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1.1 History of this Book and What You’ll Get From Reading It

Over the course of roughly a year, after completing my first book, I resurrected an old 
pet project of building an autonomous submarine (referred to as the E-2 project) with 
certain fairly challenging functionality requirements. In the course of developing this 
idea, I spent many hours on the Internet and elsewhere, researching techniques for 
rapid development of various electromechanical control systems and platforms to run 
fairly complex signal-processing algorithms. Although there are, of course, thousands 
of useful projects and snippets of information to be obtained from the Internet and 
books on hobbyist robotics, I found that nobody else seemed to have my exact priori-
ties. In particular, there is apparently no single reference that gathers together at 
least introductory solutions to all the embedded design issues that affected my proj-
ect: a need to use low-cost (open-source) tools and operating systems, a requirement 
for several features with fairly hard real-time requirements, and a desire to use cheap, 
off-the-shelf consumer grade components wherever possible. Available resources on 
many topics concentrate either on very expensive off-the-shelf industrial compo-
nents, or on tightly constrained systems built around a single microcontroller, with 
delicately optimized, nonportable code to control peripherals—and a very limited 
range of peripheral support, at that. These latter system design restrictions are un-
avoidable when you’re working to tight power requirements, space constraints, or a 
rock-bottom bill of material (BOM) cost, but it’s an inordinate amount of effort to 
build and tune such systems for a one-off project or a prototype. Furthermore, learn-
ing all the details required to assemble such a system is an enormous task; it’s easy to 
get lost in fine-tuning details without ever managing to field a complete, working sys-



2

Chapter 1

tem. Irritatingly, many of the tweaks and most of the careful planning you do to get 
that system operational will have to be thrown away if you move into actual produc-
tion, or if you need to build some more units with slightly different components.

What I was searching for while developing the E-2 project was a way to build 
various hard real-time modules (sensors and actuators) that could easily and cheaply 
be interfaced to a general-purpose computer running Linux. The Linux box served 
as a testbed for algorithms which would later be ported down into a smaller, cooler, 
more power-efficient processing module of some kind. I needed a solid basis of 
known-good code and techniques so that I could strike out from that point and build 
my own customized system. I also wanted a simple up-and-running guide to building 
embedded Linux distributions. For the initial, nonfieldable prototype of my subma-
rine, I didn’t have an exact idea of how much CPU horsepower I would need in the 
final version—so I didn’t want to get tied to a specific microcontroller architecture, 
nor did I want to get bogged down in trying to tweak and tune many real-time tasks 
on a single microcontroller. I also wanted to use a few peripherals—such as cameras 
—which are easiest interfaced through a general-purpose operating system.

These requirements may sound a chord with your own working life. Chances are 
you’ve encountered situations where it would be useful to automate some long-term 
data-gathering experiment or create a simple automated controller for a program-
ming, manufacturing or other task. In this vein, three other instances where I have 
applied the techniques in this book are:

■ The development of a range of successful (commercially-fielded) networked 
multimedia appliances, designed for unattended advertising and art-gallery 
applications.

■ The development of specialized, almost wholly automatic mechanical failure 
testing apparatus for certain consumer electronics articles.

■ Construction of an automatic high-speed datalogger that monitors a radio 
link and extracts DTMF messages targeted at specific receivers.

The second item above is of particular interest, because it demonstrates nicely 
how this book can be of practical value in process control and testing applications. 
During 2002, I briefly worked for a small division of a multinational company whose 
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major focus was household and office plasticware. It was most instructive to examine 
their automated test fixtures—proprietary systems—and compare the cost and setup 
complexity of these fixtures with the relatively low cost and setup time of a simple 
Linux-based SBC controlling the same pneumatic actuators and sensors. Clearly, 
there is an under-exploited market for low-cost test systems of this type. The pro-
prietary systems in use at this particular facility cost almost $20,000 for a half-dozen 
actuators and the associated PLCs, plus uncounted hours of setup time1 . The control 
software for these devices was specialized and not well-understood; in fact, most of 
this equipment was standing idle because the people who originally configured it had 
left the company. By way of contrast, the same tasks could easily be accomplished 
with a regular PC costing a mere few hundred dollars, plus perhaps $200 per actua-
tor for the associated pneumatics. More importantly, the control software for such 
a system is a simple C program easily understood and adaptable by any competent 
computer science or electronic engineering major; there were several candidates 
readily available in the company lab.

Due to the nature of the research which led to this book’s inception, I have 
included a sprinkling of naval details within the text, not all of which are directly 
relevant to the embedded engineer. If this material is not of interest, you can safely 
ignore it without compromising your understanding of the remaining text in any way. 
The reason this information is included alongside the “pure” embedded develop-
ment discussion is principally to illustrate the real-world requirements and thinking 
that led to various design decisions in the E-2 project. Engineering is not theoreti-
cal science; it is an applied discipline, and it is with this in mind that I use specific 
examples to illustrate theoretical points.

You should also note that some of the opinions expressed in this book, if not 
exactly controversial (except by Usenet standards—everything on Usenet is con-
troversial!), are at least arguable; for example, the choice of AVR as my real-time 
control platform. For this reason, I have provided additional justification for the 
decisions I have made in this text. This additional explanation should demonstrate 
the reasons I had for choosing specific paths, but it’s expressly not designed to prosely-

1 The system was originally set up by “free” interns, so their time wasn’t rigorously tracked.
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tize the AVR to people who have experience with, and prefer, another architecture. 
Again, this “bonus material” is not critical to your understanding of the basic con-
cepts presented here, and you can safely skip it if you wish.

Also keep in mind that this book is intentionally not a “bible.” It is not an ex-
haustive coverage of every single nuance of the topics covered; such a work would 
span several shelves. The primary goal of this book is to describe and illustrate a 
simple, modular, inexpensive methodology for implementing complex embedded 
systems, and to present some ready-to-use modules for the reader to adapt to his or 
her own projects. The particular emphasis is on realizing end-to-end solutions using 
low-cost development hardware and free software tools. By the time you reach the 
last few pages, hopefully you should have the following:

■ A functional understanding of the critical “under-the-hood” details required 
to bootstrap Linux on x86 platforms.

■ An introduction to the types of problems you will face in using embedded x86 
single-board computers as the core of data logging and motion-controlling 
systems.

■ Basic information about the Atmel AVR microcontroller family.

■ A practical introduction to building some simple data acquisition and motor 
control circuits, and connecting them to PCs.

■ Some basic “primer” information on data security, authentication and  
reliability issues as they affect embedded systems.

The underlying idea is that the reader has reasonably intimate experience with 
one or other of the topics of Linux application development, or development of 
deeply embedded systems—this book is designed to boost you up the leading edge of 
your learning curve with the essentials of whichever side of the equation you’re miss-
ing. It also provides the glue that binds these pieces of information together in the 
overall context of a fairly complex project. Note, by the way, that I used the titular 
word “cookbook” with some diffidence. Purely cookbook engineering—slotting 
ill-understood pieces together like Capsela spheres—is never good practice. In this 
book, I’m giving you some ready-to-use Capsela pieces, but I’m also telling you how 
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and why I made the gears and shafts in each piece, and to some extent how you can 
go further and make better pieces for yourself. These explanations are much more 
important than the blueprints for the pieces themselves.

When planning a book like this, it’s easy to fall into one of two traps: either 
to create a single, monolithic “mega-application” which illustrates all the desired 
points, but is extremely difficult to explain succinctly, or on the other hand to break 
the topic down into numerous small abstract notes that many readers will have 
trouble integrating into real-world projects. I have tried to steer between these two 
extremes by breaking the more interesting modules of the E-2 project into a few 
small, practical applications together with basically standalone code and enough 
theory to modify and extend these applications for your own uses.

Finally, a note to people who own my previous book, Embedded System Develop-
ment on a Shoestring. This book is not designed to be a sequel to that volume, but 
it is definitely related material. If you follow the techniques in this book to build a 
prototype device, and you later want to squeeze it down into an optimized single-chip 
solution, my earlier work will help you understand how to use free GNU tools to get 
your software easily ported across to an ARM microcontroller. The principal criti-
cisms I received for that previous book were that it needed to cover a wider range of 
information, and that there were too few illustrations, making it a rather dry read. 
I’ve listened to these comments and I hope you will find this book satisfies your needs 
in both respects. As always, your comments and suggestions are welcome; you can 
email me at sysadm@zws.com or visit my web site at http://www.zws.com/.

1.2 Target Readership and Required Skills and Tools

Throughout this text, I assume that the reader is a competent C programmer, with 
some experience in using (though not necessarily embedding) UNIX-like systems, 
specifically Linux. I also assume a very basic level of knowledge of real-time systems 
and simple digital electronics. This book is not an introduction to Linux, nor is it an 
introduction to the concepts of embedded programming; there are hundreds of such 
books already.
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In order to follow along with the examples in this book, you will need the  
following:

■ An x86-based PC system running Linux. This book was developed using  
Fedora Core 1, which can be downloaded for free (or purchased on CD) from 
http://fedora.redhat.com/. A full Linux distribution is not included with this 
book due to disk space constraints. For simplicity’s sake, I suggest you use Fe-
dora Core 1 unless you have special reasons for using a different distribution.

■ Ideally, an x86-based SBC selected from the list in Section 2.5, with a hard 
drive and CD-ROM drive attached, and a CompactFlash® card of at least 8 MB 
capacity—however, none of these items are absolutely essential.

■ A means for burning AVR microcontrollers. There are numerous schematics 
for simple AVR programmers available freely on the Internet, and a minimal 
programmer is simple to breadboard. (More on this in Section 2.3). I specifi-
cally recommend the STK500 development board from Atmel, because it is 
fully integrated with Atmel’s AVR Studio IDE, and the $79 price is better 
value than the effort of building a comparable development system from  
schematics.

■ An AVR development environment, or at least an assembler. The projects in 
this book were developed using the free Windows®-based AVR Studio® from 
Atmel, which is included on the CD-ROM. Pure-Linux shops may prefer to 
use the free avrasm assembler, which I have also included. The avrdude pack-
age can be used to burn chips under Linux.

■ An oscilloscope is highly recommended, though not mandatory. When you’re 
debugging serial communications protocols in particular, nothing beats being 
able to see the actual bits going to and fro. The waveform screenshots in this 
book were taken using a Tektronix TDS210 60 MHz two-channel digital 
scope.
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1.3 Conventions Used in the Text

Throughout this book, I have attempted to adhere to a single set of conventions:

■ For the sake of consistency, all measurements are given in metric units, except 
where they refer to a controlling dimension that was originally specified in 
nonmetric units. In the latter case, the controlling dimension is specified in 
its native unit, and the metric equivalent is shown in parentheses, as in “The 
length of a foot-rule is 12 inches (30 cm).” In some cases, this results in a de-
parture from accepted industry standards; for example, the speed of a seagoing 
vessel is normally specified in knots (nautical miles per hour), not ms–1.

■ URLs are written in italics, for example, http://www.zws.com/ in order to sepa-
rate them from surrounding punctuation.

■ In common with most other technical publications, sourcecode and com-
mand line text that is intended to be typed verbatim is rendered in a 
fixed-space font.

■ Occasionally, you will find UNIX commands and library functions mentioned 
with the standard nomenclature of command(n), where n is the section con-
taining the manual page for the command in question. For example, you can 
find out more about rdev(8) by typing man 8 rdev at a shell prompt. Don’t 
go looking for nonexistent footnotes!

■ When I discuss procedures that access the enclosed CD-ROM from Linux, I 
assume that the disk is mounted at /mnt/cdrom, because that is where most 
desktop Linux distributions will put it. If you mount it somewhere else, you’ll 
need to edit your command-line entry appropriately.

■ All sourcecode and makefiles are designed to be viewed with a tab width of 
four character spaces.
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9

Microcontrollers, Single-Board 
Computers and Development Tools

2.1 The Division of Labor

The designer of a complex multi-level project such as the E-2 must frequently juggle 
the following conflicting requirements, among others:

■ Hard real-time response requirements of sections of the overall system.

■ The hardware and firmware complexity of interfacing special peripherals  
such as cameras, Ethernet networking, 802.11b wireless networking, and others.

■ Bill-of-materials costs for both prototypes and production pieces.

■ Development time.

■ Cost of development tools.

■ Relatively high cost of components designed for embedded systems, as com-
pared to the pricing of comparable-performance, generally-available  
consumer products.

It’s a terribly daunting task to approach all of these problems at once, particu-
larly at the start of a project when your exact needs are generally not well-specified. 
Limited time or monetary budgets add stress, because there simply may be no days or 
dollars spare to be wasted exploring dead-end research paths on the way to a working 
system. Furthermore, many of the systems of interest to readers of this book will ei-
ther be unique, or will be produced in very small volumes. For such systems, it’s hard 
to justify intense time expenditures researching and fine-tuning noncore features 
(i.e., the infrastructure features you have to debug before you can debug the function-
ality you actually want to develop).
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The basic methodology I have used to cut through most of this Gordian knot is 
as follows: To begin with, I divide all the system processes into two categories, which 
I will term “hard” and “soft.” For the purpose of this discussion, hard processes are 
defined as direct physical-world interaction tasks where timing and system robust-
ness are likely to be critical to performance and/or safety. Examples in the E-2 system 
are: Stepper motor control for rudder and dive planes, battery charge and thermal 
monitoring, depth monitoring, propulsion motor control, and bilge sensors. Hard 
processes are typically easy to identify and characterize precisely, and can often be 
implemented in a small 8-bit microcontroller. In the E-2, we will perform all the hard 
tasks using microcontrollers in the AVR series, from Atmel.

By contrast with hard processes, soft processes are not at all mission-critical, and 
have relaxed or nonexistent real-time requirements. Generally, soft tasks can crash, 
provide erroneous, untimely or downright missing data, and the overall system health 
will not be unduly compromised. Examples in the E-2 project are image capture, stor-
age and analysis, data logging, and some telemetry functions. Many soft tasks require 
interaction with complex sensory or communications modules such as cameras and 
wireless networks. For this reason, it is convenient to use standard off-the-shelf con-
sumer peripherals such as USB webcams, CompactFlash storage media, USB wireless 
LAN pods, and others. Interfacing to these sorts of peripherals from a small micro-
controller is often decidedly nontrivial—oftentimes, technical data is hard to come 
by, and it’s also frequently difficult to acquire loose sample parts in small quantities. 
Prototyping with these parts is also usually difficult.

In the case of low-cost CMOS image sensors, for example, virtually the only way 
to get these parts off the shelf is to buy a complete camera and cannibalize it—IF 
you can identify the devices in it without microscopic examination, and IF you can 
get datasheets! Furthermore, manufacturers of consumer electronics are more or less 
constantly refining and costing down their products. You may cannibalize MyWidget 
V1.0 and spend many hours getting the components to work in your system, only 
to find (when you start to build a second unit, e.g., to replace a lost prototype) that 
MyWidget V1.0 has been superseded by V1.1, containing totally different compo-
nents—maybe even an undocumented ASIC.
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In a similar manner to the way I handled task management, I divide system com-
munications into two classes; control-critical and noncritical. In the case of E-2, 
all control-critical data transfers occur within the vehicle itself, between the vari-
ous real-time modules and the main controller. These communications take place 
over an internal three-wire SPI-style serial bus. Noncritical communications are, for 
example, the ship-to-shore telemetry link. These data streams can be carried using 
whatever media and protocols are convenient, with less attention paid to real-time 
issues such as lag2 .

You may wish to pause here and consider the implications of the preceding deci-
sions. In particular, note the implication that hard tasks and control-critical links are 
trusted and soft tasks and noncritical links are not trusted. We’re going to be running 
all the hard, critical stuff in small microcontrollers carefully programmed “to the 
metal,” and—hopefully—completely understood and characterized in all conceivable 
situations. The messy stuff like networking, snapping pictures to a hard drive, and so 
on, will all be run on a totally separate piece of hardware. If it crashes, it can sim-
ply be reset or shut down with no impact on system survivability. This is important, 
because most of the software running on that untrusted piece of hardware wasn’t 
developed for embedded use, and it certainly isn’t as well-defined as the software we 
custom-engineered into the hard-task controllers.

I should stress that none of the previous discussion is per se an indictment of 
the reliability of embedded Linux. It is perfectly possible to build rock-solid control 
systems based around a single Linux processor, and there are many such systems in 
existence. However, a uniprocessor system requires considerable fine-tuning of the 
operating system and application software to achieve a sufficiently real-time end 
result3 . Furthermore, in order to achieve such a result, it is often necessary to use 
nonstandard software components intended specifically for embedded systems (real-

2 Obviously, this isn’t true of all telemetry applications. In E-2, the telemetry signal is provided solely 
as a convenience to the shoreside operator; it’s not critical that it be strictly real time or that it 
implement strenuous error correction.

3 Uncharitable people say of embedded Linux that the standard development technique is to write 
the device driver or application the way you think it should be written, then add hardware until it 
performs successfully, to the desired approximation of “real time.” The fact that this is so often true 
is more an indictment of the developers than the OS, though.
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time Linux extensions such as RTLinux, for example). The net effect of both of 
these factors is greatly to increase development time, and generally also to tie you to 
a specific hardware/software combination. The major advantage gained by the dual-
tier, trusted-vs.-untrusted layer solution is the ability to lash together functional, but 
hard-to-guarantee features on the untrusted layer, using off-the-shelf software and 
hardware components.

The crucially important technical advantages of our method of putting together 
our complex embedded system are, therefore:

■ The real-time characteristics of any given hard module can be tuned right 
down to the CPU-cycle level, if desired.

■ Changes to any one real-time module don’t directly impact the timing prop-
erties of any of the other modules.

■ Standardizing communication protocols amongst the various modules 
establishes a “firewall” of sorts, which is useful both for testing purposes (as-
yet-unbuilt modules can be simulated with a piece of external hardware) and 
for future upgrades (modules can be replaced with updated versions as long as 
a consistent software interface is maintained). 

■ Reuse of hardware modules in other projects is very easy, since it is the system 
that is project-specific, not the individual parts.

■ Because access to complex peripherals is abstracted at a fairly high layer 
(through the operating system running on the untrusted soft-task controller), 
it’s possible to swap out these components for functionally equivalent parts 
without writing custom device drivers.

In fairness, at this time I should also point out the downsides of the multi-module 
way of doing things:

■ The overall bill-of-materials cost for a multi-module system is likely to be 
much higher in the long term. This is not likely to be a big factor for proto-
type or short-run construction, where setup costs dominate the unit price. 
For mass-production, however, the price advantages of a uniprocessor system 
become progressively more attractive. Note, though, that for low-volume or 
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unique applications, the higher BOM cost of the multiprocessor system may 
be partially or completely offset by the high cost of obtaining required evalu-
ation hardware for the devices used in the “cheap” uniprocessor design, so the 
development method I describe here is likely to work out cheaper, per unit, 
for low-volume designs.

■ Power consumption and physical size will be larger than for a fine-tuned system.

In closing this section, I’d like to rebut one commonly-raised argument against 
multiprocessor systems: Many people believe that by introducing multiple micro-
controllers, you are increasing the number of possible points of failure and thereby 
making the overall system inherently less reliable. The most succinct counter-argu-
ment to this, to which I subscribe, is that conceptually, the same bugs and design 
shortcomings will exist whether a particular set of features A, B, C are implemented 
on one processor or three individual processors. Keeping the three functions physi-
cally separate prevents them from interfering in each others’ address spaces, and also 
allows fast system recovery—because if, say, processor B crashes, processors A and C 
can continue to operate unaffected while B reboots.

It is, of course, true that adding more silicon increases the possibility of “SEUs” 
(single-event upsets) caused by environmental stresses such as incident radiation, 
simply because there is more silicon real estate to be affected by such factors. This is, 
however, a relatively subtle point and is unlikely to be an overriding concern in the 
majority of systems to be built by readers of this book.

2.2 Candidate Microcontrollers for ‘Hard’ Tasks

Given that we need to choose a microcontroller family to handle the real-time parts 
of our system, let’s first create a short list of rules for selecting this family:

■ Assemblers and compilers must be freely available, either from the manufac-
turer or as a result of open-source efforts such as gcc.

■ Device programming hardware must either be low-cost or simple enough to 
build at home using off-the-shelf parts.

■ Parts to be used must be available ex stock from major mail-order distributors 
such as Digi-Key, Newark, and others, with no minimum purchase requirements.
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■ Device family must contain parts spanning the widest possible variety of 
ROM, RAM and peripheral requirements, with as much firmware and hard-
ware design commonality as possible.

■ Ideally, the parts chosen should enable easy implementation of a slave SPI in-
terface, but this isn’t vital (and SPI is extremely simple to bit-bang, anyway).

There are three obvious targets that present themselves immediately: 8051, 
Microchip PIC®, and Atmel AVR®. The ancient 8051 is indubitably the world’s 
best-known candidate for 8-bit applications, so we’ll start by examining this family 
briefly. It’s very inexpensive, available from an unparalleled number of sources (At-
mel, Philips, Winbond, Cypress, and Dallas/Maxim are just a few of the vendors with 
standard 8051 parts; dozens more have 8051-cored ASICs and ASSPs), and the basic 
architecture is familiar to most embedded engineers. There are numerous high-qual-
ity tools and reference designs, and megabytes of sample sourcecode available.

The main reason I have chosen to avoid the 8051 family is because of the lack of 
standardization across manufacturers. No single manufacturer carries an 8051 variant 
to suit every single application need, and almost every manufacturer has added some-
what proprietary features to the core or peripherals. Because of the long history of 
this part, it is even common for a given manufacturer to have two or more complete-
ly different lines of 8051-cored parts, with different family trees, idiosyncrasies and 
programming hardware and software tools. Some 8051 sub-families require external 
programming hardware; some have in-system programming capabilities, many do not 
have flash memory, and in order to migrate from one variant to another may require 
investment in relatively expensive programming hardware. It’s possible to avoid some 
of this nonstandardization by sticking to a set of “vanilla” 8051-cored parts that are 
implemented nearly identically across manufacturers, but this also means avoiding 
use of most of the 8051s with interesting nonstandard peripherals; LCD controllers, 
USB, on-chip A/D and D/A converters, expanded ROM or RAM, in-circuit pro-
gramming, etc. It also means that, in a modular design where each microcontroller 
has minimal duties, you will likely be spending far too much on over-specified mi-
crocontrollers. For instance, you don’t need kilobytes of RAM or ROM for a simple 
stepper motor controller!
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As a secondary, but still relevant point, the 8051’s architecture is positively archaic. 
The upside of this is that compiler vendors understand it very well, and commercial 
compilers for the 8051 are about as good as they’re going to get. The downside is that 
even the best 8051 compiler (arguably, Keil’s product) is unavoidably less efficient than 
good compilers targeted at more modern processors. Worse still, the only halfway de-
cent open-source C compiler for the 8051 (sdcc) is exactly that—only halfway decent. 
And writing and maintaining large volumes of 8051 assembly language is irritating. 
It’s an entirely justifiable effort if you’re making large volumes of something or have 
another good reason to pick that architecture, but if you’re trying to follow the path 
of least resistance to build a low-volume system with the minimum possible person-
nel resources, other microcontrollers are a better investment.

In my opinion, therefore, 8051 variants are a great choice when you have a spe-
cific application in mind, and you are looking for a one-chip solution. Because of the 
anarchic differences between different vendors’ sub-families, and the fact that no sin-
gle vendor carries completely code-compatible parts to suit every application, I feel 
that 8051 isn’t such a good choice for modular applications where you anticipate the 
need to use many tiny microcontrollers in a single project. The workload required to 
keep code mobile amongst different 8051 variants with disparate peripherals is quite 
significant. If, however, you are experienced with the 8051, there is no reason why 
you can’t apply that knowledge to the techniques in this book.

For the projects you will find here, I have chosen to use the Atmel AVR series of 
microcontrollers. These parts are all flash-based; the family offers a reasonably wide 
range of functionality, and the instruction set is easy-to-learn and to a large degree 
common amongst family members. Under most circumstances, AVRs are program-
mable in-system or in an external socket using a simple-to-manufacture parallel port 
cable. The official STK500 development board, should you wish to acquire it, is 
cheap ($79 is the current list price) and fully-featured. A functional Windows IDE 
and assembler are free from Atmel, a port of gcc is also available and supported by 
Atmel, and there are freeware assemblers and other tools for UNIX-based operating 
systems as well as Windows.
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Another ubiquitous microcontroller family, commonly used in low-volume and 
hobbyist applications, is the Microchip PIC. This family meets essentially all of the 
requirements in the preceding list. I have not chosen to use it, however, simply be-
cause it is slightly harder to learn and use than AVR. (By the way, I base that comment 
on my own experience in learning the two cores, as well as commentary I have read 
from neophytes asking for help and advice. This is, however, one of those potentially 
controversial topics I warned about in the introduction. I’m certainly not condemn-
ing the PIC as a hard-to-use maverick, I’m simply pointing out that many people seem 
to find the AVR family easier to use). One other downside to the PIC family is that 
the “official” entry-level development kit (PICstart Plus) is more expensive than the 
STK500—almost three times the price, in fact—and it’s nowhere near as flexible, being 
simply a dumb chip-burner with no prototyping functionality at all.

There are a couple of other reasonably popular microcontroller families that we 
could have considered, and you may wish to investigate them yourself. The Texas 
Instruments MSP430 family, for example, is a very interesting range of parts. It 
combines a 16-bit RISC core (some variants have a bonus hardware multiplier) with 
various useful peripherals, at an attractive price point. The parts are flash-based and 
support JTAG debugging using an inexpensive parallel-port or USB-based wiggler; a 
most useful feature. The downsides to the MSP430 are prototyping issues due to the 
small packages used, and also interfacing problems arise due to the fact that they are 
3.3V parts. However, if you’re trying to cut down your power budget, or you’re look-
ing for a high-performance core that’s inexpensive and well-supported by a major 
vendor, MSP430 is a good choice.

Another micro that is worth at least a quick look is the range of 8-bit devices 
from Rabbit Semiconductor, http://rabbitsemiconductor.com/. These parts are derived 
from the ZiLOG Z-180, so depending on your background you might not have too 
much of a learning curve. They are firmly targeted at connected applications; Rab-
bit supplies a free TCP/IP stack and provides several evaluation boards and fairly 
low-cost, end-application-integratable CPU modules, some of which have Ether-
net onboard. They even have a Wi-Fi kit, although it’s rather expensive. The main 
downsides to Rabbit are the small size of the company, which argues against long-
term availability (however, they have been around for several years and seem to 
enjoy good popularity in the hobbyist market), and the fact that their free “Dynamic 
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C” compiler is horribly nonstandard; it’s tedious and most inelegant to port code into 
or out of a Rabbit design. There is an ANSI C compiler available, but it is buyware. 
Arguments in favor of Rabbit are low entry cost (all the basic tools are free and the 
development hardware is reasonably priced), ease of low-volume manufacture (since 
Rabbit supplies the chips ready-to-run, already soldered down to a board, if you 
wish), and a rich feature set (large flash memory, large RAM, fairly simple program-
ming with a C-like language as well as assembly language, and a lot of ready-to-use 
application-specific code, particularly in the realm of TCP/IP networking protocols). 
Possibly the most compelling argument for Rabbit, however, is the fact that you can 
migrate from one-time prototype production directly to low-volume manufacturing 
(a few hundred pieces a year, perhaps) without any need to redesign.

2.3 The Atmel AVR and its Development Hardware Up Close

After some careful thought about the pros and cons, I have decided to use a single 
type of AVR chip for all the example projects in this book but one. The reasons for 
this are twofold: first, to reduce the number of separate parts you need to acquire 
in order to build these projects (and to allow you to use the same chip for different 
projects, if you wish), and second to avoid too much explanatory text devoted to 
pedestrian compatibility issues. The particular AVR I have chosen is the ATtiny26L, 
which provides a good cross-section of the peripherals available in the AVR family. 
Migrating code snippets to other AVRs is not difficult.

The AVR series consists of a fairly broad range of hybrid-bit-width microcon-
trollers (nominally 16-bit code word, 8-bit data bus and ALU) sharing a common 
instruction set and differing primarily in the on-chip peripherals and package op-
tions. These devices don’t show a clear genealogical relationship to any other 
microcontroller core I’m aware of, but some variants do show superficial signs of 
having been designed for people migrating away from the 8051 (the 40-pin AVRs 
are in a very similar pinout to a standard 40-pin 8051, for instance). AVR is a Har-
vard-architecture RISC core with 32 8-bit general-purpose registers, named R0–R31. 
These registers are mapped into the core’s data address space at address $00-$1F. 
Registers R26–R31 have a secondary function for indirect addressing modes; they 
are divided into pairs named X (R26–R27), Y (R28–R29) and Z (R30–R31). Any of 
these three paired registers can be used as a 16-bit pointer into data RAM (the first 
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register named is, in each case, the less significant byte of the address word). Most 
instructions can operate on any register; a few instructions (such as word-add, word-
subtract, and load immediate) can operate only on a subset of the registers, R16–R31.

The AVR core also has a separate 64-byte I/O address space to interface with the 
on-chip peripherals. All of these peripheral control registers are conveniently mir-
rored in the general data address space at locations $20-$5F, so that you can access 
them with different addressing modes if you wish. The ATtiny26L also has 128 bytes 
of SRAM from $60-$DF, and the remainder of the data address space is unimple-
mented. Unlike PIC variants that have a limited-depth hardware stack separate from 
the processor’s other address spaces, AVR supports a traditional stack in the on-chip 
SRAM. The stack pointer is simply an 8-bit register in the I/O address space.

Some other features of the tiny26L, in no particular order, are:

■ 128 bytes of EEPROM, useful for storing configuration and calibration data, 
or failure information for postmortem analysis.

■ A simple but very flexible “USI” (Universal Serial Interface) peripheral, 
configurable to act as an I2C, SPI or asynchronous serial port. For trademark 
reasons, the I2C mode is referred to in Atmel literature as Two-wire, and the 
SPI mode is referred to as Three-wire.

■ Two timer/counters, configurable in a variety of modes. One of these timers 
can be programmed to provide two PWM channels with positive and inverted 
outputs.

■ Eight analog-to-digital converter channels.

■ Brownout detector, configurable for 3.3 V or 5 V operation, and watchdog 
timer.

■ In-system programming capability using the built-in SPI interface.

One important fact to note about in-system serial programming is that the micro-
controller needs to have a core clock source. Simply providing the SPI data clock is 
not enough! This means that if you’re tinkering with the fuse settings, you have to 
be careful that you don’t disable the system clock. The designs in this book all use an 
external crystal oscillator. It is unlikely, though not entirely impossible, that you’ll 
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get yourself into a “clockless” situation with such circuits. However, in designs that 
use the AVR’s internal RC oscillator and that re-use the clock input lines for other 
functions, there is a real hazard that you can disable the device by selecting an exter-
nal clock mode. To recover from this, you can tristate your external hardware (or lift 
a CPU pin) and feed in an external clock temporarily.

In the same vein, AVR fuse settings allow you to disable the reset input and use 
the pin as a GPIO. If you do this, you cannot use serial in-system programming; you 
must use a parallel programmer. The STK500 is a suitable piece of hardware.

These issues are by no means unique to the AVR family; most microcontrollers 
that support in-system programming have the same sort of limitation. These prob-
lems are also not, as a rule, very important for hobbyist circuits, which typically use 
socketed DIP microcontrollers. Once you start etching PCBs for your designs, howev-
er, it becomes very attractive to use surface-mount packages for size and cost reasons; 
be careful not to paint yourself into a corner when you’re upgrading the firmware on 
an assembled PCB. By the way, note that Atmel ships AVRs from the factory with 
an internal RC clock source selected by default, so that you can stuff your board with 
blank, factory-fresh chips and program them later over the SPI interface.

What about firmware development tools? There are a number of products you 
can use for compiling and burning AVR code. In order to make the example source-
code in this book as easily portable between toolchains as possible, I have written 
it entirely in assembly language. The software development environment I used 
was Atmel’s free AVR Studio for Windows, version 4.08, in conjunction with the 
STK500 evaluation board. AVR Studio is included on the CD-ROM with this book 
in the “utils/AVR Studio 4.08” directory, and I strongly advocate using it. However, if 
you need to use a different assembler (for example, if you’re developing under Linux), 
please try to use the standard Atmel include files, or at least duplicate whatever snip-
pets you need, rather than writing your own set of symbols to describe the registers in 
the chip. It will be very annoying—to you as well as to other luckless souls updating 
your work—to have to port code to another member of the AVR family if you use 
hand-rolled register and bitfield names.

The STK500 is a very flexible, serial-controlled development board that directly 
supports all of the DIP-packaged AVR chips and, with the STK501 adapter board, 
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the larger 64-pin surface-mount parts. It can be used to burn microcontrollers insert-
ed in the DIP sockets on the STK500 itself, or it can burn devices already mounted 
onto your subassemblies, via an in-system-programming cable. It sports eight push-
buttons and eight LEDs, and it brings all the I/O lines to 100 mil headers - so you 
can do some or all of your code debugging directly on the development board. The 
onboard supervisor microcontroller that manages the STK also allows you to program 
various clock rates for the device under test, which is a boon to debugging some types 
of problems—bringing the clock down REALLY slow lets you examine signal state 
changes in slow motion. For those of you struggling under the evil oppression of a 
legacy-free PC with only USB ports, the STK500 also works perfectly over a USB-to-
serial adapter.

One aspect of the STK500 that is slightly unusual is that you have to set up—by 
hand—the connections between the device under test and the clock/programming 
nets required to access it. This is not documented as well as you’d probably like—and 
it isn’t documented at all for some new devices like the ATtiny26L, at least at the 
time of writing. For the projects in this book, you should take note of the following:

■ Your ATtiny26L chip should be inserted in the blue socket labeled 
SCKT3700A1.

■ The ISP6PIN header should be jumped to the SPROG1 (blue) 6-pin header.

■ XT1/XT2 on the PORTE/AUX header should be jumped to PB4/PB5 (respec-
tively) on the PORTB header.

■ RST on the PORTE/AUX header should be jumped to PB7 on the PORTB 
header.

■ While I was testing the code in this book, I generally had PORTA jumped to 
the LEDS connector, so that LED0-7 reflect the state of PA0-7, and I jumped 
SW0-3 on the SWITCHES header to PB0-3 on the PORTB connector.

■ Jumpers should be set as follows: VTARGET, AREF, RESET, XTAL1 all 
shorted, OSCSEL pins 1-2 shorted, BSEL2 open.

All the cables required to perform the above interconnections are shipped as part 
of the STK500 package.
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A final note on AVR Studio: The current version of this program can be rather 
sensitive to the presence of software that installs filesystem hooks. If you are hav-
ing difficulty building code (typically, the symptom you will get is that you hit F7 to 
build, and nothing appears in the output window), try disabling any antivirus soft-
ware or automatic file versioning utility you have running in the background. This 
conflict is known to occur, on some systems at least, with both Norton Antivirus and 
Vet.

2.4 Candidate x86-based SBCs for ‘Soft’ Tasks

The reason for choosing an Intel-type PC-compatible SBC rather than a propri-
etary or semi-proprietary architecture based around some RISC microcontroller is 
primarily ease of development, followed closely by cost. There are numerous read-
ily-available RISC-cored system-on-chip devices (and SBCs based on these parts) 
which would have adequate processing performance for the E-2 project, and MUCH 
leaner power requirements. However, the SBCs based on these devices are, by and 
large, very low-volume, expensive appliances, and developing for and interfacing 
to them presents significantly greater engineering challenges than simply attaching 
peripherals to standard PC ports and installing a pre-built driver. By using a hardware 
platform that is essentially just an off-the-shelf PC-compatible, we can concentrate 
on the application at hand, rather than spending time on creating a toolchain, 
configuring and compiling a compatible kernel, and working out the minutiae of in-
terfacing the peripherals we need to use. Our development process is thereby greatly 
accelerated; refer to the next chapter for a more detailed analysis of this point.

If your requirements are such that you absolutely MUST have low power consumption 
in the master controller, then you do have a few options. Several companies—includ-
ing Advantech—sell SBCs based on Intel’s XScale® CPU; for example, look at the 
VIPER product from Arcom, http://www.arcom.com/. These boards are generally built 
on the standard 3.5″ biscuit form factor (see the following) and are supported with 
ARM-Linux. If you are willing to consider more deeply-embedded solutions running 
leaner operating systems, there are even more options for you, such as the LPC-xxxx 
series of evaluation/prototyping boards from Olimex, http://www.olimex.com/. These 
boards are based around the new Philips LPC2000 series of ARM7-cored microcon-
trollers; they’re supported by GNU tools, simple to program, and the offerings from 
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Olimex are very reasonably priced (around $60). Due to RAM limitations, you won’t 
be able to use Linux on these boards; they’re best suited to proprietary OS-less envi-
ronments, or very small operating systems such as uCos-II.

Our selection of x86 leaves us a lot of territory from which to choose, however. 
There are numerous vendors offering single-board x86-Linux-compatible comput-
ers based around processors ranging from the 80386 (in the form of the Intel i386EX 
embedded controller) all the way up to high-end multiprocessor Pentium 4 and even 
64-bit boards4 . These boards are readily available in a variety of largely standardized 
form factors:

■ 3.5″ biscuit. This form factor has the same footprint as a 3.5″ disk drive. 
Power input is via a 4-pin connector carrying +5 V, +12 V and two ground 
returns, the same type found on a hard disk or CD-ROM drive.

■ 5.25″ biscuit. This form factor has the same footprint as a 5.25″ disk drive. 
Generally, the power input is via an old AT-style (not ATX!) connector.

■ ISA or PCI processor module cards, intended to plug into a passive back-
plane alongside peripheral cards with the same bus architecture. By the way, 
a common misconception is that multiple CPU cards of this type can be 
plugged into a single backplane to build a multiprocessor system; this is never 
the case for ISA boards, and only occasionally true for PCI cards. Unless the 
card’s documentation specifically says that it’s designed for use in a multipro-
cessor environment, you should assume that it can’t operate this way. Even if 
it is possible to build multiprocessor systems around a particular CPU card, a 
specialized backplane will almost certainly be required. In many cases, these 
“multiprocessor” backplanes actually have no common connections except 
the power rails; any inter-processor communications you wish to implement 
have to be routed through Ethernet or some other user-supplied interconnect 
mechanism.

■ Mini-ITX motherboards. This form factor is mechanically a subset of the 
standard ITX board used in desktop PCs, and it has a connector for a standard 

4 Some vendors still sell systems based around older x86 processors—80186-compatibles are quite 
common—but we won’t discuss these.



23

Microcontrollers, Single-Board Computers and Development Tools

ATX power supply. Mini-ITX implementations extant at the time of writing 
require +3.3 V, +5 V and +12 V rails.

■ Standard-sized PC motherboards with varying levels of on-board peripheral 
integration.

The Mini-ITX form factor mentioned previously straddles the line between the 
“consumer off-the-shelf” and “embedded” markets, and deserves a little additional 
explanation. At the time of writing, the major vendor of Mini-ITX boards is Via 
Technologies, http://www.viavpsd.com/, but other manufacturers are preparing to 
release similar products. Among these is Transmeta, who have chosen the Mini-ITX 
form factor for the evaluation boards for their newest x86-compatible processors. 
Mini-ITX is a physically cut-down (170 × 170mm), backwards-compatible version of 
the ITX motherboard form factor; it has screw holes and connector zones designed to 
mate with a standard PC casing and ATX power supply. Via Technologies vigorously 
markets this form factor to a sector one might characterize as “consumer embedded” 
applications; i.e., hobbyist projects built around a PC-compatible motherboard. The 
TV-out feature included on Via’s Epia Mini-ITX range has led to a large number of 
hobbyists using these boards to build dedicated set-top boxes for playing video con-
tent downloaded from the Internet. There are also quite a few commercial thin client 
sorts of applications built around these boards.

Via’s latest mini-ITX boards are much more embedded-friendly than the older 
boards (which were basically just a regular PC motherboard writ small). The latest 
models have PCMCIA and CompactFlash slots and an even smaller outline than 
Mini-ITX (Via terms this “Nano-ITX”); they are also substantially cheaper than 
standard 3.5″ and 5.25″ SBCs based around the exact same chipsets. Speaking of 
prices, just as a data point for you, Mini-ITX boards start at just under $90 retail, 
single-unit pricing, for a complete board with 533 MHz Via Eden CPU and vari-
ous integrated peripherals; 3D accelerated AGP Super-VGA, two IDE buses, serial, 
parallel, Ethernet, four USB ports, etc—just add RAM. Pentium-class SBCs (of 
comparable performance) in 3.5″ or 5.25″ form factors start at just above $350 with 
a similar set of peripherals. However, that isn’t the whole story. One major downside 
to Mini-ITX is that it assumes the availability of an ATX-style power supply. Via’s 
boards, for instance, absolutely require +3.3 V, +5 V and +12 V rails—they won’t op-
erate without all of these voltages present. Most SBCs are happy with a single +5 V 
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rail5; they have onboard regulation to provide whatever other core and I/O voltages 
they require. You should take the cost of a suitable power supply into account when 
building your system—and also consider issues like size, airflow/airspace require-
ments, and noise from cooling fans. Remember that most active cooling systems work 
constantly to pull any dangerous aerosols or dust in the atmosphere right through 
your system! My suggestion, if you plan to build Mini-ITX into your system (assum-
ing you don’t want to design your own power supply from scratch) is to look at the 
power supply modules manufactured for 1U rack-mount cases. These are standardized 
in size (hence, interchangeable) and most of them have variable-speed fans, which 
run only when the power supply is actually in need of active cooling. They also have 
enough power capacity to supply any peripheral you are likely to add to such a system.

One final comment on Mini-ITX and Nano-ITX—The star of this form factor is 
most definitely rising. Several manufacturers produce a range of standardized hous-
ings, power supplies and slim peripherals designed specifically for Mini-ITX boards. 
Some of these are intended for “thin client” diskless applications, others for semi-in-
dustrial rack-mount installations, and some of them even for set-top-box use. If you 
want to use the minimum possible quota of custom parts in your design, Mini-ITX is 
a great path to investigate.

A very important factor which you should always keep in mind is that consumer-
grade PC products are constantly changing. It’s extremely difficult to standardize a 
product if you’re building it out of ill-specified parts, and that translates into ongoing 
costs for you in revising housing designs, re-testing your external circuit and firmware 
with different motherboard chipsets, and so on. Obviously, this isn’t much of an issue 
for a one-off project, but it is a major sourcing issue for low-volume, long-term ongo-
ing production, where your order quantities aren’t high enough to guarantee supply 
of older parts. As a rule of thumb, if you anticipate the production life of your device 

5 Most (if not all) SBCs have inputs for at least +5 V and +12 V; many have inputs for negative rails 
too. However, in most cases you’ll find that these extra voltages are only passed through to expan-
sion ports; they’re not actually used on the SBC. The PCM-5820, for instance, relies only on the 
+5 V rail. If available, it can use the +12 V rail to achieve a wider swing on the audio outputs, but if 
you don’t want to provide a dual-voltage power supply, just set the audio jumper for “no 12 V” and 
the board is quite happy to run off +5 V only.
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to span six months or more, and it has to be squeezed into a special form factor of any 
sort, then I strongly advise you to design around an SBC rather than an off-the-shelf 
motherboard. You’ll pay something of a premium, but it will save a lot of time and 
money in the medium to long term because you won’t need to revise cable harnesses, 
housing designs, power supply requirements, and so on. Remember also that in most 
jurisdictions, you have to pay for EMI compliance testing every time you make a 
design change like this, or risk enormous fines!

If you’re willing to shoulder the annoyance of (at least potentially) keeping track 
of several software versions, and your application is not tightly space-constrained, 
then standard PC motherboard form factors do have a certain appeal—the ATX 
standard (and by extension, Mini-ITX) specifies a single standardized square cutout 
connector zone. Every motherboard ships with a small springy steel plate that mates 
with this connector zone and provides precise cutouts to match whatever connec-
tors are provided on that specific motherboard. This neatly takes care of the EMI 
problems I mentioned earlier—the biggest annoyance (besides the fact that ATX 
motherboards are relatively large, and the volume of airspace you need to keep clear 
to match the ATX clearances standard fully is pretty vast) is that as supplies of a 
particular motherboard dry up, you’ll need to test and qualify your software distribu-
tion on new platforms. If your application is the sort of animal that requires ongoing 
software updates, you have to decide whether to make a super-intelligent software 
upgrade bundle that can work out what kind of hardware it’s running on and config-
ure itself appropriately, or keep track of which users have which hardware versions. 
The latter approach is easy while you have only a few customers, but once your 
userbase swells, it becomes a big exercise in database management, particularly once 
a few units have been in for repair and have had parts “upgraded”—because you can 
no longer use simple serial number range checks to know what’s inside a particular 
unit. Your situation may have special circumstances, but when I’ve been involved 
in a project like this, it has always been less work, ultimately, to build a single soft-
ware bundle that works on all supported hardware versions. At the very least, design 
your system in such a way that it’s possible for the software to determine what kind 
of hardware it’s running on before it needs to do any hardware-specific startup tasks. 
That might sound crazy, but unless you design with this idea in mind, it’s not uncom-
mon to run into chicken-and-egg situations where the only way you can identify 
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some piece of hardware is by assuming the existence of some other piece of hardware, 
probing which may crash the system if it doesn’t contain this particular device.

On the topic of housing your system, if you’re building a device in any reasonable 
production quantity, you will want a professional-looking enclosure for it. Jiffy boxes 
work, but they’re ugly. Unfortunately, the tooling cost for a custom plastic enclosure 
is prohibitive—tens of thousands of dollars at minimum. A much cheaper option, 
which people rarely seem to consider, is bent sheet-steel. Numerous metal enclosure 
shops can build you quite complex shapes at a surprisingly low cost. Modern metal-
working shops use CNC laser cutting tools on the raw sheet stock to make holes and 
tabs of practically any shape. The parts are then bent by hand, and spotwelded where 
necessary. Fasteners—threaded posts ready to accept a nut, tapped posts to accept a 
screw, reinforced spots for rivets, and so on—are permanently bonded to the sheet 
parts using a press apparatus. The parts can then be painted and baked, if desired. As 
a data point for you, a production run of around one hundred pieces, with an exterior 
paint job and approximately the same complexity as a desktop PC’s casing, manu-
factured locally in the United States, will cost around US$60 per piece. It’s entirely 
possible to get even cheaper prices if you shop around—there are literally thousands 
of metal shops that can do this sort of work.

Another possible housing solution is to use a section of aluminum extrusion with 
custom-punched end plates. This type of housing works very well with 3.5″ SBCs 
and other boards that run all their important connectors to an edge. It’s less work-
able when you need to mount lots of connectors on the end panels using flying leads. 
(Cheap external modems were often manufactured using this method a few years 
ago). If you’re contemplating this option, you may want to visit http://www.frontpan-
elexpress.com/, where you can download software to create your custom end-panels 
and get an instant online quote on production.

In any case, before you sign off on your custom enclosure solution, compare your 
design with standard products and decide if the customization you’ve added is re-
ally worth it. Remember—if you’re using a Mini-ITX board, there are numerous 
low-profile housings available to you off the shelf in a variety of shapes. You can also 
think about using a standard 1U 19″ ATX rack-mount casing, which will already 
have a standard connector zone cutout in the back and a suitable, UL-listed power 
supply—plus, it has the advantage of integrating neatly with a lot of other industrial 
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equipment. Another subtle advantage of this approach is that if you build a computer 
system out of FCC-approved parts, you don’t need to seek a separate approval for the 
assembled system—it just rides the approval of its individual components.

2.5 The Advantech PCM-5820 Single-Board Computer Up Close

For this text, I have chosen to use the Advantech PCM-5820 single-board computer 
as my reference platform. This board has a combination of factors working in its 
favor, which is why I have been working with it for a couple of years:

■ It is readily available ex-stock at a reasonable price (around US$235 at the time 
of writing; cheaper than many industrial SBCs of much lower performance).

■ It is physically quite small, at 145 × 102 mm (it is a 3.5″ biscuit) and it is easy 
to mount.

■ Its power requirements are relatively modest for a Pentium-class x86 system; 
Advantech quotes typical current requirements of 1.5A from a single +5 V 
rail, although peak current requirements can be as much as 4A. A side benefit 
of this is that it does not absolutely require active cooling (Advantech ships it 
with a thin passive heatsink); as long as you don’t actually wrap it in a blan-
ket, overheating is unlikely to be a problem.

■ The board sports a healthy selection of peripherals and I/O features, making it 
very easy to interface with a wide variety of external systems.

■ The price-performance balance is very attractive. The next step down would 
be a board based on a low-speed Pentium, i486 or even i386 CPU; these 
boards are just a few dollars cheaper than the PCM-5820, and much less 
capable. In particular, the integrated USB is a real boon; it allows you to hook 
in cheap consumer peripherals rather than fiercely expensive PC/104 expan-
sion cards.

Let’s take a moment to examine the PCM-5820 hardware in detail. Figures 2-1 
and 2-3 detail photographs of the top and bottom of the board, showing the high 
level of integration. Note the low-profile heatsink and absence of active cooling. I 
didn’t remove anything from the board to take these photos; this is how the board 
ships, and it doesn’t need any further cooling in most situations.
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Figure 2-2: Bottom of PCM-5820

The major hardware features are as follows:

■ Microprocessor – National Semiconductor Geode6 . The fastest flavor of this 
processor available on the 5820 is 300 MHz; some other vendors offer 333 
MHz products. Geode is a “Pentium-ish” CPU; it is hard to establish an exact 
equivalent with an Intel CPU, but the performance is something like an ac-
celerated Pentium 1. It supports the MMX-1 instruction set extensions, but it 
lacks some Pentium core components such as MTRRs (Memory Type Range 
Registers). Geode has an architectural equivalent, ARRs (Address Range 
Registers). It also has an extensive system of software traps that allow it to 
emulate many standard PC hardware features in firmware; more on this topic 
later. Very roughly speaking, a 300 MHz Geode is comparable in performance 
to a 200 MHz Pentium with MMX. Archaeologically, Geode is descended 
directly from the Cyrix MediaGX processor. It appears to share some history 
with the early IBM/Cyrix 486SLC (clock-multiplied 486-compatible in an 
i386SX pinout) and “Blue Lightning” (clock-multiplied 486-compatible in 
an i386DX pinout) processors. Because of the slightly unusual architecture, 
there are some behavioral oddities in the Geode platform; we’ll discuss most 
of these in the text to follow.

6 The Geode range of x86-compatible Internet appliance processors was sold by National Semicon-
ductor to AMD, in a deal announced in mid-2003. However, as at the time of writing, I have yet to 
see an AMD-branded Geode chip. 

Figure 2-1: Top of PCM-5820
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■ RAM – There is a single standard SODIMM slot supporting memory sizes up 
to 256 MB. The board uses 3.3V unbuffered PC100 SDRAM. In our exam-
ples, we will be assuming a system with 64 MB RAM.

■ Ethernet – The board has a Realtek RTL8139 10/100 Ethernet MAC; well-
supported and relatively trouble-free. There is a network boot extension 
available in the system BIOS, should you care to use it.

■ USB – The system has two USB 1.0 OHCI-compatible ports provided by the 
CS5530 companion IC. I have read scattered reports of problems (lockups 
and incompatibilities) with the USB implementation in this chip, mostly 
with high-bandwidth devices (video capture pods, storage devices and LAN 
adapters). To date, I have not encountered any problems of this nature, and it 
may be that these issues only affect older operating system kernels.

■ Serial – There are two serial ports, one of which is RS-232-only, and the 
other of which can be configured as either RS-232, RS-422 or RS-485.

■ Parallel – The board features a standard parallel port, configurable for SPP, 
EPP or ECP modes. This port is very useful as general-purpose I/O.

■ Audio – The CS5530 companion IC on-board has an AC97 codec interface. 
At the time of writing, current production of the PCM-5820 is shipping with 
a Realtek ALC201 codec. Older production used an Analog Devices codec. 
By and large, this hardware difference should not require any software modi-
fications. The board has line-level and microphone-level inputs, line-level 
output, and individual speaker drive outputs. It is not capable of delivering 
much power to the speaker outputs, so for anything other than headphone 
connections you will probably want an external audio power amplifier.

■ Video – The 5820 has a standard analog VGA output, as well as a header for 
connecting to parallel TFT LCDs. An LVDS transmitter IC (and associated 
LVDS output connector) is optionally available on some board variants. Sup-
ported resolutions range up to 1280 × 1024 (at 8 bpp, on CRT only) or 1024 
× 768 (at 16 bpp, on CRT or LCD). Passive panels are not supported; the 
CS5530 requires additional external DRAM to support passive displays, and 
Advantech has not allocated space on the board for this additional RAM.
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■ Mass-storage – There is a standard floppy drive header supporting two drives. 
More usefully, there is a single standard IDE bus (with a 44-pin 2 mm pitch 
“laptop” type connector) and a bootable CompactFlash slot on the secondary 
IDE port. Note that the CompactFlash slot is wired in True-IDE mode, and it 
is therefore not possible to use nonstorage devices or to “hot swap” Compact-
Flash cards. (The CompactFlash specification requires a power-cycle in order 
to swap media if the socket is run in True-IDE mode. This requirement has to 
do with the length of the pins in the socket, which control power sequenc-
ing; hot-swap will sometimes work on a True-IDE slot, especially if you push 
the card in swiftly and firmly, but it can’t be guaranteed, and you should avoid 
trying it because there is a risk of damaging the card).

■ Expansion bus – Although the Geode system uses a PCI architecture, the 
5820 does not offer a means to connect PCI peripherals. The board has a 
standard PC/104 header, essentially an ISA interface.

■ Miscellaneous – A single PS/2 port allows connection of a keyboard and 
mouse by way of a Y-cable, supplied with the board. There is also a port to 
connect an IrDA transceiver or CIR receiver module; the inbuilt IR UART 
can be configured for various infra-red decoding modes including ASK, FSK 
and IrDA. (Enabling infra-red functionality usually disables normal use of the 
second serial port).

If, for whatever reason, you need to seek an alternative supplier of boards, and 
you’re trying to find something similar to the hardware described in this book, there 
are many options for second-sourcing. (This is yet another advantage of choosing a 
PC-based architecture). Here is a short list of compatible, or at least broadly similar 
products from different vendors, with comments on their differences from the PCM-
5820. You should be able to run the example code in this book on any of these boards 
with few or no modifications:
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Vendor Model Notes
Acrosser 
www.acrosser.com.tw

AR-B1551 Practically identical to the PCM-5820, 
except for a different mechanical layout and a 
DiskOnChip socket as well as CompactFlash. 
The LVDS LCD interface is included as standard 
on this product. Note that there are a couple of 
other variants in this family.

BCM7 
www.bcmcom.com

EBC-3410 Twin Ethernet ports (based on Realtek 
RTL8139), otherwise functionally identical to 
the PCM-5820.

BCM EBC-5410 This is a 5.25″ form-factor board with four serial 
ports, a single PCI slot, 64 MB of on-board 
SDRAM, and a standard DIMM socket for 
additional SDRAM.

ICP America8 
www.icpamerica.com

WAFER-
5820

This board has a DiskonChip socket instead of 
a CompactFlash slot. Otherwise, the product 
is almost 100% mechanically and electrically 
identical to the Advantech board, except that 
the board is not capable of driving loudspeakers 
directly; it requires an external power amplifier. 
Note that this same board is sold as a “Gorilla 
Systems GORWAFER-5820” in some markets.

Netcom IPC 
www.netcomipc.com.tw

NC-529 Very similar to the PCM-5280 except that it has 
a DiskonChip socket instead of a CompactFlash 
slot. This board is the “odd man out” of all the 
other Geode boards I’ve inspected, in that it uses 
the National Semiconductor PC97317 Super 
I/O chip rather than the Winbond W83977AF 
favored by other vendors. This difference is 
unlikely to affect you in any significant way, 
however; the main difference is that the National 
chip doesn’t have quite the same range of infra-
red decoding support as the Winbond part.

7 BCM is also known by the brand name e-valuetech.

8 ICP distributes products from IEI, a Taiwanese OEM. The same products are available from other 
vendors under different names.
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All of the code and other materials in this book have been tested with the PCM-
5820, EBC-3410, EBC-5410 and WAFER-58209 , so if you acquire any one of these 
boards you can be assured that the examples will run for you “out of the box.”

By the way, you should note that although the board outline and screw holes 
are standardized for the 3.5″ biscuit form factor, the overall mechanical layout is 
definitely not standardized. One example you’ll observe in particular is that on the 
Advantech PCM-5820, the CompactFlash slot is mounted on the solder side of the 
board, underneath the PC-104 connector. On the BCM EBC-3410 (by way of com-
parison), the CompactFlash slot is on the solder side of the board, along the same 
edge as the connector panel. Other important mechanical differences are the layout 
of connectors on the I/O edge of the board and also the overall airspace requirements 
of the board, including heatsinks. For instance, the ICP WAFER-5820 has a large 
custom-made aluminum heat spreader covering both the Geode and CS5530 ICs, 
and a small, standard-size heatsink is glued on top of that.

The upshot of all this is that you should be aware that it is very difficult to design 
a completely generic casing that can guaranteeably accommodate all third-party 
variations on a particular board configuration, unless you’re willing to waste a lot of 
internal space. This is especially true if you need to make connectors on the board 
directly accessible outside the housing. You should keep this in mind when organiz-
ing a product that will have a significant enough production lifespan to require a 
backup SBC supplier, particularly if your end product needs to meet EMI compliance 
standards (to earn FCC or CE approval, for instance). It is possible to make your 
housing fairly generic by cutting a large hole to expose the entire connector edge of 
the board, but this will increase overall system emissions. 

2.6 Selecting an Inter-Module Communications Protocol

When you’re building your real-time data acquisition and control systems, you will 
need to select some kind of interface to connect these peripheral devices with the 
PC or other “master” system you’re using to record and/or analyze the data. Issues you 
will need to consider when choosing interfaces include:

9 As the WAFER-5820 lacks a CompactFlash slot, obviously I have not tested use of CompactFlash 
with this board.
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■ Noise immunity of the selected protocol vs. anticipated noise in your.system’s 
environment.

■ Data transfer rates and latencies.

■ Delivery delays.

■ Complexity of any required wiring.

■ Maximum permissible cable length (this is usually a function of data transfer 
rate).

■ Cost and difficulty of implementation on the target microcontroller.

■ Cost of a matching interface on the PC side, and availability of drivers for the 
operating system you intend to run on the PC.

■ Clock recovery issues, such as maximum allowable system clock drift.

I2C® (Inter-IC Communication), also known as two-wire serial, is a widely-used 
synchronous serial protocol. It is a half-duplex system implemented on two bidirec-
tional lines, SCL (clock) and SDA (data). Devices on the I2C bus are recognized by 
means of unique address codes. The issuing authority for these addresses is Philips, 
which also owns the trademark on the I2C name itself, as well as patents related to 
its implementation. There are actually three “grades” of I2C: basic (100 kbps, 7-bit 
addresses), fast mode (400 kbps, 7-bit addresses) and high-speed mode (3.4 Mbps, 
10-bit addresses). Faster modes are backwards-compatible with slower modes, and the 
protocol is designed in such a way that slower peripherals can coexist happily on the 
same bus with fast devices. Regarding the patent issue, it is not necessary for you to 
license the interface; ICs that implement I2C include the license cost as part of the 
chip price. If you study the datasheet carefully, you will see a statement to the effect 
that the I2C bus implementation is licensed to you with the part, for use with other 
licensed components. (The reason for the addendum on the end of that statement is 
to make it clear that using a single licensed component doesn’t automatically license 
everything else on the bus; each individual part needs to have a license).

SPI (Serial Peripheral Interface), also known as three-wire serial, is a mechanical-
ly somewhat simpler synchronous serial protocol, the trademark for which is owned 
by Motorola. Three-wire is a bit of a misnomer, as SPI actually requires four signals 
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per device (plus a ground reference); data in, data out, clock and select. The exact 
names given to these signals vary among different implementations, but the official 
names are MOSI (Master Out Slave In), MISO (Master In Slave Out), SCLK and 
SS (Slave Select), respectively. Note that the data direction in these names (Serial 
In/Serial Out) is described with reference to the slave device; i.e., MOSI is an output 
on the master and an input on the slave(s).

SPI works best for single-master, many-slave applications. Because of the need to 
provide a separate select line to each device that can act as a slave, trying to engineer 
a system with multiple possible masters is irksome; it’s not really what the protocol 
was designed to do. The advantage of SPI is that it’s very simple to implement, it’s 
full-duplex, and it’s inherently more efficient than I2C—transfers are initiated simply 
by asserting the target device’s select line, with no additional setup process or ad-
dressing handshake phase required before the actual data transfer. The architecture of 
the interface (from a slave perspective) is simply an 8-bit shift register with the most 
significant bit connected to MISO and the least significant bit connected to MOSI. 
While the device is selected, at each clock pulse (polarity is user-definable in most 
SPI implementations) the shift register rotates left one bit, samples MOSI into its 
least-significant bit, and the MISO pin is updated with the most-significant bit10 . If 
the SS line goes high (inactive), MISO is tristated to prevent bus collisions.

I2C and SPI are frequently used to carry control information around a single 
board, or between multiple boards in a subassembly; I2C is also frequently used to 
communicate between a host system (for example, a laptop computer or cellphone) 
and a “smart” rechargeable battery or other peripheral. You’ll also find I2C used 
variously in consumer A/V equipment (communicating between a microcontroller 
and tuner, digital potentiometer, display controller and so on) and miscellaneous 
other appliances (I2C EEPROMs are frequently used to store configuration data in 
everything from burglar alarms to digital cameras). Neither of these protocols is 
intrinsically designed to drive long cable runs and both protocols can be both genera-
tors of and victims to noise.

10 Note that incoming data is sampled on one clock edge, and outgoing data is latched onto the output 
pin on the opposite clock edge.
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Note also that the official names I2C and SPI are trademarked, and as a result 
you’ll frequently find chip companies implementing very similar, unlicensed inter-
faces under different names. Such third-party interfaces are usually intentional clones 
of one or other of these “big two” synchronous protocols; if you’re looking at a micro-
controller or peripheral that implements some strangely-named synchronous serial 
interface, the chances are excellent that it is, or at least tries to be, compatible with 
either I2C or SPI.

One design advantage of synchronous protocols is that clock recovery is intrinsic to 
the hardware interface, and as long as you don’t exceed the maximum permissible data 
rates, it isn’t necessary to maintain tight clock control. This works well, particularly for 
cost-sensitive applications that use RC oscillators as their clock source. However, there 
are various reasons you may want to consider one of the standard asynchronous serial 
interfaces; among which, they are all more amenable to long cable runs.

RS-232—straight asynchronous serial11 —is the cheap, simple communications 
standard used successfully in millions of devices for many years. However, complete 
and correct RS-232 implementations are rarely encountered in consumer-grade 
electronics such as personal computers, and they are even more rare in embedded 
devices. Most embedded devices implement one of the following four schemes:

■ Simple TTL drivers with a 5 V swing, occasionally biased in some way so that 
the swing is centered around 0 V. These interfaces are almost always three-
wire, that is, they only connect RxD (receive data), TxD (transmit data) 
and ground. Interfaces of this type are totally out of spec and therefore hor-
ribly unreliable. The vagaries of the PC industry are such that some PCs will 
receive these signals properly (which is why people can get away with designs 
like this) but many PCs won’t work at all. In general, it’s a very bad idea to 
play fast and loose with the standard like this. You’ll find this poor man’s 
RS-232 interface used most commonly in hobbyist grade microcontroller pro-
grammers (several older PICmicro programmers worked this way, for instance, 
though mercifully the habit seems to be dying out).

11 It’s rarely mentioned, but the RS-232 specification also includes synchronous operation. In practice, 
virtually no terminal equipment (including PCs) that you’ll encounter actually supports synchro-
nous communications, so for all real-world purposes, RS-232 is a purely asynchronous interface. 
Pedants who assert otherwise are likely to email their complaints in EBCDIC.



36

Chapter 2

■ Solutions that use old driver/receiver level shifting chips like the Motorola 
MC1488 and MC1489, in conjunction with +/–9 V rails (often supplied by 
back-to-back 9 V batteries, and occasionally supplied by tapping signals on 
the RS-232 interface itself; the host is relied on to drive those signals to ap-
propriate levels before the peripheral is called upon to function). This kind of 
interface is dying out, but we still see it from time to time.

■ Three-wire charge-pump type driver/receiver implementations using plug-n-
play transceiver chips like Maxim’s MAX232A. These interfaces usually have 
a voltage swing between –10 V to +10 V (at least) and are compatible with a 
wide range of PC hardware.

■ Devices which use the previously mentioned charge pump interface chips, 
and implement at least some of the flow control lines, but fall short of a 
complete implementation. Probably the most common example of this is to 
implement RxD, TxD, RTS and CTS. The additional flow control lines are 
generally not used for their textbook function in embedded devices; they are 
often used to signal some proprietary status information.

In a few rare cases, peripherals use odd, very proprietary methods to drive the 
serial lines; one example is hobbyist data slicer circuits for (radio) scanners, which 
often drive the serial lines directly from the output of an op-amp, the positive and 
negative rails of which are supplied by two flow control signals from the host. These 
sorts of systems are mercifully rare. If you’re going to use RS-232, I heartily rec-
ommend one of the latter two options from the preceding list; if you intend to do 
high-speed transfers, then flow control is also strongly recommended. 

RS-232 is a bidirectional one-to-one communications interface; the standard 
permits one transmitter and one receiver on each line, and no more. RS-423 is 
electrically similar (in that it is single-ended; with reference to ground, –4 V to –6 V 
is defined as mark, and +4 V to +6 V is defined as space) but it is designed for uni-
directional, one-to-many communications. RS-423 is rather a rare interface, and I 
mention it only for completeness. The problems that RS-423 was designed to solve 
are generally solved even more effectively by RS-485.

RS-422 and RS-485 are differential serial interfaces. These interfaces are ca-
pable of driving much longer cable runs (up to 4,000 feet), or higher baud rates (up 



37

Microcontrollers, Single-Board Computers and Development Tools

to 10 Mbps), than RS-232. RS-422 is a multi-drop interface specified to drive up to 
10 receivers from a single transmitter; RS-485 is a true multipoint network allowing 
bidirectional communications amongst up to 32 drivers and 32 receivers on a single 
two-wire bus. RS-485 is commonly used in applications such as burglar or fire alarm 
systems, and in industrial control applications. 

Note that RS-232, RS-422 and RS-485 driver modes are commonly provided as 
jumper-selectable options on industrial and commercial single-board computers, so 
you often get them “free” as part of your system. RS-423 is quite rare and if you want 
to support it, you will probably have to buy a special converter for your PC.

The great thing about RS-232, RS-422, RS-423 and RS-485 is that it’s very easy 
to test them (all you need is a terminal program), the signals can easily be captured 
and analyzed on a low-end digital storage oscilloscope (or even, at a pinch, with a 
piece of software running on your PC), and any operating system will have all the 
drivers required to talk over these links.

Moving towards the high end of serial protocols, even USB is slowly (and reluc-
tantly) becoming more acceptable as an interface method for embedded systems. Of 
course, it is already extremely popular in high-volume consumer and commercial 
applications, but it’s much harder to justify selecting it for low-volume or unique 
systems, simply because there’s generally a very large amount of software work (on 
both the PC and device side) required to get it functional. This ancillary work wastes 
engineering resources that would be much better spent developing the application of 
interest. USB is also severely limited as to cable run length, which precludes its use 
in any application that is not physically adjacent to a PC. Its principal advantage, 
from the embedded engineer’s perspective, is faster transfer speeds than the simplest 
asynchronous protocols, coupled with reliable hot-pluggability12  and considerably 
better noise immunity than the intra-board synchronous protocols described above. 
In isochronous mode (typically used by USB audio devices) it even has good real-
time characteristics. Plus, a welcome side-effect of USB is that it delivers a regulated 
power supply to your device, although it is quite drastically current-limited (500 mA).

12 Technically, serial and parallel interfaces on PCs are not hot-pluggable. You are supposed to power 
down both the PC and the peripheral to be connected, connect the cable between them, then 
power up first the PC, then the peripheral.
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Most low-volume embedded applications that communicate over USB do so by 
cheating; they use an off-the-shelf USB interface chip that emulates a standard in-
terface (for example, RS-232) on the device side, and has ready-to-run PC drivers on 
the PC side. The best-known manufacturer of such chips is Future Technology De-
vices International Ltd, http://www.ftdichip.com/. Although their solutions are about 
as seamless and plug-n-play as USB development gets, there can still be annoying 
analog issues to contend with when laying out a PCB using these devices. If you’re 
a true masochist and want to do the device-side USB code as well as write your own 
driver for the host operating system of interest, probably the most popular parts are 
Philips PDIUSB011 (serial interface on the microcontroller side) and PDIUSB012 
(parallel interface). These chips are readily available from distributors such as Digi-Key.

If you want to go one step further than this, and build your entire embedded 
app into the USB chip, there are plenty of devices that implement a USB interface. 
One of the most interesting is Cypress Semiconductor’s EZ-USB AN2131QC. This 
consists of a ROMless 8051 microcontroller with some SRAM and an on-chip USB 
interface, with an interesting way of getting code into the chip: the driver on the 
host side downloads the firmware from the PC to the micro, then simulates a detach 
and reattach event; the micro then attaches itself with its new “personality” deter-
mined by the code that was sent to it in the first phase. A very low-cost evaluation 
board for this chip can be obtained from DeVaSys, http://www.devasys.com/. It offers 20 
I/O pins and an I2C interface, plus a 16KB EEPROM. (If desired, the micro can be 
configured to grab its code from the EEPROM instead of relying on the host PC).

For some applications, it may even be useful to employ Ethernet as the commu-
nications interface back to the host PC. Although there are numerous protocols that 
can run over the Ethernet physical layer, for the vast majority of applications, “Eth-
ernet capable” is really a way of saying “runs TCP/IP over Ethernet.” The great thing 
about TCP/IP over Ethernet is that there is a vast selection of ready-made cabling 
options and traffic forwarding/filtering hardware and software available off the shelf. 
Provided you implement standard protocols (HTTP, FTP, SNMP and so forth) on the 
microcontroller end, you also get a free user interface on the PC end in the form of 
web browsers, SNMP agents, and so on. There are also reference TCP/IP stacks for 
many microcontrollers. Ethernet is robust, well-understood and reasonably noise-im-
mune, and can (with careful planning) be strung over large distances.
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The principal downsides to Ethernet are latency and cost. The really cheap 
Ethernet parts are of course the high-volume parts used in PC applications; these 
chips have PCI interfaces and are therefore virtually impossible to interface to small 
microcontrollers. The market space for embedded Ethernet parts is much smaller. 
The “gold standard” embedded 10 Mbps Ethernet part is the Crystal Semiconduc-
tor CS8900A; another popular choice is the Realtek RTL8019. Both of these parts 
are in fact standard ISA-bus chips of yesteryear that have been given a reprieve from 
discontinuation purely because of their popularity in non-PC projects.

Besides the actual cost of the Ethernet MAC chip itself (and a PHY, if applica-
ble), you should also consider the RAM requirements of the TCP/IP stack, the effort 
required to port a MAC driver and the stack itself to your target architecture, and 
the difficulty of perfecting all the analog engineering around the Ethernet port. In 
between the RJ45 jack on your board and the chip that talks to it is room enough for 
a lot of tedious debugging! For the purposes of this book, I will treat Ethernet capa-
bility, if desired, as being one of those functions that’s best handled in the soft-task 
controller.

In addition to these standard interfaces, there are of course numerous proprietary 
options. For the projects in this text, however I have selected a flavor of SPI. I chose 
this protocol because it is very simple to implement in firmware, and it is easy to 
interface directly with a PC. I2C requires bidirectional I/Os on both master and slave 
device; this adds an extra dimension of complexity when working with PCs, because 
not all parallel port modes properly support bidirectional I/O. The baseline paral-
lel port specification stipulates that certain signals are inputs and certain signals are 
outputs; neither reading outputs nor writing inputs is guaranteed to work.
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3.1 Introduction

In this chapter, I will present a few useful “cookbook” applications for real-time 
control circuits designed to perform some specific low-level task and interface with a 
master controller for instructions and overmonitoring. For the moment, we will deal 
principally with the design and firmware of the peripherals themselves. In the next 
chapter, you will find more detailed detailed explanations of how to develop Linux 
code to access these peripherals from an embedded PC-compatible SBC or desktop 
PC. The purpose of this chapter is to provide introductory-level information on how 
to interface with some common robotics-type sensors and actuators, and in particu-
lar to show how these can be tied into the type of system we have been discussing. 
Although the projects are standalone and don’t directly develop on each other, you 
should read at least the description of the stepper motor controller in full, because 
that section describes how the SPI slave interface is implemented. This information 
isn’t repeated in the descriptions of the other projects.

Note that in this book, we will discuss an overall system configuration where all 
devices are connected directly to the Linux SBC, as illustrated in Figure 3-1.

This configuration is easy to develop and test, and is an excellent basis for many 
types of projects; in fact, this is how I prototyped all the E-2 hardware. For the sake 
of completeness, however, I should point out that in the actual E-2 system, all of the 
peripherals are connected to a single master controller (an Atmel ATmega128, in 
fact). This controller is connected to the SBC over an RS-232 link as illustrated in 
Figure 3-2.

Some Example Sensor, Actuator and Control 
Applications and Circuits (Hard Tasks)
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Figure 3-1: 
Simplified system layout

Figure 3-2: 
Actual E-2 system layout
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The master controller is the real brains of the vehicle. In fact, in E-2 the Linux 
system can be considered just another peripheral of the master controller. The Linux 
board performs strictly high-level functions; it interfaces to two USB cameras and an 
802.11b WLAN adapter, besides writing the vehicle log on a high-capacity storage 
medium and performing some computationally intensive tasks such as image analysis 
and digital spectrum analysis of audio coming in from the exterior microphones. This 
design is basically an engineering refinement of the system we’ll be talking about in 
this book; discussing it in detail really wouldn’t add much to the material you already 
have here. Pay no attention to that man behind the curtain!

For your convenience (and mine, too!), I have developed rough-and-ready PCB 
artwork for all the example circuits in this book. The PCB artwork is subject to revi-
sion, and as a result is not provided on the CD-ROM; you can download it freely 
from http://www.zws.com/. The schematics are, however, provided on the disk. In 
order to edit the PCB layouts or view the schematics from which they are generated, 
you will need to install the evaluation version of the Cadsoft Eagle PCB CAD pack-
age, which is included on the accompanying CD-ROM. Versions for both Windows 
and Linux are provided. Please note that these layouts are designed with largely 
surface-mounted components. This reduces the manufacturing and assembly costs of 
the PCB (and it also makes routing easier in some circumstances). However, it does 
make hand-assembly slightly more challenging. The parts I have used can easily be 
hand-soldered with a little practice, but if you aren’t sure of yourself, every part I’ve 
used is available in a through-hole version, with the exception of the Analog Devices 
accelerometer chips.

Ergonomics Tip: A scroll-wheel mouse is highly recommended if you’re using 
Eagle. The wheel controls zoom level. Since the zoom in/out functions are centered 
on the current position of the mouse cursor, you can navigate all around a large 
schematic or PCB layout using only the scroll wheel and minimal mouse movements. 
It’s rarely necessary to touch the scroll bars in the Eagle window; it’s easier and much 
faster to zoom out, then zoom back in on the area of interest.
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3.2 E2BUS PC-Host Interface

Internal control signals in E-2 are carried on a simple SPI-style (“three-wire”) in-
terface13  using a 10-conductor connector referred to as the “E2BUS” connector. 
The PCB layouts I have provided with this book use JST’s PH series 2mm-pitch 
disconnectable crimp type connectors. These are commonly used for inter-board con-
nections in applications such as VCRs, printers and CD-ROM drives; they provide 
fairly good vibration resistance and they hit an excellent price-performance point, as 
long as you don’t mind investing in the appropriate crimp tool. If, however, you are 
building these circuits on breadboards, you will probably prefer to use standard 5.08 
mm (100 mil) headers.

The E2BUS pinout used by the circuits in this book is:

Pin Name Function
1 +12 V +12 VDC regulated supply
2 GND Ground
3 +5 V +5 VDC regulated supply
4 GND Ground
5 MOSI SPI data input (to peripheral)
6 MISO SPI data output (from peripheral)
7 SCK SPI clock
8 _SSEL Active low slave device select line
9 _RESET Active low reset input
10 GND Ground

E2BUS is specified to carry up to 500 mA on each of the 12 V and 5 V lines. Pe-
ripherals that expect to draw more than 500 mA on either rail should have separate 
power input connectors (the main drive motor controller is one example that falls 
into this category).

13 Note that 3-wire SPI is in no way related to “three-wire serial” RS-232 interfaces, which are simply 
a normal serial connection with only RxD, TxD and ground connected. SPI is a synchronous protocol.
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There are two useful things to note about the E2BUS connector:

1. It’s possible to assemble a cable that will let you connect a PC’s parallel port 
directly to an E2BUS peripheral (at a pinch, you can dispense with buffering 
and simply run wires direct from the parallel port signals to the E2BUS de-
vice). A fairly simple bit-banging piece of software on the PC will allow you 
to communicate with the peripheral.

2. The E2BUS interface brings out all the signals necessary to perform in-system 
reprogramming of the flash and EEPROM memory of the AVR microcon-
trollers we are using, so in theory this port could be used to update the code and 
nonvolatile parameter data, if any, in an E2BUS module without needing to 
remove the microcontroller. For various reasons, however, it isn’t always pos-
sible to achieve this with an AVR-based circuit; either because the ISP pins 
are being used for other functions by the circuit, or because the microcontroller 
lacks an external clock source (which may be required for in-system program-
ming). However, the connector design is, at least, flexible enough to allow the 
possibility if you want to take advantage of it.

At this point, you might be wondering why I chose to use SPI rather than, say, 
I2C (which requires fewer I/O lines and would allow a true “bus” configuration with 
a single set of signals routed to all peripherals) or CAN, which is better suited for 
unfriendly environments such as automotive applications. The first reason is code 
simplicity. CAN and I2C are both, by comparison with SPI, relatively complex 
protocols. For example, I2C uses bidirectional I/O lines and it’s a little complicated 
to isolate an I2C device from the rest of the bus, because your isolation component 
needs to understand the state of the bus. I2C is also best suited for applications where 
a master device is programming registers or memory locations in a slave device. SPI is 
a slightly better protocol—with virtually no overhead—for peripherals that deliver a 
constant stream of data.

For the purposes of this book, we’ll primarily be talking about controlling E2BUS 
peripherals directly from the parallel (Centronics) printer port of a PC-compatible 
running Linux. This is the easiest scenario to describe, and it illustrates all of the 
required techniques nicely. Following is a schematic for a fairly simple parallel port 
interface that allows you to connect up to eight SPI-style peripherals to a PC. The 
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schematic for this project is available in the projects/parbus directory on the CD-
ROM. By means of LEDs, the interface shows you which device is currently selected, 
and activity on the data input and output pins.

Figure 3-3: Parallel port E2BUS interface

This circuit might appear unnecessarily complicated, but it’s really quite simple. 
The eight data lines from the parallel port are used as select lines for the eight pe-
ripherals. These signals are buffered through 74HC244s, the outputs of which are 
tristated by the parallel port’s _STROBE signal. The reason for the tristate control is 
to reduce the chance of spurious bus transactions while the SBC is performing power-
on initialization. NOTE that this system assumes that the device(s) in use in your 
peripherals have their own pullup resistors on the select lines. An additional HC244 
buffers the same signals to a row of indicator LEDs that show you which device is 
currently selected. A third HC244 buffers the control signals used for MISO, MOSI 
and SCK, and additionally drives the _RESET line.
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A side benefit of this circuit: If you use 5 V-tolerant, 3.3 V-capable devices where 
I have specified 74HC244s, you can use the design in Figure 3-3, virtually unmodi-
fied, to communicate between a standard 5V-level PC parallel port and external 
devices that use 3.3 V I/Os.

If you’re looking at the schematic I provided on the CD-ROM, you’ll observe 
that my accompanying PCB layout includes a standard right-angle DB25M connec-
tor to mate directly with the parallel port on a PC. If you are planning to build some 
kind of enclosure containing an SBC and connected E2BUS-style peripherals, you 
might instead consider using a 26-pin, 2 mm or 0.1″—spaced header. Most SBCs use 
one or other of these connectors for their parallel port.

In fact, you don’t need to build this entire circuit to communicate with the 
projects in this book. If you only want to talk to one peripheral at a time, if you’re 
exceedingly lazy, and if you’re willing to take a bit of a risk on port compatibility, you 
can experiment with a quick-n-dirty cable wired as follows. The left-hand column 
indicates the E2BUS pin number, and the right-hand number indicates which corre-
sponding signal should be wired on a DB25M connector.

Pin Name Connect to
1 +12 V External +12 VDC regulated supply
2 GND +12 VDC ground return
3 +5 V External +5 VDC regulated supply
4 GND +5 VDC ground return
5 MOSI Pin 15 of DB25M.
6 MISO Pins 17 and 13 of DB25M.
7 SCK Pin 16 of DB25M.
8 _SSEL Pin 2 of DB25M.
9 _RESET Pin 14 of DB25M.
10 GND Ground, pins 18–25 of DB25M.

Be warned—there is absolutely no protection for your computer’s parallel port 
if you use this circuit. If you accidentally short, say, a 24 V motor supply onto one of 
the parallel lines, you will need a new motherboard. I strongly warn you not to use 
this quick and dirty hack with a laptop computer, unless it’s a disposable $50 laptop 
you bought off eBay!



48

Chapter 3

Also be warned that the simple cable is substantially less tolerant of variations 
in the motherboard’s parallel port implementation than the full E2BUS interface 
board. If you find yourself missing transmit or receive bits, or getting garbage data, try 
adding a rather strong pullup, say 1K, to the SCLK and MOSI lines. If you still have 
problems, it may be possible to mitigate them by slowing down your data rates, but 
there will certainly be some trial and error waiting for you.

As I mentioned in the introduction to this chapter, the actual E-2 project isn’t 
structured exactly as I have described in this section, and the principal reason is 
energy consumption. The PCM-5820 and its dependent peripherals are the greedi-
est power hog in the entire submarine (these modules of the circuit pull considerably 
more current than both drive motors operating at full speed), and its brains aren’t 
required most of the time on a typical E-2 voyage. For this reason, the master con-
troller on the voyage is another AVR microcontroller— an ATmega128, to be exact. 
The peripheral select signals are generated by three GPIOs fed to a 74HC138 1-of-
8 decoder. However, I originally started the project by connecting the peripherals 
directly to the SBC in the manner described in Figure 3-1, because it was the easiest 
way to debug the protocol and the peripherals themselves. For an early prototype, or 
for any laboratory fixture application that doesn’t require battery power, you almost 
certainly want to do the same thing; it’s much less challenging to debug the protocol 
and front-end interface issues in this configuration.

In the interest of completeness, I should point out one major weakness of the 
simplified E2BUS design in this book: It relies on the peripherals to perform bus ar-
bitration. The ATtiny26L doesn’t implement a full SPI interface in hardware, so the 
firmware in each peripheral needs to track the state of the select line and manually 
tristate its serial data output line when deselected. If any module happens to crash in 
an on-bus state, the entire bus could potentially be brought down. This design flaw 
could be mitigated to some degree by adding tristate buffers gated by the select line, 
or by migrating the peripherals to a different microcontroller that implements the 
full SPI interface in hardware. Also observe carefully that there is no  reset genera-
tion circuitry on the individual peripheral modules; they rely on receiving an explicit 
software-generated reset from the attached SBC. A real-world design should imple-
ment an external reset generator with brownout detection, to ensure that all modules 
are reliably reset after a brownout or power-up event.
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3.3 Host-to-Module Communications Protocol

The SPI specification only defines the bare outline of the communications proto-
col, including little more than the physical interface. This is a good thing and a bad 
thing. It’s good, because you can make your protocols as simple as you like— and 
bad, because it means you have to specify and develop your own high-level protocols! 
The basic rules are as follows: Each slave device has an active-low slave select line 
(SS), a clock input (SCK), a data input (MOSI) and a data output (MISO). Note 
that the words “input” and “output” here are with reference to the slave device. It 
is fairly normal practice in schematics of SPI equipment to label the entire “output 
to slave(s)” net as MOSI and the “input from slave(s)” net as MISO, which can be 
slightly, and pulse SCK high. At this point we can sample the data stream out of the 
micro at MISO. Here’s a sample waveform where the host is sending the code 0xFE 
to a peripheral. The top trace is MOSI and the bottom trace is SCK. Note how the 
pulses have rounded leading edges (“shark fins”). This trace was captured on a system 
connected using the quick and dirty cable as described previously.

Figure 3-4: Example SPI clock and data signals
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The bit cell is approximately 9.6 µs, corresponding to a serial clock rate of 104.2 
kHz. This is the fastest speed we can get out of the PCM-5820 using the code in 
e2bus.c with all timing delays commented out. Note that we’re only using half the 
available bandwidth; it’s entirely possible to implement a full-duplex protocol over 
the interface described in this section.

From a design perspective, you should observe also that for the projects described 
here, the Linux machine is always the bus master. This is a significant weak point in 
system reliability, because a crashed Linux box could potentially leave one or more 
peripheral modules in the “selected” state, listening to random noise coming down 
the bus. If you plan to implement a real system with this architecture, you should 
implement hardware and/or firmware interlocks to prevent such occurrences. For 
example, you could implement a timeout in the routine that monitors the SS line; if 
there is no SCK within a specified time period from SS going active, the peripheral 
should assume a crashed master, and go off-bus. Of course, this doesn’t help you if the 
Linux box has pulled the master reset line low. You shouldn’t use a configuration like 
this to control hardware that may need to be “safed” in event of a loss of control, un-
less you have some other external hardware that can overmonitor the control system 
and shut things down gracefully if the controller fails.

I have developed a simple piece of Linux code to do all the synchronous serial I/
O you will need to talk to these projects. This code is provided in the projects/e2bus 
directory on the CD-ROM. The meat of this code resides in five simple C functions. 
Note that these functions assume that your E2BUS interface is connected on the 
first parallel port. Also note that the timing they exhibit is quite sloppy, since we’re 
not attempting to make Linux appear real time. You should not run this code inside 
a low-priority thread, because other things will preempt it and may cause spurious 
timeout problems.
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Following are the basic function prototypes:

Prototype Description
int E2B_Acquire(void) You must call this function before calling any other 

E2BUS functions. It attempts to get exclusive access 
to the first parallel port. It returns 0 for success or –1 
for any error.

void E2B_Release(void) You can call this function as part of your at-exit 
cleanup routines. It ensures that all devices are 
deselected, and releases the parallel port. If you exit 
without calling this function, the port will still be 
released implicitly as your task ceases to exist, but 
devices may still be selected.

void E2B_Reset(void) Deselects all devices, asserts the reset line on the SPI 
bus for 250 ms, then pauses for an additional 250 ms 
before returning.

void E2B_Tx_
Bytes(unsigned char *bytes, 
int count, int device, int 
deselect-after)

Asserts the select line for the specified device (valid 
device numbers are 0–7), then clocks out the specified 
number of bytes one bit at a time. If deselect-after is 
nonzero, the device is deselected after the transmit 
operation is complete. Setting this argument to 0 
allows you to read back a command response without 
having to set up a new SPI transaction.

void E2B_Rx_
Bytes(unsigned char *bytes, 
int count, int device, int 
deselect-after)

Works exactly the same as E2B_Tx_Bytes(), but 
receives data instead of transmitting it.

These functions, particularly E2B_Rx_Bytes and E2B_Tx_Bytes, are the low-
level underpinnings of the E2BUS protocol. The workings of these functions are 
described in more detail, along with the complete sourcecode, in Section 4-6.
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On the device end, all the example circuits here share pretty much exactly the 
same code for serial transfer operations, though command processing details are 
naturally specific to each project. Incoming SPI data is received by the ATtiny26L’s 
USART and processed by a very simple and hence robust state machine. You’ll find 
the states defined at the start of the sourcecode for each project, with constants 
named FSM_xxxx. When a device’s SEL line is inactive, the state machine is in a 
quiescent mode (FSM_SLEEP); the MISO pin is set to input mode (to prevent it 
from driving the bus); clock and data from the USI are ignored, and USI interrupts 
are disabled. Asserting SEL pushes the state machine into a “listen for command 
byte” mode, resets the USI, and enables data receive interrupts. The first complete 
byte received generates an interrupt which causes a state transition. The destination 
state is determined by the value of the command byte received. The machine may 
transit through further states depending on whether the command requires addi-
tional data bytes or not. If the received command requires additional data, the system 
proceeds through intermediate states to receive these additional byte(s), and then 
executes the command before returning to quiescent mode.

If the destination state involves transmitting data back to the host, the data 
required for transmission is assembled for return to the host, and subsequent USART 
overflow (or rather, underflow) interrupts clock the data out a byte at a time. After 
the last reply byte is clocked out, the final underflow interrupt causes a transition 
back to the quiescent state.

Deasserting SEL at any time immediately disables the USART and tristates MISO. 
This  completely aborts any data transfer or command in progress; any partially received 
command will be discarded, and partially-transmitted data blocks will be forgotten.

3.4 Stepper Motor Controller

Stepper motors are useful for relatively low-speed, intermediate-torque drive and 
positioning applications, particularly where accurate sub-revolution rotor position 
control is necessary. Motors of this type are commonly used to drive the reels on 
electromechanical slot machines (one-armed bandits), to position floppy disk drive 
heads, operate trainable camera platforms, and to power the drive wheels of small 
mobile robots. In times of yore, they were also used to position hard disk heads, 
though such applications have long ago been taken over by voice-coil type mecha-
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nisms. Stepper motors are simple and cheap to use, and you don’t need to have a fully 
closed-loop controller to use them accurately. Servomotors are much faster, but for 
guaranteeable positioning accuracy, you need to have a position encoder on the shaft 
to provide feedback on the actuator’s position. By contrast, as long as you don’t stray 
outside your system’s nominal acceleration profile (see the following), a stepper-based 
system can reliably maintain its position indefinitely without recalibration.

There are several types of stepper motor, with varying electrical drive requirements. 
However, by far the most common type of motor to be found on the surplus market (or 
scavenged from unwanted computer equipment) is the four-pole unipolar type14 , so this 
is the type our circuit is designed to use. Without further ado, here’s the schematic15 :

14 When faced with an unknown stepper motor of small to intermediate size, a very reliable gamble to 
play is as follows: if it has more than four wires, it’s probably a four-pole unipolar motor, 0.9 degrees 
per step, and likely rated for either 5 V or 12 V operation. There are vast numbers of motors con-
structed with these characteristics.

15 The alternate function for pin 1 is misprinted here as NOSI—it should be MOSI. This is an 
unimportant typographical error in the atmel.lbr library supplied by Cadsoft as part of the EAGLE 
package.

Figure 3-5: Stepper motor control circuit



54

Chapter 3

This project uses the ULN2803 octal high-voltage, high-current Darlington array 
to switch the stepper coils. This chip is readily available for around $0.75 in small 
quantities, and it is a handy solution for driving moderate loads. Until recently, one 
could often find this chip, or its close relatives, in commercial stepper motor appli-
cations such as inkjet printers and both sheet-fed and flatbed scanners. At present, 
however, it appears to be in decline as application-specific microcontrollers with 
high-current drivers on-chip take over its market space. On the subject of prices, 
you’ll notice that I’ve specified an NTSC colorburst crystal as the clock source, 
despite the fact that the tiny26L is rated at up to 8 MHz for a 5 V supply voltage. I 
chose the 3.579545 MHz value, although it’s not a nice integer to work with, because 
these crystals are available everywhere and are often cheaper than other speeds. 
Chances are you have several in your junkbox already, in fact. You’ll also find that 
application notes for microcontrollers almost always give precalculated example 
timing constant values (e.g., for setting the baud rate of a UART) for this base clock 
speed.

Our example stepper controller module also has two active-low limit switch 
inputs. These are optionally used to signal end-of-travel in the increment and dec-
rement step directions. Note that JP4, which selects between 5 V or 12 V drive for 
the stepper coils, is intended to be a wire link for factory configuration, rather than 
a user-changeable jumper. If you are using the device in 5 V drive mode, you should 
alter or remove ZD1; you can also omit C2, since it serves no function if you’re driv-
ing the motor off the +5 V rail.

The controller operates in one of two modes: “drive” or “train.” In drive mode, 
you simply specify a speed and direction, and the motor turns in that direction until 
commanded to stop. Optionally, you can request that it travel until either of the 
limit switches is triggered. Train mode is intended for positioning applications. In 
this mode, you command the stepper controller to seek to a specific offset from the 
current position, and it will automatically seek to that position while you carry out 
other tasks. The stepper will automatically cut off if it hits the high limit switch 
while seeking forwards, or the low limit switch while seeking backwards.

Note that the limit switches are permanently associated with specific seek di-
rections. The “low” limit switch is only enforced for “backwards” seeking, and the 
“high” limit switch is only enforced for “forwards” seeking. The reasons for this are 
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twofold: First, an external force—say, water rushing past a submarine’s rudder—might 
turn the stepper past the make-point for the limit switch, before it reaches a me-
chanical stop. Second, switches are practically never perfect—in other words, the 
displacement required to make a contact isn’t necessarily the displacement required 
to break it. You might need to push the arm of a microswitch two steps in to pen-
etrate the oxide layer on its contacts; the first step in the other direction might 
leave the cleaned metal contact surfaces still touching. Or you might be using a reed 
switch—you need to bring the magnet to a certain proximity to close the switch, 
but a weaker field will suffice to hold the switch closed. In any of these sorts of cases, it 
could require one or more “extra” reverse steps to clear the limit condition.

The stepper controller accepts 8-bit command bytes, optionally followed by 
additional data. Essentially the same serial reception code is used in all the projects 
in this book, so it deserves a little additional study here. To begin with, please note 
that my choice of I/O pin assignments was by no means arbitrary. The AVR’s pin-
state-change interrupts are useful, but not very intelligent. On the tiny26L, there 
are only two such interrupts: PCINT0, which (if enabled) fires on state-changes for 
pins PB0-PB3, and PCINT1, which fires on state-changes for pins PA3, PA6, PA7, 
and PB4-PB7. When one of these interrupts fires, there is no direct way of determin-
ing which pin caused the interrupt; you have to maintain a shadow copy of the port 
registers and compare them to determine which pin(s) changed state.

Fortunately, when an alternate function is enabled for a pin, that pin will no 
longer generate state-change interrupts (note that there are a couple of exceptions 
to this rule). Even more fortunately, the three USI signals used for SPI-style commu-
nications are mapped to pins PB0-PB2. Thus, by configuring the USI in three-wire 
mode, PCINT0 will fire only if PB3 changes state. Since the USI in the tiny26L 
doesn’t implement slave select logic in hardware, we need to do it in software—and 
as a result of all the discussion in the previous paragraph, it makes excellent sense to 
use PB3 as the SPI select line, since it has a state-change interrupt all to itself.

The entire meat of the stepper code is contained in three interrupt handlers: USI 
overflow, timer 0 overflow, and PCINT0. PCINT0 is probably the single most im-
portant function in the firmware—it is responsible for checking the state of PB3 and 
disabling the output driver on MISO (PB1) when the stepper controller is deselected 
(so we don’t fight with anything else on the bus), or enabling it if _SSEL is asserted. 
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When the device is deselected, this ISR also disables USI interrupts, because we 
don’t care about other transactions that may be occurring on the bus, and having to 
service USI interrupts causes timing jitter in any step operation we happen to be run-
ning in the background. Here’s the code in this handler:

;====================================================================
; I/O pin change interrupt
; The only valid source of this interrupt is PB3, which is used as
; the 3-wire slave select line.
entry_iopins:
 push r0

 push r16
 push r17
 in r0, SREG

 ; Check state of select line, which is the only line that should
 ; have generated this interrupt.
 sbic PINB, PORTB_SEL
 rjmp usi_disable

 ; SEL line is LOW. Enable and reset USI and switch PB1 to output
 ldi r24, FSMS_RXCMD
 ldi r16, $00
 out USIDR, r16   ; Empty USI data register
 out USISR, r16   ; Clear USI status (including clock count!)
 sbi DDRB, PORTB_DO ; set PB1 to output
 
 sbi USISR, USISIF  ; Clear start condition status
 sbi USISR, USIOIF  ; Clear overflow status
 sbi USICR, USIOIE  ; Enable USI overflow interrupts

 rjmp iopin_exit

 ; SEL line is HIGH. Disable USI and switch PB1 to input to take
 ; us off-bus

usi_disable:

 ; disable USI start and overflow interrupts
 cbi USICR, USISIE
 cbi USICR, USIOIE

 ; Disable output driver on PB1 (DO)
 cbi DDRB, PORTB_DO ; set PB1 to input
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iopin_exit:

 out SREG, r0
 pop r17
 pop r16
 pop r0
 reti

Actual stepping operations are performed in the timer 0 overflow interrupt. Timer 
0, which has an 8-bit count register, is clocked through the prescaler at CK/256, 
which is approximately 14.053 kHz. When the overflow interrupt fires, the first thing 
the handler does is to reload the timer register with a step speed value. The default 
speed value is $00. Since timer 0 counts upwards, this means that by default the step 
speed is roughly 55 Hz, which is the slowest configurable speed. You can configure 
faster speeds by using the CMD_STEP_SETTICK command, followed by an 8-bit 
parameter that sets a new (larger) reload value. For instance, if you configure a reload 
value of $E0, the timer will overflow every 33rd ($21) tick instead of every 256th, 
thereby yielding a step speed of approximately 425 Hz. Theoretically, you could 
specify a reload value of $FF, resulting in an overflow on every tick and a 14.053 kHz 
step speed, but in practice there is an upper boundary on legal values for the timer re-
load figure. This boundary is set by the number of CPU instruction cycles required to 
service an incoming interrupt and make ready for the next, and it caps the step speed 
at about 7.1 kHz (reload value $FE) for the cheap NTSC colorburst clock crystal I 
specified. This shouldn’t be a serious impediment: although many stepper motors are 
rated for as much as 10,000 steps/sec, real applications rarely exceed 2,000 steps/sec 
(300rpm) due to the fact that the torque of a stepper motor rapidly decreases as step 
speed increases. The code for Timer 0 handler, along with the subroutines it calls, is 
as follows:

;====================================================================
; Timer 0 overflow
entry_timer0:

 push r0
 push r16
 push r17
 in r0, SREG

 ; Reset TMR0 counter to start position for next tick
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 lds r16, tick_speed
 out TCNT0, r16

 ; Update state of limit switch flags in machine
 ; status byte (for the benefit of the main thread only)
 sbr r25, (1 << LIM_H)
 sbic PINA, PORTA_LIM_H
 cbr r25, (1 << LIM_H)

 sbr r25, (1 << LIM_L)
 sbic PINA, PORTA_LIM_L
 cbr r25, (1 << LIM_L)

 ; Load current tick-command and see what we should be doing
 cpi r19, TICK_FWD
 breq tick_seek_fwd
 cpi r19, TICK_REV
 breq tick_seek_rev
 cpi r19, TICK_POWERDOWN
 breq tick_poweroff
 cpi r19, TICK_SEEK
 breq tick_seekto
 cpi r19, TICK_SEEK_FWEND
 breq tick_seek_fwdend
 cpi r19, TICK_SEEK_RVEND
 breq tick_seek_revend

 ; Note - TICK_SLEEP falls through to here
 rjmp tick_done

;====================================================================
; Tick event - Seek forward, ignoring limit switch
tick_seek_fwd:

 rcall seek_fwd
 rjmp tick_done

;====================================================================
; Tick event - Seek backward, ignoring limit switch
tick_seek_rev:

 rcall seek_rev
 rjmp tick_done
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;====================================================================
; Tick event - Seek forward, honoring limit switch
tick_seek_fwdend:

 sbis PINA, PORTA_LIM_H
 rjmp seekto_finished

 rcall seek_fwd
 rjmp tick_done

;====================================================================
; Tick event - Seek backward, honoring limit switch
tick_seek_revend:

 sbis PINA, PORTA_LIM_L
 rjmp seekto_finished

 rcall seek_rev
 rjmp tick_done

;====================================================================
; Tick event - Power down motor
tick_poweroff:

 andi r25, ~(1 << SEEKING)  ; Turn off busy flag
 in r16, PORTA
 andi r16, $F0
 out PORTA, r16
 ldi r19, TICK_SLEEP
 rjmp tick_done

;====================================================================
; Tick event - Generic seek operation
tick_seekto:

 ; First check if the step count is 0 - if it is, then there’s
 ; nothing left to do and we should go back to sleep.
 cpi r23, $00
 brne seekto_nz
 cpi r22, $00
 brne seekto_nz
 cpi r21, $00
 brne seekto_nz
 cpi r20, $00
 brne seekto_nz

 rjmp seekto_finished
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seekto_nz:
 sbrc r25, DIRECTION
 rjmp seekto_fwd

 ; Seekto - REVERSE
 ; Check limit switch. If it’s active, we stop.
 sbis PINA, PORTA_LIM_L   ; Check limit switch
 rjmp seekto_finished

 rcall seek_rev
 rjmp seekto_update_count

 ; Seekto - FORWARD

seekto_fwd:
 sbis PINA, PORTA_LIM_H   ; Check limit switch
 rjmp seekto_finished

 rcall seek_fwd
 rjmp seekto_update_count

seekto_update_count:
 dec r23
 cpi r23, $FF
 brne seekto_notz
 dec r22
 cpi r22, $FF
 brne seekto_notz
 dec r21
 cpi r21, $FF
 brne seekto_notz
 dec r20

 ; No terminal conditions have been encountered - continue stepping
seekto_notz:
  rjmp tick_done

seekto_finished:
  ldi r19, TICK_SLEEP
  andi r25, ~(1 << SEEKING)  ; Turn off busy flag
  rjmp tick_done
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tick_done:
 out SREG, r0
 pop r17
 pop r16
 pop r0
 reti

;====================================================================
; SUBROUTINE - Seek forward one step
; Destroys R16, R17, SREG
; Updates X,Y
; Implicitly powers up motor and leaves it in powered state
seek_fwd:

 lds r16, stepper_phase
 inc r16
 andi r16, $03    ; Only the lower two bits interest us
 sts stepper_phase, r16 ; Store new current phase

 ldi r17, $01

sf_lp:
 cpi r16, $00
 breq sf_lp_done
 dec r16
 lsl r17
 rjmp sf_lp

sf_lp_done:
  in r16, PORTA

 andi r16, $F0
 or r16, r17
 out PORTA, r16

sf_update:
 inc r29      ; increment step position
 brne sf_done
 inc r28
 brne sf_done
 inc r27
 brne sf_done
 inc r26

sf_done:
  ret
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;====================================================================
; SUBROUTINE - Seek backward one step
; Destroys R16, SREG
; Updates X,Y
; Implicitly powers up motor and leaves it in powered state
seek_rev:

 lds r16, stepper_phase
 dec r16
 andi r16, $03    ; Only the lower two bits interest us
 sts stepper_phase, r16 ; Store new current phase

 ldi r17, $01

sr_lp:
 cpi r16, $00
 breq sr_lp_done
 dec r16
 lsl r17
 rjmp sr_lp

sr_lp_done:
 in r16, PORTA
 andi r16, $F0
 or r16, r17
 out PORTA, r16

sr_update:
 ; Check for zero condition.
 sbic PINA, PORTA_LIM_L
 rjmp sb_notz
 clr r26
 clr r27
 clr r28
 clr r29
 ret

sb_notz:
 dec r29      ; decrement step position
 cpi r29, $FF
 brne sr_done
 dec r28
 cpi r28, $FF
 brne sr_done
 dec r27
 cpi r27, $FF
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 brne sr_done
 dec r26
 cpi r26, $FF
 brne sr_done

sr_done:
 ret

The most complex code segment, at least in terms of code volume, is the USI 
handler. This handler implements a simple state machine. The first byte received 
after the select line goes active is a command byte. This byte either causes the USI 
receive ISR to modify the system state directly, or to transit the ISR’s state machine 
through further intermediate states either to receive more data, or to transmit a 
multi-byte response back to the host. I won’t reproduce the code here, because it’s 
largely a very long switch ... case statement implemented in assembly language.

The theoretical transfer speed between the stepper controller and its master is 
limited by a couple of factors. First, hardware absolutely limits the USI to transfer 
clock rates of fCK/4 in three-wire slave mode. In our case, this is approximately 895 
kHz, and we have to be careful that the SPI master doesn’t exceed this speed. In 
the case of a PC parallel port master, as we are discussing in this book, it is unlikely 
(however, not entirely impossible) that you will be able to outrun the USI. The 
reason for this is tied up in the ancient PC architecture of twenty years ago, and the 
fact that the parallel interface is designed for backwards compatibility with 9-pin 
dot-matrix printers run by slow 8-bit microcontrollers. Because of these compatibility 
issues, the parallel port registers are, conceptually or physically, on the other end of 
an ISA bridge; they are limited to ISA bus clock speeds (nominally 8 MHz) and may 
even have additional wait states inserted. Furthermore, the layers we traverse when 
making calls to change the parallel port registers add extra delays, the constant SMM 
interrupts on the Geode platform are stealing cycles from us regularly—and to cap 
it all off, the application layer in Linux is inherently so nonreal-time as to make the 
idea of accurately marking off 1 µS delay steps in userland quite silly indeed. You will 
observe, therefore, that the SPI code I provide in e2bus.c does not have explicit tim-
ing instructions throughout all of the state-changes. This code is tested on the 300 
MHz Geode platform with Advantech’s BIOS 1.23; if you need to rely on it to work 
faultlessly, it will need, at minimum, testing and requalification on other systems.
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Following is a complete list of commands recognized by the stepper controller’s 
firmware. (The mnemonic names are defined for you in e2bus.h):

Mnemonic Value Description
STEP_CMD_STOP 0 Aborts any current step operation. Note 

that the current step position, and the steps-
remaining counter, are not altered—you can 
resume the step operation later, if necessary. 
The stepper motor coils remain powered.

STEP_CMD_SLEEP 1 Aborts the current step operation and de-
energizes all stepper coils. The motor may 
move a step or two unpredictably when you 
re-energize it; a calibration may be necessary.

STEP_CMD_SETTICK 2 Set the step rate (larger values = faster 
rate). This command should be followed 
immediately by a one-byte step rate. 

STEP_CMD_DRIVE_FWD 3 Starts the motor driving forwards at 
the configured step speed. The motor 
will continue to spin until another step 
command is received, ignoring the limit 
switches.

STEP_CMD_DRIVE_REV 4 Works the same as STEP_CMD_DRIVE_
FWD but steps backwards instead of 
forwards.

STEP_CMD_STEP_FWD 5 Steps forwards a specified number of steps, or 
until the “high” limit switch is closed. This 
command should be followed immediately 
by a four-byte step count (MSB first).

STEP_CMD_STEP_REV 6 Works the same as STEP_CMD_STEP_
FWD but steps backwards instead of 
forwards, and monitors the “low” limit 
switch. The current step position is set to 
00000000 when this switch is closed.

STEP_CMD_FWD_END 7 Steps forwards continuously until the “high” 
limit switch is asserted.
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Mnemonic Value Description
STEP_CMD_REV_END 8 Steps backwards continuously until the 

“low” limit switch is asserted. The current 
step position is set to 00000000 when this 
switch is closed.

STEP_CMD_READ_STATUS 254 Reads back the controller status byte and 
four-byte step position.

STEP_CMD_RESET 255 Performs a soft reset.

The status byte returned by STEP_CMD_READ_STATUS is formatted as  
follows:

Bit Function
7 Unexpected interrupt or internal error detected.

6
Step error, e.g., attempt to seek beyond calibrated range. (LED2 – ERR 
– tracks the state of this bit).

5 Reserved.
4 Reserved.
3 Reserved.
2 High limit switch asserted.
1 Low limit switch asserted.

0
Currently seeking to requested position (LED1 – BSY – tracks the state of 
this bit).

This is an extremely simple stepper control design; it is intended for low-speed 
positioning and simple low-torque drive applications only. The E-2 project uses 
these modules to position its rudder and dive planes, and to swivel a camera plat-
form, neither of which are particularly demanding applications. For a little more 
understanding of the subtleties of stepper motor control, try running this little code 
snippet, which assumes that you have a stepper module connected as E2BUS device 
#0. (You’ll find this sourcecode, with a makefile, in the stepper1 directory of the 
sample sourcecode archive):
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#include <stdio.h>
#include “e2bus.h”
int main (int _argc, char *_argv[]) {
  unsigned char pkt[2];

  // Open port and start stepper motor
  if (E2B_Acquire()) {
    printf(“Error opening E2BUS.\n”);
    return -1;
  }

  E2B_Reset();
 
  pkt[0] = STEP_CMD_DRIVE_FWD;
  E2B_Tx_Bytes(pkt, 1, 0, 1);

  // Speed motor up gradually
  pkt[0] = STEP_CMD_SETTICK;
  for (pkt[1] = 0; pkt[1]<255; pkt[1]++) {
    printf(“Setting speed: %d\n”, pkt[1]);
    E2B_Tx_Bytes(pkt, 2, 0, 1);
    sleep(1);
  }

  // Stop motor and de-energize it
  pkt[0] = STEP_CMD_SLEEP;
  E2B_Tx_Bytes(pkt, 1, 0, 1);

  return 0;
} 

This will take a few minutes to complete its run. While it’s proceeding, listen to 
and watch your motor. You will observe two things:

1. Certain step speeds are very noisy, but there will be a range of speeds—typi-
cally, the faster speeds—for which the motor is comparatively silent.

2. Depending on your stepper motor, at some point on the speed ramp, the mo-
tor will probably stop spinning and will simply begin to hum. Take a note of 
the approximate speed value when this happens; for the motors I am using 
(under no mechanical load), this is about 240.
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The second point in particular is important, and needs elucidation. Try running 
this second code snippet (this project is located in the stepper2 directory):

#include <stdio.h>
#include “e2bus.h”

int main (int _argc, char *_argv[])
{
  unsigned char pkt[2];

  // Open port and start stepper motor
  if (E2B_Acquire()) {
    printf(“Error opening E2BUS.\n”);
  }
  E2B_Reset();

  // Set the maximum speed your motor can withstand
  pkt[0] = STEP_CMD_SETTICK;
  pkt[1] = 230;
  printf(“Setting speed: %d\n”, pkt[1]);
  E2B_Tx_Bytes(pkt, 2, 0, 1);

  printf(“Starting motor.\n”);
  pkt[0] = STEP_CMD_DRIVE_FWD;
  E2B_Tx_Bytes(pkt, 1, 0, 1);

  sleep(2);

  // Stop motor and de-energize it
  pkt[0] = STEP_CMD_SLEEP;
  E2B_Tx_Bytes(pkt, 1, 0, 1);

  printf(“Finished.\n”);

  return 0;
}

Here we attempt to set a speed just shy of the fastest possible step rate we ob-
served in the first test, while the motor is stopped—and then we try to start the 
stepper. You will observe, however, that it doesn’t rotate at all—it just stalls and 
whines like an engineer awakened by his wife’s alarm clock. (If you don’t see this 
behavior, then increase the speed value a little, recompile, and try again).
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To understand what’s going on here, you need to think about the mechanics of 
the situation. Each position of the stepper’s rotor is a stable mechanical state for 
a certain corresponding electrical (magnetic) state of the coils. This state can be 
visualized as a valley between two hills of a plot of net force vs. angle; the motor tries 
to seek the low point in the valley, where the clockwise and counterclockwise forces 
on the rotor are equal. If you put an external mechanical force on the rotor, in (say) 
a clockwise direction, you are pushing up one side of the hill. If you push all the way 
to the top, then when you release the rotor, it will fall down into the next valley, i.e., 
the next stable step position.

When we advance the step phase in software, we alter the electrical state of the 
coils, which creates a new position of mechanical equilibrium. Effectively, we move 
the two hills and valley along a quarter-phase, which means the motor is no longer 
sitting in the middle of the valley. Since the clockwise and counterclockwise forces 
on the rotor are no longer equal, the rotor turns until it is in an equilibrium posi-
tion once again; the step operation is then complete. However, this process doesn’t 
happen instantly, because the rotor – and whatever mechanical load it’s driving—has 
inertia. The time required for the rotor to find its new equilibrium point depends, 
among other things, on the inertia (which is determined by the mechanical load on 
the motor) and the force exerted by the coils—which is directly proportional to coil 
current.

The above explains both why we observe unreasonable stepper noise at certain 
combinations of load and step rate, and the fact that we can’t necessarily go from sta-
tionary to maximum achievable step speed instantly. At slow speeds and/or with light 
loads, the motor will snap to each new equilibrium point very quickly compared to 
the step rate, and will in fact stop at the bottom of the equilibrium valley waiting for 
the next change of magnetic state. This is horrifically wasteful of energy—every single 
step, we’re injecting enough energy to overcome static friction forces and impart 
some amount of angular momentum to the stepper shaft and its attached load. The 
motor responds quickly and reaches its new stable state, but our control software isn’t 
ready to move on to the next step state yet. The motor’s stored inertia causes it to 
start climbing the slope of the next “hill,” which turns the stepper temporarily into a 
generator. The energy we just pumped in is shorted through the transient protection 
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circuitry and turned into heat. The motor slumps back down to the stable position 
until the next step pulse comes along, whereupon the entire process is repeated. This, 
along with the possibility of simple mechanical resonances in the motor and other 
components at certain step speeds, creates a loud and objectionable noise.

The most efficient way to drive the motor is to transit to the next step state as 
soon as the rotor reaches its new equilibrium position; this way, you are always push-
ing the load in the desired direction. Knowing exactly when this occurs is difficult, 
and it leads nicely into the next issue, which explains my point #2 on p. 66: We’re 
not exerting a constant force on the rotor; rather, we are kicking it periodically. In 
order for our kicks to do the most good, we have to time them to coincide with cer-
tain rotor positions. At slow speeds, the motor responds to the step pulses faster than 
we issue them (so the motor can be said to be “led” by the step pulses). However, as 
the speed increases, we start to rely increasingly on the fact that the motor’s inertia 
will carry it to the equilibrium point by the time we kick it next. This is why you 
can’t simply start the motor at its maximum possible step speed—starting from rest, 
the rotor won’t have time to reach equilibrium point before we transit to the next 
state.

On the flip side of the coin, once the motor is whirling madly at high speeds, 
simply stopping the step pulses dead will very likely lead to mechanical overshoot. 
You probably won’t observe that phenomenon on a bare motor— at least, not the 
small, light motors you’re likely to be using—but it’s a very real issue under load. The 
most common approach to this is to implement an “acceleration profile,” which is a 
table of step rates describing how to get from one motor speed to another most effi-
ciently and reliably. These sorts of tables are easily handled in small microcontrollers. 
Advanced stepper designs will also use higher drive current (in other words, steeper 
hills) to achieve faster speed changes.

Completely general solutions to these problems (and others not mentioned) 
are possible—for example, I should point out that as soon as the motor overshoots 
the current equilibrium position, it will start generating a back EMF that can be 
measured via a suitably delicate circuit. However, such complex solutions are not 
required for simple, low-speed stepper applications, and they lie beyond the scope of 
this text.
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3.5 Speed-Controlled DC Motor with Tach Feedback and  
Thermal Cutoff

E-2’s main propulsion system consists of two DC motors directly driving contra-rotat-
ing propellers. An underwater vehicle with a single propeller is subject to undesirable 
torque forces, especially if the vehicle has no significant keel. It’s possible to coun-
teract this by using a stator to straighten the water flow behind the propeller. It’s also 
obviously possible to drive two propellers from a single motor using gears. However, 
using two independently-controllable motors allows us to tighten the vehicle’s turn-
ing circle by running the motors in opposite directions, if desired. It also lets the 
device limp home if one motor fails, or one propeller happens to foul something.

The textbook circuit configuration for controlling a reversible DC motor is the 
H-bridge, illustrated (representatively with bipolar transistors) in Figure 3-6:

Figure 3-6: Standard H-bridge circuit

This is very much a “lowest common denominator” circuit, and although you 
might build one on a breadboard for a very quick and dirty test of something, you 
would never want to field a device built around such a simple configuration. How-
ever, it’s a good starting point to illustrate the basic principles. To run the motor in 
one direction, turn on the PNP transistor on one side of the bridge (say, at A), and 
the NPN transistor on the other side (say, at D). To run the motor in the opposite 
direction, turn on the opposite pair of transistors; B and C in our example. You can 
control the motor’s speed by modulating the on-time of either or both of the active 
transistors.

VccVcc

C

D

A

B
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There are numerous practical problems with such a simplistic design. Perhaps 
most importantly, there is no protection for the switching transistors from the in-
ductive “kick-back” from the motor windings. You could mitigate this by putting a 
protection diode across the collector and emitter of each transistor. Also consider 
what would happen if you reverse the motor direction by switching from the configu-
ration (A ON – D ON) to the configuration (B ON – C ON). The switching times 
of the individual BJTs or FETs you would be using are not exactly identical, so you 
run the risk that, for an instant, both sides of the bridge could be “on,” thus shorting 
the power rails—and probably either burning out part of the driver circuit, blowing 
a fuse or just causing a momentary power glitch that could reset some or all of your 
system to an unknown state. You could work around this problem by ensuring that 
the firmware never goes directly from the “powered up—forward rotation” to “pow-
ered up—backward rotation” states; instead, it should switch both sides of the bridge 
off for a brief recovery period before changing directions.

Furthermore, there is also no intrinsic hardware protection to prevent a firmware 
bug from shorting the power rails directly through one side of the bridge (for exam-
ple, by switching on A and B simultaneously due to a software error writing garbage 
values to an I/O latch)—you could solve this by providing some external logic pro-
viding “direction” and “enable” inputs that only allow the drivers to be turned on in 
permissible combinations. Finally, as the circuit stands, you have no way to diagnose 
the health of the switching circuit or gauge the current being drawn by the motor, so 
you can’t detect a stalled rotor or shorted winding.

Rather than reinventing all these wheels and engineering a custom solution, we 
cut around these messy problems by using the National Semiconductor LMD18200T 
integrated H-bridge. This chip is not exactly cheap, at around $11.50 (in single-piece 
quantities). However, the price is well worth the engineering time saved. If nothing 
else, you would probably spend at least twice this amount on destroying MOSFETs 
while debugging your own circuit design. The LMD18200 also offers several useful 
bonus features, including an internal junction temperature watchdog that will signal 
to your microcontroller with a simple digital signal if the chip is overheating (and 
shut the drivers off if the H-bridge overheats), integral shoot-through protection, 
nonregenerative braking (this shorts the motor windings) and a current monitoring 



72

Chapter 3

output that, with an appropriate shunt resistor and ADC, can be used to measure 
how much current is being drawn by the motor. In fact, we won’t be using the latter 
feature, so you might prefer to use the slightly cheaper LMD18201, which is identical 
to the LMD18200 except that it doesn’t have the handy drive-current-monitoring 
feature. The reason I specify the LMD18200 is simply because it seems to be stocked 
by more vendors than its cheaper sibling. The price difference is only a few pennies 
from the distributors I use, but maybe you’ll come across a load of amazingly cheap 
LMD18201s in the surplus marketplace.

There is one more feature our circuit offers, which isn’t always essential but is 
often useful—tachometer feedback. Without some feedback on the actual physi-
cal number of revolutions being executed per second, it is practically impossible to 
control the speed of a motor under varying load. The tach input of the board expects 
to see an active low pulse once per revolution. The sensor method I use on the E-2 is 
a Hall effect sensor mounted next to the motor shaft, and a tiny neodymium magnet 
glued to the shaft. You might prefer to use some other method, such as an optical 
sensor and a reflective (or dark) mark painted on the shaft. Some motors even have 
tach hardware of some sort built in; this is particularly common in small cooling fans, 
which frequently have an integral Hall effect sensor. With such motors, all you need 
to do is connect the wires properly, and you’re done16 . However, you should note that 
the tach on these motors may not be reliable at anything less than 100% PWM duty 
cycle. These cooling fans are often designed to run continuously at full speed, with 
the tach providing feedback to the system that the fan hasn’t stalled. The tach sensor 
is probably powered directly off the power input wire, and may not have enough of 
a decoupling capacitor connected to remain alive during the “off” portion of your 
PWM signal.

Enough talk, let’s look at the schematic for our motor controller:

16 Note: Almost all fans output two tach pulses per revolution. Depending on what kind of tach sensor 
you employ, and how you mount it, your system may output only one pulse per revolution.
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The first thing you’ll notice is that it’s quite difficult for us to use the tiny26L’s 
inbuilt PWM hardware, because its functions overlay the pins used by the USI. If 
you study the tiny26L’s datasheet closely, you’ll observe that we could use PB3 (which 
doubles as the OC1B output) as the PWM drive signal. However, this would mean 
either moving the SPI select functionality to a noninterrupt pin—unacceptable, 
because we have to respond to changes in the select state quickly so we can get off 
the bus—or enabling the second pin-change interrupt, PCINT1. The latter inter-
rupt is a bit too “global” for comfort—it fires even when alternate hardware functions 
have been selected for the I/O pins. Extra care would be necessary to suppress these 
unwanted interrupts.

As a result, we have to use a software PWM drive scheme. Essentially, I had to 
choose between either software USI or software PWM, and in order to keep as much 
code as possible common between the various modules of this project, I chose to do 
the PWM in software. An unavoidable side-effect of this is that serial I/O and tach 
pulses will cause minor glitches in the PWM output. A second side-effect is that the 
PWM frequency is severely limited by the AVR’s core clock speed. (The hardware 

Figure 3-7: DC motor control circuit
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PWM feature can be driven by an asynchronous clock generated by an on-chip PLL). 
Neither of these are serious problems for our application.

Observe also that we use the dedicated INT0 line for the tachometer input. The 
reason for this is that we’re only interested in one edge of the tach signal. Although 
we’ve got enough free GPIOs to dedicate one of the pin-change interrupts to tach 
input, this interrupt would fire on both edges of the tach signal, which introduces un-
necessary glitches into our other tasks. INT0 can be programmed to fire only on the 
edge of our choice.

Now let’s study the firmware for this device. It’s moderately complicated, because 
there is a lot going on, so let’s study the major tasks separately. We’ll first look at the 
task that handles the PWM:

;====================================================================
; Timer 0 overflow - PWM motor output
; WARNING - This code must be bare-minimum optimized. It runs so 
; frequently that it can easily take over the entire CPU.
entry_timer0:

 in r3, SREG
 sbi PORTA, PORTA_TEST

 ; Reset TMR0 counter to start position for next tick
 ldi r24, TMR0_RELOAD
 out TCNT0, r24

 ; Increment PWM count variable
 inc r22
 cpi r22, 100
 brne pwm_no_overflow

 ; If we’ve overflowed, reset to 0. Do a special-case check to see 
 ; if the requested duty cycle is 0 - if so, turn off the PWM out-

put.
 ldi r22,0
 cp r1, r22
 brne pwm_duty_nonzero

 cbi PORTA, PORTA_PWM
 rjmp tmr0_done
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pwm_duty_nonzero:
 sbi PORTA, PORTA_PWM
 rjmp tmr0_done

 ; If we didn’t overflow the 100% counter, then compare to  
  ; requested duty cycle.

 ; If count = duty cycle, turn off the PWM output. Note that the 
   ; 100% special case is already handled by the overflow trapping 
   ; above.

pwm_no_overflow:
 cp r22, r1
 brne tmr0_done
 cbi PORTA, PORTA_PWM

tmr0_done:
  cbi PORTA, PORTA_TEST
  out SREG, r3
  reti

 There are a few parameters that need to be balanced here:

■ The desired number of PWM “grayscales” between 0% (always off) and 100% 
(always on) duty cycle. We’re going to use 100 levels, so the PWM value in 
use is actually the same number as the duty cycle percentage. There are a cou-
ple of reasons for choosing this value besides the mere elegance of specifying 
a percentage directly: firstly, since the AVR is an 8-bit micro, it’s convenient 
for us to use a value that fits in an 8-bit variable with some wiggle room so we 
can avoid fencepost errors17  without having to insert any unwieldy special-
case code for boundary conditions. Secondly, 100 steps is really more than 
enough for most drive motor applications; in fact, E-2 only adjusts the duty 
cycle in 10% increments.

17 Imagine you are building a fence 100 meters long. The posts along this fence are ten meters apart. 
How many posts do you need to buy? The instinctive response of ten is the canonical fencepost  
error.
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■ The target PWM frequency. 200 Hz is a workable (though noisy) frequency 
for motor driving. To give an admittedly oversimplified rule of thumb: ultra-
sonic frequencies are generally better for PWM applications, because they 
push the pulse noise out beyond our hearing range. However, the tiny26L is 
too slow to implement this in software. If we were using the hardware PWM, 
it wouldn’t be a problem, but unfortunately we don’t have that luxury, for 
reasons described previously. 200 Hz is a reasonable compromise.

■ System clock speed and interrupt loading issues.

PWM in our design is implemented using Timer 0. This 8-bit timer increments 
with a selectable ratio (/1, /8, /64, /256 or /1024) of the system clock frequency, and 
interrupts when it rolls over from 0xFF to 0x00. The parameters we can vary here are 
the clock divisor and the value to be reloaded into the timer during the interrupt. In 
order to calculate these values, we need to work backwards from the 200 Hz figure. 
In each cycle of that 200 Hz signal, we need to have 100 sample points at which the 
PWM drive signal can be either off or on. This means we need a timer interrupt rate 
of 20 kHz. Given our system clock of 3.579545 MHz, the Timer 0 clock frequencies 
available to us are approximately 3.58 MHz, 447 kHz, 55.9 kHz, 14.0 kHz or 3.50 
kHz. The slowest timer speed that is faster than our 25 kHz target is 55.9 kHz. Di-
viding these frequencies we see that we need to divide the timer 0 clock source (by 
reloading the timer with some nonzero value) by 2.24 to get the right interrupt rate. 
The closest we can get is either a reload value of 0xFE (2 ticks per interrupt, 28.0 
kHz) or 0xFD (3 ticks per interrupt, 18.6 kHz). We’ll use 0xFE, because even though 
it represents a greater error with respect to our nominal target frequency, it’s an error 
“in the right direction”—that is, towards better performance.

As an aside at this point, you’ll notice by inspecting the subroutine shown on 
the previous page that my code sets PA7 high on entry to the Timer 0 interrupt, and 
brings it low again just before returning from that ISR. The purpose of this strobe is 
so that we can observe on an oscilloscope the amount of CPU time being chewed up 
by the PWM function. Since this is the most frequently-executed code path in the 
chip, it’s instructive to have some means of measuring how big a timeslice it occu-
pies. From quick inspection, rather less than 10% of the available CPU time is being 
occupied in the PWM ISR, which is quite acceptable. While we’re talking about 
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performance, though, also note how I’ve fine-tuned the register usage in this project 
to avoid having to save anything on the stack in the high-load ISRs. It gets harder 
and harder to do these kinds of down-to-the-last-nibble optimizations as you add 
more tasks to a system (simply because each task has a certain amount of state that 
needs to be stored). This is another useful argument in favor of breaking up a system’s 
real-time responsibilities across multiple microcontrollers.

The second task in this module is tachometer measurement. This is handled 
by Timer 1. Timer 1 is a free-running up counter. Timer 1 has a richer selection of 
prescaler values than Timer 0, from /1 (3.58 MHz) all the way down to /16384 (218 Hz). 
What scaler value should we choose? It depends on the desired accuracy and an-
ticipated range of the input signal. Let’s say that we are going to use a motor with a 
maximum unloaded speed of 3,600 rpm and arbitrarily pick a divisor of CK/8192, or 
437 Hz. To get a reasonably accurate measurement, we are actually going to perform 
a kind of running average: The tach interrupt increments a 16-bit counter, but does 
NOT permit it to roll over past 0xFFFF. Timer 2’s overflow interrupt is allowed to fire 
eight times (2048 ticks,  or in other words ~4.69 seconds). At the eighth interrupt, 
the tach counter is captured and reset; it can range from 0 (no motion) to 0xFFFE 
(838,000 rpm; exceedingly unlikely). For an unloaded motor of the type you’re likely 
to be using, expect to see values around 274, (3,500 rpm). 0xFFFF values should be 
displayed by your user interface as “out of range,” and 0 should probably be displayed 
as “tach failure,” since these are extreme boundary conditions. Note that you can 
tinker with the dynamic range and sample rate of this measurement very simply by 
altering the tachometer divisor value in the Timer 1 interrupt. The actual code for 
the two tachometer-related ISRs are as follows:

;====================================================================
; Timer 1 overflow - Tach sampler
entry_timer1:
  in r5, SREG

  inc r21
  cpi r21, TACH_DIVISOR
  brne tmr1_done

  ldi r21, $00
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  ; Update RAM copy of counter
  sts tach_low, r30
  sts tach_high, r31

  ; Clear tach counter
  ldi r30, $00
  ldi r31, $00

tmr1_done:
  out SREG, r5
  reti

;====================================================================
; Tachometer input handler (INT0)
; This interrupt fires once every revolution, and would typically
; be triggered by a stationary Hall effect sensor sensing a magnet on
; the shaft.
entry_int0:
 in r4, SREG

 ; Increment tach counter
 inc r30
 brne tach_done

 inc r31
 brne tach_done

 ; If tach has overflowed, peg it at $FFFF.
 ldi r30, $ff
 ldi r31, $ff

tach_done:
  out SREG, r4
  reti

Since this module isn’t directly concerned with the actual motor speed, we just 
provide the above 16-bit counter result when queried for status—the host is expected 
to do the math to convert the raw count into a rotation speed in a unit acceptable to 
the end-user. The value can be calculated very simply by:

speed in rpm = (tach value * 60) / 4.69.
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The final task is the SPI interface management code. This code is very similar to 
the analogous portions of the stepper motor controller; a simple state machine which 
is stimulated by either the USI interrupt (for incoming data) or the pin-change inter-
rupt that handles SPI slave selection and bus-on/-off events. The firmware supports 
the following command codes:

Mnemonic Value Description
MTR_CMD_STOP 0 Stop motor.
MTR_CMD_FWD

1

Set PWM duty cycle and start motor 
spinning in the forward direction. The next 
byte following this command byte should 
be the duty cycle (0–100%).

MTR_CMD_REV

2

Set PWM duty cycle and start motor 
spinning in the reverse direction. The next 
byte following this command byte should 
be the duty cycle (0–100%).

MTR_CMD_READ_STATUS

254

Reads back current speed and tachometer 
status. The host can read back up to three 
bytes following this command; the first 
byte is the status/speed byte (lower 7 bits 
= current PWM duty cycle, upper bit is set 
if the thermal warning flag is active), and 
the next two bytes are the most recent tach 
count, low byte first.

MTR_CMD_RESET 255 Performs a soft reset.

3.6 Two-Axis Attitude Sensor using MEMS Accelerometer

For a variety of reasons; navigation, hazard avoidance, and so on, it’s desirable for 
a vehicle to be able to know its orientation with respect to the earth. A ship, sub-
marine or airplane has six degrees of freedom (land-bound vehicles generally have 
fewer). Three of these are rotational: rotation around an imaginary line from bow 
to stern (roll), rotation around an imaginary line perpendicular to the bow-stern 
line and parallel to the Earth’s surface (pitch), and rotation in a plane parallel to 
the Earth’s surface (yaw; turning the bow of the vehicle to point towards a new 
destination). The other three are translational, along the same axes just mentioned; 
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respectively, surge (movement forwards or backwards), sway (movement from side to 
side) and heave (movement up or down).

Yaw is relatively difficult to measure directly, so let’s discuss it first. One approach 
is to use a flux-gate sensor; an electronic compass, essentially. The difficulty with 
this is that every spot on the Earth’s surface has more or less interference from local 
metallic deposits and other geographical features, so a compass needle doesn’t always 
point at a known reference point (magnetic north). Magnetic north also moves 
about, and it doesn’t coincide with the true geographic north pole. For short trips, 
a fixed variance setting can be looked up on a map of your area, and you can just 
ignore any errors caused by roaming about close to vast lodestone deposits! E-2’s core 
electronic module doesn’t directly measure yaw; it assumes that most of the vessel’s 
motion vector is parallel to the bow-to-stern axis and hence uses GPS velocity data 
(while surfaced) to infer the direction the bow is pointing. If you want to try your 
hand at magnetic navigation methods, there are numerous kits containing flux-gate 
compass boards, intended for the hobbyist robotics market. Most of these incorporate 
some clever firmware to deal with variance issues.

Static roll and pitch, on the other hand, can easily be ascertained by measuring 
the gravity vector acting on the craft and comparing it to an imaginary reference 
vector at right angles to both the bow-stern and port-starboard axes of the vehicle. 
To perform this measurement task, we use an accelerometer.

At its simplest, an attitude or acceleration sensor is simply a pendulum. In fact, 
a reasonably useful two-dimensional attitude sensor can be constructed by simply 
taking a two-axis potentiometer assembly out of an off-the-shelf analog joystick, 
attaching a heavy weight to the joystick lever, and mounting the whole thing upside-
down so that the weighted joystick can swing around freely. (Pay attention to align 
the axes of the sensor with the axes around which the sensor is expected to rotate). 
In cases where fine accuracy is not essential and it is desirable to connect this sen-
sor directly to a PC, cannibalizing a joystick in this way is definitely the path of least 
resistance, not to mention an extremely fast way to construct a prototype. Apropos of 
the E-2 project, it is interesting to note that attitude and depth control in torpedoes 
of World War II vintage were actually controlled using a mechanically interlinked 
system of a pendulum and a manometer.
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Despite its simplicity, there are a number of disadvantages to the simple pendu-
lum method—it is bulky, and friction in the potentiometers and joystick bearings 
tends to makes the device insensitive to small accelerations. A better solution for 
some applications is to use free-turning weights or gyroscopes on exquisitely low-fric-
tion bearings, with some sort of optical or magnetic scale read-out, but these sorts of 
machines are expensive and relatively high-maintenance. The modern solution to 
this design problem is an integrated MEMS (MicroElectroMechanical System) part 
such as the Analog Devices’ ADXL202 two-axis accelerometer. This particular de-
vice is only rated up to two gravities (approximately 19.7 ms–2) of acceleration. This 
makes it suitable for assessing the overall attitude of a body, but not terribly useful for 
more demanding tasks. For truly challenging tasks like measuring deceleration during 
a car crash, or rocket takeoff forces, you need (at the very least) a part rated for much 
higher accelerations.

Before we go any further, please note that this text talks specifically about the 
older ADXL202JQC (commercial temperature grade) and ADXL202AQC (in-
dustrial temperature grade) parts, which were available in a 14-lead ceramic SOIC 
package. This variant has been discontinued by Analog Devices in favor of a ceramic 
8-pin leadless chip carrier, the ADXL202JE (commercial) and ADXL202AE (indus-
trial). However, the older part is still available in distribution channels and is quite 
widely used in hobbyist type applications because of the relative ease with which it 
can be hand-prototyped.

The best way to prototype with either part is, of course, with a small PCB or 
the evaluation board for the part. If this is not possible (note that the EVB is ap-
proximately three times the cost of the bare part in single-piece quantities), then an 
acceptable alternative for the older SOIC part is to glue the sensor to the non-cop-
pered side of a piece of protoboard, and solder thin wires to the pins (wire-wrap type 
wire performs this duty very well). I prototyped the circuit in this book using this 
method; I used a two-part epoxy resin to glue the chip down. If you are using the 
more modern LCC part, however, life is more difficult. Here’s a picture of the older 
device (glued to a piece of prototype board), alongside a couple of samples of the 
LCC part, one of which has been turned upside-down to show the contact pattern on 
the underside. Those contacts are very fine gold deposits on the ceramic chip body; 
if you solder wires to them, you can quite easily pull the contacts right off the chip. 
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Nevertheless, if that’s your only prototyping option, it can be done—just be very 
careful not to apply any unnecessary stress, because those parts are expensive (about 
$15–20 each, in small quantities).

Mechanical package considerations of this sort aside, the ADXL202 is very easy 
to interface. The device outputs two square wave signals (one for each axis) with 
an identical period, T2, and a variable duty cycle with an on-time of T1. Note that 
although the two signals are guaranteed to have the same period, they are not guar-
anteed to start at the same time—they can have any amount of phase difference. The 
period can be configured from 1 to 10 ms by means of an external resistor (RSET in 
Analog Devices literature), selected according to the formula:

T2 = RSET/125000000,

where T2 is in seconds, and RSET is in ohms. I have chosen a 1M resistor, which 
gives us a nominal period of 8ms. Actual measurement of a real device in-circuit 
shows a period of 7.2ms, which is gratifyingly close to the mark. Rather than sketch 
the waveforms artificially, here is a picture of an actual scope trace showing both X 

Figure 3-8: Different ADXL202 variants.
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(bottom) and Y (top) outputs for an ADXL202JQC. The device generating these 
signals was flat on my desk, which is approximately horizontal with reference to the 
Earth’s surface.

Figure 3-9: ADXL202 output signals

The on-time period T1 (the “hump” in the waveforms in Figure 3-9) is nominally 
supposed to be 0.5 T2 when the acceleration on the axis in question is 0g. In practice, 
though, there is a wide deviation—as you can see from the measurements in Figure 
3-9, where the accelerometer was known to be approximately horizontal.

Following is the schematic for our circuit:
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The firmware supports only two command codes:

Mnemonic Value Description
ACL_CMD_READ_STATUS 254 Reads back six bytes of accelerometer 

status.
ACL_CMD_RESET 255 Performs a soft reset.

ACL_CMD_READ_STATUS returns three 16-bit words of status information; 
first, the measured value of T2, then the T1 value measured for the X axis, and finally 
the T1 value measured for the Y axis. The high-order byte is transmitted first. Ob-
serve that we don’t need to calibrate and transmit two copies of T2, since it is known 
(by design) to be identical for both axes.

The meat of this project is contained in the Timer 1 and pin-change interrupt 
handlers. The interrupt handler for overflows in Timer 1, which runs at the full CPU 
clock speed, merely increments a high-order counter byte, thereby extending Timer 
1’s range to 16 bits. This corresponds to a maximum measurable T2 of approximately 
18ms, with a theoretical resolution of 279 ns.

Figure 3-10: Accelerometer schematic
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;====================================================================
; Timer 1 interrupt
entry_tmr1:
  in r4, SREG

  inc r1

  out SREG, r4
  reti

;====================================================================
; I/O pin change interrupt
; The only valid sources of this interrupt are PB3, which is used as
; the 3-wire slave select line, PA6 (X-input) and PA7 (Y-input)
entry_iopins:
 in r3, SREG

 ; Grab current timer value in case we need it later
 in r22, TCNT1

 ; Get last value of shadow register
 lds r26, porta_shadow

 ; Scan X-input. First, handle the case if it is high.
 sbis PINA, PORTA_X
 rjmp x_is_low

 sbrc r26, PORTA_X
 rjmp test_y     ; No change. Test Y-input.

 ori r26, PORTA_X

 ; +ve edge detected on X. We need to calculate T2
 ; by subtracting last-edge from current timer, and adding X-T1  

  ; to that result.
 mov r21, r22    ; timer lo byte
 lds r25, xle_lo
 sub r21, r25    ; r21 = intermediate val lo byte
 mov r24, r1     ; timer hi byte
 lds r25, xle_hi
 sbc r24, r25    ; r24 = intermediate val hi byte
 lds r25, x_t1_lo
 add r21, r25
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 lds r25, x_t1_hi
 adc r24, r25
 sts t2_hi, r24
 sts t2_lo, r21

 rjmp update_x_edge

 ; X-input is low. Test for -ve edge.

x_is_low:
 sbrs r26, PORTA_X
 rjmp test_y

 ; -ve edge on X detected. We need to calculate X-T1
 ; by subtracting last-edge from current timer.
 mov r21, r22   ; timer lo byte
 lds r25, xle_lo
 sub r21, r25   ; r21 = T1 lo byte
 mov r24, r1      ; timer hi byte
 lds r25, xle_hi
 sbc r24, r25   ; r24 = T1 hi byte
 sts x_t1_hi, r24
 sts x_t1_lo, r21

 ; Update last-edge timestamp for X axis

update_x_edge:
 sts xle_hi, r1
 sts xle_lo, r22

 ; Scan Y-input - First, handle the case if it is high.

test_y:
 sbis PINA, PORTA_Y
 rjmp y_is_low

 sbrc r26, PORTA_Y
 rjmp test_spi   ; No change. Go to SPI test.

 ; +ve edge detected on Y. We need to start calculating Y-T1.
 rjmp update_y_edge

 
y_is_low:

 sbrs r26, PORTA_Y
 rjmp test_spi   ; No change. Go to SPI test.
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 ; -ve edge on Y detected. We need to calculate Y-T1
 ; by subtracting last-edge from current timer.
 mov r21, r22   ; timer lo byte
 lds r25, yle_lo
 sub r21, r25   ; r21 = T1 lo byte
 mov r24, r1      ; timer hi byte
 lds r25, yle_hi
 sbc r24, r25   ; r24 = T1 hi byte
 sts y_t1_hi, r24
 sts y_t1_lo, r21

 ; Update last-edge timestamp for Y axis

update_y_edge:
  sts yle_hi, r1
  sts yle_lo, r22

test_spi:
 in r26, PINA
 sts porta_shadow, r26

 ; Check state of SPI select line.
 sbic PINB, PORTB_SEL
 rjmp usi_disable

 ; If PB1 is already an output, don’t reset the USI. This  
  ; special code is necessary so accelerometer interrupts don’t  
  ; mess with partially complete USI transactions.

 sbic DDRB, PORTB_DO
 rjmp iopin_done

 ; SEL line is LOW. Enable and reset USI and switch PB1 to output
 ldi r23, FSMS_RXCMD
 ldi r26, $00
 out USIDR, r26   ; Empty USI data register
 out USISR, r26   ; Clear USI status (including clock count!)
 sbi DDRB, PORTB_DO ; set PB1 to output

 sbi USISR, USISIF  ; Clear start condition status
 sbi USISR, USIOIF  ; Clear overflow status
 sbi USICR, USIOIE  ; Enable USI overflow interrupts

 rjmp iopin_done
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 ; SEL line is HIGH. Disable USI and switch PB1 to input to take
 ; us off-bus

usi_disable:
 ; disable USI start and overflow interrupts

 cbi USICR, USISIE
 cbi USICR, USIOIE

 ; Disable output driver on PB1 (DO)
 cbi DDRB, PORTB_DO  ; set PB1 to input

iopin_done:
  out SREG, r3
  reti

Some averaging or filtering is advisable on the PC end of this equation. Here’s a 
simple program that takes out continuous readings and prints them to a single line 
on the console (you’ll find the sourcecode and makefile for this program in the accel 
directory of the sample source archive):

/*
 main.c
 
 Demonstration applet for E2BUS stepper interface code

 From “Open-Source Robotics and Process Control Cookbook”
 Lewin A.R.W. Edwards (sysadm@zws.com)
*/

#include <stdio.h>

#include “e2bus.h”

int main (int _argc, char *_argv[])
{
 unsigned char pkt[6];
 int i=0,j;

 // Open port
 if (E2B_Acquire()) {
  printf(“Error opening E2BUS.\n”);
  return -1;
 }
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 E2B_Reset();
 printf(“Reset complete, pausing...\n”);
 sleep(1);
 printf(“XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX”);
 while (1)
 {
  usleep(750000);
  pkt[0]=ACL_CMD_READ_STATUS;
  E2B_Tx_Bytes(pkt, 1, 0, 0);
  E2B_Rx_Bytes(pkt, 6, 0, 1);
  for (j=0;j<37;j++) printf(“\b”);
  printf(“Sample %-08.8X status %-02.2X%-02.2X,”
     ”%-02.2X%-02.2X,%-02.2X%-02.2X”,
     i, pkt[0],pkt[1],pkt[2],pkt[3],pkt[4],pkt[5]);
  fflush(stdout);
  i++;
 }

 return 0;
}

If you run this program, you’ll see that even if the accelerometer is stationary, 
there’s a certain amount of jitter in the output values. This is partly due to the irritat-
ingly analog nature of the Universe, partly due to vibration of the accelerometer, and 
partly due to the fact that serial interrupts can slightly skew the time measurement 
task. For example, here is a sequence of three consecutive readings from my proto-
type:

6821, 2C0A, 3AD6

67D7, 2BFC, 3AF0

67E9, 2C46, 3A2C

Because this phenomenon is unavoidable, some averaging or filtering is desirable 
before working with the sensor output. Simple averaging is acceptable, but a Kalman 
filter is better; for more information on this topic, I recommend the reference du 
Plessis, R.M., 1967; Poor man’s explanation of Kalman Filters or How I stopped worrying 
and learned to love matrix inversion, ISBN 0-9661016-0-X.
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3.7 RS-422—Compatible Indicator Panel

This circuit is a bit of a departure from the rest of the content in this chapter, in-
asmuch as the appliance I describe here is not part of the E-2 project. The reason I 
have included this section is because the circuit and firmware illustrate several rel-
evant and interesting points, including multidrop differential serial communications 
over relatively long distances and using the AVR’s internal RC oscillator instead of 
an external crystal. This application also provides a nice example of how the sorts of 
systems in this book can be used in real-world situations.

I developed this device for a shipping center application used in two of a com-
pany’s warehouses. The products shipped from these centers consist of standard 
and customized kits of individually-packaged parts. A number of conveyor belts 
run through the warehouse area, past the various bins of parts. At the “start” end of 
each conveyor belt is a large matrix of 416 pigeonholes arranged as 26 rows by 16 
columns. Before each shift, administrative staff stock these pigeonholes with pick-
lists describing different standard subassemblies. Each pigeonhole has an indicator 
lamp (actually, an LED) over it. A central computer, connected to the company’s 
order processing system, controls all these indicator lamps over a piece of Category 
5e cable that runs approximately 800 feet from the computer room to the warehouse 
floor; the indicator panels show workers along the conveyor belt which pick-lists to 
gather for an individual order as it progresses down the line. As initially installed, all 
the panels were to repeat a single set of commands, however it was desired to leave 
the functionality open-ended so that in future, more panels could be added to the 
same bus, but show a different set of signals (to process multiple orders simultane-
ously on the same line). For this reason, each panel has an 8-bit address; commands 
coming down the wire have an address field indicating the intended recipient. It’s 
legal for multiple indicators to have the same address if you want them to repeat 
duplicate data.
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Following is the schematic for our circuit:

Figure 3-11: Schematic for RS-422-compatible indicator panel

The actual LEDs are omitted from this schematic for clarity’s sake; they are wired 
in a simple matrix with the cathodes connected to the ULN2803s driving the col-
umn lines, and the anodes connected to the row lines.

I chose an ATmega16 part for this design purely for the large I/O and memory 
budget; .although it would be possible to implement the project in a much smaller 
part, it was simply convenient and quick to pick the mega16. You’ll observe that this 
project uses the AVR’s on-chip clock generator rather than relying on an external 
crystal. Note that the internal RC oscillator in the AVR parts is factory-calibrated 
with a device-specific “fudge factor.” This fudge factor is different for each supported 
oscillator speed. The specific calibration constants for each frequency are stored in a 
nonuser-accessible (probably OTP) area of the micro, and can be read out with the 
chip signature. They cannot be read directly by code running on the target device; 
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you can only read them out with a device programmer like the STK500. You’ll 
notice that the code I provide is set up for 1 MHz operation, but that I have also 
included commented-out initialization code for 8 MHz operation. If you want to run 
the project at 8 MHz, you need to do slightly more than just uncomment the faster 
initialization code, though—you need to make sure the chip is correctly initialized 
with the right oscillator fudge factor for 8 MHz. It’s something of a design shortcom-
ing in the AVR series, but when the device is configured for any RC oscillator mode, 
it automatically loads the 1 MHz calibration factor  (the first calibration byte) into 
the processor’s oscillator calibration register, regardless of what RC oscillator speed you 
have selected. If uncorrected, this can lead to considerable clock deviation from the 
expected speed. The oscillator might not even be reliable if it’s grossly miscalibrated.

Atmel’s official suggestion is to use an EEPROM or program flash location to 
store the factory calibration value, and copy it into the oscillator calibration regis-
ter at power-up. If you run AVR Studio, select Tools—STK500/AVRISP/JTAG ICE 
—STK500/AVRISP/JTAG ICE, and click the Advanced tab, you’ll be able to read 
the signature bytes out of the chip using the Read Signature button. Select the de-
sired speed from the drop-down list in the Oscillation Calibration byte section, and 
click “Read Cal. Byte.” The appropriate calibration value will appear in the Value: 
box. (Remember—this value is specific to the individual chip you’re looking at; you 
can’t reuse this calibration value in a different chip). You can now select a flash or 
EEPROM address using the fields under Write Address, and click “Write to Memory” 
to copy the calibration byte into flash or EEPROM, as illustrated by the following 
two screenshots:
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While we’re on the topic of burning chips, note that the ATmega16 ships with 
JTAG enabled by default. You need to set the fuses to disable JTAG in order to free 
up the associated I/O pins for use as general-purpose I/O in our application.

The indicator panel’s serial interface operates at 2400 bps with 8 data bits, no 
parity and one stop bit. This panel is operated using a series of command strings, 
formatted as follows (note that these strings are case-sensitive):

■ An attention character, ‘!’.

■ An address character indicating which board(s) should hear the message. 
The code in this book has been hardcoded to use address ‘A’ (65). Refer to 
the sourcecode to change the unit address. If multiple indicator panels on the 
same bus have the same address, they will all respond to messages at the same 
time.

Figure 3-12: 
Select the desired AVR clock speed

Figure 3-13: 
Read the appropriate calibration byte
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■ A command character, which is one of: ‘R’ (reset; turn off all LEDs), ‘1’ (turn 
on specified LED), ‘0’ (turn off specified LED), ‘B’ (turn on blinking for a 
specified column), ‘b’ (turn off blinking for a specified column), or ‘T’ (start 
test mode; test mode runs until canceled with the ‘R’ command).

■ The 1 and 0 commands require two additional bytes—a column identifier 
(A~P, corresponding to columns 0 through 15) and a row identifier (A~Z).

■ The B and b commands require one additional byte identifying the column to 
blink (A~P, corresponding to columns 0 through 15).

Example command strings:

!AR - Turns off all LEDs on unit with address A.

!A1BG - Turns on the LED (on unit with address A) at column 1, row G.

!AT - Starts test mode on unit with address A.

!A0FK - Turns off the LED (on unit with address A) at column 5, row K.

!ABD - Starts blink mode for column 3 (on unit with address A).

!AbD - Stops blink mode for column 3 (on unit with address A).

Since this is the most complex project, by code volume, included with this book, 
I am detailing the entire sourcecode in the text.

;====================================================================
; Miscellaneous constants
.equ MY_ID    =65  ; ID number of this unit (default ‘A’)
.equ BLINK_RATE  =30  ; Frames per blink-toggle

;====================================================================
; Special serial Rx characters
.equ CHR_ATTENTION  =$21  ; !
.equ CHR_RESET   =$52  ; R
.equ CHR_TESTMODE  =$54  ; T
.equ CHR_LEDOFF   =$30  ; 0
.equ CHR_LEDON   =$31  ; 1
.equ CHR_BLKON   =$42  ; B
.equ CHR_BLKOFF   =$62  ; b
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;====================================================================
; States for serial Rx state machine
.equ SRX_WAIT   =0   ; Wait for attention character
.equ SRX_ID   =1   ; Wait for unit ID
.equ SRX_GETCMD  =2   ; Wait for command byte
.equ SRX_ON_GETCOL =3   ; Wait for column byte for LED-on command
.equ SRX_ON_GETROW =4   ; Wait for row byte for LED-on command
.equ SRX_BLKON_COL =5   ; Wait for column for blink-on command
.equ SRX_BLKOFF_COL =6   ; Wait for column for blink-off command
.equ SRX_OFF_GETCOL =7   ; Wait for column byte for LED-off command
.equ SRX_OFF_GETROW =8   ; Wait for row byte for LED-off command

;====================================================================
; Bits in flags
.equ FLAG_BLINK  =7   ; Blink flag, toggled every BLINK_RATE 
frames
.equ FLAG_TESTMODE =6   ; Nonzero = unit in test mode

;====================================================================
; Variables in SRAM
.DSEG
.ORG 0x60
currentline: .BYTE 1   ; Column# currently being driven
frameptr_lo: .BYTE 1   ; Pointer to frame data for current column
frameptr_hi: .BYTE 1
framecounter: .BYTE 1   ; Incremented each frame refresh
flags:    .BYTE 1
serialmode:  .BYTE 1   ; serial FSM code
tmpcol:   .BYTE 1   ; Temporary holding buffer for column#

.ORG 0x80
; BUGBUG Do not move this structure. The arithmetic that works with  
; it will break if this 64-byte structure crosses a 256-byte boundary. 
; For safety, leave it here.
; Each table entry is formatted as follows:
; BYTE  -  A-H
; BYTE  -  I-P
; BYTE  -  Q-X
; BYTE  -  Z (bit 7), Y (bit 6), blink (bit 0) - other bits reserved, 
leave 0
framedata:  .BYTE (4*16) ; Each 4 bytes is a column of LED data
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;====================================================================
; Interrupt vectors
; This must be the first thing in the executable flash image.
.CSEG
.ORG 0x0000
  jmp  entry_reset  ;Reset
  jmp  bad_irq   ;External interrupt request 0
  jmp  bad_irq   ;External interrupt request 1
  jmp  bad_irq   ;Timer/Counter2 Compare Match
  jmp  bad_irq   ;Timer/Counter2 Overflow
  jmp  bad_irq   ;Timer/Counter1 Capture Event
  jmp  bad_irq   ;Timer/Counter1 Compare Match A
  jmp  bad_irq   ;Timer/Counter1 Compare Match B
  jmp  bad_irq   ;Timer/Counter1 Overflow
  jmp  tc0_overflow   ;Timer/Counter0 Overflow
  jmp  bad_irq   ;Serial transfer complete
  jmp  usart_rx   ;USART Rx Complete
  jmp  bad_irq   ;USART data register empty
  jmp  bad_irq   ;USART Tx Complete
  jmp  bad_irq   ;ADC conversion complete
  jmp  bad_irq   ;EEPROM ready
  jmp  bad_irq   ;Analog comparator
  jmp  bad_irq   ;Two-wire serial interface
  jmp  bad_irq   ;External interrupt request 2
  jmp  bad_irq   ;Timer/Counter0 Compare Match
  jmp  bad_irq   ;Store Program Memory Ready

;====================================================================
; Invalid exception handler
bad_irq: ldi r16, $BB
   out PORTA, r16
   rjmp bad_irq

;====================================================================
; Power-on reset entry point
entry_reset:
  ; Initialize stack pointer to top of RAM
  ldi r16, high(RAMEND)
  out SPL, r16
  ldi r16, low(RAMEND)
  out SPH, r16

  ; Configure ports A,B,C as outputs
  ldi r16, $FF
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  out DDRA, r16
  out DDRB, r16
  out DDRC, r16

  call clear_outputs

  ; clear status flags and serial FSM
  ldi r16, $00
  sts flags, r16
  sts serialmode, r16

  ; Configure PD1 (TxD) as output
  ldi r16,$02
  out DDRD, r16

;8MHz setup code
;  ldi r16, $CF
;  out UBRRL, r16
;  ldi r16, $00
;  out UBRRH, r16

  ; 1MHz clock setup
  ; Set up USART for 2400bps asynchronous mode
  ; Formula for calculating UBRR in this case is fosc/(16 * baud) - 1
  ldi r16, $19
  out UBRRL, r16
  ldi r16, $00
  out UBRRH, r16

  ; clear USART status
  out UCSRA, r16

  ; configure control/status register B
  ldi r16, (1 << RXCIE) + (1 << RXEN) + (1 << TXEN)
  out UCSRB, r16

  ; configure control/status register C
  ; 8 bits, no parity, 
  ldi r16, (1 << URSEL) + (1 << UCSZ1)  + (1 << UCSZ0)

  ; set frame pointer to 0 and clear frame counter
  ldi r16, $00
  sts currentline, r16
  sts framecounter, r16
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  ; Point X at start of framebuffer data
  ldi r26, low(framedata)
  ldi r27, high(framedata)
  sts frameptr_lo, r26
  sts frameptr_hi, r27

  ; clear timer counter
  ldi r16, $00
  out TCNT0, r16

  ; clear timer 0 interrupt flag
  ldi r16, $00
  out TIFR, r16

; 8MHz setup code
;  ldi r16, $03     ; /64 prescaler
;  out TCCR0, r16

  ; 1MHz setup code
  ; set up timer 0 for fosc/8 (=125kHz)
  ; This corresponds to a line rate of ~977Hz, frame rate ~61Hz.
  ldi r16, $02     ; /8 prescaler
  out TCCR0, r16

  ; enable timer 0 interrupt
  ldi r16, (1 << TOIE0)
  out TIMSK, r16

  ; enable interrupts
  sei

  call clearscreen

The USI-complete interrupt handles all the video write tasks:

;====================================================================
; ISR
; Serial Rx complete
usart_rx:
  push r27
  push r26
  push r18
  push r17
  push r16
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  push r0
  in r0, SREG

  ; Get received byte from USART
  in r16, UDR

  ; Act on the byte depending on the FSM state
  lds r17, serialmode

  cpi r17, SRX_WAIT
  brne rx_notwait

  ;==============================================================
  ;Check for attention character
  cpi r16, CHR_ATTENTION
  breq rx_atn
  rjmp rx_done
rx_atn:

  ; Attention char received! Now wait for ID
  ldi r17, SRX_ID
  sts serialmode, r17
  rjmp rx_done

  ;==============================================================
  ;Check for target ID
rx_notwait: cpi r17, SRX_ID
  brne rx_notid

  ; If this isn’t our target, wait for the next command frame
  cpi r16, MY_ID
  breq targeted
  rjmp rx_finish
targeted:
  ; If we HAVE been targeted, we next expect a command byte
  ldi r17, SRX_GETCMD
  sts serialmode, r17
  rjmp rx_done

  ;==============================================================
  ;Get command byte
rx_notid: cpi r17, SRX_GETCMD
  brne rx_notcmd

  ; COMMAND - Reset



100

Chapter 3

  cpi r16, CHR_RESET
  brne cmd_notres
  lds r16, flags
  andi r16, ~(1 << FLAG_TESTMODE)
  sts flags, r16
  call clearscreen
  rjmp rx_finish

  ; COMMAND - Test mode
cmd_notres: cpi r16, CHR_TESTMODE
  brne cmd_nottest
  lds r16, flags
  ori r16, (1 << FLAG_TESTMODE)
  sts flags, r16
  rjmp rx_finish

  ; COMMAND - Blink on
cmd_nottest: cpi r16, CHR_BLKON
  brne cmd_notblkon
  ldi r17, SRX_BLKON_COL
  sts serialmode, r17
  rjmp rx_done

  ; COMMAND - Blink off
cmd_notblkon: cpi r16, CHR_BLKOFF
  brne cmd_notblkoff
  ldi r17, SRX_BLKOFF_COL
  sts serialmode, r17
  rjmp rx_done

  ; COMMAND - LED on
cmd_notblkoff: cpi r16, CHR_LEDON
  brne cmd_notledon
  ldi r17, SRX_ON_GETCOL
  sts serialmode, r17
  rjmp rx_done

  ; COMMAND - LED off
cmd_notledon: cpi r16, CHR_LEDOFF
  brne cmd_notledon
  ldi r17, SRX_OFF_GETCOL
  sts serialmode, r17
  rjmp rx_done
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cmd_notledoff:

  rjmp rx_finish

  ;==============================================================
  ;Get column byte for BLINK ON
rx_notcmd: cpi r17, SRX_BLKON_COL
  brne rx_notblkon_col
  subi r16, $41     ; normalize column
  andi r16, $0F
  lsl r16       ; multiply by 4
  lsl r16
  ldi r26, low(framedata)
  ldi r27, high(framedata)
  add r26, r16
  inc r26
  inc r26
  inc r26
  ld r16, X
  ori r16, $01
  st X, r16
  rjmp rx_finish

  ;==============================================================
  ;Get column byte for BLINK OFF
rx_notblkon_col:cpi r17, SRX_BLKOFF_COL
  brne rx_notblkoff_col
  subi r16, $41     ; normalize column
  andi r16, $0F
  lsl r16       ; multiply by 4
  lsl r16
  ldi r26, low(framedata)
  ldi r27, high(framedata)
  add r26, r16
  inc r26
  inc r26
  inc r26
  ld r16, X
  andi r16, $fe
  st X, r16
  rjmp rx_finish



102

Chapter 3

  ;==============================================================
  ;Get column byte for LED ON
rx_notblkoff_col:cpi r17, SRX_ON_GETCOL
  brne rx_noton_col
  subi r16, $41    ; normalize column
  andi r16, $0F
  sts tmpcol, r16
  ldi r17, SRX_ON_GETROW
  sts serialmode, r17
  rjmp rx_done

  ;==============================================================
  ;Get row byte for LED ON and switch LED on
rx_noton_col: cpi r17, SRX_ON_GETROW
  brne rx_noton_row
  subi r16, $41    ; normalize row

  ; First calculate column RAM offset
  lds r17, tmpcol
  lsl r17      ; multiply by 4
  lsl r17
  ldi r26, low(framedata)
  ldi r27, high(framedata)
  add r26, r17

  ; Does desired LED lie in the current byte?
  cpi r16, $08
  brsh on_b2     ; no->

  ldi r17, $01
b1_l: cpi r16, $00
  breq on_done
  lsl r17
  dec r16
  rjmp b1_l

on_b2:inc r26      ; Seek to next byte in framebuffer
  subi r16, $08    ; Chop off 8 from row#
  cpi r16, $08
  brsh on_b3

  ldi r17, $01
b2_l: cpi r16, $00
  breq on_done
  lsl r17
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  dec r16
  rjmp b2_l

on_b3:inc r26      ; Seek to next byte in framebuffer
  subi r16, $08    ; Chop off 8 from row#
  cpi r16, $08
  brsh on_b4

  ldi r17, $01
b3_l: cpi r16, $00
  breq on_done
  lsl r17
  dec r16
  rjmp b3_l

  ; Rows Y and Z take special handling.
on_b4:inc r26
  subi r16, $08
  cpi r16, $00
  breq on_ry
  cpi r16, $01
  breq on_rz

  rjmp rx_finish    ; Column out of range.

on_ry:  ldi r17, $40
  rjmp on_done

on_rz:  ldi r17, $80
  rjmp on_done

  ; Finally we’ve finished this fandango and we write the video 
byte
on_done: ld r16, X
  or r16, r17
  st X, r16
  rjmp rx_finish

  ;==============================================================
  ;Get column byte for LED OFF
rx_noton_row: cpi r17, SRX_OFF_GETCOL
  brne rx_notoff_col
  subi r16, $41    ; normalize column
  andi r16, $0F
  sts tmpcol, r16
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  ldi r17, SRX_OFF_GETROW
  sts serialmode, r17
  rjmp rx_done

  ;==============================================================
  ;Get row byte for LED OFF and switch LED off
rx_notoff_col: cpi r17, SRX_OFF_GETROW
  brne rx_notoff_row
  subi r16, $41    ; normalize row

  ; First calculate column RAM offset
  lds r17, tmpcol
  lsl r17      ; multiply by 4
  lsl r17
  ldi r26, low(framedata)
  ldi r27, high(framedata)
  add r26, r17

  ; Does desired LED lie in the current byte?
  cpi r16, $08
  brsh off_b2     ; no->

  ldi r17, $01
ob1_l:  cpi r16, $00
  breq off_done
  lsl r17
  dec r16
  rjmp ob1_l

off_b2:  inc r26    ; Seek to next byte in framebuffer
  subi r16, $08    ; Chop off 8 from row#
  cpi r16, $08
  brsh off_b3

  ldi r17, $01
ob2_l:  cpi r16, $00
  breq off_done
  lsl r17
  dec r16
  rjmp ob2_l

off_b3:  inc r26    ; Seek to next byte in framebuffer
  subi r16, $08    ; Chop off 8 from row#
  cpi r16, $08
  brsh off_b4



105

Some Example Sensor, Actuator and Control Applications and Circuits (Hard Tasks)

  ldi r17, $01
ob3_l:  cpi r16, $00
  breq off_done
  lsl r17
  dec r16
  rjmp ob3_l

  ; Rows Y and Z take special handling.
off_b4:  inc r26
  subi r16, $08
  cpi r16, $00
  breq off_ry
  cpi r16, $01
  breq off_rz

  rjmp rx_finish    ; Column out of range.

off_ry:  ldi r17, $40
  rjmp off_done

off_rz:  ldi r17, $80
  rjmp off_done

  ; Finally we’ve finished this fandango and we write the video byte
off_done: ld r16, X
  ldi r18, $FF
  eor r17, r18
  and r16, r17
  st X, r16
  rjmp rx_finish

rx_notoff_row:

  rjmp rx_done

  ; Finish transaction, return to SRX_WAIT
rx_finish: ldi r17, SRX_WAIT
  sts serialmode, r17

  ; Clean up and exit ISR
rx_done:
  out SREG, r0
  pop r0
  pop r16
  pop r17
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  pop r18
  pop r26
  pop r27
  reti

Video refresh functionality, including blinking of rows for which the blink bit is 
set, is handled in the timer 0 ISR:

;====================================================================
; ISR
; Timer/counter 0 overflow
tc0_overflow:
  push r27
  push r26
  push r21
  push r20
  push r19
  push r18
  push r17
  push r16
  push r0
  in r0, SREG

  ; Turn off all column drivers
  ldi r16, $00
  out PORTA, r17
  nop
  ldi r16, $03 ; load zeros into U2, U3
  out PORTB, r16
  nop
  ldi r16, $00
  out PORTB, r16 ; disable load-enable for U2, U3

  ; Point X at framebuffer data
  lds r26, frameptr_lo
  lds r27, frameptr_hi

  ; Load data onto row drivers
  ld r18, X+
  out PORTA, r18
  nop
  ldi r19, $04
  out PORTB, r19
  nop
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  ldi r19, $00
  out PORTB, r19
  nop

  ld r18, X+
  out PORTA, r18
  nop
  ldi r19, $08
  out PORTB, r19
  nop
  ldi r19, $00
  out PORTB, r19
  nop
    
  ld r18, X+
  out PORTC, r18

  ld r18, X+
  mov r21, r18
  andi r18, $C0
  out PORTB, r18

  mov r20, r18

  ; Check blink mode for this row
  andi r21, $01
  breq noblink

  lds r21, flags
  andi r21, (1 << FLAG_BLINK)
  brne noblink
  rjmp column_done

  ; Enable column driver
noblink: lds r18, currentline

  sbrc r18, 3  ; If the column modulo 16 is >= 8...
  rjmp sc_hi  ; ->

  ori r20, $01 ; Low bits are strobed with LE0
  rjmp sc_calc

sc_hi:ori r20, $02 ; High bits are strobed with LE1
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sc_calc: andi r18, $07 ; mask off high bit of column#

  ; Shift left (R1) times to get the desired column latch byte
  ldi r17, $01
sc_c_lp: cpi r18, 0
  breq sc_c_done
  lsl r17
  dec r18
  rjmp sc_c_lp

sc_c_done:
  out PORTA, r17 ; put latch byte on PORTA
  nop
  nop
  out PORTB, r20
  nop
  nop
  andi r20, $C0
  out PORTB, r20

  ; Increment column
column_done: lds r18, currentline
  inc r18
  andi r18, $0F
  sts currentline, r18

  ; Have we wrapped around to column 0?
  cpi r18, $00
  brne rfsh_cont

  ; Yes! Reset pointer and update blink count
  ldi r26, low(framedata)
  ldi r27, high(framedata)
  lds r18, framecounter
  inc r18

  ; See if we’ve had a blink overflow
  cpi r18, BLINK_RATE
  brne blink_ok

  lds r18, flags
  ldi r19, (1 << FLAG_BLINK)
  eor r18, r19
  sts flags, r18
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  ldi r18, $00
blink_ok:
  sts framecounter, r18

rfsh_cont:

  ; store new frame pointer
  sts frameptr_lo, r26
  sts frameptr_hi, r27

  ; Force $80 into timer register to double frame-rate
  ldi r18, $80
  out TCNT0, r18

  out SREG, r0
  pop r0
  pop r16
  pop r17
  pop r18
  pop r19
  pop r20
  pop r21
  pop r26
  pop r27
  reti

This is the only project here that includes significant functionality in the main 
loop. This loop polls the test-mode bit, and when it is set by the serial ISR, the main 
loop calls the test-mode function. Test mode is provided mainly so the user can verify 
that all LEDs are wired and functioning correctly.  In test mode, each entire column 
is illuminated sequentially (0–15), then each entire row is illuminated sequentially 
(A–Z). Any miswired or shorted row/column lines will become immediately apparent.

;====================================================================
; Main program loop. Most of the functionality is actually in ISRs.
mainloop:
  lds r16, flags
  sbrs r16, FLAG_TESTMODE
  rjmp ml_nottest
  call testmode
  call clearscreen
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ml_nottest:
  rjmp mainloop

;====================================================================
; Test mode
; Destroys R16, R19, R26, R27
testmode:
  ; PHASE 1
  ; Walk a line of FFs across the (16) columns
  call clearscreen
  ldi r18, $10

  ; Point X at start of framebuffer data
  ldi r26, low(framedata)
  ldi r27, high(framedata)
  ldi r20, $FF
  ldi r21, $C0

w_f_0:
  lds r16, flags
  sbrs r16, FLAG_TESTMODE
  ret

  lds r16, framecounter
  cpi r16, $00
  brne w_f_0

  ; store new data
  call clearscreen
  st x+, r20
  st x+, r20
  st x+, r20
  st x+, r21

w_f_1:
  lds r16, flags
  sbrs r16, FLAG_TESTMODE
  ret

  lds r16, framecounter
  cpi r16, BLINK_RATE / 2
  brne w_f_1

  dec r18
  brne w_f_0
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  ; PHASE 2
  ; Walk a line of FFs down the (26) rows
  call clearscreen
  ldi r18, 26

  ; Initialize data
  ldi r28, $01
  ldi r29, $00
  ldi r30, $00
  ldi r31, $00

w_r_0:
  lds r16, flags
  sbrs r16, FLAG_TESTMODE
  ret

  lds r16, framecounter
  cpi r16, $00
  brne w_r_0

  ; store new data
  ldi r26, low(framedata)
  ldi r27, high(framedata)
  ldi r25, $10
s_c_lp:  st x+, r28
  st x+, r29
  st x+, r30
  st x+, r31
  dec r25
  brne s_c_lp

w_r_1:
  lds r16, flags
  sbrs r16, FLAG_TESTMODE
  ret

  lds r16, framecounter
  cpi r16, BLINK_RATE / 2
  brne w_r_1

  ; shift “on-bit” one left through all 26 bits
  cpi r28, $00
  breq t_b1
  lsl r28    
  brne t_done
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  ldi r29, $01
  rjmp t_done

t_b1:  cpi r29, $00
  breq t_b2
  lsl r29
  brne t_done
  ldi r30, $01
  rjmp t_done

t_b2:  cpi r30, $00
  breq t_b3
  lsl r30
  brne t_done
  ldi r31, $40
  rjmp t_done

t_b3:  lsl r31

t_done:
  dec r18
  brne w_r_0

  rjmp testmode

At the very end of the code, we have a couple of miscellaneous subroutines to 
clear video RAM, and to reset all the output latches:

;====================================================================
; SUBROUTINE
; Clear ALL framebuffer RAM
clearscreen:
  push r27
  push r26
  push r18
  push r16

  ldi r18, $00
  ldi r16, (4*16)
  ldi r26, low(framedata)
  ldi r27, high(framedata)

clslp:  st x+, r18
  dec r16
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  brne clslp

  pop r16
  pop r18
  pop r26
  pop r27
  ret

;====================================================================
; SUBROUTINE
; Sets all output latches to LOW state (ie turn off row/col drivers)
clear_outputs:
  push r16

  ; Set output drivers for ports A,B,C low
  ldi r16, $00
  out PORTA, r16
  out PORTB, r16
  out PORTC, r16

  ; Latch zeros into U2,U3,U4,U5
  ldi r16, $0f
  out PORTB, r16
  nop
  ldi r16, $00
  out PORTB, r16

  pop r16
  ret





The Linux-Based Controller 
(A Soft Task)

4C H A P T E R

115

4.1 A Brief Introduction to Embedding Linux on PC Hardware

Before we start building an “embedded” distribution of Linux for our target platform, 
we need to formalize our goals for this system component. The requirements we 
define at this point will guide us in selecting our Linux components and determining 
how we construct the installation.

■ Almost any embedded application needs to have turnkey characteristics; it 
needs to start a specific program at power-on and continue executing until 
power-down. Interactive startup events (for example, “press a key to continue” 
or “please login now”) should be optional or nonexistent.

■ The time required between power-on and full system functionality should be 
minimized.

■ Unnecessary background tasks reduce overall performance, can only have 
a negative impact on reliability, and may even introduce other difficulties 
such as increased system power consumption or subtle security vulnerabili-
ties. Therefore, any software modules and interface layers not essential to the 
actual application should be pruned out.

■ Storage space and RAM are both usually going to be constrained. It is there-
fore desirable to configure installed software for the minimum possible “disk” 
and memory usage. (I put quotation marks around “disk” because the non-
volatile boot medium we use may in fact be some nonrotating storage device, 
such as flash memory).
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■ The major reason for bringing a large, complex operating system into our 
project is to facilitate the integration of off-the-shelf peripherals. Therefore, 
we need to select our various Linux software component versions for compat-
ibility with the largest range of common consumer-grade hardware.

In this book, we will concentrate on kernel version 2.4.24, which is included 
on the CD-ROM for your convenience. This is not the most recent kernel version 
available at the time of writing; nor is it the version most commonly associated with 
embedded Linux applications. The reason I have selected it is because it is the most 
recent stable version in the 2.4.x version stream18 . The previous major release (2.2.x) 
is very widely used in embedded applications today (particularly non-x86 Linux ap-
plications; ARM, MIPS, PowerPC, and so forth), but it is a less-than-ideal choice for 
us because the majority of ongoing maintenance work is currently aimed at 2.4.x and 
later kernels.

The latest 2.6.x kernels have greatly reduced interrupt latency (vs. 2.4.x) and other 
features highly desirable in embedded systems, but there have been some fairly major 
structural changes in these kernels. As a result, numerous third-party drivers (e.g.,  
LIRC and the drivers for Atmel-based USB WLAN adapters, to take two random but 
personally important examples) cannot, at the time of writing, be built for 2.6. In order 
to make this text as widely applicable as possible, and to avoid getting bogged down 
in descriptions of how to patch various drivers to work with the 2.6 kernel tree, I have 
chosen to ignore these newer kernels. You should be aware that 2.6 is the way of the 
future; please refer to the companion web site for this book, http://shoestring2.zws.com/, 
where I will post notes and comments on embedding kernel 2.6 in the context of this 
text.

In the next few sections of this chapter, I will describe how to build a bootable 
filesystem on a CompactFlash card, ready to start your embedded application auto-
matically at power-on. The exact same steps—perhaps with very minor modifications 
such as different target device name—can be used to prepare a variety of bootable 
media, incluing ZIP disks, USB “pen disks,” and other miscellaneous removable me-

 18 This is constantly changing. As this book was being reviewed, kernel 2.4.26 was released. Although 
more than likely everything I’ve written here will “just work” with 2.4.26, I thought it inadvisable 
to take the risk of rewriting this text at such a late date.
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dia (as long as your target system has BIOS support for booting from these devices). 
I’ll also show you how to build a bootable system restore CD-ROM that can be used 
to dump an entire system load onto a blank hard disk and make it bootable. If you’re 
shipping turnkey Linux systems that must boot off a hard drive, a system restore 
CD is virtually mandatory—it is a robust way of ensuring that even in a worst-case 
scenario, you won’t have to go out for field service calls or waste money shipping cor-
rupted units to and fro.

It is important to stress that the methods and aims we will describe in this 
chapter are not precisely the same as those for building traditional monolithic single-
processor systems running Linux. To take one example in particular, the run-time 
library we will be using to interface application code to the Linux kernel is the “full” 
version of glibc. Embedded applications would not normally use this very heavy run-
time; they would normally use a cut-down runtime such as uclibc. Deeply embedded 
projects would also be considerably more rigorous about eliminating cruft than the 
text you’re about to read. The emphasis I’m pushing is ease of assembly and, even 
more importantly, good compatibility with “desktop” Linux so you don’t have to 
delve too deeply into the mysteries of guru-level embedded Linux magic. If you want 
more detail about the subject matter of this chapter, an excellent place to start your 
further reading is the Linux from Scratch project at http://www.linuxfromscratch.org/. 
The companion book to that web site is “Linux from Scratch, Version 4.1,” ISBN 
0-9659575-6-X, published by Clearly Open. (That ISBN is for the book with com-
panion CD-ROM—a version without the CD-ROM is also available). Linux from 
Scratch covers a lot more territory than I will here, since they are concerned with 
providing you with enough information to build distributions with the complexity 
level of a complete desktop system.

4.2  Configuring the Development System and  
Creating Our Custom Kernel

One very useful side-effect of using a PC as the central system controller is that 
you can run all the development tools directly on the target hardware (or possibly 
a slightly expanded version of that hardware), eliminating the need for a complex 
cross-development system. The main reason I advocate doing this is because bit-
ter experience has taught me that the build and install process for some third-party 
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Linux drivers has only been tested in the “vanilla” case, that is, building and installing 
into the currently active system. Automatic configuration scripts that test for the avail-
ability of specific libraries and/or hardware features (for example, CPU instruction set 
extensions such as MMX, SSE, 3DNow! and so on) will also require coercion if you’re 
running them on a system other than the target hardware. Debugging these sorts of 
issues with cross-compiling and manual installation of these components is a waste of 
your time. Thus, I suggest that you start by building your SBC into a fully-configured 
PC by adding a keyboard, mouse, hard disk and CD-ROM drive,19  and perform all your 
kernel and utility compilation directly on the SBC. You should install Fedora Core 
with a custom configuration; don’t install XFree8620  or associated frippery (graphical In-
ternet tools, games, GNOME, KDE, etc.) unless you specifically want them. Otherwise, 
just install the core operating system, development tools, and kernel development. If 
you want an exact list of what to select in the install dialogs, here is a painstakingly 
exact description of how to navigate the installation process (note: this information is 
correct for Fedora Core 1 “Yarrow.” The reason I am spelling it out in such painstaking 
detail is so that you can be certain you’re working with the exact same system configu-
ration I was working with when I wrote and tested the code in this book):

■ Boot off the CD and type linux text to use the text-mode installer. Vagaries 
of the Geode graphics subsystem mean that the graphical installer probably 
will not work correctly.

■ Choose “Skip” to skip testing of installation media, and select “OK” in the 
welcome dialog.

■ Select “English,” then “us”.  Choose the type of mouse, if any, connected to 
your system. If you selected a serial mouse, indicate the port to which it is at-
tached (probably /dev/ttyS0).

19 You can actually buy some of the SBCs on our recommended hardware list preassembled in a box 
with a power supply, CD-ROM drive and hard disk. However, it’s much cheaper—as much as 50% 
cheaper – to put it together yourself. The system fits very elegantly into a housing from an external 
5.25″ disk or tape drive, if you happen to have one lying about.

20 If you install XFree86, the system will probably not boot correctly unless you first go into CMOS 
setup and ensure that the LCD resolution is set for 1024 × 768 and video memory size is set for 
4.0 MB. With certain older BIOS versions, you need to do these steps even if you’re not using the 
digital-output LCD port on the board.
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■ Accept the default monitor settings, and select “Proceed” in the warning 
dialog that follows.

■ If you’re installing on a hard disk that already contains a Linux installation, 
Fedora will ask you if you want to upgrade the existing installation, or reinstall. 
Select “Reinstall”.

■ Select the “Custom” installation type.

■ Select “Disk Druid” partitioning. The next dialog you see will be Disk Druid. 
How you partition your system is up to your own preference, but for this sort 
of application I normally create a 256 MB swap partition and use the remain-
der of the disk as the root partition. (No, this is not normally regarded as best 
practice; but unless you have special requirements, it’s the simplest partition-
ing scheme for this single-function development system). Always force your 
partitions to be primary partitions. After partitioning, you’ll probably get a 
dialog warning that swap space is going to be turned on immediately; just 
select “OK”.

■ Select “Use GRUB Boot Loader”. In the next four dialogs (all of which are 
titled Boot Loader Configuration), you should not need to specify any spe-
cial parameters; just select OK. This will install GRUB in the MBR, with no 
special options or password protection.

■ You now need to configure the built-in RTL8139 Ethernet adapter. Since the 
configuration we’re setting up now is only used for development, I suggest you 
leave it at the default settings, which activate the interface automatically on 
boot and attempt to acquire an IP address using DHCP.

■ In the next dialog (Hostname Configuration), you can either leave the set-
tings at defaults, or manually enter a hostname for this system.

■ Since this is a development system that should already be isolated from net-
work attacks, select “No firewall” in the Firewall dialog. Select “Proceed” in 
the warning dialog that will follow.

■ In the next dialog (Language Support), just select “OK”.
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■ In the Time Zone Selection dialog, select the timezone you’re working in and 
select “OK”.

■ Choose a root password and enter it twice in the Root Password dialog.

■ There will now be a LONG pause while the installer analyzes the list of 
installable packages. The system isn’t crashed; just be patient. Once the 
Package Group Selection dialog comes up, select only the following packages 
(deselect all others): “Editors,” “Text-based Internet,” “Windows File Server,” 
“Network Servers,” “Development Tools,” “Kernel Development,” and “Sys-
tem Tools.” Note that in some cases, when you press Space to enable an 
option, the system will become unresponsive for up to 30 seconds; this is the 
install script analyzing the packages you’ve selected. After you select OK in 
the Package Group Selection dialog, select OK in the “Installation to begin” 
dialog, select “Continue” in the Required Install Media dialog, and the install 
process will commence. At the end of the installation, select “Reboot” and 
you’re done.

The process I just described yields a system on which you can build and test your 
embedded kernel directly. You can also assemble your bootable CompactFlash image 
and write it to a CF card on this same piece of hardware, then test booting off it simply 
by altering the CMOS settings on the SBC—which is a big time-saver while you’re 
debugging CompactFlash startup issues. However, if you’re unwilling or unable to use 
the target SBC as your development system (for instance, if it’s physically installed into 
a piece of equipment and it’s difficult to attach development peripherals), there is an 
alternative method you can use. This method can be summarized as follows:

■ Take the source for the kernel version you intend to use on the SBC, and 
configure and build it for your development system.

■ Install the kernel and modules on your development system, and modify 
your bootloader so that it loads this kernel. For the sake of this discussion, 
I’ll assume that you named the active, booting kernel image “/boot/bzimage-
2.4.24”. Edit your bootloader’s configuration appropriately.

■ Reboot so that you’re running the same kernel version that you intend to use 
on the SBC.
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■ Archive the kernel and its configuration. You can back up the important parts 
of the active Linux environment simply with the command:

 tar cvfz /activekernel.tar.gz /lib/modules/* /boot/bzImage-2.4.24 
/etc/modules.conf

■ Clean up the kernel and module directories by executing the commands 
make clean in the kernel source directory and rm -rf /lib/mod-
ules/2.4.24 to remove the active kernel modules.

■ Configure the kernel for your SBC, build and install it. If you’re using the Ad-
vantech board or a compatible device, you can use the kernel configuration 
I have supplied on the CD-ROM. Don’t use the same path for the kernel 
image file (bzImage) as you’re using for the real kernel that boots your 
development system, or you might not be able to start the development 
system easily if something goes wrong and you have to reboot. I suggest you 
install the SBC-specific kernel as /boot/bzImage-sbc. If you’re using the mate-
rials supplied on the CD-ROM, here’s the exact set of commands you’ll need 
to execute:

 cd /usr/src 
 tar zxvf /mnt/cdrom/linux/linux-2.4.24.tar.gz 
 cd linux-2.4.24 
 cp /mnt/cdrom/linux/geode-config .config 
 make dep ; make bzImage ; make modules ; make modules_install 
 cp arch/i386/boot/bzImage /boot/bzImage-sbc

■ Configure, build and install any additional drivers you need (for example, 
LIRC, mentioned later in this text, drivers for WLAN devices, and so on).

■ Archive the SBC’s kernel configuration:

 tar cvfz /sbckernel.tar.gz /lib/modules/* /boot/bzImage-sbc /
etc/modules.conf

■ Immediately after you finish archiving up the completed kernel installation 
for the SBC, restore your development system’s bootable kernel set with the 
following commands: 



122

Chapter 4

rm -rf /lib/modules/2.4.24 

cd / 

tar zxvf activekernel.tar.gz

This way of doing things is not quite as desirable as development on the real 
hardware, because you still have to hand-tweak configuration files for applications 
and libraries that auto-configure for installed hardware. You may also have some 
(usually very minor) problems with module dependencies, requiring manual editing 
of the modules.dep file, and you obviously can’t actually test the kernel and drivers 
on your alien development hardware. However, this system does allow you to build 
the kernel and all the installable kernel modules in a reasonably robust and simple 
way. Note, by the way, that many installable driver packages place daemons, libraries, 
utilities and other files in various directories other than /lib/modules/kernelversion, 
and some of these packages modify startup scripts to load daemons automatically on 
boot. You’ll have to identify and copy these extra files and script modifications across 
to the SBC by hand.

The reason I advocate this somewhat tortuous process in lieu of performing a true 
“cross-build” (coercing install scripts to use a kernel build tree different from the active 
one reported by uname(1)) is because I have frequently encountered bugs in the scripts 
and makefiles for various third-party kernel drivers and other software, which only 
manifest if you are installing to a destination other than the current (booted) kernel 
directory. It would appear that most such drivers are developed and tested under the 
assumption that you will be building and installing the driver into the currently active 
environment. Rather than analyzing and testing the configure scripts and makefiles 
for each third-party driver on a case-by-case basis (and perhaps risking that a critical 
component won’t be transferred correctly to your target system), it is much simpler 
simply to build “live.” If you can’t or won’t build on a truly live installation on the 
real target hardware, the next best thing is to simulate, on your development PC, the 
same kernel environment that will be running on the SBC.

All of this complexity is avoided if you build your Linux environment directly on 
the target platform, so I reiterate: if at all possible, build up your SBC into a semi-
complete, usable system so you can build your software directly on the real hardware. 
It will save you a vast amount of time and frustration.
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4.3 The Linux Boot Process—Creating a Bootable CompactFlash Card

Let’s begin this section where your embedded application begins: with the power-
on boot process of the SBC and Linux. At power-on or hard reset, the BIOS probes 
attached hardware and builds a list of bootable devices. It refers to a boot priority 
table in ROM or nonvolatile CMOS RAM and scans available boot devices in the 
order specified in that priority table. For each device, the first sector on the disk is 
read into RAM and scanned for a boot signature. If the signature is found, the BIOS 
assumes the disk is bootable, and jumps into the bootsector code copy in RAM. This 
code, installed by the operating system’s partitioning or formatting utility, loads the 
remainder of the operating system, possibly in several stages. In a Linux system, this 
tiny snippet of bootstrap code is either a header prepended to the kernel itself (such 
a configuration has just enough intelligence to load the remainder of the kernel 
from consecutive sectors and jump into it), or the first stage of a bootloader program 
that can gather configuration information from various sources and handle a more 
complicated load process. In the case of a Linux installation, the bootloader loads 
at least the kernel image, and perhaps also an initial RAMdisk (initrd) image into 
memory before passing control to the kernel. The initial RAMdisk image is intended 
to contain modules, scripts and other data that may be required by the kernel be-
fore the real root filesystem can be mounted. It is normal for the on-disk copy of the 
image to be compressed with gzip(1). Once the initrd image is loaded into RAM, 
decompressed and mounted, the kernel spawns /sbin/init, which continues the boot 
process21 .

There are a myriad different possible ways to organize the boot process of a 
Linux system. When booting from a hard disk, it is usual to employ either LILO 
(LInux LOader) or grub—modern Linux distributions tend to favor grub. Both of 
these programs are powerful boot-manager applications capable of loading different, 
user-selected operating systems at boot time, offering simple password protection, 
operating system selection menus on the local console or a serial port, and numerous 

21 Please note that this is a considerable simplification. There is actually a handover point where the 
initial RAMdisk is destroyed and the real root filesystem is mounted, and there are several other 
possible steps and forks in the boot process. We won’t be dealing with all these options in our ap-
plication, because we will be running permanently out of the initial RAMdisk.
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other features. They’re not routinely necessary for an embedded application, though 
it is possible to use them on media other than hard disks if you want to. One ap-
plication where this sort of boot menu can be handy is if you want to provide some 
kind of emergency recovery facility where the user can boot the system in emergency 
mode and perform some sort of recovery or diagnostic operations. However, what we 
are trying to do (make a bootable CompactFlash card or CD-ROM) is more akin to 
preparing a bootable Linux floppy disk than a full-blown hard disk boot. In fact, in 
the case of the bootable CD-ROM, it’s almost exactly like a floppy disk.

The ancient and still somewhat documented method of preparing a bootable 
Linux kernel floppy is to patch (some might say, “mercilessly hack”) the kernel im-
age using the ancient and deprecated rdev(8) utility, then use the dd(1) utility to 
write the kernel image itself (bzImage) directly to a floppy disk, possibly followed by 
an initial RAMdisk image. If you’re searching the Internet for information on how 
to build bootable floppy disks, this method is likely to crop up high in your search 
results, but it’s a red herring. There are a few problems with it, and the main prob-
lem is this: After the kernel code starts executing, BIOS functionality is more or less 
completely preempted. This means that if you want the kernel to be able to load an 
initial RAMdisk, it either has to be on an actual, separate floppy disk, or it has to 
be small enough to fit right after the kernel image on the first floppy disk. As kernel 
sizes have increased, it has become close to impossible to fit everything needed in 
a kernel (typically as much as 700K) and initial root filesystem onto a single floppy 
disk. Thus, it’s unreasonably difficult to make, say, a bootable CD-ROM using this 
method, because as soon as the kernel starts executing and goes looking for its initial 
RAMdisk image (on a second floppy disk), it will try to load it off actual floppy sec-
tors instead of going through the BIOS’s emulated floppy-on-CD-ROM layer, and the 
boot process will fail.

Another way of constructing a bootable medium is to format your device, or a 
portion of it, as FAT, make it bootable with your choice of DOS versions, and cre-
ate an AUTOEXEC.BAT that uses the LOADLIN utility to load a kernel and initial 
RAMdisk. LOADLIN was popular for making “Start Linux now!” icons on systems 
running Windows 3.x through 98, because it allows you to start Linux directly from 
a DOS-based operating system without needing to reboot. It also allows you to do 
tricky things like having Linux on a secondary drive (perhaps a removable drive) 
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with no footprint at all on your main Windows drive—and furthermore, you don’t 
need to worry about Windows or a bootsector virus accidentally wiping out your 
LILO or grub installation. As long as you can boot Windows, you can boot Linux. 
The downside to the DOS + LOADLIN method of doing things, from our perspec-
tive, is that it requires a whole throwaway operating system kernel just to act as a 
bootloader. This is an unnecessary waste of flash space, and it also violates the uni-
versal common sense design rule of eliminating software layers not actually necessary 
for the application at hand.

As a result, we’re going to use the SYSLINUX bootloader in our system. SYS-
LINUX is a beautifully small and simple piece of software. It consists of an installer 
utility (syslinux under Linux, SYSLINUX.EXE under DOS/Windows), a small loader 
module, and a kernel and initial RAMdisk image that you supply. The function of 
the syslinux utility is basically the same as the “/s” switch to the DOS FORMAT 
command; it makes the target media bootable. Instead of installing the MS-DOS 
IO.SYS, MSDOS.SYS and COMMAND.COM files, however, syslinux copies across 
its own loader module, which is called LDLINUX.SYS. The loader module examines 
and executes the configuration file SYSLINUX.CFG, which is a plain text file (in 
the root directory of the boot medium) instructing SYSLINUX which kernel to load, 
what options to pass it, and what initial RAMdisk to load.

Once the kernel and initial RAMdisk are loaded, a “normal” Linux distribution 
will mount the real root filesystem (usually a hard disk—sometimes an NFS share-
point or some other sort of device) and discard the contents of the initial RAMdisk. 
In our embedded application, however, we’re going to run with a RAM-based root 
filesystem. This minimizes wear on the flash media, and also improves system reliabil-
ity (since we’re never writing any changes to the on-disk copy of our root filesystem, 
it is always a known-good start point). Whether running the root filesystem out of 
RAM or from some other device, the next thing the kernel does is to run /sbin/init 
to process system startup scripts and bring up whatever network connections, device 
drivers and daemons you wish to have running on the system.

Figure 4-1 summarizes just a few of the possible paths we could travese to start up 
our Linux system, including the methods described above. We are going to follow the 
path that goes from BIOS to SYSLINUX to kernel, and then directly to /sbin/init.
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Figure 4-1: Some possible Linux boot paths

By the way, this is an appropriate moment to point out why it’s extremely desir-
able to use FAT format on your bootable CompactFlash card. The most obvious 
reason is that Windows can read and write it directly. This makes field-upgrades of 
firmware much easier than they would be if you were using a Linux-specific filesys-
tem. Instead of having to write, or at least deploy, a disk-imaging utility to your users, 
you can simply email them new kernel and initrd files, and tell them to use a regular 
USB CompactFlash reader to copy the new files onto their existing card. Another 
related benefit is that any logged data your embedded appliance cares to write to the 
card will be accessible directly by Windows users, without requiring any special drivers.

A more subtle reason for using FAT is that, by and large, removable flash media 
are designed with the assumption that FAT will be the filesystem in use. The exact 
implications of this are rather “gray” (i.e., implementation- and situation-specific), 
but for example, many NAND flash devices—primarily SmartMedia, but also some 
CompactFlash cards—have a low-level format specification that specifies a 1:1 cor-
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respondence between FAT clusters and erasable flash blocks. Using the correct FAT 
format for your particular card size results in far fewer erase-write cycles, thereby 
extending the operational life of the card.

Note: If you are using extremely small CompactFlash media (less than 16 MB 
in size), you may encounter problems using mkfs (or, more strictly speaking, mkfs.
msdos) to format the card; you will receive an error that the volume is too small to 
create a filesystem. I have not found a fully satisfactory workaround for this problem. 
The easiest way to avoid the problem is to use some other appliance or operating 
system—Windows or a digital camera, for instance—to format the card. You can also 
use the mformat(1) command, from the mtools package, to format the card properly.

Now that I’ve outlined to you the combination of software we intend to use, let’s 
actually install it on the card. I’ll assume you are doing this on an actual PCM-5820 or 
similar SBC, where the CompactFlash slot is wired in true-IDE mode, configured as the 
master device and connected to the secondary IDE interface; i.e., at /dev/hdc22 . I’ll also 
assume that the card is already partitioned and formatted as FAT12, FAT16 or FAT32 
(this will be true of a brand-new card out of the box). The sequence of steps to follow is:

1. Install SYSLINUX on the card: syslinux /dev/hdc1.

2. Mount the card so we can access it: mount /dev/hdc1 /mnt.

3. Copy the Linux kernel across: cp /boot/bzImage-sbc /mnt/LINUX.

4. Create a text configuration file called SYSLINUX.CFG in the root of the 
card (/mnt/SYSLINUX.CFG). A suggested configuration file might be simply:

 DEFAULT LINUX initrd=INITRD.IMG root=/dev/ram

 You can also add other kernel parameters to this file—for instance, you could 
redirect the console to a serial port (console=/dev/ttyS0), specify a different 
video startup mode (vga=mode-number), and so on.

5. Unmount the card: umount /mnt.

6. The card is now bootable (though not usefully so—read on!).

22 Keep in mind that true-IDE mode does not support hot-swapping. You must power off the system 
before inserting or removing CompactFlash cards.
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By the way, the filename capitalization I’ve used isn’t mandatory—SYSLINUX 
won’t care—but I’ve explicitly used capitals here in case you happen to mount the 
card with VFAT long filename support, which also includes support for mixed-case 
filenames via some slightly tortured semantics.

We’re half-way to a hand-made standalone Linux system! Proceed to the next 
section for the other half of the puzzle. If you want to test what you have created so 
far, you can disable the hard drive in your SBC’s CMOS settings and let the system 
boot off the CompactFlash slot. You’ll see the usual kernel startup messages, followed 
by an error stating that the root filesystem couldn’t be mounted.

4.4 Creating a Root Filesystem for our Embedded System

At the end of the previous section, we had the system successfully booting off the 
CompactFlash card, at least as far as loading the kernel. This isn’t enough, though—
in order to do anything useful, we also need to build at least a basic root filesystem to 
live in the RAM disk.

In order to generate the root filesystem image, we need to be running with a 
kernel that supports the loopback device, so that we can mount and manipulate disk 
image files just as if they were physical storage devices. The kernel configuration I 
supplied for you on the CD-ROM has this support enabled. If you’re using a differ-
ent computer to build your Linux software, you may need to recompile your kernel 
and add loopback support; you’ll find it under “Block devices” in 2.4.x kernels, or in 
“Device Drivers—Block devices” in 2.6.x.

Let’s first create an empty file called /initrd.img, exactly 8 MB in size, to contain 
our root filesystem image. We use dd(1) to achieve this (dd is one of several *NIX 
commands that are apparently officially depreciated, but without which people don’t 
seem to be able to live):

dd if=/dev/zero of=/initrd.img bs=1k count=8192

Bear in mind that the entire disk image will be in RAM—so the larger you make 
it, the less heap will be available to your applications. Also consider that the version 
of the image file stored on the boot medium will be compressed with gzip. The kernel 
will load the entire image into RAM and decompress it before mounting it. The 
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larger you make your image file, the slower the boot process—though initrd decom-
pression isn’t usually a major time hog during boot. In any case, I chose the size 8 MB 
because it’s a convenient number, and because I happen to know that all the items 
I want to include will fit in there with plenty of space left over.  If you need to fine-
tune this more, some trial and error will be necessary.

With these considerations in mind, we next turn this empty file-o-nulls into a 
valid ext2fs filesystem image using mke2fs(8):

    echo y | mke2fs -m 0 -N 2000 /initrd.img

Note the options here. By default, 5% of every ext2 volume is reserved for the su-
peruser. We have no need of such multi-user frippery, so we turn that option off with 
-m 0. This isn’t absolutely necessary, but it’s a neatness issue, like securing intercon-
nect cables inside your device with zip-ties instead of leaving them flapping in the air. 
Secondly, and much more importantly, the ext2 filesystem is built on an inode table, 
the size of which is fixed at format-time. By default, mke2fs calculates the default 
number of inodes based on the volume size. For the tiny volumes you’ll be working 
with, the default numbers are almost certainly not going to be big enough, which will 
mean you’ll be unable to copy all the files you’re going to need—not because there is 
insufficient disk space, but because there are insufficient inodes to describe the files. 
The –N 2000 parameter forces the creation of 2000 inodes, which should be enough 
for us. If you encounter strange errors when copying files into the image, reformat it 
with a larger –N parameter and try again.

To digress slightly, this issue can easily be put in a perspective appropriate to FAT 
mavens. It is very closely analogous to DOS’s limitation that the root directory of a 
volume can only contain a fixed maximum number of entries, the number of which is 
set at format time (and is based on the cluster size—hence, indirectly, on the volume 
size). Attempt to create one too many files or subdirectories in the root directory of 
a FAT volume and you’ll get an error message, the exact unintelligibility of which 
depends on the operating system you’re running (Windows Explorer unhelpfully and 
inaccurately reports that the disk is full). This FAT misfeature can and does create 
technical support issues in embedded environments. It’s also why appliances like 
digital cameras always store their files inside a subdirectory—because subdirectories 
can be expanded indefinitely, up to available disk space.
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We’ve pulled together almost all the components we need. However, we’re still 
missing a bunch of little utilities that are essential to creating a Linux distribution; 
/sbin/init, a shell, and so on. Although we could simply pull the appropriate utilities 
out of our active desktop Linux distribution, this isn’t a very efficient or embedded-
friendly way of doing things. A much better answer is to use the busybox tool, which 
is designed specifically to fill in these gaps for embedded environments. Busybox is 
found in a large majority of embedded Linux distributions; it is an all-in-one program 
that includes the functionality of several dozen standard Linux command-line utili-
ties. Ingeniously, all these utilities are rolled into a single executable; you access the 
various goodies buried in the busybox program by creating multiple symlinks with 
different names. Busybox looks at _argv[0] and determines how to behave based on 
which symlink was used to invoke it. I have included busybox version 0.60.5 on the 
CD-ROM. Note that you can select which functional blocks are compiled into the 
main executable by editing the Config.h file in the busybox source directory. The 
configuration I used for this book is supplied for you on the CD-ROM as /linux/busy-
box-config.h.

Let’s start building the collection of files that will eventually comprise our root 
filesystem. (In the following discussion, I assume you will use /tmproot as the direc-
tory to assemble the new root filesystem). Before you start groaning at the amount 
of typing to be done, rest assured that I’ve done all the hard work for you—you can 
find the complete root filesystem in the file card-root.tar.gz in the root directory of 
this book’s CD-ROM. Untar this archive and you will be left with a directory called 
“tmproot” containing all the files required for the root filesystem described next.

To create such a filesystem from scratch, the first thing we need to do is create a 
collection of symlinks to busybox within the root hierarchy, and copy the busybox 
executable itself. This is the kind of tedious job you only ever need to do once. Cre-
ate a bin directory in /tmproot, and copy the busybox executable there. Here is a list 
of the items that need to be symlinked to it. Note that these paths are relative to 
the /tmproot directory—I suggest that you cd /tmproot/bin (or whatever directory 
you’re assembling) then ln -s [filename] ./busybox,  or for the items in /sbin, 
ln -s [filename] ../bin/busybox.
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/bin/ash

/bin/basename

/bin/cat

/bin/chgrp

/bin/chmod

/bin/chown

/bin/chroot

/bin/chvt

/bin/clear

/bin/cp

/bin/cut

/bin/date

/bin/dd

/bin/df

/bin/dirname

/bin/dmesg

/bin/du

/bin/echo

/bin/env

/bin/false

/bin/find

/bin/free

/bin/grep

/bin/gunzip

/bin/gzip

/bin/halt

/bin/head

/bin/id

/bin/kill

/bin/killall

/bin/linuxrc

/bin/ln

/bin/logger

/bin/ls

/bin/lsmod

/bin/mkdir

/bin/mknod

/bin/mkswap

/bin/more

/bin/mount

/bin/mv

/bin/pidof

/bin/poweroff

/bin/ps

/bin/pwd

/bin/reset

/bin/rm

/bin/rmdir

/bin/sed

/bin/sh

/bin/sleep

/bin/sort

/bin/swapoff

/bin/swapon

/bin/sync

/bin/tail

/bin/tar

/bin/test

/bin/touch

/bin/true

/bin/tty

/bin/umount

/bin/uname

/bin/uniq

/bin/uptime

/bin/wc

/bin/which

/bin/whoami

/bin/xargs

/bin/yes

/bin/zcat

/sbin/init

/sbin/klogd

/sbin/modprobe

/sbin/reboot

/sbin/swapoff

/sbin/swapon

/sbin/syslogd
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To support some applications we’re going to talk about later, you should also copy 
across a few files from your active Linux installation: /bin/eject, /sbin/fdisk, /sbin/
mke2fs, and /sbin/mkswap. More about those a little later.

The next thing we need to do is create a /dev directory containing entries for all 
the devices we’re likely to use. (This step could be avoided by compiling devfs sup-
port into the kernel, but devfs is not terribly well-supported yet and in my humble 
opinion is best avoided until it is universally embraced). There are two ways to create 
your /dev directory: the tidy way, and the easy way. The tidy way is to make a list of 
all the devices you know you’re going to use, and use mknod(1) to create exactly 
those entries—no more, no less. On a moderately complex system, however, this can 
be a REALLY tedious task, with a lot of trial-and-error testing later. The easy way is 
to cheat: cp -a the /dev directory from your development system into the filesystem 
image (cp -a /dev /tmproot), then delete the device entries you don’t need from 
/tmproot/dev. It isn’t necessary to be particularly rigorous in the latter operation—if 
you leave in something unwanted, at worst you’ll be wasting a little disk and RAM 
space. Since our kernel is very general-purpose—I don’t know what you want to do 
with it, so I included a lot of optional drivers—the easy way is better for us.

Although not absolutely necessary for a basic Linux system, we should also create 
a /proc mountpoint—many utilities try to get system status information out of /proc 
pseudofiles and won’t work properly if the /proc pseudofilesystem isn’t mounted.

The penultimate piece of magic we need to add is the necessary dynamic-link 
libraries to support busybox (and any other programs we are including on the boot 
medium). To discover what libraries are required by busybox, we first compile it, then 
use the ldd(1) utility to show its dependencies. This will tell us the following (the 
exact output you will get here depends on the Linux environment you used to build 
the program):

# ldd ./busybox
 libc.so.6 => /lib/tls/libc.so.6
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2
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So, we need to supply the libc.so.6 runtime library and the ld-linux.so.2 dynamic 
loader. Normally, libc.so.6 is a symlink to the “real” runtime library, and ld-linux.so.2 
will be a symlink to the real loader. In Fedora Core 1, these will be libc-2.3.2.so and 
ld-2.3.2.so, respectively (both are located in /lib)23 . So we can set up the environ-
ment for busybox using:

 cp /lib/libc-2.3.2.so /tmproot
 cp /lib/ld-2.3.2.so /tmproot
 cd /tmproot
 ln -s libc-2.3.2.so libc.so.6
 ln -s ld-2.3.2.so ld-linux.so.2

You can use basically the same process to determine the library dependencies of 
any other programs you want to include in your little distribution. Of the programs I 
listed on p. 131, only mke2fs requires additional libraries over and above ld-linux.so 
and libc.so.

Note, however, that ldd is usually not the complete answer to transferring a pro-
gram from your full desktop distribution to a limited embedded environment. For 
example, it won’t tell you what temporary directories a program is trying to create, or 
where it’s trying to write its log file, or where it tries to read configuration information. 
In a few rare and extraordinarily evil cases, you will also encounter programs that load 
dynamic-link libraries explicitly at runtime (one such program is passwd(1)). There’s 
no automatic way to find out if the program does tricks of that sort.

To ascertain the details of more advanced cases like this, you should first refer to 
the documentation for the program you’re trying to transfer. If you still can’t get it 
working, the brute-force approach is to run the troublesome program inside strace(1) 
and log the result, for example with the commandline strace myprogram 2>&1 
|tee myprogram.out. This will give you a very verbose logfile, which you should pe-
ruse looking for file open calls—you can infer from this information what directories 
and/or files the program is trying to access. The strace attack is really an approach 
of last resort, though—it’s tedious, requires lots of analysis, and is not entirely error-
proof.

23 This technique allows you to upgrade the underlying library without breaking installed applications.
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At this point, you have enough material copied across to test your copy of the 
soon-to-be root filesystem. Simply execute chroot /tmproot /bin/ash -i and, if 
everything has gone to plan, you’ll see the Busybox shell prompt. The environment 
you’re now in is pretty close to what your embedded system will see; anyway, it’s close 
enough for you to be able to test shell scripts and some executables.

What you’ve assembled so far is enough for the system to be able to do useful 
work; the only thing we’re missing is startup instructions to tell it what work we want 
it to do! These instructions are contained in three files: /etc/fstab, /etc/inittab and 
/etc/sysinit. I won’t dwell on the format of fstab, which specifies the mountpoints for 
the filesystems in your environment; it’s a minor piece of study and you can learn all 
you need to know from  man 5 fstab. Let’s start with inittab. This is the configura-
tion file for init(8). The sample file I’ve provided is as follows:

 ::sysinit:/etc/sysinit
 ::respawn:/bin/ash
 ::ctrlaltdel:/sbin/reboot
 ::shutdown:/bin/umount -a -r
 ::shutdown:/sbin/swapoff -a

This tells init to run /etc/sysinit at system startup, to run /bin/ash after system 
startup and to respawn it automatically if it exits, and it also provides some clean-up 
functionality to handle the user pressing Ctrl-Alt-Del or shutting down the system 
some other way. Note that this file is in the correct format for the init variant built 
into busybox; due to minor syntactic differences, you generally can’t take an init-
tab from a “normal” desktop distribution and use it with busybox. Also note that if 
you wanted this card to run your own application automatically at startup, you could 
specify the path to your executable instead of /bin/ash in the respawn line. For more 
information on the specifics of writing an inittab for the busybox implementation of 
init, refer to the busybox documentation.

Our /etc/sysinit contains the following:

 #!/bin/ash
 HOSTNAME=geode
 mount -n -t proc /proc /proc
 mount -n -o remount,rw /
 #swapon -a -e
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 >/etc/mtab
 mount -f /
 mount -f /proc
if ( cat /proc/cpuinfo | grep -s Geode >/dev/null ) ; then
 echo “Welcome to the Geode-based SBC.”
else
 echo “Warning: This is not recognized as a Geode.”
 echo “Some kernel features may not work correctly.”
fi

This script is just an example of some of the housekeeping sort of functions you 
might need to carry out at system boot time; we set a friendly hostname for this 
machine, mount the /proc filesystem, then remount the root filesystem as read-write. 
Note the use of the –n parameter to mount—because at this point, the root filesys-
tem is still readonly, and unless we specify –n, mount will try to update /etc/mtab and 
fail. After remounting the root filesystem, we might want to turn on swap, if our sys-
tem has a swapfile (the example I’ve prepared assumes you don’t. It’s not a good idea 
to put a swapfile on a CompactFlash card or other flash device because you rapidly 
eat up the write endurance of the flash chips). After that, we clear out any ancient 
data that might be in /etc/mtab, then fake (with the –f switch) remounting / and 
/proc, so that mtab contains up-to-date information. Finally, I perform a little sanity 
test to show a welcome message appropriate for the machine.

With all these components prepared, we’re now ready to copy the root filesystem 
into the image file we prepared for it. Note a subtle pitfall lurking for the unwary: 
The image file created with dd starts off full of highly-compressible all-zero data (this 
is why we use /dev/zero as the dummy data source to fill that image file during cre-
ation). If you manipulate the contents of a mounted image file using standard Linux 
file management functions, the image will gradually fill up with less-compressible file 
data droppings belonging to moved or deleted files. Eventually, you might be unable 
to fit the compressed version on your boot medium. (Remember how defragmenting 
a disk compressed with Drivespace/Doublespace used to increase the available space 
magically? Same principle). For this reason, when you are preparing a set of files to 
create a new initrd image file, even if you’re just changing a few bytes from the previ-
ous version of the image, it’s better if you create a new, all-zero image file, format it, 
and copy the complete set of up-to-date files into it. What I usually do is create a 
working directory on my hard drive, containing the complete root image, and write 



136

Chapter 4

a simple shell script that creates a virgin image, formats it, copies everything into it, 
and compresses it ready for use. Such a script might look like this:

#!/bin/sh
cd /tmproot
dd if=/dev/zero of=/initrd.img bs=1k count=8192
echo y | mke2fs -m 0 -N 2000 /initrd.img
mount -o loop /initrd.img /mnt
cp -R * /mnt
umount /mnt

gzip /initrd.img24 

Run the above script, or type the commands manually, and copy the /initrd.img.
gz file thus generated into the root directory of your CompactFlash card with the 
name INITRD.IMG. Reboot your SBC and go into CMOS setup. Disable the hard 
disk or simply choose the CompactFlash slot as the primary boot device25 , and restart 
the system again. If everything went to plan, you should be greeted with a usable 
busybox shell prompt within less than 30 seconds.

4.5 Creating a Bootable Linux System-Restore CD-ROM Disc

Practically all modern IBM-PC compatible BIOSes (including the Award BIOS used 
on our SBC) support the ElTorito standard for bootable CD-ROMs. This standard 
places a special preamble area on the disk, which contains a bootable image file. The 
boot image is normally a sector-by-sector copy of a floppy disk, although it is legal 
to have a hard disk image there instead. After POST, if the system is configured to 
attempt booting off CD, the BIOS scans the disk in the attached CD-ROM drive 
for an ElTorito preamble. If this preamble is found, the BIOS redirects read and 
(doomed!) write requests for INT 13h unit 0 (drive A:) to the boot image area on 
the CD-ROM drive, and continues the boot process from the resultant virtual disk. 

24 Remember, gzip will automatically add a .gz extension to the compressed file.

25 Unfortunately, on a few systems, you may need to physically disconnect the hard drive to force the 
system to probe further for a bootable device. This behavior is BIOS-specific. On the PCM-5820, 
simply setting the primary master hard disk type to None and the secondary master type to Auto 
will allow you to boot off the CompactFlash slot.
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As far as your startup software is concerned (at least, as long as it uses BIOS services 
to read/write the disk), you just booted the system off a floppy.

In this section, I’ll demonstrate one possible method of constructing a bootable 
CD-ROM for system restore purposes, as this is a common requirement for embedded 
Linux applications. For instance, if your user needs to replace or upgrade the hard 
drive, a reinstallation CD is the easiest way to “bless” the blank drive. You could, of 
course, use the same basic infrastructure to build a “boot application” disk to perform 
any desired function, in exactly the same way as we prepared the bootable Compact-
Flash card above. For instance, you could put a movie player in the image file, and 
put the movie itself in the main filesystem of the CD.

The principal advantages of CD-ROMs are their read-only nature, and their low 
cost. These features make the CD ideal for distributing updated software versions 
and emergency recovery tools to your users. However, you should think carefully 
about the installation environment before using a bootable CD as the main operat-
ing system storage device in a turnkey embedded system. CD-ROM drives are very 
complex electromechanical systems with free access to the atmosphere, and as such 
they are horribly sensitive to dust, humidity, vibration and orientation issues. They 
also have slow access times and a relatively short lifespan. If you decide to use a CD 
as the primary boot medium for your appliance, then you may wish to consider, at the 
very least, installing the electronics in an airtight enclosure with vibration-damping 
mounts. Most CD-ROM drives, especially the slim laptop drives favored by builders 
of embedded PC systems, do not provide a very good airtight seal when the tray is 
closed, so you’ll have to lock the entire drive away inside a more robust enclosure.

Before we start, we need to decide how to pack up the software restore image 
we’ll be distributing on this disk, a decision which includes the sub-decision “how 
do we make the target system’s hard disk bootable after loading all the files onto it?” 
The easiest way to do this is simply to start in the root directory of your active system 
and tar cvfz everything you need—including the install program for your chosen 
bootloader—into one massive image. (The reason for that special instruction will 
become apparent shortly). I’m going to assume that you have either enough space in 
your root filesystem for a tarball of everything you need, or that you can mount some 
other volume temporarily to hold the file; I normally mount a scratch volume over 
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NFS or SMB. For the purpose of this discussion, I will assume your scratch location is 
/scratch—if not, modify the following text as appropriate.

Now, let’s look at the root directory of a typical Linux system and determine what 
needs to be copied and what needs special handling:

/bin, /sbin, /dev – You should copy over everything in here.

/mnt – In order for your system to behave normally, you need to ensure that   
any mountpoint directories in here are created on the target system.

/proc – These are all pseudofiles. You should not copy anything in this directory 
into your install image; strange things will usually happen if you start trying 
to archive up the /proc pseudofiles. You must, however, ensure that an empty 
/proc mountpoint is created during the system restore process.

/var – Most of the files in this directory are logs, temporary files and other ephem-
eral data that doesn’t strictly need to be copied to the target system. However, 
it can be important to have the complete directory hierarchy under here suc-
cessfully duplicated; some programs may not start up if they can’t open logfiles 
for writing. The easiest way to handle this directory is simply to copy it across.

/tmp – Similarly to /var, this directory contains only volatile information, none of 
which needs to be saved. However, you must ensure that the directory exists 
on the target system.

Here is an example shell script that archives up most of the needed information. I 
have a script similar to this on my development machines; I put it somewhere in the 
path and call it “master.sh.” NOTE: Before running this script, ensure that nothing 
is mounted inside /mnt !

#!/bin/sh
echo Duplicating root filesystem
mkdir /scratch/tmproot
cd /scratch/tmproot
cp -a /bin .
cp -a /boot .
cp -a /dev .
cp -a /etc .
cp -a /home .
cp -a /lib .
cp -a /mnt .
mkdir tmp ; chmod 777 tmp
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mkdir proc ; chmod 777 proc
cp -a /root .
cp -a /usr .
cp -a /var .
tar cvfz ../reload.tar.gz *
cd ..
rm -rf tmproot

So now we have a complete, compressed copy of the entire filesystem of our 
target system at /scratch/reload.tar.gz, and it’s time to create the boot/root image that 
will load it onto the hard disk. Preparing the kernel and root filesystem for a bootable 
CD-ROM is the same process as preparing a flash filesystem boot image; the only 
real difference is that our startup script will noninteractively perform the installation 
steps: partition and format the system’s hard disk, untar the root image, create any 
needed directory structures, install the bootloader, eject the CD-ROM, and reboot.

We can use the exact same infrastructure as we created for the CompactFlash 
card earlier, with only two different files: an additional file called fdisk.script (in the 
root directory) and a different sysinit script:

#!/bin/ash
HOSTNAME=geode
mount -n -t proc /proc /proc
mount -n -o remount,rw /
#swapon -a -e
>/etc/mtab
mount -f /
mount -f /proc
mount -t iso9660 -o ro /dev/hdb /mnt/cdrom
clear
echo “Linux Rescue CD”
echo “===============”
echo “”
echo “ATTENTION!”
echo “”
echo “All files on your system will be erased and the system will be 
reloaded”
echo “with a default configuration. If you do not want to do this,”
echo “EJECT THE CD-ROM NOW and SWITCH OFF THE COMPUTER IMMEDIATELY!”
echo “”
echo “The automated restore will continue in fifteen seconds...”
sleep 15
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clear
echo “Restoring System Software”
echo “=========================”
echo “”
echo “Setting up hard disk...”
fdisk /dev/hda < /fdisk.script
echo “Creating system area...”
mke2fs -m 0 -j /dev/hda1
echo “Setting up memory...”
mkswap /dev/hda2
echo “Creating user data area...”
mke2fs -m 0 -j /dev/hda3

echo “Copying files to hard disk... (This will take several minutes)”
mount -t ext3 /dev/hda1 /mnt/hda1
cd /mnt/hda1
tar zxvf /mnt/cdrom/reload.tar.gz
umount /mnt/cdrom

echo “Making hard disk bootable...”
chroot /mnt/hda1 /sbin/grub-install /dev/hda
cd /
umount /mnt/hda1
clear
echo “**************************************************************”
echo “*** Restore is complete - System will restart automatically ***”
echo “**************************************************************”
eject /dev/hdb
sync
sleep 2
/sbin/reboot

The above script partitions the hard disk, reformats it, extracts the complete 
system image out of a file called “reload.tar.gz” in the root directory of the CD-ROM, 
and installs the GRUB bootloader. I’ve included a complete copy of this reload root-
filesystem in the file “cdrom-root.tar.gz” in the root directory of this book’s CD-ROM. 
Note that the fdisk.script file provided in that filesystem partitions the disk into three 
sections: hda1 (750 MB, ext3), hda2 (128 MB, swap) and hda3 (all remaining space 
on the disk, ext3). If you want to change this behavior, simply edit the fdisk script, 
but be aware that you might need to alter the above scriptfile if you change the parti-
tion order or on-disk format.
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Once you convert the root filesystem directory tree into a compressed image 
(using the same technique as for the CompactFlash root image; again, call the com-
pressed file initrd.img), you need to put it, along with SYSLINUX and the kernel 
and syslinux.cfg files (the same files you put onto the CompactFlash card) inside an 
MS-DOS-formatted 2.88 MB disk image:

dd if=/dev/zero of=/288mboot.img bs=1k count=2880
mkfs -t msdos /288mboot.img
syslinux /288mboot.img
mount -o loop /288mboot.img /mnt
cp initrd.img /mnt
cp linux /mnt
cp syslinux.cfg /mnt
umount /mnt

That’s right—we’ve buried the root filesystem image inside another disk image! 
Now all you need to do is fire up your favorite CD burning software, and create a 
new bootable disk. When prompted for the boot image, select the 288mboot.img file. 
(Note that this file won’t show up in the directory of the CD itself. Also be careful to 
specify to your CD burning software that the image is a 2.88 MB disk; some software 
won’t autodetect this). Put the reload.tar.gz file, containing your entire backed-up 
filesystem, into the root directory of the CD. Burn the disk, and voila! You have an 
automatic system-restore CD.

Final note: I have chosen to use a 2.88 MB El Torito boot-area disk image for our 
example because it gives us a lot of space for useful programs, and I know by experi-
ment that the BIOS in the PCM-5820 supports it.  However, old BIOSes may not 
support bootable CD-ROMs with “2.88 MB floppy” boot image areas. After some ex-
perimentation, I have found that the safest heuristic to use is: when in doubt, make 
your boot image a 1.44 MB diskette. This is simply a general rule for the broadest 
possible compatibility; if you are selecting the target hardware on which you intend 
the software to run, then you can safely ignore this rule.
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4.6 Using the Parallel Port as a General-Purpose I/O Interface in Linux

The parallel port is officially a dying interface on the PC, having been largely sup-
planted (at least, for its original purpose of connecting printers) by USB. However, 
despite Microsoft’s drive for legacy-free systems, the majority of PC-compatibles still 
have a parallel port. SBC platforms, being largely based on slightly older chipsets and 
produced on much longer guaranteed delivery schedules, also have  parallel ports, 
and are likely to sport them for many years to come.

Many SBC platforms provide a few bits of general-purpose I/O for application-
specific functions. These are often “spare” GPIOs that are provided by multifunction 
chipsets to support various system functionality that the SBC manufacturer decided 
not to implement. However, there is no standardized method for accessing these 
bits, and in many cases there is, incredibly, no documentation available; you need 
to find and grub through the datasheets for the chipset used on the board in order 
to work out how to configure and access those I/O lines. There are other issues, too, 
such as signal voltage conversion, which may bite you (the GPIOs might run at the 
board’s internal I/O voltage, or at 5 V, and if they run at some internal voltage, they 
might or might not be 5 V-tolerant). All these details are, unfortunately, frequently 
not well-documented by the board manufacturer. Worst of all, there is rarely any 
direct support for these proprietary interfaces in third-party operating systems such as 
Linux. As a result, it’s much more portable and generally less involved just to reach 
for the parallel port when you need a handful of general-purpose I/O bits.

In this section, I’ll give you a brief introduction to the PC parallel port hard-
ware and how to use it as a simple pipeline to the outside world. This is by no 
means a complete reference; it’s just enough information for you to be able to in-
terface E2BUS peripherals and understand what the example Linux code I provide 
is doing. If you require more information, I recommend “Parallel Port Complete: 
Programming, Interfacing & Using the PC’s Parallel Port,” by Jan Axelson, ISBN 
0-9650-8191-5, Pub Resource 1997. A vast quantity of useful information is also 
provided freely on the Lakeview Research web site, http://www.lvr.com/.
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A standard PC/AT architecture supports up to three parallel ports, with base I/O 
addresses of 0x3BC, 0x378 and 0x278. The port is accessed through three 8-bit regis-
ters mapped into the processor’s I/O space. These registers are referred to as the data 
port, the control port and the status port. Standard PC/AT-compatibles name the 
three parallel ports LPT1, LPT2 and LPT3. These names are purely historical arti-
facts of MS-DOS and have no direct relationship to I/O port assignments. At boot 
time, the BIOS writes a test byte to the data port of each possible parallel interface, 
and attempts to read it back. If the readback matches, a parallel interface is assumed 
to be installed at that address, and a table in the BIOS data area is updated to indi-
cate that fact. A system with three parallel ports installed would have the following 
I/O port assignments:

Port Data Status Control
LPT1 0x3BC 0x3BD 0x3BE
LPT2 0x378 0x379 0x37A
LPT3 0x278 0x279 0x27A

If one or more of the possible port addresses is not populated, the remaining ports 
move up to fill the space. For instance, if your system has only one physical printer 
port, it would be referred to (by DOS and/or Windows) as LPT1 regardless of what 
port address it’s at. Because of this issue, software that accesses parallel port hardware 
directly uses all sorts of confusingly inconsistent nomenclature. Some software probes 
the BIOS data area or Windows registry and uses the same names for ports that MS-
DOS would use. Some software uses the fixed table above, or a variant of it, to map 
port names to I/O addresses. (One common variant is to call 0x378 LPT1, 0x278 
LPT2, and 0x3BC LPT3—the reason for this is that 0x3BC was originally reserved 
for parallel ports integrated onto a CGA or MDA graphics card. Since those cards 
are very rare now, the first—LPT1—port in a PC system is more usually 0x378). 
Some software requires you to specify the actual port address. It’s a mess; fortunately, 
there are only three possibilities, so trial and error is a reasonable method for getting 
things to work!
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Regardless of this slightly irritating mash of nomenclature, the physical mapping 
of parallel port pins to I/O register bits is described in the following table (note that 
some references will give these signals slightly different names):

Pin Name Function Dir Port Invert
1 _STROBE Data strobe Out Control bit 0 Yes

2–9 D0-D7 Data bits 0–7 Out Data bits 0-7 No
10 _ACK Acknowledge In Status bit 3 No
11 _BUSY Busy In Status bit 4 Yes
12 PEND Paper out In Status bit 2 No
13 SELECT Device select 

feedback
In Status bit 1 No

14 _AUTOFD Auto linefeed Out Control bit 1 Yes
15 _ERROR Error In Status bit 0 No
16 _INIT Initialize (reset) Out Control bit 2 No
17 SELECTIN Device select Out Control bit 3 Yes

18–25 GND Ground – – –

There are several types and operational modes of modern parallel ports. In the 
lowest common denominator configuration, the status register is read-only, the con-
trol register is write-only, and the data register can be considered as write-only also. 
(This isn’t strictly true, of course—for example, if it was true, the BIOS’s autoprobing 
technique, which I outlined briefly earlier, wouldn’t be possible—but for our purposes 
it’s an acceptably approximate description of the port’s behavior. If you want more 
details on how the parallel port is really constructed, consult one of the references 
I mentioned earlier). Practically all modern PC systems support several modes of 
operation selectable in CMOS set. These modes are usually SPP, EPP1.7, EPP1.9 and 
ECP. Although theoretically our circuit should work with any of these modes con-
figured, in practice you are likely to encounter problems if your PC is configured for 
ECP. I suggest that you configure the port for SPP mode unless you have some special 
reason for needing a different mode.

One final note here, before we go on to software issues: You should be aware that 
there are various bizarre electrical issues with certain PC-compatibles, particularly 
older name-brand machines, and especially portable machines. The only thing that 
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you can say for certain about a “standards-compliant PC” parallel port is that for 
some specified drive current, it defines the output “high” voltage as 2.4 V, and the 
output “low” voltage as 0.4 V, with anything in between being illegal. This leaves 
a lot of room for different implementations to bite your design. In general, if you’re 
designing a device that has to have a good chance of working on a wide range of PCs:

■ Don’t make heavy drive demands on any output lines. Three or four TTL 
loads is probably a safe cutoff point. Particularly if you plan to run any signifi-
cant length of cable between the PC and your circuit, it’s best to run the lines 
straight to a buffer in your device, and fan out from there.

■ Never connect parallel port output lines directly to any logic that isn’t 5 V-
tolerant at your chosen internal supply voltage. Many (if not all) modern 
motherboards and portable machines will show a maximum voltage swing 
of 0 V to +3.3 V (reflecting the VIO of 3.3 V found in modern motherboard 
logic), but you certainly can’t rely on this.

■ It’s advisable to have Schmitt triggers between your circuit’s inputs and the 
parallel port output lines you intend to use. Some of the control lines are 
implemented as an open-collector driver, with a pullup resistor and a capaci-
tor to ground to limit the risetime.

With older PCs, it was usually (but not certainly not always) possible to avoid 
many of these problems by going into the BIOS setup menu and configuring the par-
allel port for SPP mode. Unfortunately, many modern PCs have eliminated even that 
last mousehole—they are locked into ECP mode, and it can be difficult or impossible 
to get them to work with some parallel-connected peripherals. (The factory-supplied 
ICEs and flash programmer hardware for several microcontrollers fall into this cat-
egory of ill-behaved appliances, by the way).

Now that we know how the parallel port works, how do we access it inside Linux? 
There are a several possibilities here. First, we could write a kernel driver to do what 
we need to do. The kernel driver would have full I/O privileges and could write to 
the parallel port I/O addresses directly. Second, we could jump through a couple of 
hoops and write a user-mode program that poked directly to the parallel I/O ad-
dresses. Finally, we could use the standard Linux parallel port device API, ppdev. I 
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recommend this latter method unless there are really compelling reasons to choose 
otherwise. Writing a kernel driver is just a distraction—it certainly gives you fairly 
complete control over the process, including allowing you to disable interrupts while 
you twiddle the port bits, but it’s frankly overkill for the kind of thing we’re doing. 
Writing to the port addresses directly from user mode is possible, but it’s clumsy. We 
would also have to write some code to work out where the parallel ports are installed 
in the machine’s I/O space. Using the standard API avoids a lot of unnecessary 
tweaking and it adds very little overhead—this API was designed for use by drivers 
like the parallel port ZIP device, so it’s capable of quite high throughput.

To use the parallel port, we open a file descriptor to /dev/parportn (where n is 
the parallel port number—we’re going to use parport0, i.e., LPT1, for all our sample 
code) and use ioctl on this descriptor to communicate with the underlying driver. If 
you are testing this code with anything other than the kernel configuration I have 
supplied, note that you MUST disable parallel printer support—but not parallel port 
support—in the kernel for the code in this book to work.

The first thing to do is open the parallel port device and acquire exclusive control 
over it. This is simply achieved with something similar to the following code fragment:

#include <stdio.h>
#include <fcntl.h>
#include <linux/parport.h>
#include <linux/ppdev.h>
#include <sys/ioctl.h>

int handle = 0;

handle = open(“/dev/parport0”, O_RDWR);
if (handle < 0) {
 // report fatal error
}
// Get exclusive access to port
ioctl(handle, PPEXCL, 0);
ioctl(handle, PPCLAIM, 0);
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Don’t throw that handle away; we’ll use it for accessing the other functions 
described next. Now, how to wiggle the pins on the port? The parallel port control 
register is accessed through the PPFCONTROL ioctl. This call takes a pointer to 
a ppdev_frob_struct structure consisting of a mask byte and a new data byte. This 
way, you can toggle individual control bits—potentially, different bits from multiple 
threads—without having to maintain your own copy of the current port state. This 
structure, found in <linux/ppdev.h>, is defined as follows:

struct ppdev_frob_struct {
 unsigned char mask;
 unsigned char val;

};

To set or clear bits in the control register, set the bits in mask corresponding 
to the bits that you wish to change, and load the desired new data into val. Then 
simply call ioctl(handle, PPFCONTROL, &fs), where fs is the name of your ppdev_
frob_struct. To make life easy for you, the ppdev.h header contains definitions for the 
control bits:

#define PARPORT_CONTROL_STROBE    0x1
#define PARPORT_CONTROL_AUTOFD    0x2
#define PARPORT_CONTROL_INIT      0x4
#define PARPORT_CONTROL_SELECT    0x8

For example, to clear the STROBE bit, you would use the following code:

fs.mask = PARPORT_CONTROL_STROBE;
fs.val = 0;
ioctl(handle, PPFCONTROL, &fs);

Reading the status register is accomplished using the PPRSTATUS ioctl. Again, 
the kerne includes define names for the bits:

#define PARPORT_STATUS_ERROR      0x8
#define PARPORT_STATUS_SELECT     0x10
#define PARPORT_STATUS_PAPEROUT   0x20
#define PARPORT_STATUS_ACK        0x40
#define PARPORT_STATUS_BUSY       0x80
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You use the PPRSTATUS ioctl simply by passing a pointer to a 1-byte buffer to 
store the port’s current status:

unsigned char c;
ioctl(handle, PPRSTATUS, &c);

Reading and writing the data lines is achieved using the same syntax as for 
PPRSTATUS, but the two ioctls are PPRDATA and PPWDATA, respectively. Note 
that before reading or writing the data bus, you must ensure that it has been set into 
the correct mode (input or output) using the PPDATADIR ioctl. For example, take 
this code, which reads a byte from the data bus, then writes a different byte:

int i;
char c1, c2;

// An arbitrary byte to be written to the port
c2 = 0xf5;

// Set port to input mode
c1 = 0xff;
ioctl(handle, PPWDATA, &c1);
i = -1;
ioctl(handle, PPDATADIR, &i);

// Read byte from port
ioctl(handle, PPRDATA, &c1);

// Write new data to port and set it to output mode
ioctl(handle, PPWDATA, &c2);
i = 0;
ioctl(handle, PPDATADIR, &i);

Note how we write 0xFF to the output latch before we read the port. The reason 
for this is that when the port is in readback mode, the output latches are open-collec-
tor. Writing 0xFF to the data latch effectively tristates the outputs so they don’t try 
to pull down signals from the outside world. Also note that you can’t really mix and 
match—either the entire port is an input, or the entire port is an output. You can’t 
specify the data direction at a finer resolution, although there are terrifying hardware 
tricks to work around this limitation.
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4.7 Implementing Graphical Control Interfaces

4.7.1 Introduction

In this section, I’m going to give you a very short overview of the options available to 
you when implementing graphical control/overmonitoring interfaces on Linux sys-
tems. In particular, I’m going to concentrate on interfaces that lend themselves well 
to embedded-friendly feature paring. This text is obviously not intended to be an in-
depth how-to guide for any of the specific graphics systems I mention. It’s intended 
to show you the advantages and disadvantages of a number of different possible GUI 
choices, and provide you with some pointers to further research into the options you 
like the best.

The issue of implementing graphics functionality on your system really breaks 
down into two subproblems: how you get the system into a correctly initialized 
graphics mode, and what you have to do in order to get graphical elements onto the 
screen once the graphics mode is set.

The first thing I’d like to impress on you is the horrible but virtually irresistable 
temptation to re-invent wheels. Many projects that need or want a graphical inter-
face start out with extremely modest needs; for example, some simple bitmapped 
graphics and a single text font. For such a tiny amount of code, it seems that the 
most efficient approach is to write your own graphics routines entirely from scratch 
rather than invest a lot of time climbing the learning curve for an off-the-shelf li-
brary. There are two hidden flaws in this piece of logic: first, the golden rule is that all 
projects mushroom beyond their initial idea (meaning that one day you’ll inevitably 
find yourself slaving to implement and debug a hand-rolled version of some tricky 
function that you could have just called out of a pre-existing library), and second, 
you’ll probably have to repeat a lot of this pedestrian work every time you start a 
new project. Both these issues are more or less avoided, and your life is made much 
simpler, if you pick a reasonably portable graphics library and use it across multiple 
projects.

Essentially, there are only a handful of good reasons to roll your own (and even 
these reasons are probably arguable):
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■ You are doing something truly unique and fundamentally incompatible with 
the design paradigm of any extant graphical library. I have only once been 
involved in such a project26: designing a GUI based around hexagons instead 
of rectangles. All screen surfaces, windows, gadgets, etc. were expressed in 
terms of six side-lengths instead of the normal width and height parameters in 
a rectangular coordinate system.

■ Your target hardware has some special acceleration features or other hard-
ware magic for which you would need to write drivers anyway. Perhaps you 
can gain better performance by designing your GUI’s structure around the 
capabilities of the accelerator hardware, rather than writing a driver for an 
existing GUI.

■ You have unusually strict performance requirements—real-time issues, mem-
ory consumption, and so on. An example of the type of system that satisfies 
this condition (as well as the previous condition, usually) is a low-end digital 
camera. These devices are often based on 8051-cored ASSP with specialized 
JPEG compression hardware on-chip.

■ You need to maintain rigorous control over the portability and platform-in-
dependence of the code. For instance, you might need to support two or three 
different hardware platforms (and no others), and you might want to make 
design optimizations specific to those particular platforms.

■ You need to be able to test, certify and guarantee every line of code that is 
going into the final system, for security or reliability purposes (or some simi-
larly critical reason). Writing a proprietary GUI can save you an enormous 
amount of work on the back end of the project if you have a requirement like 
this. Imagine how many man-hours would be required to perform a complete 
sourcecode audit on, say, XFree86!

26 It was a very silly project, too—the client wanted a user interface in Klingon. Avid watchers of Star 
Trek® will note that most of the Klingon computer displays use hexagonal grids and controls. Don’t 
expect projects like this to come along every day.
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Having done my best to steer you towards the straight and narrow, let’s consider 
some of the choices open to you. For each option, I’ll provide some minimal sample 
code so you can get a simple application of your own up and running. Where appro-
priate, I’ll also point you to some further reading on the topic.

4.7.2 The Framebuffer Graphics Console (fbdev)

The framebuffer graphics console is often used in embedded systems, particularly 
systems that are based around non-x86 microcontrollers with built-in display control-
ler hardware. If your particular hardware combination is supported by the kernel, it 
provides a simple way to get the system into a graphics mode and to query the address 
of video RAM. You can then either use your own proprietary GUI code, or port one 
of the many graphics libraries (such as Qt-embedded) to implement the actual inter-
face portion of the code. If you are using x86 Linux to prototype something that will 
eventually be squeezed into an ARM, MIPS or similar SOC (system-on-chip) device, 
the framebuffer driver is almost certainly your line of least resistance.

Geode’s graphics hardware (CS5530) isn’t explicitly supported by a Linux frame-
buffer driver, but there is a generic driver that uses VESA BIOS Extension (VBE) 
calls to set video modes, which you can use to prod the system into a graphics mode 
at boot time. The sample kernel configuration I included on the CD-ROM includes 
the VESA graphical framebuffer driver. If you reboot your SBC, hit any key at the 
GRUB prompt, and edit the kernel boot line to include the command “vga=0x311,” 
your system will start up in a 640 × 480, 16 bpp graphics mode. (For more informa-
tion on VGA mode numbers, refer to Documentation/fb/vesafb.txt in your Linux 
kernel source directory).

Here’s a basic outline of how to use framebuffer mode: First, make sure that the 
system is in a graphics mode by editing your kernel command line as I just described, 
and rebooting the system if necessary. Next, open a handle to the  framebuffer device 
of interest (probably /dev/fb0). Use the FBIOGET_FSCREENINFO and FBIOGET_
VSCREENINFO to obtain fixed and variable (mode-specific) screen information, 
respectively. This information is necessary to calculate the row stride (bytes per scan-
line), determine the size of the framebuffer memory to be mapped into your process’s 
address space, and otherwise locate bytes onscreen.
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Note that if you’re reading this section, you’ll most likely have selected a specific 
resolution and bit depth for your application in advance, and your code will be tar-
geted specifically to that bit depth. Your screen layouts will probably also be tailored 
specifically for a certain screen resolution. For this reason, in embedded applications 
you’ll most likely simply be validating the system settings against your hardcoded 
constraints, rather than inspecting the system and dynamically adapting your code to 
match the hardware’s capabilities.

Here is some illustrative code for you (this program is included in the fbtest direc-
tory of the sample programs archive):

/*
 main.c
 
 Demonstration applet for framebuffer

 From “A Cookbook for Open-Source Robotics and Process Control”
 Lewin A.R.W. Edwards (sysadm@zws.com)
*/

#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/fb.h>

#define FB_DEVICE “/dev/fb0”

int main (int _argc, char *_argv[])
{
 int handle,i,j,screensize;
 unsigned char *framebuffer,*backup;
 struct fb_fix_screeninfo fi;
 struct fb_var_screeninfo vi;

 // Open framebuffer device
 handle = open(FB_DEVICE, O_RDWR);
 if (handle == -1) {
  printf(“Error opening “ FB_DEVICE “.\n”);
  return -1;
 }



153

The Linux-Based Controller (A Soft Task)

 // Get fixed screen information and show an informative message
 ioctl(handle, FBIOGET_FSCREENINFO, &fi);
 printf(“Device is ‘%s’.\n”, fi.id);
 printf(“Buffer: 0x%-08.8X bytes at physical address 0x%-08.8X.\
nMMIO at 0x%-08.8X, accel flags %-08.8X.\n”, fi.smem_len, fi.smem_start, 
fi.mmio_len, fi.accel);
 printf(“%d bytes per physical scanline.\n”, fi.line_length);

 // Get variable screen information and show an informative message
 ioctl(handle, FBIOGET_VSCREENINFO, &vi);
 printf(“Currently viewing (%d,%d) window of (%d,%d) display 
at %dbpp.\n”, vi.xres,vi.yres, vi.xres_virtual, vi.yres_virtual, 
vi.bits_per_pixel);

 screensize = vi.xres_virtual * vi.yres_virtual * (vi.bits_per_pixel 
/ 8);

 framebuffer = mmap(0, screensize, PROT_READ | PROT_WRITE, MAP_
SHARED, handle, 0);
 if (!framebuffer) {
  printf(“Error mapping framebuffer into process.\n”);
  return -1;
 }

 // Allocate memory for backup screen and copy it
 backup = malloc(screensize);
 if (!backup) {
  printf(“Cannot allocate memory for framebuffer backup.\n”);
  return -1;
 }
 memcpy(backup, framebuffer, screensize);

 // Wait for a few seconds, then show some coruscating colors
 sleep(3);
 for (i=0;i<256;i++) {
  for (j=0;j<640*480*2;j++)
   framebuffer[j]=i;
 }

 // Restore original screen contents
 memcpy(framebuffer, backup, screensize);
 return 0;
}
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The main disadvantages to using the framebuffer are:

1. You generally have little or no access to hardware acceleration features. There 
are a handful of platform-specific framebuffer drivers in current kernels, and 
these support a small core of acceleration functionality, but the generic VESA 
driver is unaccelerated. Working with the framebuffer is a bit like asking for 
a salad, and being handed a shovel and a packet of seeds; it’s possible to do 
almost anything, but it can be time-consuming.

2. It’s often not possible to change to any different video mode at runtime—you 
boot up in a certain mode, and you’re stuck there. Although there are APIs 
in the framebuffer code to change video modes, this part of the code is quite 
unstable (again, particularly the VESA-based code).

3. In the case of the VBE-based framebuffer device, there may be BIOS issues 
that make the graphics modes quirky. Unfortunately, this fact is true for all 
versions of Geode BIOSes that I have tested.

The framebuffer device does, however, have the advantage of being very simple 
to work with. Another useful characteristic of the framebuffer code you’ll be writing 
is that it’s highly portable to other systems—including OS-less systems—as long as 
they have the same pixel format. Because there are almost no required APIs except 
the startup job of ascertaining the graphics mode and start location of video memory, 
using fbdev doesn’t tie you down by forcing you to make an investment in any partic-
ular software architecture. When Linux is ported to new platforms (microcontroller 
evaluation boards, PDAs, video game consoles, set-top boxes and so forth), invariably 
the first graphics subsystem ported is the framebuffer console, so if you work with the 
framebuffer you’ll always be able to explore the leading edge of new hardware ports.

4.7.3 SVGAlib

SVGAlib is a couple of steps more advanced than the dumb framebuffer. It includes 
APIs for a few useful functions, and on some platforms can take advantage of hard-
ware acceleration features. It was originally designed for games and emulators, which 
means that it supports handy animation-friendly features such as double-buffering. 
(In fact, SVGAlib is an evolutionary phenomenon based on an older, less general-
purpose library called vgalib).
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The current release version of svgalib (1.4.3) is very slightly syntactically incom-
patible with current versions of gcc, so it isn’t possible to compile and install this 
version directly on modern Linux distributions such as Fedora Core 1. To save you 
some head-scratching time, I have patched the affected file, src/vga.c, and rearchived 
the tarball, which you will find as  linux/svgalib-1.4.3-patched.tar.gz on the 
CD-ROM with this book. To build and install, simply unpack the tarball, cd svgal-
ib-1.4.3, and make install ; make demoprogs. After compiling and installation are 
complete, add the line /usr/local/lib to /etc/ld.so.conf (if it isn’t there already), 
and run ldconfig(8) so that SVGAlib programs can find the shared libraries. You’ll 
also want to edit the configuration file /etc/vga/libvga.config to reflect your hardware 
configuration (at least the video card selection, and possibly also the mouse type). 
If you’re configuring for the Geode SBC family we’ve been discussing, at minimum 
you’ll need to add the line chipset VESA to use the generic VESA BIOS code.

With the library installed and configured, we can start writing some actual code. 
We’re going to write an application that incorporates some of the machine vision 
code in Section 4.9.1 to capture images from an attached video camera and display 
them onscreen, with an overlay showing the outlines of sharply-defined objects in 
the image. The easiest way to show you how to do this is to present the main() meat 
of the program and go through it line by line, so here it is (this is a listing of the 
main.c file):

/*
 Example svgalib + V4L application - Displays camera input onscreen
 2004-04-03 larwe created
*/

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/videodev.h>

#include <vga.h>
#include <vgagl.h>



156

Chapter 4

#include “v4lcap.h”

// Key code definitions
#define KEY_ESCAPE  27  // Esc

// Miscellaneous default settings
#define VIDEO_MODE G640x480x64K
#define DEFAULT_NOISEFLOOR  8

// Internal variables
GraphicsContext *phys_screen, *virt_screen;
BMINFO edge_image;
unsigned char noisefloor = DEFAULT_NOISEFLOOR;

/*
 Demonstration main function
*/
int main(int _argc, char *_argv[])
{
 int fQuit = 0, c, blit_x, blit_y;
 int k;

 // Initalize capture device
 if (V4LC_Init(320,240)) {
  printf(“Error initializing video capture device.\n”);
  return -1;
 }
 
 // Create a second bitmap structure to hold the derived edge data
 memcpy(&edge_image, &V4L_bitmap, sizeof(edge_image));
 edge_image.bitmapdata = malloc(edge_image.allocsize);
 if (edge_image.bitmapdata == NULL) {
  printf(“Could not allocate memory for edge image.\n”);
  return -1;
 }

 // Initialize SVGA graphics, physical and offscreen contexts
 vga_init();
 vga_setmode(VIDEO_MODE);
 gl_setcontextvga(VIDEO_MODE);
 phys_screen = gl_allocatecontext();
 gl_getcontext(phys_screen);
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 gl_setcontextvgavirtual(VIDEO_MODE);
 virt_screen = gl_allocatecontext();
 gl_getcontext(virt_screen);

 // Select offscreen drawing environment as target for SVGAlib ops
 gl_setcontext(virt_screen);

 // Select default 8x8 text font
 gl_setfont(8, 8, gl_font8x8);
 gl_setwritemode(WRITEMODE_OVERWRITE | FONT_COMPRESSED);

 // Calculate desired blit size and draw a border around the target area
 blit_x = V4L_bitmap.width;
 blit_y = V4L_bitmap.height;
 if (blit_x > 352)
  blit_x = 352;
 if (blit_y > 288)
  blit_y = 288;
 gl_line(0, 0, blit_x + 1, 0, 0xffff);
 gl_line(blit_x + 1, 0, blit_x + 1, blit_y + 1, 0xffff);
 gl_line(0, blit_y + 1, blit_x + 1, blit_y + 1, 0xffff);
 gl_line(0, 0, 0, blit_y + 1, 0xffff);

 while (!fQuit) {
  int i,j;
  unsigned short pixel, *dest;
  unsigned char *src;
  unsigned short r, g, b;
  char tmps[80];

  // Acquire one frame from the capture device
  V4LC_Acquire();

  // Copy frame data to temp processing area and run edge detection
  memcpy(edge_image.bitmapdata, V4L_bitmap.bitmapdata,  
    edge_image.allocsize);
  for (i=0; i<blit_y; i++) {
   DER_ScanlineToGrayscale(edge_image.bitmapdata + 
     (i * edge_image.width * 3), edge_image.width);
   DER_DeriveScanline(edge_image.bitmapdata + 
     (i * edge_image.width * 3), edge_image.width);
  }
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  // Run overlay pass over captured image
  for (i=0; i<blit_y; i++) {
   unsigned char *ovldest = V4L_bitmap.bitmapdata + 
     (i * V4L_bitmap.width * 3) + 1;

   src = edge_image.bitmapdata + (i * edge_image.width * 3) 
     + 1;
   for (j=0; j< blit_x ; j++) {

    if (*src > noisefloor)
     *ovldest = 255;
    src += 3;
    ovldest += 3;
   }
  }

  // Copy image to the frame buffer (converting to 5:6:5 RGB)
  for (i=0; i<blit_y; i++) {
   src = V4L_bitmap.bitmapdata + (i * V4L_bitmap.width * 3);
   dest = (unsigned short *) ((((unsigned char *) VBUF) + 
     (i + 1) * BYTEWIDTH) + 2);
   for (j=0; j<blit_x; j++) {
    r = *(src++) & 0xf8;
    g = *(src++) & 0xfc;
    b = *(src++) & 0xf8;
    pixel  = (r << 8) | (g << 3) | (b >> 3);
    *(dest++) = pixel;
   }
  }

  // Display current processor settings
  gl_setfontcolors(0x0000, 0x07e0);
  sprintf(tmps,”CapSize   : (%d,%d)        “, blit_x, blit_y);
  gl_write(blit_x + 4, 0, tmps);
  sprintf(tmps,”NoiseFloor: %d    “, noisefloor);
  gl_write(blit_x + 4, 8, tmps);

  gl_setfontcolors(0x0000, 0xffe0);
  gl_write(0, blit_y + 4, 
    “Esc - Exit  W / X - Increment/decrement noise floor”);

  // Copy current [offscreen] context to visible framebuffer
  gl_copyscreen(phys_screen);
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  // Check if there is a keystroke - if so, act on it
  k = vga_getkey();
  
  switch(k) {
   case ‘w’:
   case ‘W’:
     noisefloor++;
     if (noisefloor == 0)
      noisefloor = 255;
    break;

   case ‘x’:
   case ‘X’:
     noisefloor—;
     if (noisefloor == 255)
      noisefloor = 0;
    break;

   case KEY_ESCAPE:
     fQuit = -1;
    break;
   default:;
  }
 }

 // Clean up display environment
 gl_clearscreen(0);
 vga_setmode(TEXT);
}

The first few lines are housekeeping setup for the video capture functions and 
a few data structures that are required by the image-processing routines. The first 
svgalib-specific call is vga_init(). This function should be called very early in your 
program (certainly before using any other svgalib functions); it installs handlers to 
catch various signals so that if your program dies, svgalib gets a chance to restore the 
video environment.

Next, we set an extended video mode with vga_setmode(). The mode constants 
are defined in vga.h with easy-to-understand mnemonic names. (Note that the “x” 
character in the mode names is always lowercase; I invariably mistype this when 
writing svgalib code). Changing video modes is probably the most stressful thing 
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svgalib will do to your system. The potential dangers vary according to the type of 
chipset support you’re using, and what your definition of a fatal problem might be. 
In a worst-case scenario, mode changes can lock up the system so hard that a power-
cycle or hard reset (or a watchdog bite, if your system is equipped with suitable WDT 
hardware) is the only way to resurrect it. This scenario is, unfortunately, most likely 
to occur when you’re using VESA BIOS support—VESA BIOS extensions and 
ACPI tables seem to be the most bug-prone and haphazardly tested pieces of code 
in a modern PC. Note that if you happen to be running your svgalib program within 
XFree86, svgalib will automatically allocate a new console and switch to it—the 
XFree86 video state will be preserved and in theory it should be possible to return to 
X after your program terminates. In practice, this facility is horribly broken on a lot 
of platforms, including Geode27 . The soundest advice I can offer you here is that if 
you’re using svgalib, you should set a single video mode and never change it—and if 
you’re using XFree86, don’t mix in svgalib applications.

Having presumably been successful in pulling the system into our chosen video 
mode (640 × 480, 5:6:5 16 bpp direct color), we now use gl_vgacontextvga() to set 
the current graphics context to reflect the physical screen’s parameters, allocate a 
new context variable with gl_allocatecontext() to store these parameters, and copy 
the current graphics context into this newly allocated variable with gl_getcontext(). 
Similarly, we allocate an offscreen drawing surface with the same characteristics as 
the physical  screen, and we point the SVGAlib functions to work on this offscreen 
buffer with gl_setcontext(). The next few lines draw the screen layout and onscreen 
help. Remember that these items are all being drawn into the offscreen buffer; they’re 
invisible for the moment.

We now begin the main program loop, which loops continuously until the quit 
flag is set by a keystroke. The V4L_Acquire() function grabs a single frame from the 
webcam (refer to the sourcecode on disk for the gory details of this process). We then 
process it a little bit according to the current settings, superimpose the edge overlay, 
and copy it into the offscreen buffer. After the complete frame is assembled, we use 
gl_copyscreen() to blit the entire offscreen buffer onto the active display area. Fi-

27 Like most comments about Geode compatibility, this issue depends on your BIOS version.
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nally, we use the vga_getkey() function to get a keystroke, if any, out of the keyboard 
buffer, and if the user has pressed a key we process it appropriately.

All of this gymnastic activity sounds like a lot of manipulation, but even the 
Geode manages to achieve a fairly respectable framerate (about 15 fps).

If you remember the dark ages of programming graphics in DOS using the graphi-
cal console libraries provided by Watcom (now Sybase), Borland and Microsoft, you 
won’t have much trouble working with svgalib.

4.7.4 X

With its minimalist name but a far-from-minimalist architecture, X is the non plus 
ultra of graphical interfaces. Anything you want to do can be done in X—the ques-
tion is merely if you’ll still want to do it once you find out how much work it’s going 
to be. The old tagline says “Programming graphics in X is like computing sqrt(pi) in 
Roman numerals,” and with good reason. If you intend to use X as your environment, 
you will probably be using a wrapper library to make your life easier, but it’s still not a 
trivial matter to develop an X application. If I can extend the analogy I made in my 
discussion of the framebuffer (making a salad from seeds), developing X applications 
is often like asking for a salad and being given a printout of the lettuce and carrot 
genomes; technically, all the information you need is there, but sometimes it seems as 
if alien technologies are required to synthesize the desired product from the available 
ingredients.

X itself is also terribly resource-intensive and the architecture has inherent per-
formance bottlenecks. There are various extension features, with differing degrees of 
portability, to alleviate these bottlenecks, but they aren’t universally available and 
add yet more complexity to your program. My recommendation is to eschew X in 
embedded systems unless you need to be able to run extant third-party programs that 
require it, or you already have an X-based desktop application that you are pruning 
down for embedded use. X was designed to solve a variety of technical problems that 
simply don’t exist in the majority of embedded systems; primarily, it was designed to 
provide a GUI layer over a communications session with applications running on a 
remote machine. This introduces all kinds of irritating assumptions and schizophren-
ic bottlenecks due to the fact that the GUI and the programs running inside it are 
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conceptually on opposite ends of a network connection. Shared memory techniques 
are only a workaround, not a solution—they don’t address the conceptual limitation 
that certain resources and data structures are “server side” and certain structures are 
“client side.”

Unfortunately, the best way of escaping the program complexity issues (besides 
using some other GUI) is to use a highly abstracted programming environment like 
Java. Of course, that approach introduces its own frustrations. I wouldn’t advise at-
tempting to write any complex Java programs for use on Geode; although they do 
run at a semi-reasonable speed with JIT compilation, there can be literally minutes of 
startup delay for even relatively simple programs.

If you do want to use X on the Geode platform, you should be aware that there 
are some hoops to jump through. I’ve assembled here some special notes that may 
help you to get it working properly for your situation. There are three major routes 
you can take towards bringing up the X server:

Method 1 – Use the framebuffer console and the XF86_FBDev server. This 
method might not work on all Geode-based systems because it relies on the presence 
of a VESA BIOS extension. It works on the PCM-5820 (but note the following im-
portant drawbacks). For testing purposes, you can simply type “video=vesa vga=xxx” 
at the LILO boot: prompt, or make whatever changes are appropriate to your boot-
loader if you’re not using LILO. This will allow you to check various video modes 
(xxx = video mode; look in Documentation/vb/vesafb.txt inside your Linux kernel 
source directory for more information on this). Once you’ve established which mode 
works best for you, adding these lines to the appropriate paragraph in lilo.conf, or 
modifying your bootloader’s will make your choice permanent:

vga=xxx
append=”video=vesa”

Note that this feature requires kernel framebuffer console support. Assuming you 
have everything working for the framebuffer console, simply install the XF86_FBDev 
server and link it to /usr/X11R6/bin/X and you’ll be set. Following is an example 
XF86Config file for framebuffer operation. Using this file, X will start up in the reso-
lution you selected at boot time.
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Section “Files”
RgbPath “/usr/X11R6/lib/X11/rgb”
FontPath “unix/:7100”
EndSection

Section “ServerFlags”
EndSection

Section “Keyboard”
Protocol “Standard”
AutoRepeat 500 5
LeftAlt Meta
RightAlt Meta
ScrollLock Compose
RightCtl Control
XkbKeycodes “xfree86”
XkbTypes “default”
XkbCompat “default”
XkbSymbols “us(pc101)”
XkbGeometry “pc”
XkbRules “xfree86”
XkbModel “pc101”
XkbLayout “us”
EndSection

Section “Pointer”
Protocol “PS/2”
Device “/dev/mouse”
Emulate3Buttons
Emulate3Timeout 50
EndSection

Section “Monitor”
Identifier “Panel”
VendorName “Unknown”
ModelName “Unknown”
HorizSync 31-90
VertRefresh 40-160
# Modelines aren’t actually used
Modeline “640x480” 31.5 640 656 720 864 480 488 491 521
EndSection

Section “Device”
Identifier “Geode”
VendorName “Unknown”
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BoardName “Unknown”
VideoRam 4096
EndSection
Section “Screen”
Driver “FBDev”
Device “Geode”
Monitor “Panel”
Subsection “Display”
Depth 16
Modes “default”
ViewPort 0 0
EndSubsection
EndSection

There are two major disadvantages to this setup (and some minor ones). The 
two big problems are (a) it’s slow, because you have no access to any accelerated 
hardware features, and (b) you can’t switch resolutions on the fly. In the multimedia 
application I mentioned in the introduction to this book, we wanted to run at 1024 
× 768, 16 bpp for still images, but use lower resolutions for full-screen motion video 
(MPEG-1 playback) since the source material is low resolution anyway, and stretch-
ing it out to fill a large screen is a complete waste of CPU bandwidth.

Important note: If you are using the VESA framebuffer console, it is not advis-
able to use non-FBDev X servers, nor graphics libraries like SVGAlib. The system 
will often go into an undefined video mode as soon as you attempt to switch modes 
away from the boot-time default.

If those disadvantages put you off Method 1, consider Method 2 – Use the XF86_
SVGA server from XFree86 version 3.x. The best match I have found so far is the 
XF86_SVGA server, version 3.3.6a. If you install Red Hat 7.2 and select Geode, this 
server will be installed but it will NOT be enabled! The Red Hat 7.2 install process 
by default links /etc/X11R6/bin/X to /etc/X11R6/bin/XFree86, which is the XFree86 
4.1.0 “mega-wrapper”; it attempts to install the Cyrix MediaGX driver, which does 
not work with Geode. Newer Linux distributions don’t usually include 3.x servers at 
all.

Note that the 3.3.6a server I mention here is NOT the same version Advantech 
supplies on their driver CD-ROM. The Advantech version seems to calculate dot 
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clocks and other timings quite bizarrely, and I’ve had trouble getting properly cen-
tered video with their server. Unfortunately, there’s a catch-22 lurking here, which I 
describe next.

One essential point to note is that there is a bug in the CS5530, or more likely 
the VSA code (yet again!) which can make the SVGA server extremely unstable. 
You can work around this bug by specifying an odd virtual screen size using the Vir-
tual x y keyword (I use 1024 × 769 because our system normally runs at 1024 × 768. 
If you are using a lower screen resolution like 640 × 480 and want to conserve video 
memory requirements, use an appropriately odd-sized virtual buffer such as 640 × 
481). The cause of this bug is a combination of XF86_SVGA’s behavior and a quirk 
of the CS5530. The Geode system relies heavily on I/O traps and “faked” hardware 
emulation for some of its functionality, particularly video. In the “standard” resolu-
tions, XF86_SVGA attempts to enable display compression, which causes problems. 
In the best case, you will get some garbage on the display; in the worst case, the 
system will lock hard and require a hard reset or power-cycle. Specifying the strange 
virtual resolution implicitly disables the compressed display feature and works around 
the problem. This workaround may or may not be ideal for you depending on your 
system setup; in the case of the application I was implementing, the system has no 
pointing device so it’s not possible for the user to scroll the display window and see 
the extra “phantom” scanline.

Using XF86_SVGA you will have access to some hardware acceleration fea-
tures such as a hardware mouse cursor. More importantly, you will be able to change 
resolutions on the fly. Here is a suitable XF86Config file for the three standard resolu-
tions, 640 × 480, 800 × 600 and 1024 × 768. It is possible to get the low-resolution 
video modes working also, but only with the Advantech-supplied server. (Argh! This 
is the catch-22 I mentioned.) If you don’t need low resolution capabilities, I suggest 
you stick to the Red Hat-supplied server. It’s much easier to get stable, easily-cen-
tered video with that server.

Section “Files”
RgbPath “/usr/X11R6/lib/X11/rgb”
FontPath “unix/:7100”
EndSection
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Section “ServerFlags”
EndSection

Section “Keyboard”
Protocol “Standard”
AutoRepeat 500 5
LeftAlt Meta
RightAlt Meta
ScrollLock Compose
RightCtl Control
XkbKeycodes “xfree86”
XkbTypes “default”
XkbCompat “default”
XkbSymbols “us(pc101)”
XkbGeometry “pc”
XkbRules “xfree86”
XkbModel “pc101”
XkbLayout “us”
EndSection

Section “Pointer”
Protocol “PS/2”
Device “/dev/mouse”
Emulate3Buttons
Emulate3Timeout 50
EndSection

Section “Monitor”
Identifier “Panel”
VendorName “Unknown”
ModelName “Unknown”
HorizSync 31-90
VertRefresh 40-160
# 640x480 @ 72 Hz, 36.5 kHz hsync
Modeline “640x480” 31.5 640 656 720 864 480 488 491 521
# 800x600 @ 72 Hz, 48.0 kHz hsync
Modeline “800x600” 50 800 816 976 1040 600 637 643 666 +hsync 
+vsync
# 1024x768 @ 70 Hz, 56.5 kHz hsync
Modeline “1024x768” 75 1024 1040 1184 1328 768 771 777 806 -hsync 
-vsync
EndSection

Section “Device”
Identifier “Geode”
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VendorName “Unknown”
BoardName “Unknown”
VideoRam 4096
EndSection

Section “Screen”
Driver “svga”
Device “Geode”
Monitor “Panel”
DefaultColorDepth 16
Subsection “Display”
Depth 16
Modes “1024x768” “800x600” “640x480”
Virtual 1024 769
EndSubsection
EndSection

One final note on XFree86 3.x—National Semiconductor has supplied numerous 
subtly different versions of the 3.x SVGA server for Geode; some with sourcecode, 
some as binary-only. Since 3.x is officially dead, I have not experimented with all of 
these. If you’re desperate to fix some particular issue, feel free to go the trial-and-error 
route!

If neither Methods 1 nor 2 appeal to you, try Method 3 – Use XFree86 4.x. Mod-
ern distributions of Linux, such as Red Hat 9.0 and Fedora Core 1, ship with XFree86 
4.x. However, the installation process doesn’t correctly detect the CS 5530 chipset; 
it installs the Cyrix MediaGX driver, again. To get the system working properly, use 
this XF86Config, which uses the nsc_drv.o driver. Note that this XF86Config has 
only been tested on XFree86 4.2.99.3 beta and the current release, 4.3.0.

Section “ServerLayout”
Identifier “XFree86 Configured”
Screen 0 “Screen0” 0 0
InputDevice “Mouse0” “CorePointer”
InputDevice “Keyboard0” “CoreKeyboard”
EndSection

Section “Files”
RgbPath “/usr/X11R6/lib/X11/rgb”
ModulePath “/usr/X11R6/lib/modules”
FontPath “/usr/X11R6/lib/X11/fonts/misc/”
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FontPath “/usr/X11R6/lib/X11/fonts/Speedo/”
FontPath “/usr/X11R6/lib/X11/fonts/Type1/”
FontPath “/usr/X11R6/lib/X11/fonts/CID/”
FontPath “/usr/X11R6/lib/X11/fonts/75dpi/”
FontPath “/usr/X11R6/lib/X11/fonts/100dpi/”
EndSection

Section “Module”
Load “extmod”
Load “dbe”
Load “dri”
Load “glx”
Load “record”
Load “xtrap”
Load “speedo”
Load “type1”
EndSection

Section “InputDevice”
Identifier “Keyboard0”
Driver “keyboard”
EndSection

Section “InputDevice”
Identifier “Mouse0”
Driver “mouse”
Option “Protocol” “auto”
Option “Device” “/dev/mouse”
EndSection

Section “Monitor”
Identifier “Monitor0”
VendorName “Monitor Vendor”
ModelName “Monitor Model”
HorizSync 31.5 - 50.0
VertRefresh 50.0 - 75.0
EndSection

Section “Device”
#Option “SWcursor” # [bool]
#Option “HWcursor” # [bool]
#Option “NoCompression” # [bool]
#Option “NoAccel” # [bool]
#Option “TV” # [str]
#Option “TV_Output” # [str]
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#Option “TVOverscan” # [str]
#Option “ShadowFB” # [bool]
#Option “Rotate” # [str]
#Option “FlatPanel” # [bool]
#Option “ColorKey” # i
#Option “OSMImageBuffers” # i
Identifier “Card0”
Driver “nsc”
Option “NoAccel” “True”
VendorName “Cyrix Corporation”
BoardName “5530 Video [Kahlua]”
BusID “PCI:0:18:4”
EndSection

Section “Screen”
Identifier “Screen0”
Device “Card0”
Monitor “Monitor0”
DefaultDepth 16
SubSection “Display”
Depth 16
Modes “1024x768” “800x600” “640x480” “400x300” “320x240” “320x200”
EndSubSection
EndSection

There are many good reasons to switch to using XFree86 4 if you can, including:

■ Xv and DGA accelerated graphics support.

■ An end to the need to specify weird virtual screen sizes (the Option Display-
Compression setting achieves this).

■ More flexible server options. 

■ The default video modes have “friendlier” syncrates than the 3.x server. 

■ Translucent mouse cursors. 

Now, that’s only half the picture. Due to a bug, the XFree86.org official release 
code does not support scandoubled modes (for example, 320 × 240) on Geode. I have 
generated a patch for this bug. If you’re interested in the gory details, you can find my 
original posting on the topic, with an explanation of the problem, at http://www.mail-
archive.com/devel@xfree86.org/msg00455.html. Here’s the patch:
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--- Begin patch for disp_gu1.c

130a131,135
> /*
>  * Bugfix to gfx_is_mode_supported to fix problems with doublescan
modes
>  * Lewin A.R.W. Edwards <[EMAIL PROTECTED]>
> */
> 
839d843
< 
840a845,850
>       int tmp_yres;
> 
>       tmp_yres = yres;
>     if (DisplayParams[mode].flags & GFX_MODE_LINE_DOUBLE)
>           tmp_yres = tmp_yres / 2;
> 
842,843c852,853
<         (DisplayParams[mode].vactive == (unsigned short)yres) &&
<         (DisplayParams[mode].flags & hz_flag) &&
---
>         (DisplayParams[mode].vactive == (unsigned short)tmp_yres) &&
>         (DisplayParams[mode].flags & hz_flag)  &&
850a861
> 
878a890
> 

--- Begin patch for nsc_gx1_driver.c

150a151,155
> /*
>  * Minor patches to allow support of low-res video modes
>  * Lewin A.R.W. Edwards <[EMAIL PROTECTED]>
> */
> 
475c480
<        { NULL, 25175, 135000, 0, FALSE, TRUE, 1, 1, 0 };
---
>        { NULL, 10000, 135000, 0, FALSE, TRUE, 1, 1, 0 };
937c942
<    minHeight = 480;
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---
>    minHeight = 200;
1850c1855,1856
<    if (MemIndex == -1)                        /* no match */
---
> 
>    if (MemIndex == -1)                        /* no match */ 
2363a2370
> 

--- Begin patch for nsc_gx2_driver.c

145a146,150
> /*
>  * Minor patches to allow support of low-res video modes
>  * Lewin A.R.W. Edwards <[EMAIL PROTECTED]>
> */
> 
474c479
<        { NULL, 25175, 229500, 0, FALSE, TRUE, 1, 1, 0 };
---
>        { NULL, 10000, 229500, 0, FALSE, TRUE, 1, 1, 0 };
911c916
<    minHeight = 480;
---
>    minHeight = 200;

Using my patched driver enables 400 × 300, 320 × 240 and 320 × 200 graphics 
modes, which are useful if you need to play VideoCD or other low-resolution movie 
content on a Geode platform. However, you will still have to contend with the fol-
lowing issues:

■ The NSC driver does not, apparently, fully support autoprobing. This means 
that running  XFree86 -configure will not generate a completely valid 
XFree86Config file (it will “kinda” work, but it won’t give you a full range of 
resolutions and will require some manual tweaking). 

■ It appears that the Geode, or at least the X driver for it, doesn’t support DDC so 
the monitor syncrates in an auto-generated XFree86Config will be arbitrary. 
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■ If you’re running with display compression enabled, you may see minor video 
glitches onscreen, particularly if your application writes directly to display 
memory. This phenomenon appears to be a momentary loss of sync, like a 
skipped v-sync pulse, and it is yet another of the problems caused by the 
ridiculous “video compression” feature of the CS5530. The line:

 Option “NoCompression” “True”

 in the Device stanza in your XFree86Config file fixes this. 

■ UI rotation is supported using the Option “Rotate” “CW” or Option “Rotate” 
“CCW” switches. However, these will fail catastrophically unless you also use 
Option “ShadowFB” “true”. This has a fairly severe performance downside 
and I don’t recommend it.

■ Flat-panel support appears to be partly broken, at least on the PCM-5820 
with current BIOS versions. If you need to use a direct-connect parallel or 
LVDS LCD, then for the time being you are probably best off using the VESA 
driver. Neither the vanilla XFree86 driver nor my patched driver will work 
correctly on most of the LCDs I have tested. The National Semiconductor 
server does work, but it doesn’t support scandoubled video modes. (Note, by 
the way, that you need to specify Option FlatPanel True if you are using 
XFree86 4.x with an LCD system). 

■ The nsc_drv.o driver does not correctly save/restore the entire video subsys-
tem state with some BIOS versions. This makes it impossible to switch from 
X to a different virtual console. It also means that the system will lose sync 
and go into an undisplayable video mode if you exit X. There is no work-
around for this issue at this time; use XFree86 3.x if this is a problem for you. 
This problem is known to exist on the PCM-5820 (all 1.x BIOS versions), 
Wafer-582x (all versions) and the e-valuetech EBC-3410. It does not affect 
the EBC-5410 with the BIOS versions I have tested to date.
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4.7.5 Hybrid and Unusual Interfaces

Choosing a graphics interface method in Linux is quite complicated, because many 
of your possible options overlap, and certain combinations of them can coexist hap-
pily on the one system. For example, it’s possible for either svgalib or X to run on top 
of the framebuffer device; in fact, embedded ARM-Linux systems with LCDs (such 
as PDAs) are almost universally implemented with an X server running on top of the 
appropriate framebuffer driver. Even though X is using the framebuffer, there’s noth-
ing to stop your application from writing into video memory directly and only using 
X for features that absolutely require it.

I’d like to share with you, briefly, two apparently little-known methods of imple-
menting a GUI, neither of which are talked about very frequently (if at all). I’ve 
had success with both of these in commercial products, and I feel that they saved me 
considerable time in the applications I was implementing. Each one solves a very dif-
ferent set of problems.

My first suggestion is to include an embedded web browser and a simple web 
server on your appliance, and implement as much as possible of the user interface 
as web forms processed (through the web server) by a backend program. The great 
thing about this method is that you automatically get “free” remote control of the 
appliance over a TCP/IP network connection, if available. This technique doesn’t 
work well for all types of appliances (for instance, I wouldn’t try it with something 
like a digital video recorder), but it does work exceedingly well for implementing the 
configuration front-end on an appliance that spends most of its time doing nonin-
teractive things. An example of this would be an electronic advertising sign sort of 
application; most of the time, it’s running movies and playing still images, but oc-
casionally the user needs to twiddle the configuration. Another good example is a 
machine on a factory floor, controlling some largely automated process such as count-
ing or sorting; you might want to have a local console so that operators can perform 
occasional maintenance functions directly at the machine, but mostly you will want 
to operate it remotely.
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One suitable backend for this type of system is the industry-standard Apache 
web server included with most Linux distributions (including Fedora). Although 
it’s rather overkill for the type of application we’re discussing, it’s easy to use, it is 
easy to write compatible CGI modules in many different languages, and the server is 
pre-integrated with the OS distribution, which make it an obvious starting point, if 
nothing else.

Choosing a web browser to run locally is a bit more challenging. Mozilla/
Netscape is a grotesque leviathan; it’s slow to start and has an enormous RAM and 
disk footprint. It is extremely sluggish on Geode, mostly due to the slow performance 
of X in general. Opera is a possibility, but it’s a commercial product and it still doesn’t 
have wonderful performance. For the application we have in mind, I recommend 
using either Dillo http://www.dillo.org/, or eLinks http://elinks.or.cz/. Dillo is a small, 
reasonably fast X-based browser, and it’s particularly good at rendering pages in a 
cosmetically similar fashion to the “big” browsers. This may be important in applica-
tions where the browser will be called upon to render external content in addition 
to the local configuration pages. However, if that feature isn’t overridingly important 
to you, I suggest eLinks as a better choice. eLinks can run either on the standard 
framebuffer console, or as an X application. In either case, it uses its own font-ren-
dering engine, which leads to cosmetically different presentation than you would see 
with a more conventional browser. However, it does support a large number of useful 
features—secure connections, support for forms, some scripting functionality, and so 
on. Since it doesn’t run with an X event model, it also lends itself admirably to being 
adapted for use in embedded environments that don’t have traditional input devices. 
For example, in one application, I have adapted eLinks to use five pushbuttons for 
page navigation; two buttons scroll the page up and down, two buttons select “previ-
ous link” or “next link” (amongst the hyperlinks on the currently visible page), and 
the remaining button enters the currently activated link. Holding down that fifth 
button brings up a context menu that allows you to move forwards or backwards in 
the page history.

My second suggestion contains rather a lot of cheating. For a rather large project, I 
needed to implement a system that was able to run a few X applications and could also 
run an XFree86-based movie player application that needed to be able to change video 
modes and use hardware MPEG playback acceleration. However, the device needed to 
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present a slightly souped-up version of a proprietary GUI that was originally developed 
on a much older product. (The older product was OS-less; it ran on a fairly low-perfor-
mance 32-bit architecture with very little operating system support).

It just so happened that the proprietary GUI portion of this code was already 
entirely extant in the older project, so I didn’t want to move it on top of an existing 
graphics library. I eventually developed a hybrid sort of system. The machine boots 
into XFree86, and launches my application. To cut down on system resource usage, 
there is no window manager; the startup scripts simply spawn the X server, pause for 
it to finish starting up, then launch my executable. My program then obtains the 
starting address of video frame memory, and mmap()s it into its address space (in a 
similar manner to the framebuffer example code I described earlier). By making a few 
assumptions about video memory layout, it can run the exact same code used in the 
older OS-less product. When it needs to provide a function that requires interaction 
with X, it simply spawns a subprocess; a movie player, web browser, and other similar 
“high-level” applications are all provided.

This ramshackle-sounding system actually works very well, and it allows the 
proprietary portions of the GUI to remain portable back to the older, non-PC-based 
versions of the appliance. Furthermore, the main application doesn’t have to deal 
with Geode’s sluggish X performance.

Quite possibly, neither of these suggestions exactly matches your system needs. 
The point I’m trying to make here is that there is room for lateral thinking when 
choosing your interface. It’s entirely possible to tailor your user interface technology 
to the specific needs of the application you’re trying to implement.

4.8 Infra-Red Remote Control in Linux Using LIRC

There are several sorts of applications where it may be useful to offer infra-red re-
mote control capabilities. The obvious example is a homebrew DVR (digital video 
recorder) or TV-top player box for video content downloaded off the Internet. In an 
industrial or laboratory setting, however, there are other possible uses for IR con-
trol. For example, you may want to have your electronics in a sealed box to protect 
against environmental hazards (water, corrosive chemicals, etc). Your appliance may 
be mounted somewhere difficult to reach. Or you may simply want to prevent ran-
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dom passersby from tampering with equipment settings—authorized personnel with 
the appropriate remote control can still access these settings easily.

Most super-I/O chips, including the Winbond W83977 on our Advantech board, 
include an IR decoding function, configurable either for bidirectional IrDA commu-
nications or for receiving commands from CIR (consumer infra-red) remote controls. 
Note that these two functions are very different, and are supported by completely dif-
ferent software. IrDA is a very complex bidirectional protocol; although some remote 
controls use IrDA, almost any consumer remote control you’re likely to acquire will use 
a simpler consumer protocol, such as the Philips RC5 code set. In this section, I’ll show 
you how to set up your SBC to receive the signals from almost any arbitrary remote 
control. The specific remote I’m using in my worked example here is a generic cable 
box controller supplied by Infrared Remote Solutions Inc. http://www.infraredremote.
com/, part IRSI-07-15-01. A sample is shown in Figure 4-2.

Figure 4-2: 
Example IR remote
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I chose this device to work with because it has the fewest buttons of any remote I 
own, thus making for a nice simple example. For convenience, I will refer to the but-
tons (from upper left to lower right) as 1, 3, W, A, S, D, and X—because this layout 
can nicely be emulated on a QWERTY keyboard with a roughly similar button lay-
out. You may prefer to use a universal remote, in which case you can simply pick an 
appliance type and model (say, Sony® DVD player) and follow the remote’s instruc-
tion manual to set the universal remote to emulate the controller for that device. 
This technique has the advantage of ongoing reproducibility; you can be fairly sure of 
being able to acquire a steady supply of an off-the-shelf universal remote—and even 
if your specific model is discontinued, you will be able to switch to another model as 
long as it handles the same appliance types.

Let’s begin with a thumbnail description of how an infra-red remote operates: 
The remote control itself consists of a key matrix, an application-specific micro-
controller, and an IR LED. When a key is depressed, the microcontroller generates 
a sequence of bursts of carrier signal, typically somewhere between 30~40 kHz—in 
our case, 38 kHz. The burst sequence encodes a button ID; these codes are arbitrarily 
mapped to appliance functions. There are several common encoding protocols, and 
most of these protocols include some kind of subprotocol to differentiate between 
multiple devices of the same type.

On the receiver side, it is normal to use an integrated IR receiver module as the 
front-end, rather than assembling something out of discrete components. An exam-
ple of the sort of component you would find here is the Vishay TSOP12xx or Sharp 
GP1U series of parts. In general, these receiver modules consist firstly of an optical 
IR filter and photodetector. In the case of the Sharp and Vishay devices, the housing 
is simply molded out of an IR-transparent resin. Some older modules were con-
structed of metal with a small IR-transparent window at one end. This hardware is 
followed by, at minimum, a bandpass filter centered on the nominal carrier frequency, 
and a demodulator circuit that turns the carrier frequency into a solid logic level, 
normally HIGH (or high-impedance) for no carrier, and LOW for carrier detected. 
Most available detector modules have a little extra intelligence in them to reduce 
noise sensitivity by ignoring extremely short carrier bursts.
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Note that there are two compatibility parameters here: the sensitive band of 
the IR detector (and the transparent range of its associated filter) must include the 
output wavelength of the LED in your selected remote, and the detector module’s 
filter frequency must match your remote’s carrier frequency. In practice, you will find 
that the sensitive band of the detector is wide enough to cover any IR LED you can 
purchase, so you generally don’t need to worry about it. There is also a fairly wide 
range of acceptability in the carrier frequency parameter, and again you’ll find that 
almost any receiver module will appear to work with most remote controls. However, 
the sensitive range and view angle of the sensor will be reduced, perhaps severely, 
the more deviation there is between your remote’s carrier frequency and the receiver 
module’s nominal frequency.

By the way, there is a significant exception to the statements I just made: In an 
effort to reduce error rates for high-speed data transfers, some IrDA transceiver mod-
ules filter out consumer remote signals very effectively. You may run into this issue 
if you’re attempting to embed your application on a laptop or other appliance that 
already has its IR receiver built in. The only way you can work around this sort of 
problem is by using a different receiver module.

Tip: Sometimes while debugging you’ll find yourself wondering if the IR trans-
mitter is actually sending anything. There are IR-sensitive cards sold for detecting 
these kinds of emissions, but if you don’t have one, you can also use almost any 
digital camera or camcorder with an electronic viewfinder (as opposed to a simple 
optical viewfinder). Just point the camera at the remote and look at the viewfinder 
screen; IR output will show up as a bright blue-white light. The CCDs used in con-
sumer cameras are quite sensitive to long wavelengths; although cameras have filters 
in them to remove ambient IR light, the output of the remote’s LED is strong enough 
to pierce through this filter.

Before we go any further, we need to connect an IR receiver module to our 
SBC. For the remote I specified, we can use the Sharp GP1UV701QS or Vishay 
TSOP1238 receiver, or an equivalent part (the vital criteria being +5 V supply 
compatibility, and 38 kHz carrier frequency). On the PCM-5820, the IR interface is 
CN7, which is a five-pin, 2mm-pitch single-in-line connector manufactured by JST. 
The correct mating connector is JST’s PHR-528 . Hirose (HRS) makes a visually very 
similar but tragically incompatible connector; beware! The pinout is as follows:
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Pin Name Description
1 Vcc +5 V supply for transceiver or receiver module
2 NC No connection (but see the following note)

3
IR_RX Demodulated data input to SBC (connect to output pin 

of receiver if using a 3-pin receiver module)
4 GND Ground
5 IR_TX IR LED control signal for IrDA transmission

NOTE: This pinout is almost standardized. However, some other boards (for 
example, the BCM EBC-5410) use pin 2 for a dedicated CIR input. Advantech has 
chosen not to implement the dedicated CIR functionality provided by the Winbond 
Super I/O. If you are using a consumer infra-red receiver module on a non-Advan-
tech board and you have reception problems, try connecting your IR receiver’s output 
to pin 2 instead of pin 3.

Now we need to look at the software support required to make use of this detec-
tor. Before doing anything further, however, you need to ensure that the Winbond 
super-I/O chip on the SBC is configured for IR reception. Go into CMOS setup and 
navigate to the “INTEGRATED PERIPHERALS” page. Configure the following set-
tings29 :

■ Onboard Serial Port 2: Disabled

■ Onboard IR Controller: Enabled

■ IR Address Select: 2F8H

■ IR Mode: IrDA

■ IR Transmission delay: Enabled

■ IR IRQ Select: 3

28 Tip: The crimp tool for these connectors is quite expensive, though the parts themselves are dirt 
cheap. You can either improvise with a pair of pliers or a different crimp tool (your results won’t be 
very strong; reinforce with hot-melt glue) or alternatively salvage one from something else. In many 
CD-ROM drives and portable audio CD players, the connector you need is used to connect the hub 
motor to the main PCB. If you have a dead one of these appliances lying around, look inside it!

 29 These settings are correct for BIOS version 2.00—older BIOSes have slightly different options and 
a spelling mistake or two. The important features are: IrDA mode, I/O address 2F8 (COM2), IRQ 3, 
and ensure that the real COM2 port is disabled.
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With this accomplished, we’re ready to compile and install the Linux IR re-
mote-control software, LIRC. You’ll find the sourcecode archive on the CD as 
/linux/lirc-0.6.6.tar.gz.

LIRC consists of several components and addons, of which three are of principal 
interest to us. First is the kernel module that talks to the IR UART and pipes the 
mark-space burst data to the next overlying software layer. The lirc project supports 
several different types of IR interface; the one we’ll be using is lirc_sir. Then we have 
lircd, a daemon that runs in the background and listens to the kernel module, trans-
lating the mark-space codes into a standardized data format via a configuration file 
that describes the particular remote control transmitter you’re using. Lastly, we have 
irrecord, which is a test program used to analyze an unknown remote control and 
generate a lircd configuration file that will work with it.

We begin by configuring, compiling and installing the kernel-mode driver. First, 
extract the lirc source archive and run the configure script. Assuming the CD-ROM 
accompanying this book is mounted at /mnt/cdrom:

 cd /usr/src
 tar zxvf /mnt/cdrom/linux/lirc-0.6.6.tar.gz
 cd lirc-0.6.6
 ./configure

In the top-level configuration dialog, select option 1 (Driver configuration) and 
press Enter. Navigate down to option 6 (IrDA hardware) and press Enter. Select 
option 1 (SIR IrDA) and press Enter. Navigate down to “COM2 (0x2f8, 3),” press 
Space to select it, and press Enter. You’ll be returned to the main menu; select option 
2 (Software configuration) and press Enter. Make sure that all five options here are 
unchecked, and select OK. You’ll be back at the main menu once more; select option 
3 and press Enter. You’re now ready to build and install the LIRC module with make 
; make install.

At this point, you should also edit /etc/modules.conf and add the line:

     alias char-major-61 lirc_sir
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Note, by the way, that it’s also possible to specify options in modules.conf to over-
ride the compiled-in driver defaults. However, we already set the driver up correctly 
for our hardware during the configuration phase, so we don’t need to add any over-
rides.

In order to use the IR capabilities of the serial port, we have to make sure the 
port in question isn’t attached to the Linux serial driver. There are basically three 
ways of doing this: don’t load the kernel serial port driver (leave it out of the kernel), 
unload the driver (which requires that you have built it as a module), or force it to 
relinquish the port we’re using for IR. The last method is the simplest, and can be 
achieved (on the PCM-5820) with the command setserial /dev/ttyS1 uart 
none. Now, type modprobe lirc_sir to load the IR driver module30 . If you get an 
error that the module couldn’t be found, manually edit /lib/modules/2.4.24/modules.
dep and add a dependency line that reads:

 /lib/modules/2.4.24/misc/lirc_sir.o:

At this point, we have the basic driver infrastructure working, and before going 
any further, we need to teach LIRC about the characteristics of our remote control, 
using the irrecord utility. Run irrecord -f /etc/lircd.conf to start the training 
process. Note that this command line forces irrecord to run in a “dumb” raw mode. 
Due to hardware or possibly firmware-induced glitches on the PCM-5820, you 
MUST use this raw mode to train a valid configuration. If you are running on a 
non-Advantech SBC (or if you are performing this experiment on a laptop), feel free 
to omit the –f parameter. You’ll get a more flexible and much simpler configuration 
file.

30 It isn’t normally necessary to load the port driver module manually like this. If you set up the de-
vices in /dev and the alias line in modules.conf, then starting the lircd daemon should automatically 
load the appropriate port driver. I’ve detailed the process here manually so you can see immediately 
if there is a problem with the port driver, rather than getting a cryptic error out of lircd when you 
come to run it later. But it’s good practice to load your expected driver manually anyway—that way 
you can provide more meaningful black-box information when something goes wrong.
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When you run irrecord, you will first be prompted to read a couple of pages of 
information; press Enter twice to skip past this and start recording. In the first stage 
of this process, you’ll be asked to hold down each button on the remote for at least 1 
second. Dots will appear on the screen to indicate that irrecord is successfully receiv-
ing data from the remote control. This process continues until you’ve completed a 
full line of dots. (If there aren’t enough buttons on your remote to meet this condi-
tion, you can press the same button multiple times. The important thing is to be sure 
you’ve given irrecord a good sample of the different codes generated by your remote).

Once you’ve completed a full line of dots, if you’re not using raw mode, irrecord 
will proceed to the second stage of learning. Again, you should go through every 
button on the remote, holding each one down for at least a second. If everything is 
working correctly at this point, holding down each button should generate only one 
dot, even if you hold down the button for a considerable time. As before, this second 
stage continues until you have covered an entire screen line with dots.

At this point, we begin assigning names to the buttons. Simply enter a text label 
for the button to be “learned” and press Enter. Irrecord will prompt you to hold down 
the button in question, and will start listening for a code on the IR port. For some 
types of remote (not the specific one we’re using, though), irrecord should say “Got 
it.,” followed by the message “Signal length is [integer]” for each learned button. 
These signal lengths should be similar for all the buttons on your remote; if you sud-
denly get a very short signal length (typically 1), this means that a glitch interrupted 
the learning process. You should re-teach LIRC that button—just enter the same 
button name again, let LIRC recognize it, and manually edit the configuration file to 
remove the erroneous entry after you’ve finished with irrecord. You’ll recognize the 
bad entry because it will be very short in comparison with the good entries.

Depending on what sort of remote you were training, you may now be prompted 
to press a single button repeatedly as fast as you can, so that irrecord can check for 
toggle bits. Some IR protocols include a spare bit in each button ID code, which is 
toggled each time you press the button. The purpose of this bit is to detect when a 
continuously-repeated signal is temporarily interrupted by a physical obstacle. To 
demonstrate this feature in operation, point your TV remote at the set, press and 
hold the power button, and wave your hand in front of the remote’s LED. Note that 
the TV set doesn’t go off and on as you uncover the LED!
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Note: It is extremely important that your IR environment is as quiet as possible 
while training LIRC to recognize a new remote control. Although the receiver mod-
ule does have some hardware intelligence in it to filter out spurious signals, under 
normal conditions it is common for glitches to make it all the way through to the 
SBC. Fluorescent lights, including energy saver compact fluorescent bulbs and the in-
ferno of nuclear fusion that beats in on us through unshaded windows (if you happen 
to be on the day-side of the terminator) are particularly evil sources of noise. If you 
are having trouble teaching LIRC, try darkening the room or covering the remote 
and IR receiver with a towel and working by feel under the towel.

If you care to examine the configuration file generated by this process, you will 
see a small header followed by a stanza of information for each trained button. For 
instance, the stanza describing the 1 button would look something like this:

name 1

 39 13507 39 1086 39 2222

 39 1086 39 1086 39 1085

 39 1085 39 1086 39 2223

 39 2221 39 2225 39 1084

 39 1086 39 2223 39 1085

 39 1085 39 1086 39 1085

 39 1086 39 1084 39 1087

 39 1085 39 1086 39 1084

 39 1085 39 2224 39 2223

 39 2222 39 2223 39 2222

 39 2224 39 2223 39 2223

 39

This represents a header pulse (the 39 13507 leadin), followed by a 32-bit button 
code, MSB first. Our remote uses the sequence 39, 1086 to represent a zero and 39, 
2222 to represent 1 (note the slight variances in the data above; LIRC offers a “fuzzi-
ness” parameter allowing you to tweak just how much “wobble” is acceptable in the 
burst lengths). Thus, the actual code being transmitted for this button is,  in binary, 
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0100 0001 1100 1000 0000 0000 1111 1111—or 0x41C800FF. (In fact, the 0x41C8 
header is a vendor-specific code used to distinguish our OEM remote from other 
remotes using the same protocol; only the last 16 bits of the button code are actually 
useful data).

The long format you just saw illustrated is a very verbose way of describing the 
button code. In a configuration file that wasn’t recorded in the dumb raw mode, 
LIRC simply defines what is recognized as “1,” what is recognized as “0,” the common 
prefix, if any (0x41C8 in our case) and some other information about how the but-
ton presses are encoded. It then describes each button simply with the hexadecimal  
number that’s being transmitted by that button; 0x00FF in the case in the preceding 
paragraph. These sorts of configuration files are much easier to read and edit, but un-
fortunately the Advantech board can’t work properly with them. It’s unclear at this 
time whether this is a hardware issue or a BIOS bug, but it seems to be a BIOS issue 
since the exact same software configuration can be made to work on other Geode 
boards with the same hardware.

You should now test that your configuration file is valid by running the LIRC 
daemon, lircd, and then starting the “watcher” program irw. Once irw is running, 
aim the remote at the sensor and press a few buttons. You should see output some-
thing like this (one line of output for each button you pressed):

0000000000000001 00 1 /etc/lircd.conf

0000000000000005 00 s /etc/lircd.conf

0000000000000007 00 x /etc/lircd.conf

The four fields in this output are: the 64-bit code of the button being pressed, the 
repeat count, the name you assigned to this button during training, and the name of 
the remote control. You can edit the name of the remote in the configuration file; for 
example, you can rename it from the default “/etc/lircd.conf” to, say, “dvd-remote.” If 
you then concatenate multiple lircd.conf files, lircd will recognize all the defined but-
ton codes and will inform you not only the code of the button that’s being pressed, 
but also which remote control it’s on. This is handy if, for example, you have trained 
LIRC to recognize remote controls for both a VCR and a DVD player, and you need 
to determine which “Play” button has been pressed.
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Note that for a configuration file recorded in raw mode, the button code simply 
represents the position of the button description within the configuration file; the 
first button encountered is numbered “1,” the next “2,” and so on. If you are using a 
“smart” configuration file, the button code will be the actual binary data for the but-
ton; for our remote, this will be a number of the form 0x0000000041C8????, where 
???? represents the button code. This detail isn’t particularly important, however, as 
we will be working with the names we assigned the buttons, rather than their raw 
codes.

Now it’s time to integrate IR support into our own application. Because of the 
unusual limitation of the Advantech IR hardware, I’m going to illustrate only non-
repeated keystrokes. The raw configuration file we generated earlier won’t recognize 
held-down buttons; it will recognize the first press, but not subsequent repeat events. 
This is roughly equivalent to having a rigorously debounced pushbutton mounted on 
your appliance.

In order to listen to the lircd daemon, we must open a connection to /dev/lircd. 
From this we obtain a regular file stream from which we can read incoming button 
data, in exactly the same text format displayed by irw during the tests we just per-
formed. Let’s suppose we only want to read the buttons defined for the remote control 
I described earlier. Following is a complete suite of functions for reading the IR 
stream and implementing a buffer of incoming button presses. The main limitation  
of this set of functions is that it only works when you have defined unique single-
character names for each button on the remote.

To use these functions, first call Init_LIRC(). This function opens a connection 
to lircd and then clones off a separate process that continuously runs the Do_LIRC() 
function. Do_LIRC() doesn’t chew overly much CPU time, because it spends most 
of its time blocked on the read operation, waiting for data from lircd. To get a good 
idea of how much jitter this task introduces to your system, create a main loop that 
strobes a bit on the parallel port, then sleeps for, say, 100 ms and repeats the pro-
cess indefinitely. Put your scope on the pin of interest, with a slow sweep rate, and 
observe how the system behaves when you’re pressing IR buttons. (Try not to have 
anything else running. Pagefile access, in particular, will mess up your results here). 
If everything is working properly, you should see that incoming IR doesn’t interfere 
very much, if at all, with system timings.
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// This buffer stores incoming “keystrokes”.
char input_buffer[16];

// Socket for communication with the LIRC daemon
int lirc_fd;

// Stack area for the LIRC subprocess
unsigned char LIRCstack[8192];

/*
 Insert character to head of keyboard buffer and push others down
*/
void CON_Buf_Insert(char c)
{
 int i;

 for (i=1;i<sizeof(input_buffer);i++)
  input_buffer[i] = input_buffer[i-1];
 input_buffer[0] = c;
}

/*
 Check for presence of a character in buffer; don’t remove it
 Returns nonzero if there is a character waiting in the buffer
*/
int CON_Count_Buffer(void)
{
 int i = -1;

 if (!input_buffer[0])
  return 0;

 for (i=0;i<sizeof(input_buffer) && input_buffer[i]; i++)

 return i;
}

/*
 Flush input buffer
*/
void CON_Buf_Flush(void)
{
 memset((char *) input_buffer, 0, sizeof(input_buffer));
}
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/*
 Get key
 Returns character from head of keyboard buffer [and moves buffer 
up one step!]
 or 0 if no character is available.
*/
char CON_Buf_Get(void)
{
 int i;
 char c;

 if(!input_buffer[0])
  return 0;

 c = input_buffer[0];

 for (i=0; i<sizeof(input_buffer) - 1; i++)
  input_buffer[i] = input_buffer[i+1];
 input_buffer[sizeof(input_buffer) - 1] = 0;
 return c;
}

/*
 Get key (wait if none available)
*/
char CON_Buf_GetWait(void)
{
 char c = 0;
 while(!c) {
  c = CON_Buf_Get();
 }
 return c;
}

/*
 Subprocess to communicate with LIRC
*/
int Do_LIRC(void *p)
{
 char buf[128];

 while (1) {
  int cr;
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  memset(buf,0,sizeof(buf));

  cr=read(lirc_fd, buf, 80);
  if (cr > 0) {
   char key[16];
   int count;
   char *p = buf; 

   key[0]=0;
   // skip serial#
   while (*p && *p!=’ ‘)
    p++;
   if (*p) p++;
 
   // skip count
   count = atoi(p);
   while (*p && *p!=’ ‘)
    p++;
   if (*p) p++;

   if (count) {
    // We ignore repeat codes. You can process them
    // if you wish.
   }

   if (*p && (count == 0)) {
    CON_Buf_Insert(*p);
   } // if (*p && (count == 0))
  } // if (cr > 0)
 } // while(1)
}

/*
 Call this function once at program startup. It connects to the 
LIRC daemon
 and starts a subprocess that scans the incoming data stream.
*/
void Init_LIRC(void)
{
 addr.sun_family = AF_UNIX;
 strcpy(addr.sun_path, “/dev/lircd”);
 lirc_fd=socket(AF_UNIX, SOCK_STREAM, 0);
 connect(lirc_fd,(struct sockaddr *) &addr, sizeof(addr));
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 // start subprocess
 clone(Do_LIRC, LIRCStack + sizeof(LIRCStack) - 4, CLONE_VM | 
CLONE_FILES, NULL);
}

One final note about LIRC and system performance: this module is only well-
behaved if it is running on a “real” infra-red UART. If your machine lacks this 
hardware, and you’re running with one of the homebrewed adapters discussed in the 
LIRC documentation, you will notice a significant drain on system resources. When 
using those simple bit-banged dongles, LIRC has to measure all the mark-space tim-
ings in software, which is excruciatingly CPU-intensive.

4.9 Introduction to Machine Vision Using Video4Linux

4.9.1 Acquiring Image Data from Cameras

The E-2 is equipped with several low-resolution color cameras, connected directly 
to the controlling SBC via USB. Besides providing interesting underwater pictures, 
these cameras are used for autonomous target-seeking. In this section, we’ll briefly 
look at some of the simple machine vision concepts that I use in the E-2 project. 
Please note that what I’m concentrating on here is how to acquire real-time images 
in a Linux environment; that is, the input side of the machine vision equation. Al-
gorithms for analyzing image data like this are explained in thick, dry and generally 
rather expensive books that you are welcome to acquire and study separately. Here, 
I’m primarily offering you the acquisition infrastructure you can use to slip the ex-
ample sourcecode in those books directly into your real-time system, along with some 
information about pre-processing the pixel data.

For our example code, we’re going to use a cheap pencam camera based on the 
ST STV0680 chip. The specific camera I used is a “Jazz Digi-Stix JDC11,” which is 
available under several different names for between $10–$20. If you’re looking for 
this exact camera, probably the easiest place to find one is eBay. There are numerous 
other inexpensive cameras based on the same chip. You can, however, use any video 
capture device that has a Video4Linux driver; the procedures are almost exactly the 
same.
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The application side of the V4L driver API is described for you—very tersely—in 
Documentation/video4linux/API.html in your Linux source directory. Note that 
2.4.x and earlier kernels implement the first version of the V4L API, referred to as 
V4L1. There is a new API under development—V4L2—which is going to be the 
standard API in kernel 2.6 and can be retrofitted to 2.4.x. At the time of writing, 
support for V4L2 isn’t as complete as V4L1, so we won’t deal with the newer API 
here. Unfortunately, aside from the kernel tree documentation, it’s strangely difficult 
to find concise programming information about V4L131—the definitive reference is 
the sourcecode for the xawtv application, which is horribly general-purpose and dif-
ficult to understand. One of my motivations for including sample V4L source here is 
to illustrate that video capture in Linux doesn’t have to be complex (at least, not as 
long as you’re willing to work with a constrained subset of the video capture devices 
supported by the kernel).

In the vidcap directory of the sample sourcecode archive, you’ll find the source 
for a small (nongraphical) applet that tries to acquire a single frame from /dev/video0 
and save it as a 24 bpp Windows-compatible BMP. During the process, various inter-
esting information about the image capture device is displayed onscreen. BMP is a 
convenient file format, because it basically consists of raw RGB framebuffer data with 
a small header that indicates the frame size. I have created a small library contain-
ing fairly portable code32  to read and write BMP files into flat memory arrays; you’ll 
find this code, a demo program and some documentation in the projects/bmpdemo 
directory. The functions I have provided handle byte-order conversion from BMP’s 
blue-green-red ordering to the more normal red-green-blue order, and they also 
automatically flip the image vertically (for odd historical reasons dating back to the 
halcyon days of OS/2, BMPs are stored in upside-down scanline order). My functions 
are, however, NOT a fully-standards-compliant BMP read/write algorithm. Do not 
use this BMP code as the basis of any commercial software product!

31 Searching for documentation on Video4Linux will, at the time of writing, lead you almost exclu-
sively to V4L2 reference materials.

32 My code is “portable” in the sense that it’s endianness-independent—you can run it directly on 
ARM, x86, MIPS, etc.—but it does assume that int is at least 32 bits.
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For the remainder of this discussion, I’ll assume you’re looking at the sample 
applet sourcecode I provided (projects/vidcap/main.c) and possibly the V4L header 
file out of the Linux kernel. The V4L API is quite simple to use—considerably easier 
than other interfaces such as TWAIN, for instance. You begin by opening the desired 
video device (/dev/videon, usually /dev/video0) with open(2). Next, you use ioctl(2)  
to query the device capabilities and make sure it’s a device you can work with. The 
V4L APIs we’re interested in support straight stream-type video capture devices such 
as USB cameras, but V4L also supports radios, teletext receivers and overlay-type 
video capture devices that drop captured video data directly into your graphics card’s 
video memory. We won’t deal with those latter three classes of device, because the 
first two are irrelevant to our application, and the USB pencams I’m talking about 
are simpler to access and never implement the overlay type of capture method. It 
will, however, almost certainly be necessary for you to implement overlay capture 
if you’re using a PCI framegrabber card, or an analog video input feature integrated 
into your SVGA adapter. These devices are most unlikely to support the simple 
read(2)-based interface.

Device capabilities are queried using the VIDIOCGCAP ioctl. You pass this ioctl 
a pointer to an empty video_capability structure (this structure, along with the ioctl 
names and other V4L constants, is defined in the videodev.h header from the Linux 
kernel). On return, the values in this structure are filled out to reflect the device’s 
functionality. The two things we are interested in are the flags in type (VID_TYPE_
CAPTURE must be set for us to work with the device), and the maximum capture 
window size in pixels, defined by the maxwidth and maxheight structure members.

Now we need to look at the image grabbing parameters using the VIDIOCG-
PICT ioctl. This function fills in a video_picture structure to reflect the current 
driver settings. The main thing we’re interested in is the palette mode – we only 
support the RGB24 (8:8:8) data format. If the palette parameter isn’t VIDEO_PAL-
ETTE_RGB24, we set palette=VIDEO_PALETTE_RGB24, pass the structure back 
to the VIDIOCSPICT ioctl, then re-query the device with VIDIOCGPICT again 
to see if the requested setting was accepted by the driver. If not, we have to abort, 
because we don’t support conversion from the other data formats.
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The penultimate step is to set the video capture window size, and query the driver 
state immediately after this process in order to ascertain what capture window was 
actually set. The reason this step is necessary is that not all combinations of palette, 
capture window size, and capture flags are supported by all drivers; you might not get 
the same window size you requested, and it’s important that you know exactly what 
the driver is going to deliver because when you actually come to get image data, it 
arrives as an unformatted stream of bytes. So, we create a video_window struct with 
the x and y (starting coordinate) parameters set to (0,0) and the width and height 
parameters set to the maximum width and height values are returned by VIDIOCG-
CAP. The remaining members of the video_window struct should be zeroed – we’re 
not using them. Next, we pass the video_window structure to the VIDIOCSWIN 
ioctl, then immediately reuse the structure with a VIDIOCGWIN ioctl, which will 
return us the actual values being used by the driver. 

Assuming all these gyrations were successful, we can read a frame of data out of 
the device simply by using the read(2) function on the /dev/video0 handle. The size 
of the read operation is the window width * height * 3 bytes per pixel. The format is 
ordered logically with the red byte first, then the green byte, then the blue byte. It’s 
as simple as that, at least with the basic pencam drivers in Linux 2.4.x. Here’s the 
sourcecode for our simple grabber applet:

/*
 main.c

 Simple V4L1 applet - Capture one frame from /dev/video0 and save 
it as a BMP.
 2004-04-03 larwe created
*/

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
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#include <linux/videodev.h>

#include “bmplib.h”

/*
 Demonstration main function
*/
int main(int _argc, char *_argv[])
{
 BMINFO bi;
 BLERR status;
 unsigned char *capbuffer;
 struct video_capability vc;
 struct video_picture vp;
 struct video_window vw;
 int video, rc;

 if (_argc < 2) {
  printf(“Usage : vidcap filename.bmp\n”
   “Captures one frame from /dev/video0 to filename.bmp\n”);
  return -1;
 }

 printf(“Opening /dev/video0... “);
 fflush(NULL);
 video = open(“/dev/video0”, O_RDWR);
 if (video == -1) {
  printf(“Cannot open, aborting.\n”);
  return -1;
 }
 printf(“OK.\nGetting device capabilities... “);

 // Ascertain and display capture device properties
 rc = ioctl(video, VIDIOCGCAP, &vc);
 if (rc) {
  printf(“VIDIOCGCAP failed, aborting.”);
  return -1;
 }
 printf(“OK.\n”);
 printf(“Name        : ‘%s’\n”
     “Channels     : %d\n”
     “Audios       : %d\n”
     “Size         : %dx%d to %dx%d\n”, vc.name, vc.channels, 
vc.audios, vc.minwidth, vc.minheight,
     vc.maxwidth, vc.maxheight);
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 printf(“Capabilities : “);
 if (vc.type & VID_TYPE_CAPTURE)
  printf(“VID_TYPE_CAPTURE “);
 if (vc.type & VID_TYPE_TUNER)
  printf(“VID_TYPE_TUNER “);
 if (vc.type & VID_TYPE_TELETEXT)
  printf(“VID_TYPE_TELETEXT “);
 if (vc.type & VID_TYPE_OVERLAY)
  printf(“VID_TYPE_OVERLAY “);
 if (vc.type & VID_TYPE_CHROMAKEY)
  printf(“VID_TYPE_CHROMAKEY “);
 if (vc.type & VID_TYPE_CLIPPING)
  printf(“VID_TYPE_CLIPPING “);
 if (vc.type & VID_TYPE_FRAMERAM)
  printf(“VID_TYPE_FRAMERAM “);
 if (vc.type & VID_TYPE_SCALES)
  printf(“VID_TYPE_SCALES “);
 if (vc.type & VID_TYPE_MONOCHROME)
  printf(“VID_TYPE_MONOCHROME “);
 if (vc.type & VID_TYPE_SUBCAPTURE)
  printf(“VID_TYPE_SUBCAPTURE “);
 printf(“\n”);

 printf(“Getting image properties... “);
 rc = ioctl(video, VIDIOCGPICT, &vp);
 if (rc) {
  printf(“VIDIOCGPICT failed, aborting.”);
  return -1;
 }
 printf(“OK.\n”);
 
 if (vp.palette != VIDEO_PALETTE_RGB24) {
  // Attempt to set RGB24 palette
  printf(“Attempting to set RGB24 palette... “);
  vp.palette = VIDEO_PALETTE_RGB24;
  rc = ioctl(video, VIDIOCSPICT, &vp);
  if (rc) {
   printf(“VIDIOCSPICT failed, aborting.\n”);
   return -1;
  }
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  rc = ioctl(video, VIDIOCGPICT, &vp);
  if (rc) {
   printf(“VIDIOCGPICT failed, aborting.\n”);
   return -1;
  }
  if (vp.palette != VIDEO_PALETTE_RGB24) {
   printf(“Device does not support RGB24 palette, aborting.\
n”);
   return -1;
  }
  printf(“OK.\n”);
 }

 printf(“Brightness : %d\n”
     “Hue        : %d\n”
     “Color      : %d\n”
     “Contrast   : %d\n”
     “Whiteness  : %d\n”
     “Depth      : %d\n”,
     vp.brightness, vp.hue, vp.colour, vp.contrast, vp.whiteness, 
vp.depth, vp.palette);
 printf(“Palette    : “);
 switch(vp.palette) {
  case VIDEO_PALETTE_GREY:  printf(“VIDEO_PALETTE_GREY”); break;
  case VIDEO_PALETTE_HI240:  printf(“VIDEO_PALETTE_HI240”); break;
  case VIDEO_PALETTE_RGB565: printf(“VIDEO_PALETTE_RGB565”); break;
  case VIDEO_PALETTE_RGB555: printf(“VIDEO_PALETTE_RGB555”); break;
  case VIDEO_PALETTE_RGB24:  printf(“VIDEO_PALETTE_RGB24”); break;
  case VIDEO_PALETTE_RGB32:  printf(“VIDEO_PALETTE_RGB32”); break;
  case VIDEO_PALETTE_YUV422: printf(“VIDEO_PALETTE_YUV422”); break;
  case VIDEO_PALETTE_YUYV:  printf(“VIDEO_PALETTE_YUYV”); break;
  case VIDEO_PALETTE_UYVY:  printf(“VIDEO_PALETTE_UYVY”); break;
  case VIDEO_PALETTE_YUV420: printf(“VIDEO_PALETTE_YUV420”); break;
  case VIDEO_PALETTE_YUV411: printf(“VIDEO_PALETTE_YUV411”); break;
  case VIDEO_PALETTE_RAW:  printf(“VIDEO_PALETTE_RAW (BT848)”); 
break;
  case VIDEO_PALETTE_YUV422P: printf(“VIDEO_PALETTE_YUV422P”);break;
  case VIDEO_PALETTE_YUV411P: printf(“VIDEO_PALETTE_YUV411P”);break;

  default:   printf(“Unrecognized”);  break;
 }
 printf(“\n”);
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 if (vp.palette != VIDEO_PALETTE_RGB24 && vp.palette != VIDEO_PAL-
ETTE_RGB32) {
  printf(“This program supports ONLY VIDEO_PALETTE_RGB24 and 
VIDEO_PALETTE_RGB32.\n”);
  return -1;
 }

 // Set window
 vw.x = 0;
 vw.y = 0;
 vw.width = vc.maxwidth;
 vw.height = vc.maxheight;
 vw.chromakey = 0;
 vw.flags = 0;
 vw.clips = NULL;
 vw.clipcount = 0;
 printf(“Setting video capture window... “);
 rc = ioctl(video, VIDIOCSWIN, &vw);
 if (rc) {
  printf(“Failed, aborting.\n”);
  return -1;
 }
 printf(“OK.\n”);
 printf(“Querying video capture window... “);
 rc = ioctl(video, VIDIOCGWIN, &vw);
 if (rc) {
  printf(“Failed, aborting.\n”);
  return -1;
 }
 printf(“OK, window size is %dx%d.\n”, vw.width, vw.height);

 // Allocate RAM for capture buffer. At MOST we need 32 bits per 

pixel.

 capbuffer = malloc(vw.width * vw.height * 4);
 if (capbuffer == NULL) {
  printf(“Error allocating memory for capture buffer!\n”);
  return -1;
 }

 // Capture an image using the read() interface. This is potential-
ly unsupported.
 printf(“Reading buffer... “);
 if (vp.palette == VIDEO_PALETTE_RGB24)
  read(video, capbuffer, vw.width * vw.height * 3);
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 else if (vp.palette == VIDEO_PALETTE_RGB32)
  read(video, capbuffer, vw.width * vw.height * 4);
 printf(“OK.\n”);

 printf(“Closing /dev/video0... “);
 close(video);
 printf(“OK.\n”);

 // For RGB32, we need to convert the image down to RGB24. 
 if (vp.palette == VIDEO_PALETTE_RGB32) {
  // BUGBUG - Not implemented yet!
  printf(“CONVERSION NOT IMPLEMENTED.\n”);
  return -1;
 }

 // Create overlying bitmap structure
 bi.width = vw.width;
 bi.height = vw.height;
 bi.bitmapdata = capbuffer;

 // Open output file
 printf(“Saving output file... “);
 fflush(NULL);
 bi.fd = open(_argv[1], O_WRONLY | O_CREAT | O_TRUNC, S_IRWXU);
 if (bi.fd <= 0) {
  printf(“Can’t open output file.\n”);
  return -1;
 }
 status = BL_Save_Bitmap(&bi);
 close(bi.fd);
 printf(“Returncode %d\n”, status);
}

4.9.2 Detecting Object Edges

Now we’ve got the raw image data, what do we do with it? Most machine vision tasks 
involve recognizing and locating shapes. In order to recognize shapes, you first need 
to locate the edges of any objects in the image. The simplest approach to this prob-
lem is to regard each scanline of the image as representing a section of a continuous 
function (grayscale pixel level), and take an arithmetical first derivative of this func-
tion to yield an “edginess plot” of the image. Various further processing can be done 
on this in order to generate a greatly massaged image ready to feed into your artificial 
intelligence system.
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All the above is a bit of a mouthful, so let’s look at a couple of practical examples, 
with sourcecode. The sample programs I’m going to talk about here don’t work di-
rectly with V4L, because it’s a bit inconvenient to test with known-to-be-interesting 
test images when you need to aim a camera at them. So, for portability and ease-of-
testing reasons, the sample programs work with uncompressed 24-bit BMP files. In 
this text, I’ll be referring to specific sample images I acquired myself; you can find all 
these images in the projects/images directory. You will also find the output images 
shown in the text. The files on the CD-ROM are the raw output from the sample 
code shown here; for print production reasons, what you see on the page here has 
been post-processed some more to improve contrast.

Let’s first run a simple left-to-right scanline derivative on the image, to identify 
areas of change (edges, in other words). A demo program to achieve this is located in 
projects/bmpdemo-derive. The meat of it is the following function:

void DER_DeriveScanline(unsigned char *pixels, int width)
{
 int i;
 unsigned char p1,p2,result;
 
 for (i=0;i<width - 1;i++) {
  p1 = *(pixels+1);
  p2 = *(pixels+4);
  if (p2 > p1)
   result = p2 - p1;
  else
   result = p1 - p2;
  *(pixels++) = result;
  *(pixels++) = result;
  *(pixels++) = result;
 }
 // Put dummy column on RH side
 *(pixels++) = 0;
 *(pixels++) = 0;
 *(pixels++) = 0;
}
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This snippet of code works from left to right on a single scanline of the input 
image, and replaces each pixel P with the absolute value of the arithmetic deriva-
tive of the original image contents at P and P+1. We take the absolute value for two 
reasons; firstly, we don’t care if we’re detecting a transition from light to dark or dark 
to light (an edge is an edge to us), and secondly, storing the absolute value obviates 
the need for a wider data output storage type (with a sign bit). The algorithm ignores 
the red and blue components of each pixel; the demo program, by the way, performs 
a color-to-grayscale averaging before running the above algorithm. Note that there 
is one unavoidably incalculable pixel at the right-hand edge of the scanline. This 
dummy pixel is set to 0 for convenience in later analysis.

Here’s a picture of my apartment wall and attic door, before and after processing 
with the command derive wall-flash.bmp wall-flash-1.bmp 1 (more about the 
“1” parameter in a moment, just for now suffice it to say that this additional parame-
ter ensures that the output you see is the result of the above arithmetic differentation 
only). I chose this subject material because it’s a relatively clean, noise-free environ-
ment illustrating a number of interesting points.

The image above was taken with bright (xenon flash) light. Let’s look at an 
almost identical picture taken with ambient lighting only, and subject it to the exact 
same processing:
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You’ll note that although the color balance and overall brightness of the two “be-
fore” images are very dissimilar—and there’s a very noticeable pattern of concentric 
brightness rings centered around the ceiling light in the second picture—he differen-
tiated images look almost the same. This very simple algorithm has therefore helped 
us pick out edges in the image, and simultaneously erased some of the absolute effects 
of variable lighting. It’s hard to establish quantifiably just how much the latter prob-
lem has been mitigated, because there are other factors at work in the camera. For 
example, in low-light conditions the exposure is automatically increased, which 
means that bright spots tend to get over-saturated (losing all detail) and mechanical 
vibrations have more chance to blur the acquired image.

To help you better visualize what’s going on, I’ve also included some simple edge 
amplification code in the derive program, and that’s what the third command-line 
parameter controls. The way this amplification works is as follows: The entire output 
image is scanned to determine the brightness b of the brightest pixel it contains (i.e., 
the sharpness of the sharpest edge in the original image). This value is then subtract-
ed from the maximum possible pixel value (255) to obtain a “brightening factor”  
f = 255 – b. Each pixel of the image is then analyzed with a user-supplied amplifica-
tion constant a. (This is the third parameter on the command line). The analysis 
rules are:

■ If the pixel is dimmer than b/a, then it is left unaltered.

■ Otherwise, the brightening factor f is added to the pixel.

The net effect of all this is to make the very brightest edges stand out from the 
rest of the crowd. At the same time, the relative brightness of all pixels is preserved; 
if a given pixel was brighter than its neighbor before processing, it will still be bright-
er after processing.

Now, one thing you will observe about all the “after” images is that the horizon-
tal scan process can only detect edges with a vertical component. The horizontal 
crossbars of the moldings on the wall have therefore disappeared. I won’t illustrate it 
here —you can check it for yourself easily enough using the program in the bitmap-
derive2 directory, but obviously a vertical-scanning derivative is equally as blind to 
vertical lines as the horizontal scan was to horizontal image features. One possible 
solution to this problem is to take two passes over the initial data, one scanning 



201

The Linux-Based Controller (A Soft Task)

vertically and one scanning horizontally, and then average the two resultant bitmaps. 
This approach takes somewhere between two and three times the processing horse-
power of a simple one-dimensional derivative, but it will capture a lot of detail you 
would otherwise miss.

If you run the svgacap program described in Section 4.7.3 (which uses the pre-
ceding code) and tinker with the noise threshold parameter, you will also quickly 
observe that simply scanning for sharp brightness transitions isn’t the best way of 
identifying edges. A more refined approach is to look for sign changes in the deriva-
tive. I haven’t included example code to do this, but you can easily modify the simple 
left-to-right scanning algorithm in projects/bmpdemo-derive to give you an idea of 
the data that can be pulled out of the noise using this approach. This second deriva-
tive algorithm is the basis of most simple shape-recognition algorithms, because it is a 
true method of detecting edges.

It is interesting to run the sample programs described here over a variety of source 
material and observe the output, because it gives you an instructive window into 
the ease with which various classes of image data can be algorithmically analyzed. I 
particularly encourage you to tinker with various processing options using some of the 
navigation and hazard avoidance camera images taken by NASA’s MER-A and MER-B 
Mars rovers; you can get some feel of just what the onboard software in those robots 
is seeing. The homepage of the Mars rover project, where you can download high-
resolution raw image data from both robots, is http://marsrovers.nasa.gov/home/index.
html.

4.10 Customizing Your BIOS—The Structure of a Modern BIOS

All of the SBC vendors you’ll deal with will offer you the opportunity to purchase 
a custom BIOS. Charges for this customization range from free to more than ten 
thousand dollars up-front, plus (generally) a per-unit premium to preload your spe-
cial BIOS version before shipping boards to you. Here are four of the most common 
reasons why you might want a customized BIOS for your product:

1. Custom CMOS default settings. Most applications that use an embedded 
PC will want or need to have nondefault settings; for example, no halt on 
keyboard error at boot time, a boot device order that doesn’t start with the 
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first floppy drive, and so on. It’s a lot safer to have these settings locked into 
flash than simply to set the board up once at production time and rely on the 
CMOS battery to retain those parameters. If your system ships without a key-
board or display that would allow the user to reconfigure lost CMOS settings, 
then it’s absolutely mandatory that you burn customized defaults into flash; 
anything from a brief power glitch to random software errors could corrupt 
the CMOS contents and leave the system unstartable.

2. Security. You might want to lock out access to the system’s BIOS setup utility 
by setting a nonerasable password. This is very common in set-top-box Inter-
net appliances based around generic PC hardware.

3. Cosmetic issues. Hiding the normal POST messages can conceal, to some 
degree, the embedded-PC nature of the product. Many vendors also choose 
to insert a custom boot logo or message, often including a company URL for 
product support.

4. Functional issues. Examples of this might include special BIOS extensions 
for network booting, a ROMless SCSI card, or some proprietary piece of hard-
ware. Perhaps your BIOS needs to be updated with custom video parameters 
for an LCD you’re using. You might also need to tweak your system BIOS to 
work around some specific compatibility problems, as described below.

I’ll base this section around an anecdote about the PCM-5820 that illustrates 
nicely why you might be forced to poke about in the internals of your system BIOS, 
no matter how reluctant you are to do so. The following discussion specifically de-
scribes the Award Modular BIOS, but the basic ideas are applicable to most modern 
BIOS vendors; the tools and exact usage procedures differ slightly, but the available 
options are very similar. Although this particular issue may never be a problem for 
you, it’s an excellent way to discuss the options and procedures available for in-house 
BIOS customization.

When we started to use the PCM-5820, we tested and qualified our application 
on the then-current BIOS version. We continued to ship products based around the 
board for about two years, and over time Advantech revised the BIOS on several oc-
casions. We noted the new versions, and did some basic compatibility checking, but 
nothing untoward happened, and we continued to ship goods without interruption. 
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Now, you should note that there is generally no proactive notification of upcoming 
BIOS revisions. It’s possible to be notified of upcoming hardware revisions if you’re 
savvy enough to request such notification, but you only find out about new firmware 
revisions when the next shipment of boards arrives. This annoying behavior, by the 
way, is by no means unique to Advantech—it’s fairly consistent across all the ven-
dors I’ve worked with. The only way you can assure a continuing supply of absolutely 
identical boards is by getting the vendor to set up a custom part number for you. Not 
only does this usually result in a slightly higher unit cost, but there are obviously 
large volume requirements as well.

Our application’s volumes didn’t justify a frozen, guaranteed-identical SBC supply 
chain, so one day we received a shipment of boards loaded with BIOS version 1.23, 
and suddenly the world fell apart. Using this BIOS version under certain circum-
stances33  has the interesting property that, on approximately three attempts out of 
twenty, XFree86 does not initialize the video output  correctly; although the com-
puter is still running happily, the VGA port is outputting bizarre syncrates to which 
no known display can sync. A reboot is required to fix this condition.

Our first, obvious course was to try backleveling these new boards to an earlier 
BIOS version. Unfortunately, we were thwarted in this, because the release of the 
V1.23 BIOS update coincided with a hardware spin, too. Due to supply or price 
issues, Advantech had switched from using an Analog Devices audio codec to a 
nominally pin-and-register-compatible Realtek chip. “Nominally compatible” is of 
course vendor patois for “subtly different in irritating and show-stopping ways,” and 
the specific irritation in this case is that BIOS code intended for the Analog Devices 
chip will play back audio noticeably too fast on the Realtek chip.

33 If this problem hits you, one workaround is simply to install 128 MB of RAM. It’s not completely 
clear why this affects the visibility of the problem, but we have performed a lot of testing with vari-
ous configurations, and determined, with help from Advantech, that the issue doesn’t appear with 
any BIOS version when there is 128 MB or more of RAM installed. It’s pretty clearly a race condi-
tion of some kind, probably to do with a SMM interrupt occurring during the CRTC initialization 
code in XFree86, and adding RAM just changes latencies enough to “fix” the problem. This is an 
evil workaround and I promise to wear a mask of shame for even mentioning it, but a proper fix is 
very difficult to engineer without good support from the original BIOS supplier, and it isn’t even 
certain who that really is.
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The net result of this is that we were in a catch-22—BIOS V1.23 or later has 
the video initialization bug, and any BIOS earlier than V1.23 on a board that origi-
nally shipped with V1.23 or later results in incorrect audio playback speeds. After 
some considerable testing, we found that our XFree86 problem was shown by BIOS 
versions 1.22 and onwards, but not by V1.21, and so we needed to determine what 
exactly had changed between V1.21 and V1.22. Officially, the only change was a 
“minor change to reduce serial port interrupt latency.”

There’s quite a lot of exploring we can do in the board’s firmware without actually 
having to fire up a debugger and start poking around in the code. Modern mainboard 
BIOSes are no longer just a single monolithic block of executable code with an entry 
point at FFFF:0000h; they’re a distinct mini-filesystem and are practically complex 
enough to be considered mini-operating systems in their own right. We’ll look at 
the Award Modular BIOS (used on the Advantech Geode-based boards— and in 
fact, all of the SBCs I mentioned in the compatibility table in Section 2.5), but the 
general ideas are the same for all modern BIOSes. The BIOS image contains a small 
bootstrap program, a relatively large filesystem area full of compressed code and 
data modules, and a small amount of meta-information describing those modules. 
At power-on, the bootstrap code decompresses the main system BIOS into shadow 
RAM, and then decompresses the various other modules into other areas (usually 
in the high-memory area between 640K and 1 MB)34 . Typically, a highly integrated 
board like the SBCs we’re using will include VGA BIOS, a network boot ROM, and 
perhaps some other extensions (for example, a SCSI BIOS extension).

The official utilities required to work with Award BIOSes are three DOS applica-
tions called AWFLASH, CBROM, and MODBIN. AWFLASH is the flash-upgrader 
utility, made available to the general public so they can update their motherboards. 
You can download this from Advantech’s site, among others. CBROM is a utility 
that can decompose a BIOS image into its component modules or gather up a list of 
specified modules into a complete BIOS image. MODBIN works on the main system 

34 This is just a general outline of what happens. The detailed mechanics of a specific situation may 
vary somewhat. For example, some of the ROM contents may already be decompressed, and the 
bootloader may simply point some chipset register or interrupt vector to the data in ROM.
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BIOS code module, editing the CMOS setup menu tables and a great deal of other 
configurable information that the user would not normally get to modify; special 
CPU flags, floppy drive step rate, IDE timeouts, the BIOS version string shown at 
boot and so on. MODBIN and CBROM are theoretically supplied to OEMs only, for 
factory customization. In practice, they are readily available and apparently their dis-
tribution is not actively suppressed. The impression I have formed is that the BIOS 
vendors don’t particularly care about keeping these programs secret, but they don’t 
want to deal with the technical support effort of releasing them officially.

In any case, there also exists an open-source project called AwardMod, which 
performs the same general functions as CBROM. The main differences are: (a) it can 
legally be distributed (I have included it on the CD-ROM with this book), and (b) 
being a Windows-based GUI program, it is somewhat easier to use than the Award 
command-line utilities, though it is definitely a piece of hacker software, and rather 
idiosyncratic. Here’s a screenshot of AwardMod with the Advantech V1.21 BIOS 
loaded:
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AwardMod can work with either a single-file BIOS image, or with a decomposed 
set of BIOS components inside a directory. To load or save an image file (suitable for 
flashing onto a board with AWDFLASH), enter the path and filename in the “BIOS 
Filename” box (or use the browse button next to it) and click Load or Store. To load 
or save a set of components, enter the path to the desired directory in the “BIOS Di-
rectory” box (or, again, use the browse button next to it) and click the Load or Store 
button.

From top to bottom in the screenshot, the modules of Advantech’s V1.21 BIOS 
for the PCM-5280 are: the PnP extension, graphics data for the Energy Star logo 
shown at system boot time, the VGA BIOS, the Geode Virtual System Architecture 
(VSA) code, the network boot extension, a small data structure describing timing 
parameters for the attached LCD, and the main system BIOS code. The number in 
the second column is a “magic number” identifying what kind of data is in the mod-
ule. Some documentation describes this field as the target segment address for the 
module. This may have been true once, but it appears to be obsolete information; 
now, it seems that this number is purely magic (i.e., arbitrarily chosen from some 
unpublished table). Note that the filenames of the components are of no importance, 
except to tell a viewer what’s in the file—the bootstrap code identifies the function 
of each component using the magic number. You will find that the same module will 
frequently have different names in different BIOS versions.

By dumping out the componentized versions of V1.21 and V1.22, we could im-
mediately eliminate the video BIOS and network boot ROM from consideration in 
our problem, because they were byte-for-byte identical between the working V1.21 
and broken V1.22 BIOSes. By swapping V1.21’s modules one by one into a V1.22 
image, we determined that our video problem lay in the VSA code. Unfortunately, 
the hardware-specific code that handles the audio codec is also in this module, 
because it contains all the audio and video virtualization routines. So, transplanting 
a fix for the video problem from V1.21 into V1.23 unavoidably brought in broken au-
dio code. Eventually, we found a different Geode board that used the Realtek audio 
codec chip, merged its apparently bug-free VSA code into the BIOS for the PCM-
5820, and we had a working system again. It’s vital to perform thorough testing of all 
board features when you do a breathtaking piece of hackery like this, however—we 
found several VSA dumps that appeared to work, but subtle problems appeared due 
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to small implementation differences—for instance, in one case the MAC address of 
the on-board Ethernet port would come up as 00:00:00:00:00:00, and in another case 
the USB ports didn’t work correctly. Rigorous testing for these kinds of issues will 
prevent embarassment and/or extra costs for you later on.

What is this VSA code, anyway? It’s a large block of emulation routines, code 
that runs in the “super-supervisor” System Management Mode (SMM) of the Geode 
processor. Among other things, it handles special I/O processing for VGA text modes 
(which aren’t supported in hardware by the CS5530 video chip), SoundBlaster 
emulation, and other many other simulated “virtual hardware” features. I’ve received 
conflicting information on this point, but it seems that some SBC vendors, at least, 
buy their VSA code as a “black box”—if they encounter a problem in the field, they 
pass a report up the line to National, and when an updated version of the VSA code 
arrives, deus ex machina, it gets merged into the shipping BIOS—presumably after 
some testing. The downside to this arrangement is that if the VSA code is causing 
you a problem, you can’t get “real” technical help, because almost nobody in the 
known universe understands the VSA code’s timing issues and register-level program-
ming of the Geode chipset. Perhaps we would have been able to fix our problem by 
switching off some chipset feature or altering a timing value before starting XFree86, 
but in the end the solution we found was to go through all the hoops above.

Hopefully, this anecdote has taught you two things. First, no firmware change is 
insignificant, and you should try to freeze the firmware you ship in your products, 
whenever feasible. Second, unless your volumes are enormous enough to justify a 
custom line-item from your vendor, the vendor will seem to work actively to defeat 
this goal, so you have to be prepared to do some potentially time-consuming legwork 
from time to time. The story I described here is close to a worst-case scenario (the 
absolute worst case, of course, being a problem that requires you actually to disas-
semble, reverse-engineer and patch the BIOS code or data structures). Hopefully, 
you will never need to go through a situation like the one we encountered. However, 
if you are shipping an embedded PC application, you more than likely will need to 
alter LCD parameters, default CMOS settings, etc. and it’s important you’re aware of 
the tools that are available to you, because the SBC vendors will want to charge you 
special fees for these services.
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Note that for copyright reasons, I can’t include any of the vendor-supplied BIOS 
customization utilities on the CD-ROM with this book; I can only point out their 
existence and demonstrate to you what kind of things they can do. However, these 
utilities are readily available by searching on the Internet. Unquestionably the 
definitive jumping-off point is http://www.biosmods.com/, which carries many ver-
sions of the customization utilities for popular BIOSes for free download. Pay careful 
attention to the versioning information supplied with these utilities. Although the 
program will usually perform fairly thorough version-checking when loading a BIOS 
image, there are so many subversions and sub-subversions of BIOS code, each of 
which is virtually a custom product, that caution is advisable.
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5.1 Introduction

It is impossible to build a trustworthy control network unless the topic of security 
is addressed and designed into the product from the beginning. Whether you are 
designing a system for your own use, or for installation into some industrial or com-
mercial application, you will need to consider how to protect it against some level of 
attack from the outside world, and how to protect recorded data from theft or forgery.

Although data security involves physical, procedural and other holistic aspects, 
most security techniques in consumer and commercial applications are centered 
around adding encryption to existing protocols and data formats. This is primarily 
because encryption is cheap, being provided by “free” software, and it is also much 
easier to force users to run a “secure” version of a program (with encryption features 
forced to be on) than it is to get them to change their data security habits. Note that 
encryption technology really embraces two related topics: protecting valuable data 
from being intercepted and read by people who aren’t entitled to read it, and authen-
ticating transmissions so that commands from untrusted sources can be identified and 
ignored. The latter task involves encoding or wrapping data from a trusted source 
with a layer that cannot be forged by a third party. It doesn’t necessarily involve en-
crypting the actual data being transmitted. Be sure not to confuse these two points.

When considering measures to protect your data, you must take account of the 
following factors:
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■ What part of the data needs to be protected. In many applications, a consid-
erable proportion of the data throughput doesn’t need to be protected; only a 
small core of data needs protection. In other cases, it may be necessary to use 
different levels of protection for different classes of data.35 

■ What types of attack you need to protect against.

■ Resources available to you. This includes any special restrictions on your sys-
tem; power or duty cycle limitations, available CPU horsepower, and so on.

■ Resources available to your potential attacker. This is usually a function of 
the monetary value of the information being protected. Exceptions to this 
rule exist, of course; for example, disgruntled ex-employees or malicious 
hackers may be willing to dedicate enormous time and in some cases stolen 
distributed computing runtime.

Note that encryption algorithms are politically hot discussion topics. Many 
jurisdictions have, and occasionally even enforce, laws that either prevent consumers 
from using certain encryption technologies, or restrict the strength of the algorithms 
that can be used. Some of these laws are intended to regulate traffic in “armaments,” 
i.e., encryption technologies that could be used by an enemy. (The United States, 
which was once a fierce defender of laws in this category, has largely relaxed its 
requirements. It used to be illegal for a US citizen to sell or disclose most encryption 
technology to any noncitizen. Now, it is only illegal to provide these technologies to 
embargoed destinations).

The other class of encryption-related laws is intended to enforce intellectual 
property rights. The best-known golem among these laws is the United States’ 
Digital Millennium Copyright Act (DMCA), although some other countries have or 
are proposing similar legislation. Amongst the numerous provisions of the DMCA, 
it is now a crime in the United States to disclose more or less any information about 

35 For example, if you were implementing a secure email system, you might want the entire message 
(including routing information) to be illegible to people listening on the wire. However you would 
need to make the routing information accessible to mail delivery software at each end of the con-
nection. You wouldn’t want to allow such systems the ability to decrypt the message body, though.
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certain proprietary technologies that are used for copy protection36 . Regardless of the 
original intentions of such legislation—I find them suspect at best—the net effect of 
these laws is to inhibit free discussion of such cryptosystems. For a practical example 
of this, you need look no further than the debacle about DeCSS, the encryption 
system used on commercial DVDs.

The upshot of all this is that it’s potentially controversial, and hence inadvis-
able for me to include strong encryption sourcecode with this book—so I haven’t. 
However, this should not be a serious impediment: you can simply use your favorite 
web search engine to find “xxx algorithm sourcecode” and you are guaranteed to find 
exactly what you want.

Now, any reference you read on encryption technologies will make the following 
assertion, and I’d like to reinforce it in your mind: Security through obscurity is an 
illusion. What this means is that any system that bases part of its “security” on the 
fact that the system’s structure itself is secret, is fundamentally flawed. It should be 
assumed, even for relatively low-value applications, that any attacker has complete 
knowledge of the algorithms and procedures in use. The reason this is practically 
always true is very simple: If your application is high-value, high-security, there is 
a financial incentive for people to discover how it works, no matter how secret and 
proprietary it might be. On the other hand, if it’s a low-value application, you’re 
probably using a standard commercial product to protect it, and commercial prod-
ucts are sold in such large volume that they should be assumed vulnerable to some 
type of “script kiddie” attack—that is, an automated attack program written by one 
knowledgeable person, but widely distributed and easily operated by a novice. The 
encryption used in the password protection feature of many common archiving pro-
grams is a fairly good example of this.

Philosophy aside, in a good cryptosystem the only “key” to decrypting a given 
block of data is the secret key that was used to encrypt it, or an equivalent related 
secret that is only known by authorized persons. Any approach to security—and this 
extends beyond encryption, by the way—should start with the assumption that a po-

36 This isn’t exactly the letter of the law, but it’s essentially how things stand. Worse still, it’s effective-
ly almost a worldwide law—if you perform perfectly legal reverse-engineering in, say, Europe, then 
visit the United States, you could be arrested.
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tential attacker is fully informed about the system architecture. They will quite likely 
even have sourcecode to the software you are using. To use a physical-world analogy, 
relying on algorithm secrecy is like hanging your front door key from the doorbell, 
but concealing the lock so that a potential thief can’t work out where to put that key.

On a closely related note, others (particularly vendors of proprietary encryption 
products) will argue with the following statement, but I stand by it nevertheless: Any 
closed-source product or proprietary algorithm is inherently insecure. It is at best very 
difficult to perform rigorous analysis on such products; generally speaking, it’s impos-
sible. The security of a given cryptosystem can only be proven mathematically up to 
a point; a much more effective proof is to document exactly how the system works 
and let the world of professional cryptanalysts beat on it, trying to break it. A system 
that withstands expert public scrutiny will withstand private attack. An algorithm 
that doesn’t attract any expert scrutiny when released to the public’s gaze is probably 
not innovative or contains obvious flaws; why use it when well-tested algorithms 
exist? Furthermore, even secure encryption algorithms can be rendered totally inef-
fective by implementations that leak information an attacker could use to deduce the 
encryption key(s).

Note, by the way, that when I use the word “cryptosystem,” I’m referring to a 
much larger concept than simply the encryption algorithm. Merely selecting a robust 
encryption algorithm does not a secure system make, absent careful scrutiny of the 
entire system and the paths your data can take in, through and out of that system.

As an example, I was once called upon to work on a piece of commercial encryp-
tion software that comprised two principal layers37 ; at the bottom layer, the computer 
on which this software was installed had its entire hard drive encrypted at a sector 
level with a weak proprietary algorithm (to prevent simple text searches from finding 
directory information). At the top layer, the user had the option of superencrypt-
ing specific files with DES, which at the time was considered sufficiently secure for 
the type of information being protected. Unfortunately, this system was relatively 
easy to break, to one degree or another. Because the structure of a DOS-formatted 
disk contains many snippets of data with meanings defined by the operating system, 

37 These “layers” refer to crypto layers only. The software itself had numerous modules, interlinked to 
make it difficult for users to accidentally uninstall or bypass the product.
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the unencrypted contents of these areas can be guessed by an attacker. Thus, it was 
easy to penetrate the lower level of the encryption system with a known-plaintext 
attack. A lot of potentially sensitive information was then immediately accessible, 
unencrypted, in temporary files and the Windows paging (swap) file. In early imple-
mentations of the program, searches through the paging file could even occasionally 
find the original encryption key, in plain text, exactly as the user had typed it into 
the key-request box when encrypting or decrypting a file.

An even more blatant example of insecure implementations can be found in a 
certain Windows-based encryption program (no longer on the market) from a well-
known software publisher. The product in question implements several standard 
algorithms—DES, 1024-bit RSA, and a couple of others. The implementations of 
these algorithms are likely to be textbook-correct. However, the product is, by de-
fault, configured to store user keys in a keyring file. This file is password-protected; it 
is encrypted with a one-way hash of some user-selected password. The problem with 
this arrangement is that the security of the entire system hinges on the security of the 
hash algorithm and the algorithm used to encrypt the keychain. For unknown rea-
sons38 , the software developer chose to use only a 32-bit key to encrypt this critical 
data file. Recovering the entire store of keys could easily be accomplished by brute 
force; thereby unlocking all the user’s files despite the fact that they were encrypted 
with “secure” algorithms and fairly large key lengths.

The latter example is an obvious example of high security algorithms defeated 
by low-security key management. Unfortunately, not all such exposures of sensitive 
key information are so easy to detect. It is frequently rumored that (insert the name 
of your favorite encryption software here!) has been deliberately structured so that it 
leaks a few bits of key information here and there, in such a way that a person with 
special software can examine several messages sent by you and thereby recover your 
entire key. It’s practically impossible to refute these arguments convincingly with-
out full public disclosure of the sourcecode. So, I’m going to state a personal dogma: 
All closed-source encryption products should be regarded as potentially relying on 

38 Conspiracy theorists would speculate that the NSA or some similar body coerced the software 
publisher into making the product easily breakable. You’ll hear a lot of conspiracy theories like this 
if you do any cryptographic work. Some of them are accurate.
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“security through obscurity” to some degree. It is impossible to prove their implemen-
tation to be secure, and hence you should only trust encryption software for which 
the full sourcecode is made publicly available. The only exception to this rule—and 
it’s a partial exception at best—is that if this closed-source software implements some 
known algorithms, you can compare its ciphertext output with the output provided 
by a textbook implementation of the algorithm, operating in the same mode, with 
the same plaintext input and key. You should perform such testing with a wide vari-
ety of random data. Don’t use industry-standard test vectors, or vectors supplied by 
the software vendor—the software might be designed to detect these special cases 
and “play it straight” because it knows it’s being scrutinized. By the way, I do not 
mean to imply that any crypto product with an open-source license is trustworthy—
it’s quite possible to imagine that a skilled cryptographer could hide a subliminal 
key escrow channel in his code that you simply couldn’t observe by simple examina-
tion, or even detailed analysis, of the sourcecode. (Again, practically every popular 
encryption algorithm—particularly algorithms approved or recommended by govern-
ment bodies—has had accusations of this nature leveled against it). The point is that 
it’s much harder to hide dirty laundry of this kind in an open-source product.

If you’re starting to become suspicious and paranoid at this point, then congratu-
lations — and welcome to the world of data security. I’d offer you a drink, but you 
probably won’t trust me enough to take it.

5.2 Classes of Algorithm

In the overall context of a complete cryptosystem, there are several types of algo-
rithms which you may need to use in order to achieve a specific blend of features. 
Probably the most familiar type of cryptographic algorithm is the symmetric-key ci-
pher. The ancient and venerable DES encryption standard is an example of this type 
of algorithm. Its chief characteristic is that there is a single secret key which must be 
known to both the author and recipient of a message. For many (but not all) sym-
metric-key cryptosystems, there is a single transformation function which performs 
both the encryption and decryption tasks. If we take a data block D, apply the trans-
formation function F with key K, yielding an encrypted data block D′, we can take 
D′, run the same transformation (with the same key) over it, and get D back again.
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Symmetric-key ciphers are usually fast, and generally are selected for high-band-
width bulk data transfers. One major downside to these algorithms, however, is 
the need for both parties to know the secret key K. If you want to talk to someone 
securely, somehow you need to get the key to them without anyone eavesdropping 
on the conversation. Clearly, it’s impractical to communicate the key in the clear 
(unencrypted) over your regular communication channel; if it was secure enough for 
such traffic, you wouldn’t need to have this additional cryptosystem in the first place. 
Ultimately, you need to establish some secure channel (bonded couriers, for in-
stance) to deliver the secret key material, and this is an expensive and difficult task.

Asymmetric-key algorithms solve this problem by splitting the key into two 
halves, referred to as the public and private keys. Any data encrypted with the public 
key can only be decrypted with the private key, and vice versa. The key generation 
mechanism is devised so that it is computationally unfeasible to calculate the pri-
vate key from the public key. The beauty of this system is that you and your friend 
can give each other your public keys over an insecure channel, and not worry about 
eavesdroppers. When you send a message to your friend, you encrypt it with his 
public key. The only way it can be decrypted is with his private key, which only he 
knows. Similarly, his replies to you are encrypted with your public key, and only you 
are privy to the corresponding private key.

Other more or less special-purpose algorithms exist. For example, there is a class 
of shared-secret algorithms where the decryption key is broken into a number of 
parts. The algorithm is designed so that the complete key can be reconstituted by 
bringing together any m of n total parts, where m and n are selected according to 
the customer’s needs. Such algorithms are typically used, in the commercial world at 
least, for escrowing keys to information that must be kept secret from everybody in 
the company, but which is critical to the business and must be recoverable if some-
thing happens to one or more of the few people who know it. For example, if you 
work at a company that requires you to encrypt all your data with a key that you keep 
absolutely secret, they might implement a two-of-three shared secret system; one 
secret (A) will be known to both you and MIS, one key (B) will be your private key, 
known to you alone, and one key (C) will be known to MIS only. With this system, 
you normally use keys B and C to encrypt your files. If you leave the company and 
don’t tell anyone your key, MIS can still recover all your files by combining keys A 



216

Chapter 5

and C. Your co-worker in the next cubicle won’t be able to look at your files because 
he only knows A (and maybe not even that); he has his own private key B′, which 
won’t help him get into your data, and he doesn’t have the MIS master key C.

Also essential for many cryptographic applications, although not an encryption 
algorithm in itself, is a secure random number generator (RNG). “Secure” in this 
context means that the RNG generates a stream of output bits which are entirely 
unpredictable. Among other things, this means that observation of even an infinite 
number of output bits will not give the viewer any ability to predict the next bit. Fur-
ther, the distribution of bits should be perfectly uniform; good random data is white 
noise. Unfortunately, computers are deterministic state machines—there is no way of 
generating a stream of truly random bits in software alone. The best that can be done 
is to generate a pseudorandom sequence, which repeats after some long interval. The 
cornerstone of a cryptographic implementation that relies on pseudorandom num-
bers is finding some truly random “seed” information to select an arbitrary starting 
position in the pseudorandom sequence. Some programs use the user’s keystroke 
latencies; some use real-time clocks, and so on. Ultimately, none of these methods 
(alone) is secure enough to be relied upon; hardware solutions must be sought if pos-
sible (for example, recent Pentium processors have a good hardware RNG built into 
the chip). If you can’t add true random number hardware, then a reasonable second 
best is to combine several sources of potentially random information to obtain your 
seed. RSA Laboratories publishes a variety of interesting information on this and 
other topics; their papers are well worth reading. You can visit their web site at  
http://www.rsasecurity.com/rsalabs/.

Asymmetric-key systems, mentioned earlier, can be used to perform message 
authentication in addition to simple encryption. In order to achieve this while 
still leaving the message in plaintext (often a requirement for digital signature al-
gorithms), it is necessary to have another class of algorithm—a secure hashing 
function. A good hash function will generate very unpredictable output for a given 
change in input bits. You can think of it as a very good pseudorandom number gen-
erator where the message to be transmitted constitutes the seed.

In the next few sections, we will apply simple analysis techniques to a few com-
mon data security scenarios, to suggest cryptosystems that are appropriate to the task. 
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Please note that the following suggestions are not exhaustive—there are many ways 
to skin a cryptographic cat. The aim is to show you the sort of thinking you’ll need to 
do in order to pick a good match of cryptographic technology for a particular job.

5.3 Protecting One-Way Control Data Streams

Let us consider a remote-controlled hobbyist aircraft, or more specifically the link 
between the control box and the vehicle itself. In this application, the data to be 
protected is a relatively low-bandwidth stream of control information. The real-time 
characteristics of this are very important; if control information is delayed, the craft 
will probably crash. Because the aircraft has weight restrictions (and by implication 
power restrictions), we can also safely assume that onboard computational resources 
available will be limited. Similarly, the control box is likely to be handheld and bat-
tery-powered, so it will also have computational limitations. The potential attackers 
we can anticipate are people who want to subvert the control stream and either steal 
the aircraft or simply make it crash. Our likely attacker will, at best, have a laptop 
computer or other relatively low-power computing appliance to attempt his attack 
(although it’s not inconceivable that someone could have a wireless Internet connec-
tion and use a distributed computing attack, it does seem very unlikely that anyone 
would go to this trouble).

A few other pertinent facts about this system are as follows:

■ Before launching the aircraft, we can establish a known secure channel to 
its “brains,” for example by attaching a physical cable between the control 
box and aircraft. Thus, we know that we can transmit key information to the 
vehicle with no possibility that an eavesdropper will pick it up.

■ Because it’s easy for us to connect to the vehicle’s computer—we have physi-
cal access to the vehicle whenever it’s on the ground—it is feasible for us to 
change the encryption key every time we launch.

■ The control session has a fairly limited duration (the endurance of the vehi-
cle’s power source—minutes or hours at most, not weeks or years). Recordings 
of control sessions are of no interest to an attacker—he needs to subvert a 
control session while it’s actually in progress in order to achieve his goals.
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■ We have good physical control over all components of the cryptosystem, so 
we don’t need to be overly concerned that someone could steal a piece of 
equipment with a valuable key in it. Any key information stolen this way is 
worthless, because it relates only to a past communication session.

With all this information in hand, a reasonable choice of cryptosystem for this 
application is a moderate-security (say, 64-bit) symmetric algorithm, optimized for 
speed. The complexity of the algorithm should be chosen to strike a balance between 
computational resources available on board the vehicle, and the computational 
power we believe the attacker can bring to bear during the time period of a typical 
communications session. (In other words, if we were designing some advanced radio-
controlled solar plane that could stay aloft for weeks, we should choose a stronger key 
width than for a typical plane that will only fly for an hour or so without recharging). 
Furthermore, in order to guard against the possibility that an attacker might intercept 
one communications session, take it home and cryptanalyze it at leisure, we should 
use a different, random key every time we launch the aircraft.

5.4 Protecting One-Way Telemetry

A one-way telemetry link is an interesting reversal of the scenario described in the 
previous section. The difference between telemetry information and control infor-
mation is that telemetry frequently remains valuable long after it’s collected, which 
control information (generally) does not. In this case, we may be relying on the cryp-
tosystem to provide both authentication (verifying that the telemetry we’re receiving 
is actually coming from the source it’s supposed to be coming from) and encryption 
(making sure that other people can’t use our collected data). An example of this sort 
of application might be stock control using handheld wireless transmitters. You want 
to be sure that only authorized personnel can check stock out of inventory; you also 
want to avoid broadcasting the exact contents of your warehouse to everyone in the 
neighborhood.

Again, let’s look at our requirements. Once more, we have a relatively low-
powered handheld transmitter, but it’s feasible that it could be a reasonably speedy 
32-bit part, perhaps an ARM7 microcontroller with an LCD controller on-chip. 
Let’s assume, however, that it is too slow to implement an asymmetric algorithm. It is 
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probably safe to assume also that we can collect the transmitters at the end of every 
day and perform some physical link to them. Our aim, for the sake of argument, is to 
prevent the competitor across the road from intercepting our shipment orders and 
deducing which products we’re selling briskly. (We’re in a cut-throat business. If our 
competitor finds out that our left-handed widgets are selling quickly, he might choose 
to undercut our price, even if it means a net loss to him, and drive us out of the mar-
ket. Or if he sees that we’re using a huge quantity of some particular part, maybe he’ll 
try to buy up stocks of that part and raise the market price to damage our operations). 
A small amount of data leakage is acceptable.

We can satisfy all our requirements with a system that comprises the following 
features:

■ The transmitters use a symmetric-key algorithm with a key width that’s rea-
sonably hard to crack with commercial-grade computational power.

■ Each transmitter has a serial number that can be read out using a physical 
connection to the unit.

■ Employees are instructed to put the transmitters onto charge/reprogramming 
stations after every shift.

■ Each unit is loaded with a new random key when it is put on the charge 
station. The station interrogates the unit to find out its serial number, and 
informs the central computer (over a secure, wired link) of the serial number 
and the assigned key. No mechanism is provided for the current key to be 
read out of the unit.

■ Every transmission from the unit is encrypted with the key assigned for this 
specific unit for this shift. Since this is constantly changing, if our attacker 
happens to break a particular key, he can only recover one shift’s worth of 
messages from one handheld unit.

■ The stock-control computer is off-site. All stock add/remove requests are 
forwarded to the stock-control computer verbatim; that is, the local receiver 
hardware does not remember assigned keys, and there is no on-site informa-
tion to decrypt those on-air messages.
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Note that I haven’t explicitly discussed the cryptosystem that protects the link 
between this warehouse and the central computer; I’ve assumed that it’s strong and 
reliable. One good choice would be to use an asymmetric algorithm, where the ran-
dom-key-generator box in the warehouse uses the central computer’s public key to 
encrypt its reports on which keys have been assigned to which units.

5.5 Protecting Bidirectional Control/Data Streams

Many of the sorts of links you’ll deal with will be fully bidirectional. For instance, 
you might have an application with an embedded web server that can be used to 
control the appliance as well as retrieving data from it. Protecting systems of this sort 
is an interesting topic with several solutions, depending on what your network looks 
like and the level of security you require versus the degree of annoyance you are will-
ing to endure.

Probably the best way of securing your data link (short of a one-time code pad) 
is to use a wide-key symmetric cryptosystem. It’s fast, it’s secure—it works very well. 
The problem is that key management is difficult—if you have one single key that’s 
used for all appliances, that key becomes a very tempting target and an appallingly 
risky single point of failure. On the other hand, if you have a different key for every 
appliance you talk to, managing all those keys becomes a big chore. Furthermore, you 
have to find some way of delivering those keys securely, which puts you almost back 
at square one, looking for a secure communications channel.

A good second best—potentially more secure, but not always feasible—is to 
use an asymmetric-key algorithm. At the start of the communications link, the two 
parties exchange public keys, and use the other person’s public key to encrypt data 
they are sending, and their own private key to decrypt data they are receiving. This 
technique is, however, usually avoided due to the high computation requirements of 
asymmetric-key algorithms with reasonably wide keys.

One system that works around this issue quite well is to use a combination of 
asymmetric- and symmetric-key encryption. This system is frequently used for In-
ternet communications protocols; in fact, I wrote the encryption system for a VPN 
tunneling package, using this type of methodology.
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The way it works is as follows: Let us imagine two users, Alice and Bob. Alice has 
a private key A and a public key a. Bob has a private key B and a public key b. In real 
implementations, A, a, B and b are frequently random, and are sometimes generated 
immediately before a connection is established. To begin a communications session, 
Alice first sends a to Bob. This transmission doesn’t need to be encrypted in any way. 
Bob responds by picking a random (symmetric) session key SB. He encrypts SB with 
Alice’s public key a, yielding SB′ and sends back a message that contains this SB′, 
along with his public key b. Anyone listening to the transaction can’t work out SB 
because they don’t know Alice’s private key A and can’t feasibly deduce it from a.

At this point, Alice uses A to decrypt SB’ and thereby reconstruct a local copy of 
SB. She now generates a second random symmetric session key SA. This is encrypted 
with Bob’s public key b to yield SA′. Alice now sends Bob another message, contain-
ing SA′. Bob uses his secret key B to decrypt this and reconstruct a local copy of SB. 
Secret session keys have now been securely exchanged; the link is almost ready to 
use, but should first be tested. For some unfathomable reason, some implementations 
I have inspected choose to perform this link test by encrypting some known, con-
stant piece of data (for example, “Have a nice day”) and sending it across the link. 
This is a very serious security flaw, because it gives any attacker a free head start in 
cracking the session keys. A much better idea is for both Alice and Bob to gener-
ate a small block of cryptographically secure random data. They make two copies of 
the data; one is encrypted with the other party’s public key, the other is encrypted 
with the appropriate session key. These double packets are then exchanged. Each 
party uses his own private key to decrypt the asymmetrically-encrypted copy of the 
random data, and the appropriate session key to decrypt the other copy. If the two 
copies match, then the link is known good, and the test has been carried out using a 
method that doesn’t leak any information to an eavesdropper.

For the remainder of the session, Bob uses SB to encrypt data he is transmitting to 
Alice, and SA to decrypt data he has received from Alice. Conversely, Alice uses SA 
to encrypt data she is sending to Bob, and SB to decrypt data received from Bob. This 
handshaking process can be repeated as often as desired, to enhance security—in the 
tunneling application I mentioned, for example, new session keys were generated 
every 15 minutes. The algorithms being used were 2 kbit RSA and triple DES for the 
asymmetric and symmetric modules, respectively.
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The main vulnerability of the system as I’ve just described it is that it doesn’t pro-
tect at all against someone who sits between Alice and Bob and who can prevent them 
from hearing each other directly. Such an entity could pretend to be Bob when he’s 
talking to Alice, and Alice when he’s talking to Bob. You could avoid this possibility 
by exchanging the public keys a and b over a known-to-be-trusted channel. It doesn’t 
have to be a secure channel (eavesdroppers are okay), it just has to be guaranteeable 
that there is nobody in between intercepting and modifying communications. In this 
way, the public key itself becomes an authentication token. At the start of each session, 
Alice can send Bob a test message (in plaintext), along with a hash of the message that 
has been encrypted with her private key A. Bob can hash the message himself, decrypt 
Alice’s hash with her public key a, and compare the two hashes; if they match, then 
he is certain that he’s really speaking to the owner of public key a. Similar signatures 
should be added to the handshaking messages described above. An entity between 
Alice and Bob will not know their private keys and will be unable to fake these mes-
sages. Given a secure hash algorithm, he will also be unable to fake out the test message 
contents in such a way as to generate the correct encrypted hash.

5.6 Protecting Logged Data

Consider a project like E-2, or perhaps more accurately consider the probable specifi-
cations of a government-sponsored version of such a device. If you’re sending a robot 
to perform surveillance duties, it’s very important that the data it records should not 
be recoverable by a third party. This is a very interesting problem. We’re not merely 
protecting some ephemeral data link against attack—we have to assume that the 
vehicle itself will fall into enemy hands. We want to ensure that they can’t discover 
what the vehicle learned. We would also like to avoid the possibility that an enemy 
could capture the vehicle, overwrite its log with falsified information, and then send 
the vehicle back on its way to deliver fake information to us.

Note that it is not a complete solution simply to move the logging function into 
our monitoring station and out of the vehicle itself. If the enemy intercepts and 
records the data link, then captures the vehicle, they’ve got all the time in the world 
to recover the keys and decrypt their transcript of the telemetry uplink. Besides, in 
some applications (submarines, for instance!) it’s very difficult to establish a guaran-
teed real-time telemetry link back to home base.
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This fact immediately leans us away from symmetric-key algorithms. If we were 
using a symmetric-key system, we would have to have the key itself stored in the 
appliance, ready for an attacker to recover. There are some specialized processes 
(chemical security coatings for the dice; these coatings react to light or atmospheric 
exposure and destroy the chip contents) that can be applied to cryptographic micro-
processors and ASICs to prevent key recovery, but they’re very expensive and there’s 
a risk that they could be defeated.

A better approach is to use an asymmetric algorithm, where the logging device 
knows a public key, which is used to encrypt all stored data. Anyone who recovers 
the unit, even if they tear down the hardware and reverse-engineer it fully, will not 
be able to recover or deduce the matching private key. The problem now becomes 
one of authentication. How can we be sure that the enemy hasn’t captured the 
device, reverse-engineered it and generated a fake log using the public key that was 
stored in it? This is a much tougher nut to crack, and it will most likely ultimately 
boil down to some level of hardware security. For example, you can have the log 
data run through a piece of separate hardware that signs the log entries before they 
are stored to disk. This piece of hardware can be buried (physically) deep inside 
the appliance. Intrusion sensors can then be used to detect reverse-engineering and 
destroy the contents of the signature module. Hardware like this is often also time-
sensitive—it requires all communications to be on a regular schedule, otherwise it 
self-destructs. This prevents an enemy from freezing the system and gaining leisure 
time to think about how to attack it.

It’s also vital, in an application like this, to ensure that sensitive information isn’t 
stored temporarily in unencrypted form. For instance, we might be using a digital 
camera to capture images into RAM; they are then compressed, encrypted and stored 
on a hard drive. An attacker could open the device, freeze the microprocessor (by 
halting the clock signal) and use a logic analyzer to read out the contents of the 
RAM. Protecting against these sorts of issues tends to become a matter of simply 
closing windows as quickly as possible. In the specific case I just mentioned, you 
should compress and encrypt the image immediately it is acquired, then erase the 
unencrypted buffer.
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If you are using an operating system that implements virtual memory, you should 
also make absolutely certain that memory used for sensitive data does not have 
virtual memory behind it. Secure operating systems are designed to take these issues 
into account implicitly.

5.7 Where to Obtain Encryption Algorithms

Linux kernel 2.4.24 includes a comprehensive cryptographic subsystem with numer-
ous algorithms pre-implemented and tested for you.

■ MD4 (RFC1320) and MD5 (RFC1321) digest algorithms.

■ SHA1 (FIPS 180-1/DFIPS 180-2) hash algorithm.

■ SHA256, SHA384 and SHA512 (DFIPS 180-2) hash algorithms.

■ DES (FIPS 46-2) and Triple DES EDE (FIPS 46-3). DES is a rather hoary old 
56-bit symmetric-key cryptosystem, formerly considered adequate for civilian 
communications. Except for backwards compatibility with other products, 
DES should be considered uselessly obsolete—AES, below, was intended to 
replace it.

■ Blowfish, a 32 to 448-bit symmetric-key cipher.

■ Twofish, a 128/192/256-bit symmetric-key cipher.

■ Serpent, an 0 to 256-bit symmetric-key cipher.

■ The FIPS-197 AES algorithms, i.e., Rijndael with key sizes of 128, 192 or 256 
bits.

■ CAST5/CAST-128 (RFC2144) symmetric-key cipher.

Asymmetric-key cryptosystems are conspicuously absent from the above list. 
(This appears to be more because of patent restrictions than government regulation). 
You may want to visit http://www.thefreecountry.com/sourcecode/encryption.shtml, 
where ready-to-run sourcecode for many popular algorithms is available for you to 
download.
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Warning: Many, if not all, of these algorithms are patented. You should consult 
local fair-use legislation before using them for any commercial or publicized purpose. 
Private research is usually covered by fair-use laws and can generally be pursued 
without fear of reprisal, but in some cases (DMCA again!) even private research is 
prohibited.
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6.1 Introduction

You’ll recall that in the introduction, I said that my target readership is familiar with 
either Linux application programming or embedded development. This chapter is 
mainly aimed at the former category of reader; most embedded developers should be 
familiar with most of the material in here.

In this chapter, I’ll describe a little of the engineering behind fault detection 
and mitigation. More specifically, I’ll talk a bit about the fault detection and failsafe 
mechanisms I have put in E-2. There are numerous excellent references on the more 
general topic, and if you read them you’ll be struck by the loss of life and financial 
costs of the anecdotes they use to illustrate their examples. Two reports that you’ll 
find to be most interesting reading (they are the usual starting point for discussions of 
software reliability) are the report on the demise of the European Space Agency’s first 
Ariane-5 rocket, and the report on the failures of the Therac-25 radiotherapy units. 
A quick web search on either of those topics will lead you to the original reports.

Failures in E-2’s software and firmware won’t bring down any national budgets or 
kill anyone, but loss of the craft does represent a huge financial setback for me per-
sonally. As a result, the firmware is structured towards recovery of the vehicle after 
any failure. This reflects my particular design priorities. If this were a government 
project, it would quite possibly be designed with data security as its first priority—the 
hardware would be considered expendable.
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6.2 Dangerous Exception Conditions and Recovering From Them

In analyzing how to protect a system against entering unknown or illegal states, you 
will need to create a list of things—voltages, memory variables, and so on—that can 
be monitored. Of only slightly lesser importance than analyzing the device’s possible 
failure modes, however, is to decide exactly how to recover from a problem detected 
in one of the parameters you’re monitoring. A typical analysis would identify the  
following:

■ The parameter to be monitored. For example, this might be an analog voltage 
(perhaps corresponding to some real-world measurement such as tempera-
ture), the state of a variable (a counter, for instance).

■ A range of values for which the parameter is considered within normal oper-
ating limits.

■ A range of values for which the system behavior should be temporarily 
constrained in some way, and a clearly defined recovery methodology. For in-
stance, if a battery is outside its recommended charge temperature range, the 
system should not enable charging. On the other hand, this is not necessarily 
an error; the battery may just have been brought in from a cold environment, 
or something of the kind. The system should allow some period of time before 
declaring a fatal error condition.

■ A range of values for which the system should be partly or wholly shut down, 
and the operator (if any) informed of a serious problem.

■ Analysis of which system functions can still be provided if a partial shutdown 
occurs. For instance, if your car’s ECM detects engine sensor problems, it can 
switch into an emergency “limp-home” mode, where it operates with consid-
erably reduced fuel efficiency or other undesirable behavior, but it can at least 
function sufficiently well to get you off the highway.

■ An estimate of the time available between an excursion from normal values 
and a physical system problem (explosion of a battery, for instance!)

■ Preferably, a means to cross-verify that the value being read corresponds to 
the actual system state.



229

Expecting the Unexpected

■ External interlocks that can clamp related signals or effects automatically if 
the given parameter goes out of range.

E-2 monitors a large amount of environmental information as part of its normal 
mission profile. Some of this information can be used to determine if the system is in 
danger. Most of the danger conditions (for our limited definition of the word “dan-
ger,” anyway) occur when the vessel is completely submerged. For this reason, the 
focus in E-2 is on bringing the vehicle to the surface, if possible. If that’s not pos-
sible, the secondary emphasis is on advertising the vessel’s location so that it can be 
recovered. There is a module dedicated entirely to energy management and vehicle 
recovery; it has its own independent power supply.

Here’s a list of some of the things we monitor and recovery steps we take:

■ The absolute external water pressure, and the differential pressure across the 
hull. The vehicle has an emergency canister of carbon dioxide (connected 
to the interior compartment of the boat via a solenoid valve) which can be 
used to pressurize the hull and expel water. If the pressure differential across 
the hull exceeds rated limits, we add gas pressure to the boat to reduce water 
leaks. If the exterior pressure falls below the interior pressure, we open a sec-
ond valve in the keel to release gas pressure. This prevents the vehicle from 
causing injuries when it’s opened at the surface.

■ Internal bilge sensors. Some water in the bottom of the boat is inevitable, but 
if it rises above a certain threshold level, the CO2 cylinder is fired, the keel 
valve is opened, and the boat is commanded to surface.

■ System battery state. The vessel has a main battery, used to power it for most 
of the mission, and a reserve battery that can be used for emergency ma-
neuvers. If the control module detects that the main battery is low, it aborts 
whatever activity is in progress, disconnects nonessential modules (camera, 
SBC, and so on) from the power bus, and switches to the reserve battery. The 
vehicle is then commanded to surface; dive planes are brought to a mild rising 
angle, the rudder is straightened, and the motors are commanded to half-
speed ahead.
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■ Internal temperature of motors and battery compartment. Rising motor tem-
perature indicates a friction problem, and can abort the mission. Abnormal 
battery temperatures may affect their ability to deliver charge; again, if things 
get too far out of range, we abort automatically.

■ If the system and reserve batteries are both low, or if no change is detected 
in exterior pressure during an emergency surfacing operation, a solenoid is 
triggered to release a small polystyrene-foam buoy, tethered to the vehicle by 
fishing line. It is hoped that this buoy can reach the surface and indicate the 
vehicle’s position.

■ Once an emergency recovery situation is declared, the recovery module disas-
sociates itself from the vehicle’s main power bus and begins transmitting an 
intermittent acoustic beacon and blinking an array of white LEDs (with a 
very low duty cycle). The recovery module’s battery is calculated to operate 
it in this mode for about 72 hours, which should be long enough to find and 
recover the vessel.

Even the external light level has potential system survivability value, although 
in the current design this information is used only to determine whether the vehicle 
should turn on its exterior lights or not. A future version of the E-2 project will 
include solar cells for long-range missions (primarily, floating about in the middle of a 
body of water, collecting long-term data—the solar option is not intended to increase 
travel range significantly).

6.3 On-Chip vs. Off-Chip Watchdog Hardware

Most microcontrollers have an on-chip watchdog. This is a simple timer circuit that 
resets the micro if it does not receive some regular signal (referred to as a “kick”). 
The great thing about on-chip watchdogs is that they are free. The downside to them 
is that you’re stuck with whatever the manufacturer thought suitable to implement, 
and this can leave a lot of gaps in your armor against runaway conditions. Here are a 
few common shortcomings of watchdog hardware in general:
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1. Some watchdogs can be manually disabled after they have been explicitly 
enabled. This is a very bad design flaw. A good watchdog should be enabled 
by a register write or similar operation (once the system has finished power-on 
initialization), and it should be impossible for software to disable the wachdog

2. Many on-chip watchdogs do not generate external signals when they fire. 
In general, what this means is that a watchdog bite will usually not cause the 
microcontroller to drive its reset output network (if it has one) active. This 
can be a blessing or a curse. It’s a curse if you want the watchdog bite to lead 
guaranteeably to a fully-reset system configuration; you have to dedicate an 
I/O pin to providing a “reset out” signal.

3. Some on-chip watchdogs accept uselessly broad kick conditions. For in-
stance, they might regard any write to a range of ports as a valid kick. It’s 
better to have a watchdog that requires at least two sequenced writes of spe-
cific data to different addresses; that way, you can be sure that a kick is really 
a kick, not just a random write through a dangling pointer.

4. All watchdogs are useless if used inappropriately. Too many embedded 
programmers think they have a safe system if the watchdog is enabled and 
is being kicked regularly enough to keep the system from resetting. In fact, 
it’s necessary to do some sanity checking before you kick the watchdog. This 
can range from simply kicking the dog once in your main loop (this works 
quite well in round-robin task schedulers, if you only want to protect against 
infinite loop conditions) to very sophisticated techniques where you measure 
the time spent in various different subroutines and compare this against a 
nominal execution profile—too much time spent in one routine, or timeslice 
starvation of other routines, will cause a reset. In between these two extremes 
are methods that check the state of a few variables and other parameters for 
consistency.

5. It takes a finite time for the system to restart after a watchdog bite. This 
is a very serious limitation of practically all watchdog hardware. Any safety-
critical system needs to have external interlocks to mitigate this problem.
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A common external hardware watchdog technique is the “pulse maintained re-
lay” (PMR). E-2 uses this technique in addition to on-chip watchdog hardware. The 
PMR consists of a simple circuit that expects to see an AC voltage on its input. This 
voltage is generated by a pulse train coming out of one of the microcontroller’s I/Os. 
If the pulse frequency falls outside a certain range, the relay opens for a specified time 
period, thereby interrupting the circuit’s power and, hopefully, resetting the system 
to a known state. This is a very idiot-proof method of protecting a circuit against 
unexplained lockups.

You can find some interesting reading on relays in general, and more particularly, 
specialized relay circuits of this type, at http://www.ibiblio.org/obp/electricCircuits/Digi-
tal/DIGI_5.html. An excellent piece of reading on microcontroller watchdogs is Niall 
Murphy’s “Watchdog Timers” article in Embedded Systems Programming, http://
www.embedded.com/2000/0011/0011feat4.htm.

6.4 Good Power-On Reset Practices

At a rough guesstimate, something like 75% of hobbyist and commercial micro-
controller circuits generate their power-on reset (POR) signals using a simple RC 
network. An example of this sort of configuration is shown in Figure 6-1 (this circuit 
is correct for an active-low reset signal).

Figure 6-1: Simple POR circuit

_RESET

GND

Vcc

+ C1

R
1



233

Expecting the Unexpected

It is assumed that the capacitor is completely discharged at the moment when the 
appliance is switched on. At power-up, Vcc (theoretically) rises instantly to its nomi-
nal value, so the microcontroller should be powered-up immediately. The capacitor 
holds the reset pin low until the current flowing through the resistor has charged it 
up to the input pin’s logic high threshold. Thus, the length of time the reset signal 
is active depends on the time constant RC, the voltage Vcc, and the specified logic 
threshold value of the microcontroller’s reset input pin.

What’s wrong with this configuration? Well, the first thing to consider is that I 
lied shamelessly to you in the preceding paragraph. The active pulse width on the 
reset signal also depends on the characteristics of the input pin(s) to which the RC 
network is connected. If you connect more than one input pin to a single RC net-
work, the overall behavior will deviate further and further from the calculated ideal. 
On the other hand, if you use a separate RC network for each section of the circuit 
that requires a power-on reset, you’ll inevitably have different parts of the appliance 
coming out of reset at different times. Thus, an improvement on the circuit in Figure 
6-1 would be to run the signal into a buffer (typically a NAND gate, or one or two 
inverters are used, depending on whatever discrete gates happen to be spare in the 
circuit being constructed), and to fan out the buffered reset output to whatever parts 
of the circuit need a reset signal. For example, the following:

Figure 6-2: Slightly refined POR schematic
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The second thing to keep in mind is that the active time isn’t the only important 
parameter on the reset signal. All logic inputs have a maximum rise/fall-time speci-
fication, which you’ll find in the device’s datasheet. Recall that the V/t charge curve 
for a capacitor is exponential in nature; it rises very quickly from zero, but flattens 
off and, in theoretical terms, will never actually reach Vcc. What this means is that 
depending on the specific values of your resistor and capacitor, it’s possible that the 
micro may see an abnormally slow risetime around the logic threshold voltage. This 
situation is exacerbated by the fact that the power rail itself exhibits less-than-ideal 
behavior. Some local slumping can be expected, particularly since at power-on and 
during brownouts, the supply rail is heavily loaded by the need to charge up all the 
bypass capacitors on the board. In practical terms, then, it’s best to choose C to be 
large and R to be small, so that when the voltage crosses the critical logic threshold, 
the capacitor is still in the steep early regions of its charge curve—even if Vcc is ac-
tually a bit lower than its nominal value. A slightly more complete solution is to use 
a buffer with Schmitt trigger inputs. This will ensure that the logic level presented to 
the microcontroller is always a clean state.

One partial workaround for these shortcomings—and I must admit that I’ve been 
guilty of perpetrating this in commercially fielded products—is to wire the product’s 
power switch so that, in the “off” position, it shorts out Vcc to ground. This helps 
the situation in normal-usage circumstances because it ensures that the POR capaci-
tor is fully discharged very shortly after the power is turned off. The inadequacy of 
this workaround lies in the fact that not all potential power failures are caused by a 
user flipping the power switch on the device. Temporary interruptions (blackouts) or 
slumps (brownouts) in the mains supply voltage can, for mains-powered appliances, 
simulate a power-on condition without anyone ever touching the power switch. If 
these interruptions are short, the capacitor in our reset network won’t have time to 
discharge fully, and it will consequently charge up over the logic threshold faster 
than we expect. In a worst-case scenario, a brief brownout or blackout will lower Vcc 
below the micro’s operating threshold, but won’t allow the capacitor to discharge far 
enough to generate a proper reset pulse when power is restored. Pretty much any-
thing could be happening to the micro in this scenario; it could be running normally 
(albeit with no I/Os because of a depressed I/O ring voltage), it could be frozen, it 
might be executing out of unimplemented ROM space, or it might have reached 
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some undefined internal state where it can’t execute any code at all until it receives 
an external reset signal.

A carefully-structured POR circuit is, therefore, integral with a brown-out detec-
tor. It should assert the reset signal when power is applied to the system. Ideally, reset 
should be asserted before the microcontroller is powered up, and the POR circuit 
should hold the signal active until the power rail is at a nominal value. Furthermore, 
our mythical POR circuit should detect brownout conditions on the power rail, and 
should supply a clean, known-width reset pulse if such a condition occurs. Fortu-
nately, we don’t need to design a chip to do this. Maxim, for example (http://www.
maxim-ic.com/), sells several appropriate devices, and they’re very cheap. E-2 uses 
these integrated power-on-reset generators/brownout detectors extensively.

6.5 A Few Additional Considerations for Battery-Powered Applications

Battery-powered appliances, in the main, need to exercise particular care over how 
they detect and handle hardware exception conditions. Special rules apply to er-
ror recovery, because it’s possible that you might not have enough life left to get all 
the way through a recovery algorithm. When exceptions occur in a battery-powered 
device, your first priority should be to get the system into a state where it will be safe 
if the microcontroller goes completely offline. Systems operating off battery power 
constantly live under the Sword of Damocles; they scurry nervously from one safe 
state to the next, with as little time as possible spent in between. In E-2’s case, the 
most worrying time for us is when the keel valve is open for any reason; it’s latched, 
to save power, and we might not have enough energy to close it again.

Another consideration which affects most devices that use rechargeable batteries, 
is that these batteries will typically be damaged if they are discharged below a certain 
cell voltage. It is normal, in such circuits, to set up a low-battery warning that gives 
the system a known grace period to shut down, and then for the microcontroller or 
an external power supply circuit to shut the system down explicitly when a critical 
battery level is reached. Not only does this protect your batteries against over-dis-
charge, it also allows the system to shut down important systems gently and elegantly. 
Note that one potential problem with this system occurs if the user powers off the 
device, then switches it back on once the batteries have had time to accumulate a 
surface charge. These batteries are already further down their discharge curve than 
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they appear (from simple voltage measurements). The unit may not have as much 
time as it thinks between “low battery” and actual death. The best way to mitigate 
this problem is by including a gas gauge function in the battery itself, so that the unit 
cannot be powered up again until the battery is swapped out or charged. Cellphones 
and laptops frequently implement this sort of system.

And finally, while we’re talking about battery-powered appliances, you should be 
particularly careful about implementing charge controller features (for rechargeable 
batteries) entirely in software. If you do use a microcontroller to perform charge con-
trol, the code must be rigorously designed and carefully debugged—and you should 
have an external hardware interlock as well (thermal fuses to protect against over-
temperature, regular fuses to protect against overcurrent, and so on).
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Item Path Description
AVR Studio 4.08 /utils/AVR Studio 4.08/ The Atmel AVR Studio development envi-

ronment for Windows.
Busybox /linux/busybox-

0.60.5.tar.gz
The Busybox utility package for Linux.

EAGLE (Linux) /utils/eagle-4.11e.tgz EAGLE PCB CAD package for Linux.
EAGLE (Windows) /utils/eagle-4.11e.exe EAGLE PCB CAD package for Windows.
Linux kernel /linux/linux-2.4.24.tar.gz Sourcecode for Linux kernel 2.4.24.
Linux kernel  
configuration

/linux/geode-config Configuration file for Linux kernel 2.4.24 
on Advantech PCM-5820 or compatible 
Geode-based SBC.

LIRC /linux/lirc-0.6.6.tar.gz Sourcecode for LIRC infra-red driver.
Sample programs 
for Linux

/linux/sample-programs.
tar.gz

Contains entire source tree for all sample 
Linux programs mentioned in this text.

Sample hardware 
project schematics

/projects Schematics and firmware for circuits 
described in this book. These are all in 
EAGLE format. 

EAGLE libraries for 
hardware projects

/projects/libraries These library files contain parts not found 
in the standard EAGLE libraries.

Sample root 
filesystem for 
CompactFlash or 
CD-ROM boot

/card-root.tar.gz

/cdrom-root.tar.gz

A complete root filesystem as created by 
the steps described in Sections 4-4 and 4-5.

SVGAlib /linux/svgalib-1.4.3.tar.gz

/linux/svgalib-1.4.3-
patched.tar.gz

The SVGAlib graphics library sourcecode. 
The -patched archive has been patched to 
build correctly with gcc 3.x.
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   startup, 120
   storage media, 10
compilers, 13
configuring the development system, 117
control-critical data transfers, 11
core clock source, 18
CPU modules, 16
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system, 128
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DMCA, 225
DVR (digital video recorder), 175
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E
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embedding Linux on PC hardware, 115
emergency recovery, 230
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EPP1.7, 144
EPP1.9, 144
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European Space Agency, 227
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   watchdog, 232

F
failure modes, 228
FAT 
   clusters, 127
   format, 126
fault detection, 227
FBIOGET_FSCREENINFO, 151
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Fedora Core, 118
firmware development tools, 19
flash-based parts, 15, 16
framebuffer graphics console (fbdev), 151
framebuffer mode, 151
freeware assemblers, 15

G
Geode platform, 63
   SBC, 155
   virtual system architecture (VSA), 206
GPIOs, 142
graphical control interfaces, 149
graphics interface, 173
grub, 123
   bootloader, 140
   prompt, 151
GUI, 150, 151, 175

H
H-bridge, 70, 71
   circuit, 70
Hall effect sensor, 72
hard processes, 10
host-to-module communications protocol, 49

I
I2C (Inter-IC Communication), 18, 39, 33
IDE mode, 127
implementing a GUI, 173
in-circuit programming, 14
infra-red remote control in linux using LIRC, 175
input pin(s), 233
inter-module communications protocol, 32
internal bilge sensors, 229
interruptions, 234
interrupt latency, 116
IR 
   hardware, 185
   receiver module, 178
   reception, 179
   remote, 176
ISA processor module cards, 22
ISR’s state machine, 63

J
JTAG debugging, 16

K
kernel, 122, 124, 128
   driver, 145
   modules, 122
   version 2.4.24, 116
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key management, 213
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LCD controllers, 14
LDLINUX.SYS, 125
LILO (LInux LOader), 123
Linux, 2, 11, 22, 63, 117, 122, 123, 145
   application programming, 227
   boot paths, 126
   boot process, 123
   controller, 115
   distribution, 130
   kernel, 237
   kernel configuration, 237
LIRC, 180, 183, 184, 237
LOADLIN utility, 124
logic inputs, 234
low-speed stepper applications, 69
low power consumption, 21

M
mains-powered appliances, 234
mains supply voltage, 234
mapping of parallel port pins to I/O register bits, 144
Maxim, 235
memory variables, 228
Microchip PIC, 14, 16
microcontrollers, 9, 15, 218, 230, 232, 235
   for ‘Hard’ Tasks, 13
microcontroller circuits, 232
Mini-ITX, 23, 24, 25
Mini-ITX motherboards, 22
MIPS, 116
MISO (Master In Slave Out), 34
mitigation, 227
MODBIN, 204
MOSFETs, 71
MOSI (Master Out Slave In), 34
motor controller, 72
multi-module system, 12

N
NAND flash devices, 126
Nano-ITX, 24
NTSC colorburst crystal, 54

O
off-chip watchdog hardware, 230
on-chip, 230
   A/D and D/A converters, 14
open-source project called AwardMod, 205

P
parallel port, 142, 145, 146
   E2BUS interface, 46
parameters, 228, 234
parameter to be monitored, 228
PC/AT architecture, 143
PCI framegrabber card, 191

PCI processor module cards, 22
PCM-5820, 127, 141, 202
PCM-5820 hardware, 27

audio, 28
Ethernet, 28
expansion bus, 28
mass-storage, 28
microprocessor, 28
miscellaneous, 28
parallel, 28
RAM, 28
serial, 28
USB, 28
video, 28

PCMCIA, 23
PC parallel port hardware, 142
PICstart Plus, 16
POR capacitor, 234
POR circuit, 235
power-on condition, 234
power-on reset (POR), 232, 233
PowerPC, 116
PPDATADIR, 148
PPFCONTROL ioctl, 147
PPRDATA, 148
PPRSTATUS, 148
PPRSTATUS ioctl, 147, 148
PPWDATA, 148
private key, 215
proprietary algorithm, 212
protecting bidirectional control/data streams, 220
protecting logged data, 222
protecting one-way control data streams, 217
protecting one-way telemetry, 218
public key, 215
pulse maintained relay, 232
PWM, 73, 74, 75, 76

R
RAMdisk, 124, 125
RC 
   clock source, 19
   network, 232, 233
   oscillator, 19
rdev(8) utility, 124
Realtek chip, 203
rechargeable batteries, 235
recovery module, 230
refined POR schematic, 233
relays, 232
reset, 235
reset signal, 233, 234
root directory of a typical Linux system, 138
root filesystem, 130, 137
root filesystem image, 128, 141
RS-232, 35, 36, 37, 38
RS-422, 37, 90, 91
RS-423, 36, 37
RS-485, 36, 37
RSA Laboratories, 216, 221
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RTLinux, 12
run-time library, 117

S
Sample hardware project schematics, 237
Sample programs for Linux, 237
Sample root filesystem for CompactFlash or CD-ROM boot, 

237
SBC, 118, 120, 121, 123, 127, 136, 151, 178, 179, 183, 189, 

203
   platforms, 142
   vendors, 201
Schmitt trigger inputs, 234
SCLK and SS (Slave Select), 34
scroll-wheel mouse, 43
secondary IDE interface, 127
secret key K, 215
secure” algorithms, 213
secure random number generator (RNG), 216
security, 202, 211, 212
   techniques, 209
shared-secret algorithms, 215
Simple POR circuit, 232
simple web server, 173
simplified system layout, 42
single-board computers, 9
slave select line (SS), 49
slumps, 234
SmartMedia, 126
software restore image, 137
soft processes, 10
sourcecode, 212
speed-controlled DC motor, 70
SPI-style (“three-wire”), 44
SPI (Serial Peripheral Interface), 18, 33
   clock and data signals, 49
   data clock, 18
   interface, 14
   interface management code, 79
   specification, 49
SPP, 144
Standard-sized PC motherboards, 23
stepper controller, 55, 63
stepper motor, 52, 53
STK500, 20
Structure of a Modern BIOS, 201
ST STV0680 chip, 189
SVGAlib, 154, 237
svgalib, 155
swap file, 213
symlinks, 130
symmetric-key algorithm, 218, 219, 223
   cipher, 214, 215
   encryption, 220
   system, 223
   modules, 221
synchronous serial protocol, 33

SYSLINUX.CFG, 125
SYSLINUX.EXE, 125
SYSLINUX bootloader, 125
syslinux utility, 125
system battery state, 229
system management mode (SMM), 207
system restore CD, 117

T
tachometer feedback, 72
tachometer measurement, 77
tach sensor, 72
TCP/IP, 16, 17, 38, 173
telemetry link, 222
temperature of motors and battery compartment, 230
temporary files, 213
test mode, 109
Texas Instruments MSP430, 16
third-party drivers, 116
three-wire slave mode, 63
three-wire SPI, 11
turnkey characteristics, 115
turnkey Linux systems, 117
TV-top player box, 175
two-axis attitude sensor using mems accelerometer, 79

U
universal serial interface, 18
USB, 14, 37, 142, 189
   webcams, 10
   wireless LAN pods, 10
USI handler, 63

V
V/t charge curve, 234
vehicle recovery, 229
VESA BIOS Extension (VBE), 151
VESA graphical framebuffer driver, 151
Video4Linux, 189
Video4Linux driver, 189
video content, 175
voltages, 228
VSA code, 207

W
watchdog hardware, 230
water pressure, 229
wide-key symmetric cryptosystem, 220
Winbond super-I/O chip, 179
Windows-based GUI program, 205

X
XScale® CPU, 21
X application, 161
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ZiLOG Z-180, 16
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