynamic feedback linearization paradigm for a model-based
controller that minimizes lateral skidding by imposing the
longitudinal position of the instantaneous center of rotation.
In [11], Kozlowski designed a new algorithm proved to have
a high robustness to dynamic parameters uncertainty. Now,
an other strategy that uses a sliding mode controller can be
investigated in order to deal with the skid phenomenon that
is inherent to this kind of vehicle. This controller, developped
by Utkin [17], authorizes a decoupling design procedure,
disturbance rejection, insensitivity to dynamic parameters
variations, and a simple implementation. That is why this
control law has been treated in many ways in the literature.
In [10] and in [2] dynamic control laws are studied, but
without taking into account the complex dynamical model of
the vehicle. In [18] and then in [6] the dynamical model of a
unicycle is studied for the design of a controller by using a
nonholonomic constraint, considering a null lateral velocity.
In [9], it is taken into account that in realistic case, the
nonholonomic constraints are not satisfied. But the problem
is addressed for a partially linearized dynamical model of a
unicycle robot.

(1) Univsersity of Paris 6 - UPMC, Insitut des Systèmes
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Fig. 1. RobuROC6

Here, we suggest an original dynamical model based
sliding mode control method for fast autonomous mobile
robots, that control the torques applied in the wheels. The
main objective is to follow a given path with a relatively
high speed by servoing the longitudinal velocity and the
yaw angle. The terrains considered here are horizontal in
theory and relatively smooth compared to the size of the
wheels. if most of the mobile robots motion controllers
found in the literature use the hypothesis of rolling without
slipping, it is no longer suitable at high speed where wheel
slip can not be neglected. Owing to the dynamics of the
vehicle and the saturation of admissible forces by the soil,
the slippage reduces the robot motion stability. So that we
need a controller robust enough.

A 3D simulation is done in a dynamic environment
with the robuBOX, a software being developed by the
ROBOSOFT company [1] and based on Microsoft Robotics
Studio. An interaction wheel-soil model of forces designed
by Szostak and al in [16], described in the fifth section,
is used to permit a realistic modelization of the system
behavior. We will analyze the motion control of a RobuROC6
represented Fig. 1.

It is an electric mobile robot developed by Robosoft, for
exemple studied in [12], which consists of three pods steered
and driven by two actuated conventional wheels on which
a lateral slippage may occur. The rear and the front pods
are symmetrically arranged about the central pod. They are
attached to this later one by two orthogonal passive rotoid
joints providing a roll/pitch relative motion for keeping the
wheels on the ground to maintain traction of the pod when
traversing irregular surfaces. Note that the pitch mobility can
be actuated by hydraulic cylinders. Two ultrasound sensors
with a range of 3,4 meters and two bumper sensors are



located in the front and in the rear of the robot. One
inclinometer for each pod and odometric sensors are also
available. A GPS and a gyro meter are needed for the control
law implementation.

A controller based on a complete three dimensional dy-
namic modelisation of this kind of articulated system would
be difficult to investigate, especially for calculation times
if we intend to reach high velocities. That is the reason
why the sliding mode controller is particulary adapted. The
robustness of this controller, acording to the robot dynamic
model, permits to stay quite reliable in spite of the sliding
phenomenon and the roll and pitch movments of the three
pods, due to possible fluctuations of the ground level and of
the normal contact.

This paper is organized as follows. In the second section,
the system dynamical model is given. In the third section,
we describe the design of the sliding mode controller. In
the fourth section, the use of the Robosoft Robubox for
an efficient implementation of the controller is detailed. In
the last section, simulation results using this controller are
presented and analyzed.

II. SYSTEM DYNAMICS MODEL

A dynamic model of a skid-steering vehicle is established
in fixed frame R0 = {O0,x0,y0,z0}. We consider R =
{G,x,y,z0} the frame attached to the vehicle. The vehicle
pose vector is given by [x,y,θ ]T , where [x,y]T is the position
of the center of gravity G and θ is the orientation of R, both
with respect to R0. The representation of the 6WD skid-
steering vehicle is described Fig. 2. The absolute velocity[
ẋ, ẏ, θ̇

]T become [u,v,r]T in the local frame, linked by the
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Fig. 2. System dynamics
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The wheel-ground interaction forces are called Fx∗∗ and Fy∗∗
for each one of the six wheels in both the longitudinal x and
the lateral y directions (with f, m and r for front, middle and
rear, and l and r for left and right). Dynamical model of this
mechanical system can be expressed in the local frame by
the following equations:

M (u̇− rv) = Fxrl +Fxrr +Fxml +Fxmr +Fx f l +Fx f r (2)
M (v̇+ ru) = Fyrl +Fyrr +Fyml +Fymr +Fy f l +Fy f r (3)

Jṙ = −wlFxrl +wrFxrr− lrFyrl− lrFyrr

−wlFxml +wrFxmr (4)
−wlFx f l +wrFx f r + l f Fy f l + l f Fy f r

which express the dynamic of the main frame considered as
a unique rigid body, and:

Jwω̇ f l = τ f l−RFx f l ; Jwω̇ f r = τ f r−RFx f r ;
Jwω̇ml = τml−RFxml ; Jwω̇mr = τmr−RFxmr ;
Jwω̇rl = τrl−RFxrl ; Jwω̇rr = τrr−RFxrr

(5)

that correspond to the wheels spin dynamics.
M is the mass of the vehicle, R the wheel radius, J the

vehicle inertia on z axis, Jw the wheel inertia, ω̇∗∗ the angular
acceleration of the wheels, τ∗∗ the wheel torques, wl and wr
the left and right width and l f and lr the front and rear length.

III. CONTROLLER DESIGN

Because the lateral dynamics of the vehicle can not be
controlled, we use only the dynamic equations projected
along x and z0 for a decoupling design procedure.

The longitudinal velocity and the yaw angle of the vehicle
are controlled by considering two additional inputs τu and
τθ . The torque τu is applied equally on the six wheels of
the robot, whereas the value of the torque τθ is of opposite
sign for the right and the left wheels.

The control law architecture is depicted Fig. 3.
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A. Control of the yaw angle θ

1) Design of the control law: Introducing the input τθ ,
equations (4) and (5) give us:

ṙ = λτθ +Λθ ω̇ +Dθ Fy (6)

with:

λ = 3
2

wr+wl
JR ;

Λθ = −Jω

JR

[
−wl wr −wl wr −wl wr

]
;

ω̇ =
[

ω̇ f l ω̇ f r ω̇ml ω̇mr ω̇rl ω̇rr
]T ;

Dθ =
[

l f l f −lr −lr
]

;
Fy =

[
Fy f l Fy f r Fyrl Fyrr

]T
.

As proposed in [8], to allow the vehicle joins the path, the
desired yaw angle θd has to be modified as:

θ̃d = θd + arctan
(

d
d0

)
with d0 a positive gain and d the distance to the path.

Considering cdθ the control law and n
(
θ ,r, ṙ,d, ḋ, d̈

)
the

function of uncertainties about θ , r, ṙ, d, ḋ and d̈ in the
dynamic equations, we have the following relationship:

ṙ = cdθ −n
(
θ ,r, ṙ,d, ḋ, d̈

)
(7)

We define the yaw angle control law as:

cdθ = ˙̃rd +Kθ
p εθ +Kθ

d ε̇θ +σθ (8)

with:
• ˙̃rd the second time derivative of θ̃d , being an anticipative

term;
• εθ = θ̃d−θ the yaw angle error;
• Kθ

p and Kθ
d two positive constants that permit to define

the settling time and the overshoot of the closed-loop
system;

• σθ the sliding mode control law.

2) Error state equation establishment: If we calculate the
second derivative of εθ :

ε̈θ = ˙̃rd− ṙ
= ˙̃rd− cdθ +n
= ˙̃rd−

(
˙̃rd +Kθ

p εθ +Kθ
d ε̇θ +σθ

)
+n

= −Kθ
p εθ −Kθ

d ε̇θ +(n−σθ )

(9)

We define the error state vector x =
(

εθ

ε̇θ

)
. So, we have

the state equation:

ẋ = Ax+B(n−σθ ) (10)

with: A =
(

0 1
−Kθ

p −Kθ
d

)
; B =

(
0
1

)
.

If σθ = 0, the system is linear and we choose the value
of Kθ

p and Kθ
d as Kθ

p = ω2
n and Kθ

d = 2ξ ωn in order to
define a second order system. ωn is the pulsation and ξ the
damping factor. To define numerical values, the 5% answer
time Tr is introduced: Tr = 4,2

ξ ωn
.

3) Stability analysis: To guarantee the stability of this
closed-loop system, the problem of tracking the desired raw
θ̃d can be solved by using the Lyapunov candidat function
V = xT Px, with P a defined positive symetric matrix. Based
on the Lyapunov theorem ([15]), the state x = 0 is stable only
if:

V (0) = 0 ; ∀x 6= 0 V (x) > 0 and V̇ (x) < 0 (11)

The first two equations are verified. We have to establish the
third one. Using the equation 10, we calculate the derivative:

V̇ (x) = ẋT Px+xT Pẋ
=

(
xT AT +nBT −σθ BT

)
Px

+xT P(Ax+Bn−Bσθ )
= xT

(
AT P+PA

)
x+2xT PB(n−σθ )

(12)

Then, we calculate P in order to obtain the Lyapunov
equation:

AT P+PA =−Q (13)

with Q a defined positive symetric matrice. Equation (12)
becomes:

V̇ =−xT Qx+2xT PB(n−σθ )

To maintain the stability, V̇ has to be negative. The first
term is negative and the second one is null if x belongs to
the kernel of BT P. We define the sliding variable s = BT Px.
s = 0 is the sliding surface. If s = 0, the error state vector x
becomes null.

The sliding mode controller σθ is defined as σθ (s = 0) = 0
and for s 6= 0, σθ = µ

s
‖s‖ , with µ a positive scalar large

enough to allow the stability of the controller. That allows
to have:

sT (n−σθ ) = sn−µ
s2

‖s‖
= sn−µ ‖s‖ ≤ ‖s‖(‖n‖−µ)

If we make the hypothesis that the modelisation error is
bounded: ‖n‖ ≤ nMax < ∞, the selection of µ > nMax allows
to verify the Lyapunov theorem hypothesis.

4) Resolution of the Lyapunov equation: To solve the
equation (13), the matrice Q is choosen as:

Q =
(

a 0
0 b

)
with a > 0 and b > 0.
Knowing the value of the parameters of the matrice A, the
matrice P is:

P =

 1,05·b
ξ 2·Tr

+ 5·a·ξ 2·Tr
21 + a·Tr

16,8
a·ξ 2·Tr

2

35,28
a·ξ 2·Tr

2

35,28
b·Tr
16,8 + a·ξ 2·T 3

r
296,352

 (14)

B. Control of the longitudinal velocity u

Introducing the input τu, equations (2) and (5) give us:

u̇ = γτu +Λu∑ ω̇ + rv (15)

with:
γ = 6

RM ;
∑ ω̇ = ω̇ f l + ω̇ f r + ω̇ml + ω̇mr + ω̇rl + ω̇rr ;
Λu = −Jω

RM .



As previously, cu is the control law and m(u, u̇) the function
of uncertainties about u and u̇ in the dynamic equations. We
have the following relationship:

u̇ = cu−m(u, u̇) (16)

The longitudinal velocity control law is:

cu = u̇d +Ku
pεu +σu (17)

with:

• u̇d an anticipative term;
• εu = ud−u the velocity error;
• Ku

p a positive constant that permits to define the settling
time of the closed-loop system;

• σu the sliding mode control law.

Using the Lyapunov candidat function V = 1
2 ε2

u , it can
be immediately verified that the stability of the system is
guaranteed by the choice of the sliding mode control law
σu = ρ

εu
‖εu‖ , with ρ a positive scalar, large enough.

C. Expression of the global control

In practice, uncertainties about the dynamic of the system
to control have for consequence an unknown about the real
sliding surface s = 0. As a consequence s 6= 0 and the
sliding control law σ , which has a behavior similar to a
sign function, induces oscillations by trying to reach the
sliding surface s = 0 with a null time in theory. These
high frequency oscillations around the sliding surface, called
chattering, increase the energy consumption and can damage
the actuators. In order to reduce them, we can replace the
sign function by an arctan one or, as chosen here, by adding
a parameter with a small value β in the denominator.

Finally, the following torques are applied to each one of
the six wheels:

τ f l = τml = τrl = τu− τθ

2 ;
τ f r = τmr = τrr = τu + τθ

2
(18)

with τu and τθ defined by:

τu =
1
γ

(
u̇d +Ku

pεu +ρ
εu

‖εu‖+βu
−Λuω̇− rv

)
(19)

τθ =
1
λ

(
˙̃rd +Kθ

p εθ +Kθ
d ε̇θ + µ

BT Px
‖BT Px‖+βθ

−Λθ ω̇−Dθ Fy) (20)

To estimate the value of the lateral forces Fy, a Pacejka [13]
theory could be used by considering the slip angle. But,
owing to the fact that the sliding mode control is robust,
we can consider that Fy is a perturbation to reject, and not
include it in the control law. A slip angle measure being in
practice not very efficient, this solution is better.

IV. USING ROBUBOX TO IMPLEMENT THE
CONTROLLER

The sliding mode controller is implemented with Robosoft
robuBOX [14], a software package that allows re-usable
development and deployment of robotic applications. It is
built on top of Microsoft Robotics Studio (MSRS) and
is provided by all Robosoft robots, but can also be used
without any hardware platform, with the realistic simulations
as all the robuBOX software can run indifferently on real
robotic platforms or in simulation. Using reference designs
of architectures provided with robuBOX, the controller
algorithm is easily encoded and tuned. Then, with the
RobuBOX, we can re-use all existing services in a new
architecture.

For the simulation, the RobuROC6 robot is provided with
3D models including the graphic 3D meshes and the physics
and dynamics properties. All the joints of this multi-body
mobile robot are properly encoded.

Fig. 4. Graphic model of the
RobuROC6

Fig. 5. Physical model of the
RobuROC6

Complex environments using a height field entity for the
ground are also modeled to be used in the simulation.

V. SIMULATION

The simulation is executed with the RobuBOX, us-
ing MSRS and Ageia PhysX [7], an highly realistic 3-
dimensional dynamic environment. An advanced tire slip
based friction model is used in this simulator. It separates the
overall friction force into longitudal and lateral components.
It is represented by the function depicted Fig.6, the force
being in N and the composite slip, taking into account the
longitudinal slip of the tire and the slip angle, without unity.
The stiffness factor is the base amount of “grip” the tire has
in the specified direction.

A

B

Extremum

Asymptote

Force [N]

Composite Slip [ ]

Fig. 6. Friction Model



We use here the following parameters:
• Coordinates of the Extremum point A: (1.0;0.02);
• Coordinates of the point B, beginning of the Asymptote:

(2.0;0.01);
• Longitudinal stiffnessFactor = 10000.0;
• Lateral stiffnessFactor = 10000.0.
The controller parameters are chosen as: Ku

p = 1.00s−1,
Kθ

p = 12.00s−2, Kθ
d = 0.10s−1, ξ = 0.70, Tr = 2s, βu =

0.01ms−1, βθ = 0.01, a = 0.10 and b = 0.10 (a and b being
the two positive constants defining the matrice Q, solution
of the Lyapunov equation). The value of the torques applied
in the axis of the wheels are figured with the control law
designed in section III.

TABLE I
ROBOT PARAMETERS

Description Symbol Value
Length l 1.5m
Width w 0.80m
Height h 0.474m
Mass M 140Kg
Inertia J 188Kg ·m2

Radius of the wheels R 0.234m
Mass of the wheels Mw 3Kg
Inertia of the wheels Jw 0.351Kg ·m2

A. Path following with a horizontal ground

The first simulation consists of following a curved path on
a horizontal ground. In this test, the vehicle is commanded
to travel at 3m.s−1. The sliding mode control law gains are
so settled: ρ = 1.0ms−2 and µ = 18.00. The displacements
of the RobuROC6 are displayed Fig.7. Time evolution of
the exerted torques τu and τθ are displayed in Nm Fig.8
and Fig.9 and the evolutions of resulting εθ and εu with
the sliding mode controller are displayed Fig.11 and Fig.10.
With a kinematic controller, the vehicle has some difficulties
to join the desired path because of the sliding phenomenon
in the wheel-soil interaction, not taken into account.
As a consequence, the skidding robot joins the path slowly
after a curve.

Adding the sliding mode controller, the path is well
followed, the torques being continuously corrected. Never-
theless, we can see Fig.11 some oscillations in the yaw angle
error plot, what is the chattering phenomenon which can
also be seen Fig.10. To reduce steady state error, we can
increase the value of the sliding mode controller gains, which
increases the value of the robust control input term. But,
increasing these gains, the chattering phenomenon increases
and the process could present non acceptable vibrations.
The best behavior with a good following of the path and
with acceptable chattering is plotted for the values reported
here. A maximal yaw angle error absolute value of 0.2rad
when turning and the longitudinal speed error absolute value
always less than 0.4ms−1 remind quite acceptable. Notice
that this controller is quite robust because the friction is not
constant and some phenomena (like the elasticity of the tire

for example) are not taken into account.

Fig. 7. Robot Position
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Fig. 8. Torque τu
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Fig. 9. Torque τθ
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Fig. 10. Longitudinal Speed Error
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Fig. 11. Yaw Angle Error

B. Path following with a sinusoidal ground

In this simulation, we suggest to follow the same path
as previously with the same velocity, but with a ground no
more horizontal in order to investigate the robustness of our
controller according to this kind of disturbance. The ground
chosen has a sinusoidal shape with an amplitude of 0.2m,
a little less than the half of the RobuROC6 height, and a
period of 2m, a little more than its length, as it can be seen
Fig.12.

As a result, the path is approximately followed as well as
before. The difference between the position errors of the two
simulations, with and without horizontal ground, is plotted
Fig.13.

We can see that the curve of the position error with a
sinusoidal terrain reaches higher values, du to the added dis-
turbances. But the fluctuations are not significant compared
to the vehicle dimensions. So, the controller has about the
same efficiency as previously with a position error increasing



Fig. 12. RobuROC6 on a sinusoidal ground
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Fig. 13. Position errors

when the robot is turning. Finally, we can conclude that the
sliding mode controller is a robust one for the RobuROC6
system, that has proved his efficiency, even with disturbances
due to fluctuations of the level of the ground.

VI. CONCLUSIONS AND FUTURE WORKS

A sliding mode controller was designed and implemented
on the simulated RobuROC6 robot. Using RobuBOX and
MSRS, it became easy and fast to develop his own control
algorithms and include them in an existing re-usable archi-
tecture. The simulations performed with an accurate physical
engine have shown the robustness of the control law even
without any knowledge about the forces in the wheel-soil
interaction and with some fluctuations of the ground level.
Next, we will experiment this controller in real conditions.
Furthermore, it could be tested in an unstructured environ-
ment to evaluate the limits of the controller robustness. In this
paper, we have not studied the possibility of making varying
the sliding mode control law gains. So, we will investigate
this possibilty, based on stability criteria like the lateral law
transfer (LLT), for exemple already used by Bouton in [4].
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