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Letter from the Publisher

When I co-founded Syngress in 1997 with Amorette Pedersen, we decided to forego
the opportunity to include the ubiquitous “Letter from the Publisher” in the front of
Syngress books. Our books are of the highest quality, written by content experts, and
they’ve spoken quite well for themselves without any help from us.

However, the publication of Building Robots with LEGO MINDSTORMS entitles
me to a one-time exemption from our rule. I am lucky enough to be the father of
nine-year-old Sam Williams, who has taught me (among many important things) the
joy of building with LEGO. Since helping Sam put together his first bricks at two
years old to programming our latest MINDSTORMS robot (the optimistically
named “Chore-Doer 3000”), I have derived hundreds of hours of pleasure creating
projects with Sam. Perhaps the most ingenious thing about LEGO products, particu-
larly the MINDSTORMS, is that the same product can be as challenging and enjoy-
able to a 43 year old as it is to a nine year old.

When presented with the chance to publish Mario and Giulio Ferrari’s book, I
jumped at the opportunity. As I read the manuscript, I could sense the authors had
the same passion for creating with LEGO MINDSTORMS that Sam and I have. I
knew immediately that there was a market of at least two people for the book!

I had the opportunity to meet Mario Ferrari at the Frankfurt Book Fair just
weeks prior to this book’s publication. I am American and Mario is Italian, but the
language we spoke was that of two parents who have discovered a common passion
to share with our nine and ten year old sons.

I hope you enjoy reading this book as much as we have enjoyed publishing it.

—Chris Williams
President, Syngress Publishing
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Letters from the Authors

October 1998. It was a warm and sunny October and I remember it as if it was just
yesterday. Giovanni, a colleague of mine, returns home to Italy from his honeymoon
in New York. He carries in the office an enormous blue box whose cover reads
“LEGO MINDSTORMS Robotics Invention System.” When Giovanni opens the
box and shows me the contents, I already know I must have one.

Let me go back to the late 70s. I was a high school student and had left my many
years of LEGO play behind me. I was enthusiastically entering the rising personal
computing era. Many of you are probably simply too young to remember that
period, but “using” a computer mainly meant programming it. The computers of that
time had few resources and rather primitive user interfaces; they were essentially mass
storage devices, or something like a large unreliable cassette recorder. We program-
mers had to count and save every single byte, and even the most trivial tasks were
very challenging. But at the same time, of course, it was great fun!

I developed a very strong interest in computer programming, and in Artificial
Intelligence in particular. Machines and mechanical devices had always fascinated me,
and it came quite naturally to me to turn to robotics as an expansion of this interest.
There were some relatively cheap and compact computing devices that could provide
a brain for my creatures, but unfortunately I discovered very soon all the technical
problems involved in building the hardware of even a very simple robot. Where could
I find motors? Which were the right ones? Where could I learn how to control
them? What kind of gearing did I need? Imagine spending months folding aluminum
plates, mounting bearings, assembling electronic circuits, connecting wires... and
assuming you’re able to do all those things, what do you get? A simple tin box that
can run across the room and change direction when it hits an obstacle. The effort was
definitely far greater than the results. Another problem was that constructing a new
project meant starting again from scratch, with new materials. I wasn’t patient
enough, so I decided that a hobby in robotics was not for me.

The dream of robotics remained a dream. Until Giovanni opened that box. As
soon as I got my hands on my first LEGO MINDSTORMS Robotics Invention
System (RIS) set, it proved to be the fast and flexible robotics system that I was
looking for. I found that the microcomputer, called the RCX, was very simple to use
but powerful enough to let me drive complex devices. I became more and more

Vi



intrigued by this toy, and through the Internet I soon discovered that I was not alone.
It seemed an entire world of potential robotics fans had just been waiting for this
product, and the LEGO company itself sold much more of them than expected.
From that October on, many things happened: I discovered LUGNET, the fan-
tastic LEGO Users Group Network, the best resource ever for LEGO fans of any
kind. I created a small Web site where I published pictures and information about
my robotic creatures. Through these channels every day I got in touch with new
people, and with some of them friendships have sprung up that go beyond our
common interests in LEGO robotics. This 1s really the most special and valuable
thing MINDSTORMS have given to me: Good friends all over the world.

—Mario Ferrari

S T =

October 1999. Another warm and sunny October, but on one particular day the
Media Lab at the Massachusetts Institute of Technology (MIT) in Cambridge, MA
has a difterent look. One large room at the facility is filled with exhibition tables
with piles of colorful LEGO pieces and strange constructions on them and, there are
hundreds of adults and children, LEGO bricks in hand, showing off their robotic cre-
ations and discussing the characteristics of their favorites. This is the world’s biggest
gathering of LEGO MINDSTORMS fans—the Mindfest!

When and how did all this start? It seems only yesterday to me, but a year had
passed since I discovered MINDSTORMS for the first time. My brother Mario
called me on the phone one evening, knowing I was about to leave on a short trip to
New York, and asked me to bring him home a new product from LEGO, a sort of a
programmable brick that could be controlled via a standard computer. I have to say
that I was very curious, but nothing more: I thought it might be a great new toy to
play around with, but I didn’t completely understand its possibilities. When I saw the
Robotics Invention System (RIS) in the toy store, though, I immediately realized
how great it could be, and that I must have one, too. My own addiction to the
LEGO MINDSTORMS began in that moment.

Like nearly everyone under the age of 40, I'd built projects from the many
LEGO theme kits in my childhood. I had the advantage of using the large quantity
of bricks that my older brothers and sisters had accumulated during the years, plus
some new pieces and sets of the 80s. Castles, pirates, trains... hours and hours of pure
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fun, creating a large number of any kind of building and adventures. When I was a
little older, I discovered the TECHNIC series, a wonderful world of machines, gears,
mechanical tools, and vehicles, with endless construction possibilities. Then, like many
other people, I abandoned LEGO as a young adult, and it remained out of my life—
until I bought that big blue box in New York that day.

Why do I like LEGO MINDSTORMS so much? For me, it is mainly because it
requires difterent skills and combines different disciplines: computer programming,
robotics, and hands-on construction. You have to combine theory and practice, and to
coordinate the design, construction, software, and testing processes. You can exercise
your creativity and your imagination, and you have a great tool for doing this—a
tool that is at the same time easy to use and very powerful, and most important, that
doesn’t limit your ideas.

And there’s even more to the rewards of MINDSTORMS than that. Let’s go
back to Mindfest for a moment. Why would such an extraordinary group of people
of different ages, cultures, and nationalities travel from all over the world to spend an
entire weekend playing with LEGO? What exactly do they have in common? Why
do some of the most famous Artificial Intelligence experts seriously discuss every fea-
ture of this product? There must be something really special about this “toy.”

Joining an international community is one of the best things about playing with
LEGO. It is not only a toy, but also a way of thinking and living. Just play with the
MINDSTORMS for a while—you’ll see for yourself!

—Giulio Ferrari

viii



Author Acknowledgements

We would first like to thank Brian Bagnall for suggesting our names to Syngress
Publishing when he heard Syngress was looking for an author to write a book
focused on ideas and techniques for building MINDSTORMS robots. We are very
grateful to Syngress Publishing for having turned this suggestion into a real opportu-
nity, and for having allowed us the great freedom of deciding the shape and content
of the book.

Additional appreciation goes to Jonathan Knudsen, who encouraged us in
embarking upon the adventure of writing a book, and who helped us in under-
standing the world of technical publishing. Another friend, Guido Truftelli, patiently

read every page of the manuscript. Many thanks, Guido—your comments and sug-
gestions were very valuable in making the book more complete and more useful.

When Ralph Hempel accepted the offer to perform the technical edit of the
book, we were really excited. Ralph’s contributions to MINDSTORMS robotics are
impressive, and range from mechanical solutions to extreme programming. His
involvement proved to be even more significant that we had even imagined.

This was our first authoring experience, and all the Syngress staff has been
incredibly patient with us and very supportive. A very special thank you goes to Kate
Glennon, our Developmental Editor, for having taught us how to transform a collec-
tion of concepts and ideas into a book. Mario wants to also thank his employer,
EDIS, which granted him the time to focus more attention on the book.

This book would have not been written without the contributions of the entire
LUGNET MINDSTORMS Robotics community. Its members are incredibly cre-
ative, competent, helpful, and friendly, and they are always willing to share ideas and
solutions with other people. We have attempted to give proper credit to all the
people whose ideas we mentioned in the book, and we apologize in advance for
those people who have been unintentionally left out.

Last but not least, we'd like to express enormous gratitude to our families, who
encouraged and supported us through every moment of these intense months of
writing.



Syngress Acknowledgements

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous
access to the IT industry’s best courses, instructors, and training facilities.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
Kevin Votel, Kent Anderson, and Frida Yara of Publishers Group West for sharing
their incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler, Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our
vision remains worldwide in scope.

Anneke Baeten and Annabel Dent of Harcourt Australia for all their help.

David Buckland, Wendi Wong, Daniel Loh, Marie Chieng, Lucy Chong, Leslie Lim,
Audrey Gan, and Joseph Chan of Transquest Publishers for the enthusiasm with
which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress
program.

A special thanks to Sam Williams, who comes to the office every week with a
backpack full of LEGOs. Watching the look on his face when he opens a new kit is a
joyous event.



Contributors

Called the “DaVincis of LEGOs,” Mario and Giulio Ferrari are world-renowned
experts in the field of LEGO MINDSTORMS robotics.

Mario Ferrari received his first Lego box around 1964, when he was 4.
Lego was his favorite toy for many years, until he thought he was too old
to play with it. In 1998, the LEGO MINDSTORMS RIS set gave him
reason to again have LEGO become his main addiction. Mario believes
LEGO is the closest thing to the perfect toy and estimates he owns over
60,000 LEGO pieces. The advent of the MINDSTORMS product line
represented for him the perfect opportunity to combine his interest in I'T
and robotics with his passion for LEGO bricks. Mario has been a very
active member of the online MINDSTORMS community from the
beginning and has pushed LEGO robotics to its limits. Mario is
Managing Director at EDIS, a leader in finishing and packaging solutions
and promotional packaging. He holds a bachelor’s degree in Business
Administration from the University of Turin and has always nourished a
strong interest for physics, mathematics, and computer science. He is
fluent in many programming languages and his background includes posi-
tions as an I'T manager and as a project supervisor. Mario works in
Modena, Italy, where he lives with his wife Anna and his children
Sebastiano and Camilla.

Giulio Ferrari is a student in Economics at the University of Modena
and Reggio Emilia, where he also studied Engineering. He is fond of
computers and has developed utilities, entertainment software, and Web
applications for several companies. Giulio discovered robotics in 1998,
with the arrival of MINDSTORMS, and held an important place in the
creation of the Italian LEGO community. He shares a love for LEGO
bricks with his oldest brother Mario, and a strong curiosity for the phys-
ical and mathematical sciences. Giulio also has a collection of 1200 dice,
including odd-faced dice and game dice. He studies, works, and lives in

Modena, Italy.
Xi



Xii

Technical Editor

Ralph Hempel (BASc.EE, PEng) is an Independent Embedded Systems
Consultant. He provides systems design services, training, and program-
ming to clients across North America. His specialty is in deeply
embedded microcontroller applications, which include alarm systems,
automotive controls, and the LEGO RCX system. Ralph provides
training and mentoring for software development teams that are new to
embedded systems and need an in-depth review of the unique require-
ments of this type of programming. Ralph holds a degree in Electrical
Engineering from the University of Waterloo and is a member of the
Ontario Society of Professional Engineers. He lives in Owen Sound,
Ontario with his family, Christine, Owen, Eric, and Graham.



Learn about Lego Gears

Contents

Foreword XXV
Preface XXVii

Part | Tools 1 5

Chapter 1 Understanding LEGO® Geometry

ntroduction

essing Sizes and Umts

< ength w1th the Clutch Gear 24

g and Fitting Gears 26
- Pulleys, Belts, and Chains 31
eys and Belts 32
35

Difterence: The Differential 36

Xiii




Xiv Contents

Chapter 3 Controlling Motors
Introduction
Pacing, Trotting, and Galloping
Mounting Motors
Wiring Motors
Controlling Power
Braking the Motor
Coupling Motors
Summary

Chapter 4 Reading Sensors
Introduction
Touch Sensor
Light Sensor
Measuring Reflected Light
Line Following

Explore LEGO Sensors
- =
LEGO sensors come in two
families: active and

passive sensors. Passive Rotation Sensor
simply means they don't Temperature Sensor
require any electric supply
to work. The touch and ’
temperature sensors Emulating a Touch Sensor
belong to the passive Emulating a Rotation Sensor
class, while the light and
rotation sensors are

Proximity Detection

Sensor Tips and Tricks

members of the active Same Port
class. Other Sensors
Summary

Chapter 5 Building Strategies
Introduction
Locking Layers
Maximizing Modularity
Loading the Structure

Putting It All Together: Chassis, Modularity,

and Load
Summary

Connecting Multiple Sensors to the

41
42
43
46
49
52
53
55
56

57
58
58
64
66
67
70
71
74
75
75
75

78
80
81

83
84
84
87
88

90
94



Contents XV

Chapter 6 Programming the RCX 97

Introduction 98

What Is the RCX? 98

A Small Family of Programmable Bricks 100

Using LEGO RCX Code 101

Using the NQC Language 102

Using Other Programming Languages 103

Understand the Using legOS 104

Eﬂe(;‘j:'lgsr"cfogis'gn'“g Using pbForth 104

_— = Using leJOS 105
m Readability Using Other Programming Tools and

m Reusability N Environments ‘ 105

Divide and Conquer: Keeping Your

" Testability Code Organized 106

Running Independent Tasks 113

Summary 114

Chapter 7 Playing Sounds and Music 117

Introduction 118

Communicating through Tones 118

Playing Music 119

Converting MIDI files 122

Converting WAV Files 124

Summary 124

Chapter 8 Becoming Mobile 127

Introduction 128

Building a Simple Difterential Drive 128

Keeping a Straight Path 130

Using Sensors to Go Straight 130

Using Gears to Go Straight 131

Using Casters to Go Straight 134

Building a Dual Differential Drive 136

Building a Skid-Steer Drive 138

Building a Steering Drive 140

Building a Tricycle Drive 144

Building a Synchro Drive 146



XVvi Contents

Create Custom
Components

B T =

Explore extra parts,
custom sensors, and tricks
for using the same motor
for more than one task:

B Extra parts come from
either sets or service
packs.

B Custom sensors are a
new frontier, and
reveal a whole new
world of possibilities.

B Mechanical tricks
enable you to use the
same motor to power
multiple mechanisms.

Other Configurations
Summary

Chapter 9 Expanding Your Options
with Kits and Creative Solutions

Introduction
Acquiring More Parts
Introducing Some Specialized Components
Buying Additional Parts
Creating Custom Components
Building Custom Sensors
Solving Port Limitations
Creative Solutions When
More RCX Ports Are Needed
Summary

Chapter 10 Getting Pumped: Pneumatics

Introduction

Recalling Some Basic Science
Pumps and Cylinders
Controlling the Airflow
Building Air Compressors
Building a Pneumatic Engine
Summary

Introduction

Operating Hands and Grabbers
Transferring Motion Using Tubing

Understanding Degrees of Freedom

Finding Objects

Summary

Chapter 12 Doing the Math

Introduction
Multiplying and Dividing
Averaging Data
Simple Averages
Weighted Averages

150
151

153
154
154
155
161
163
164
170

172
177

179
180
180
181
187
190
194
198

Chapter 11 Finding and Grabbing Objects 199

200
200
203
205
209
212

213
214
215
218
218
223



Contents XVii

Using Interpolation 226
Understanding Hysteresis 229
Summary 232
Chapter 13 Knowing Where You Are 233
Introduction 234
Choosing Internal or External Guidance 234
Looking for Landmarks: Absolute Positioning 236
Following the Beam 239
Measuring Movement: Relative Positioning 243
Summary 246
Part Il Projects 247
Use Ankle Bending Chapter 14 Classic Projects 249
Techniques .
Introduction 250
Exploring Your Room 250
Detecting Edges 253
Variations on Obstacle Detection 255
Following a Line 256
Further Optimization of Line Following 264
Modeling Cars 265
Front-Wheel and Four-Wheel Drives 270
Switching Gears 274
Using the Gear Switch 276
Summary 277
Chapter 15 Building Robots That Walk 279
Introduction 280
The Theory behind Walking 280
Building Legs 287
Building a Four-Legged Robot 289
Building a Six-Legged Steering Robot 293
Designing Bipeds 299
Interlacing Legs 299
COG Shifting 302
Ankle Bending 306
Making Bipeds Turn 309

Summary 310



Xviii Contents

Chapter 16 Unconventional Vehicles
Introduction
Creating Your Own SHRIMP
Building a SHRIMP
Creating a Skier
Creating Other Vehicles

Elevator
Train
Cable Railway or Gondola
Boat
Sailing Tricycle
Summary
Chapter 17 Robotic Animals
Introduction
Creating a Mouse
Use Angle Connectors Improvements Upon the Mouse’s
N .
Construction
There are currently six Creating a Turtle
types of angle connectors s
ir{eche LEGOinne, Improvemegts Upon the Turtle’s
numbered 1 to 6. In case Construction
you're wondering how the Creating Other Animals
numbers relate to angles, S
here are the correspond- ummary
ences: 1 = 0°, 2 = 180°, . . .
3= 157.5° 4 = 135°, Chapter 18 Replicating Renowned Droids
5= 112.5° 6 = 90°. They Introduction
go by increments of 22.5%, Building an R2-D2-Style Droid

a quarter of a right angle. Programming the Droid

Variations on the Construction
Building a Johnny Five-Style Droid
Variations on the Construction
Summary

Chapter 19 Solving a Maze
Introduction
Finding the Way Out
Using the Left Side—Right Side Strategy
Applying Other Strategies

311
312
312
320
321
328
328
328
329
329
330
331

333
334
334

338
339

344
345
346

349
350
350
356
359
361
366
368

371
372
373
374
376



Build a Pianist

S T =
This robot requires a lot of
extra parts, mainly beams
and plates used to make
the structure solid enough
to withstand the forces
involved in the
performance.

Contents

Building a Maze Runner
Constructing the Maze Runner
Programming the Runner
Creating the Maze
Variations on the Maze Runner

Building a Maze Solver
Constructing the Maze Solver
Programming the Solver

Summary

Chapter 20 Board Games
Introduction
Playing Tic-Tac-Toe
Building the Hardware
Writing the Program
Improving Your Game
Playing Chess
Building a Visual Interface
Building a Mechanical Interface
Connecting and Programming
Broad Blue
Variations on the Construction
Playing Other Board Games

Summary

Chapter 21 Playing Musical Instruments

Introduction

Creating a Drummer
Building the Drummer
Programming the Drummer
Variations

Creating a Pianist
Building the Pianist
Programming the Pianist
Changes and Improvements

Other Suggestions

Summary

Xix

377
377
380
381
381
382
383
387
389

391
392
392
393
394
396
396
397
400

406
408
409
410

411
412
412
413
416
417
417
417
422
423
424
424



XX Contents

Chapter 22 Electronic Games
Introduction
Creating a Pinball Machine
Building the Pinball Machine
Programming the Pinball Machine
Improvements on the Construction
Creating a Simon-Says Game
Building a Simon-Says Game
Programming the Simon-Says Game
Variations
Other Electronic Game Suggestions
Summary

Chapter 23 Drawing and Writing

Introduction
Creating a Logo Turtle
Understand Infrared Building the Turtle
Communication Programming the Turtle
- = Choosing the Proper Language
Infrared (IR) light is of the Variations
seae s e T Wi
below that perceivable by Building the Writer
the human eye. Provided Programming the Writer
2?\?)::;??? \S/\I/tey Lllss:;?l:; feel IR Wh.at.to Write
radiation as heat. Variations
Further Suggestions
Copying
Emulating Handwriting
Learning by Example
Summary
Chapter 24 Simulating Flight
Introduction

Introducing the Forces Involved in Flight
Designing the Simulator Project
Building the Hardware

Programming the Simulator

425
426
426
426
431
432
432
432
434
438
438
439

441
442
442
443
448
453
454
455
455
462
462
463
464
464
464
465
465

467
468
468
471
473
480



Design Other Useful

Robots

B T =

Alarm Clock
Baby Entertainer
Pet Feeder

Dog Trainer

Contents

Operating the Simulator
Downsizing the Project
Upsizing the Project

Summary

Chapter 25 Constructing Useful Stuff
Introduction
Building a Floor Sweeper
Constructing the Sweeper
Programming the Sweeper
Improvements on the Floor Sweeper
Building a Milk Guard
Making the Milk Guard
Programming and Using the Milk Guard
Improvements on the Milk Guard
Building a Plant Sprinkler
Making the Sprinkler
Programming and Using the Sprinkler
Improvements on the Plant Sprinkler
Designing Other Useful Robots

Summary

Part Il Contests
Chapter 26 Racing Against Time

Introduction
Hosting and Participating in Contests
Optimizing Speed
Drag Racing
Combining Speed with Precision
Line Following
Wall Following
Other Races

Summary

Chapter 27 Hand-to-Hand Combat
Introduction
Building a Robotic Sumo
Setting the Rules

XXi

488
489
491
492

493
494
494
494
497
497
498
499
501
502
502
503
504
505
508
509

511

513
514
514
516
516
518
519
520
522
523

525
526
526
527



xxii Contents

Maximizing Strength and Traction
Attack Strategies
Finding the Enemy
Using Speed
Using a Transmission
Other Sumo Tricks
Getting Defensive
Testing Your Sumo
Summary

Chapter 28 Searching for Precision
Introduction
Precise Positioning
Finding and Collecting Things
Maxwell’s Demons
Stealing the Cube
Variations on Collecting
Playing Soccer
Summary
Chapter 28 Searching for Precision
Introduction
Precise Positioning
Finding and Collecting Things
Maxwell’s Demons
Stealing the Cube

Find Useful Lego Sites Variations on Collecting
_ T = Playing Soccer

®  www.brickshelf.com

Summary
" http://fredm.www Appendix A Resources
.media.mit.edu/people/ .
fredm/mindstorms/ Introduction
index.html Blbhography
B www.crynwr.com/ General Interest Sites
lego-robotics/ Chapter 1 Understanding LEGO
® www.bvandam.net Geometry

Chapter 2 Playing with Gears
Chapter 3 Controlling Motors
Chapter 4 Reading Sensors

528
530
530
532
533
533
534
535
536

537
538
538
540
540
541
543
543
545
537
538
538
540
540
541
543
543

545
547
548
548
549

551
551
551
552


http://fredm.www

Contents XXiii

Chapter 5 Building Strategies 552
Chapter 6 Programming the RCX 553
Chapter 7 Playing Sounds and Music 556
Chapter 8 Becoming Mobile 556
Chapter 9 Expanding Your Options with

Kits and Creative Solutions 557

Chapter 10 Getting Pumped: Pneumatics 559
Chapter 11 Finding and Grabbing

Objects 559
Chapter 12 Doing the Math 560
Chapter 13 Knowing Where You Are 560
Chapter 14 Classic Projects 561
Chapter 15 Building Robots That Walk 562
Chapter 16 Unconventional Vehicles 562
Chapter 17 Robotic Animals 563
Chapter 18 Replicating Renowned
Droids 563
Chapter 19 Solving a Maze 564
Chapter 20 Board Games 564
Chapter 21 Playing Musical Instruments 565
Chapter 22 Electronic Games 565
Chapter 23 Drawing and Writing 565
Chapter 24 Simulating Flight 566
Chapter 25 Building Useful Stuff 566
Chapter 26 Racing Against Time 566
Chapter 27 Hand-to-Hand Combat 567
Chapter 28 Searching for Precision 567
Appendix B Matching Distances 569
Appendix C Note Frequencies 575
Appendix D Math Cheat Sheet 577
Sensors 578
Averages 578
Interpolation 578
Gears, Wheels, and Navigation 579

Index 581



Foreword

Like many other programmers, I credit my early years of playing with LEGO as a
major factor in my future career path. As my family and I watched the United States
launching the Apollo 11 rocket, I was playing with a LEGO truck—it was my
birthday and I was 7 years old. What I could not know at the time was that 30 years
later I would hold in the palm of my hand a microcontroller with more raw speed
and memory than the one the astronauts used to get to the moon and back. That
computer would be encased in yellow ABS plastic and would change the world of
hobby and educational robotics.

The story of my involvement with the LEGO MINDSTORMS is a familiar one.
Discussion of building a custom controller for LEGO TECHNIC creations was a fre-
quent topic in Lugnet (the LEGO Users Group) discussion forums. I had doubts
about our ability to make a controller that everyone could afford. Then LEGO
released MINDSTORMS 1n the fall of 1988—and I just had to have one.

Within weeks of the release, Kekoa Proudfoot had “cracked” the protocol
between the RCX brick and the desktop computer, and he soon had a complete dis-
assembly of the object code online. Using this as a base, intrepid programmers like
Marcus Noga and Dave Baum soon had alternative programming environments for
the RCX—including my own contribution, called pbForth. On the hardware front,
Michael Gasperi figured out how the sensor and motor ports worked and con-
tributed his knowledge freely.

LEGO had an unbelievable hit on their hands. The sales of the MINDSTORMS
kits exceeded their wildest predictions, and more than half the sales were to adults!
When the Massachusetts Institute of Technology (MIT) asked me to participate in a
panel at the Mindfest gathering in 1999, I was honored to be there with the likes of
Dave Baum, Michael Gasperi, Marcus Noga, and Kekoa Proudfoot. In our panel dis-
cussion, we discussed how the Internet had made it possible for widely separated

people to work together.
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XXVi Foreword

While at Mindfest, I met Mario and Giulio Ferrari. They had their Tic Tac Toe
robot set up for demonstrations and it was a big hit. The brothers immediately struck
me as energetic and dedicated LEGO hobbyists. The other members of the Italian
ITLug group have provided LUGNET readers a steady stream of wonderful robots in
the past few years.

I have had the pleasure of watching children and adults of all ages build machines
and robots with their MINDSTORMS kits. In almost all cases their initial attempts
ended in frustration with their mechanical skills. In fact, many builders never even get
to the stage of programming their robots. This book will be a welcome addition to
their libraries because of the vast amount of information it contains. From basic
bracing techniques to drive and grip mechanisms—it’s all here. Even if a particular
robot does not appeal to the reader, the ideas used in its construction may be trans-
ferred to other robots in unusual and surprising ways.

As a co-author of Extreme Mindstorms, a book about programming the RCX, I
appreciate the effort that went into this book. Mario and Giulio have taken the time
to guide the reader through the basics of building their creations by setting realistic
performance goals and then experimenting with different methods. This important
skill goes by the unassuming name of tinkering, and cannot be underestimated. The
MINDSTORMS system gives the hobby and educational market a modular and
inexpensive way to develop these important tinkering skills.

As the technical editor of this volume, I have had my own creativity sparked by
some of the robots Mario and Giulio have documented. I am amazed at the sheer
volume of ideas, the quality of the photos, and the careful presentation of ideas that
many readers will encounter for the first time. The staft at Syngress Publishing has
been a pleasure to work with, and they deserve credit for bringing the hard work of
the Ferrari brothers to the wide audience that I'm sure this book will enjoy.

So clear some space on a table, open this book and get out your MIND-
STORMS set, and start tinkering!

—Ralph Hempel
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Preface

Why Robotics?

What’s so special about robotics? Why have LEGO MINDSTORMS experienced
such great success? Each one of us might have our own answers.

Robotics is an interdisciplinary subject, combining difterent fields of study that in
traditional educational systems you usually examine separately: physics, mathematics,
electronics, and computer programming, just to name a few. Robotics is a hobby
through which you can find a practical application for many of the concepts you
studied in school—or, if you didn’t study them, or don’t have an aptitude for them, it
offers a great way to learn by experience and by having some fun. The most impor-
tant point, however, is that robotics i1s more than the sum of the basic notions you're
required to know. It gives you a precise and concrete idea of how these notions inte-
grate and complete each other. So it happens that when you're looking for a solution
to a problem, by following your intuition and knowledge it’s almost a given that
you’ll find a solution difterent from that devised by someone else.

Let’s say you have just built your first line-following robot (we’ll discuss this topic
in detail in Part II).You discover that your robot works, but it makes too many correc-
tions to its steering and this affects its resulting speed. What could you do to fix it? If
you have a talent for mechanics, your first approach might be to try and modify the
structure and architecture of your robot. You might observe that the wheels are too
close to each other in your differential drive, and for this reason your robot turns very
fast and tends to over-correct its steering. Or you might decide that the differential
drive architecture after all is not the best option for line following. You may even dis-
cover that the position of the light sensor in the robot greatly affects its performance.

If you are an experienced programmer, you might instead work out your code to
correct the robot’s behavior. You feel at ease with timers and counters, so you change
the program to introduce some delay in the route changes, then you spend some in
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time in testing and trimming it until you find an optimum value for the constants
you used.

At the same time, if you have a decent understanding of physics, you could reach
into your knowledge base for something useful, and discover a model you were
taught when studying magnetism: hysteresis (if you don’t know what hysteresis is,
don’t worry, we’ll explain it in Part I!). You realize that you can make your robot
follow a different scheme when going from black to white rather then from white to
black.You think that this might improve its performance—and it actually does.

What lesson should we learn from this example? That there’s no one unique
solution, there are many of them. And the more you are able to open your mind and
explore new possible approaches, the higher your chances of working out a solution.
Robotics does not involve a list of techniques to follow in order, rather it is a process
in which your creativity plays a very strong role, allowing you to follow a new path
to the goal each time.

There’s another element that makes robotics so interesting to us and, I suspect,
to many other people as well. It forces you to look at the world with new eyes, those
of a child’s.

If you observe babies exploring the environment, you will notice that they are
surprised by everything. They don’t take anything for granted. They try everything,
continuously developing new concepts by testing new approaches. We adults usually
laugh at most of those attempts, to our mature minds they seem absurd, either
because we already know that a specific thing is impossible to do, or because we
know the solution to the problem the child is tackling. When approaching tasks in
robotics, we are forced to become children again, to rediscover the world with dif-
ferent senses.

Let’s look at this concept using another example: You are new to robotics, facing
your first project, but are wise enough to decide on a very simple task.You want to
create a robot that’s able to move around your house. You naturally want your robot to
be able to detect obstacles when it hits them, so it can change direction and toddle off
on a new path.You design your mechanical marvel so it can go forward, backward, and
change direction. Then you add a simple bumper to detect obstacles, something that
closes a switch when pressed. Finally, you write some code so your robot is ready for its
debut on the living room floor—but wait, you forgot about the shag carpet, and carpet
loops get into your gears and mess everything up.You decide testing might be better in
the kitchen. Now your robot runs well; it hits a wall, turns on itself, and spins off in
another direction. Up to this point, it’s a pleasure to watch...but then it runs up against
a sideboard, and the upper part of the robot gets blocked by the furniture, preventing
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the lower bumper from detecting the obstacle. Okay, so you have to improve the
bumper. In the meantime, you break down and manually turn the robot in a new
direction. Hey! Pay attention! It’s heading to the basement stairs! Rescue it and add
edge detection to your list of improvements. You will learn quickly that even a simple
action like climbing the stairs is the result of a very, very complex balancing of weights
and strengths, precise positioning, and coordination.

If you have kids in your circle of family and friends, you will have the precious
opportunity to watch how they interact with your robots. In our experience, young
kids tend to expect a lot from robots—a lot more than what simple inexpensive
robots can currently do. They have forgotten all the difficulties they had to overcome
themselves, and they’re still naive enough to believe that all the amazing things robots
do in movies can be carried out by your robots as well. They see any possible task or
function as easy to implement. “Why don’t you make one like the real R2-D2, Dad?”

MINDSTORMS provides a great way for kids to understand that even the most
common activities are composed of many individual operations. If they don’t under-
stand, if they become frustrated by what the robots can’t do, play an easy but funny
game with them in which you are the robot and they have to “program” you using
only a very simple vocabulary describing a few basic actions. They will laugh at all
the stupid things you’ll do and the unusual situations their commands will get you
into—but they will very likely understand the point. This is an extra gift that robotics
will provide to your family: showing your children how to deconstruct and analyze
what they consider a single action.

When you're really at a loss for what robot you might build next, ask the kids!
You're sure to get a bunch of fresh ideas. Most of us tend to design robots that move
around, grab objects, find soda cans in a room or do any other activity we expect
robots should do. Some of these projects are very challenging, and most are very
instructive. But if you ask the kids what they would like to see, you get responses
like: “Why don’t we build a skiing robot, Dad?” Would you ever think of a skiing
robot? Just the same, robots of this type are easy to make (see Chapter 16). They
require only basic parts, they’re fun, and like any MINDSTORMS challenge, they’re
definitely worth the time you spend on them.

Why LEGO?

If you’ve been raised with LEGO like we have, you already know what’s special
about it. But for those relatively new to the LEGO concept, including those who
have yet to buy a MINDSTORMS set, let us explain why LEGO is an excellent

choice for exploring the world of robotics.
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The power of the LEGO system lies in its founding concept: reusability. The
same basic brick can today be the foot of an elephant, tomorrow a block in an
Egyptian pyramid, and the day after the nose of a robot. When you open a LEGO
box, you see the parts that will form a LEGO model, but you also see an infinite
number of possible models you might create with those parts.

The property that transforms these small plastic pieces into a construction system
is their connectivity. You don’t need glue, screws, or any special tools (other then your
hands) to assemble (or dismantle) a LEGO model. The LEGO parts easily snap on to
each other and stay firmly in place until you decide to take them apart. The parts
won’t be damaged, no matter how much you use them.

But what really makes LEGO easy to use is its modularity. Not only does one
brick connect to another, but they do so at predefined, discrete positions. There are
studs and holes that force you to assemble parts following a precise geometric
scheme. This might seem a limitation at first, but it actually makes your life easier
because of something called precise positioning. You don’t need a ruler or a square—
all that’s required 1s that you can count!

m  LEGO is fast You don’t have to saw, cut, drill, solder, fold, file, or mill your
components. They are ready to use, just pick up what you need from the box.

m LEGO is clean You don’t produce filings, don’t need any lubricants or
paints, and when you have finished playing with it, your room looks exactly
as it did before. This is a very important point to make to the people who
live with you if you want them to be tolerant of your hobby!

m  LEGO is cost-effective You can use and reuse your LEGO parts as
needed to produce many generations of robots. And should you ever even-
tually tire of your LEGO pieces, they will still have a market value. There are
other easy-to-assemble robotic kits on the market, but they usually only
permit you to build one specific model. Beyond that, there’s nothing more
you can get from their kits.

m  LEGO is ecological We don’t mean that its ABS plastic is easy to recycle.
It is, but that’s not the point.You simply don’t need to recycle it, because
you’ll never throw it away. After all, this is the most respectful approach to
the environment: making products with a long life span, that don’t exhaust
their function and don’t require recycling or disposal. We still use many of
the LEGO bricks we received during childhood.
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To return to robotics, some of you may believe that LEGO MINDSTORMS is
too limited a system to build sophisticated projects. This is true if you mean really
sophisticated systems! Others may observe that LEGO is not suitable for building
robots that perform actual work. This, again, can be true, although we will show
some examples in Chapter 25 that are indeed useful work projects. The LEGO
MINDSTORMS kit is definitely more than a toy—it is probably the most fun and
effective educational tool for learning the scientific principles behind robotics. There
are indeed limitations, but this is part of the fun, challenging you to use your imagi-
nation, to find esoteric solutions for seemingly unsolvable problems.

Suppose you’re an experienced programmer, asked to write the umpteenth ver-
sion of an invoicing software—just the thought of it puts you to sleep. But then your
employer adds “Oh, by the way, it has to run on a machine with 3 K of RAM. Now
you're interested! After all, there’s nothing like a challenge.

So, don't feel limited by the constraints you find in the system, feel inspired.
Create a robot that makes your friends say “I didn’t think it was possible to make
such an incredible thing with LEGO!” Because you can.

Using this Book

This book is about building robots using LEGO bricks and components. The chap-
ters in Part [ are about how to build a robot. Here, we provide a set of fools you’ll
need to explore the world of robotics. We’ll review basic knowledge about
mechanics, motors, sensors, pneumatics, and navigation. We will compare different
standard architectures, discuss solutions to common recurring problems, and will sug-
gest how to organize complex projects in terms of subsystems.

Part IT will face the tough question, “I've got my MINDSTORMS kit, I've
learned how to use it—so what do I build?” Here we will show you a large survey of
possible ideas, but do not expect to find complete models to build step by step. The
goal of this book is not to teach you to re-create our models, instead it is to stimulate
your imagination to create your own. Imagination and creativity cannot be taught,
but it can be inspired. We hope that our approach might help you see the world with
different eyes. The same is true for understanding the mechanics of robotics: you will
learn best by guided and informed experimentation. Actively participating in the
process, not simply cloning our models, will bring you the greatest rewards.

Part III takes you into the world of robotics contests. These contests ofter LEGO
builders a challenge beyond the initial goal of building a working robot—they pro-
vide a means to inspire ideas, share solutions, and just have fun, whether with your
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own friends, in a local group, or even internationally. There are different ways to
attend a robotic contest: you can compare robots with friends in person, or you can
take up a challenge someone has organized through the Internet, in which case you
submit your solution in pictures or programming code. Either way, you will learn a
great deal from your opponents. And from the rules, too: what really makes a contest
exciting is trying to find an original but “legal” solution you hope your opponents
haven’t thought of.

The last part of the book consists of appendices that provide you with various
technical resources we hope will be helpful to you.

There is a key element to robotics that you will not find in this book: compre-
hensive coverage of programming and electronics. We made a conscious choice to
focus this book on construction solutions and to cover only as much programming as
was necessary—a limited amount of coverage is indeed required, because you cannot
successfully design and build your robots without taking into consideration the role
that electronics will play. Because there are various programming options you can
choose from, depending on your level of programming experience, we have written
our code using NQC, a very widespread C-like textual language that you can easily
translate into your favorite language.

One of the nicest things about MINDSTORMS robots is that you're not
required to be an electrical engineer to design them—we’re not! If you are interested
in expanding your RCX possibilities on that side, we will point you to the right
resources.

Please note that we don’t expect you read the book sequentially from cover to
cover: feel free to jump to a specific page or topic. When we cite a concept or tech-
nique explained in a previous chapter, we’ll tell you where to find it. The only things
we expect from you are the following:

®m  That you own a MINDSTORMS Robotic Invention System kit or you are
seriously interested in buying one. Many of the tips and ideas are, however,
applicable to other LEGO programmable bricks (such as Scout and
Cybermaster) or to nonrobotic LEGO TECHNIC models.

®m  That you already have some basic skill in assembling LEGO TECHNIC
parts and in programming your RCX. Doing the lessons included in the
MINDSTORMS CD-ROM and being familiar with the Constructopedia
will be all the background you need.

Enjoy our book!
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Chapter 1 ¢ Understanding LEGO Geometry

Introduction

Before you enter the world of LEGO® robotics, there are some basic geometric
properties of the LEGO bricks we want to be sure you know and understand.
Don’t worry, we’re not going to test you with complex equations or trigonom-
etry, we’ll just discuss some very simple concepts and explain some terminology
that will make assembling actual systems easier from the very beginning.

You will discover which units LEGO builders use to express sizes, what the
proportions of the bricks are, and how this affects the way you can combine
bricks with different orientations into a solid structure.

We encourage you to try and reproduce all the examples we show in this
chapter with your own LEGO parts. Keep your MINDSTORMS box handy so
you can pick up the parts you need, which in this chapter will actually be
nothing more than a few bricks and plates.

If, for any reason, you feel the stuff here is too complex or boring, don’t force
yourself to read it, skip the chapter and go to another one.You can always come
back and use this chapter as a sort of glossary whenever it’s needed.

Expressing Sizes and Units

LEGO builders usually express the size of LEGO parts with three numbers:
width, length, and height, in that order. The standard way to use LEGO bricks is
“studs up.” When expressing sizes, we always refer to this orientation, even when
we are using the bricks upside down or when rotating them in 3-D space.

Height is the simplest property to identify, its the vertical distance between the
top and bottom of the basic brick. Width, by convention, is the shorter of the two
dimensions that lie on the horizontal plane (length is the other one). Both width
and length are expressed in terms of studs, also called LEGO units. Knowing this,
we can describe the measurements of the most traditional brick, the one whose
first appearance dates back to 1949, which 1s 2 x 4 x 1 (see Figure 1.1).

LEGO bricks, although their measurements are not expressed as such, are
based on the metric system—a stud’s width corresponds to 8mm and the height
of a brick (minus the stud) to 9.6mm. These figures are not important to
remember—what’s important is that they do not have equal values, meaning you
need two different units to refer to length and height. Their ratio is even more
important: dividing 9.6 by 8 you get 1.2 (the vertical unit corresponds to 1.2
times the horizontal one). This ratio is easier to remember if stated as a propor-
tion between whole numbers: It is equivalent to 6:5. We will explore the rele-
vance of this ratio in the next section.
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Figure 1.1 Measurements of a Traditional LEGO Brick

Figure 1.2 shows the smallest LEGO brick, described in LEGO units as a 1 x
1 x 1. For the reasons explained previously this LEGO “cube” is not a cube at all.

Figure 1.2 Proportionsina 1 x 1 x 1 LEGO Brick

T 8

The LEGO system includes a class of components whose height is one-third
of a brick. The most important element of this class is the plate, which comes in a
huge variety of rectangular sizes and in some special shapes, too. If you stack
three plates, you get the height of a standard brick (see Figure 1.3).

Figure 1.3 Three Plates Make One Brick in Height
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Squaring the LEGO
World: Vertical Bracing

Why do we care about all these relationships? To answer this, we must travel back
to the late seventies when the LEGO TECHNIC line was created. Up to that
time, LEGO was designed and used to build things made of horizontal layers:
Bricks and plates integrate pretty well when stacked together. Every child soon
learns that three plates count for a brick, and this is all they need to know. But in
1977, LEGO decided to introduce a new line of products targeting an older
audience: LEGO TECHNIC. They gave the common 1xN brick holes and
turned it into what we call a TECHNIC brick, or a beam (Figure 1.4). These
holes allow axles to pass through them, and also permit the beams to be con-
nected to each other via pegs, thus creating an entire new world of possibilities.

Figure 1.4 The LEGO TECHNIC Beam

Suppose you want to mount a beam in a vertical position, to brace two or
more layers of horizontal beams. Here’s where we must remember the 6 to 5 ratio.
The holes inside a beam are spaced at exactly the same distance as the studs, but
are shifted over by half a stud. So, when we stand the beams up, the holes follow
the horizontal units and not the vertical ones. Consequently, they don’t match the
corresponding holes of the layered beams. In other words, the holes in the vertical
beam cannot line up with the holes in the stack because of the 6:5 ratio. At least
not with all the holes. But let’s take a closer look at what happens. Count the ver-
tical units by multiples of 6 (6, 12, 18, 24, 30...) and the horizontal ones by multi-
ples of 5 (5, 10, 15, 20, 25, 30...). Don’t count the starting brick and the starting
hole, they are your reference point; you are measuring the distances from that
point.You see? After counting 5 vertical units you reach 30, which is the same
number you reach after counting 6 horizontal units (see Figure 1.5).

Is there a general rule we can derive from this? A sort of theorem? Yes: In a
stack of horizontal beams, at every fifth beam the holes align to those of a perpendicular
beam.
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Figure 1.5 Matching Horizontal and Vertical Beams
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Now you can build a stack with some of your beams, brace them with
another long one, and verify this rule in practice. If you put an axle in the first
connecting hole and then try to put it again in the following holes, you’ll find
that the holes of the crossed beam match at the starting brick plus five and at the
starting brick plus ten (see Figure 1.6).

This technique of crossing beams is extremely important. It’s what enables us
to build solid models, because the vertical beam locks all the beams in between
the two horizontal beams. It’s a pity we need to stack 6 beams before we can
lock them with a traverse beam. Couldn’t we build something more compact?
The answer is, of course, yes.

Recall that the vertical unit has a subunit, the height of a plate. Three plates
make a brick, so counting plates, we can increase the height by steps of 2 instead
of 6 (2 is one-third of 6). Our progression in height now becomes: 2, 4, 6, 8,
10... after 5 vertical increments we reach the value 10.That’s also in the hori-
zontal scale of values, a spot where we know the holes will match. So our new
and final theorem is: every 5 plates in height, the holes of perpendicular beams match. 1f
there’s a single thing you should remember from this chapter, this is it.

Unfortunately a plate cannot be used as is to connect a vertical beam, for the
simple reason it hasn’t any holes! But a beam is equivalent to three plates in
height. Knowing this, we can state our rule in operational terms: Starting from
the beam at the bottom (don’t count it), add 1 for each plate and 3 for each
beam, and keep at least a beam at the top. If the result is a multiple of 5, the holes
can be matched by a perpendicular beam.
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Figure 1.6 Every Five Bricks in Height the Holes Match
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The most compact scheme that allows you to lock your horizontal layers
with a vertical beam is the one shown in Figure 1.7:a beam and two plates, cor-
responding to five plates. Two holes per five plates is the only way you can con-
nect bracing beams at this distance.You can find it recurring in all TECHNIC
models designed by LEGO engineers, and we will use it extensively in the robots
in this book.

Figure 1.7 The Most Compact Locking Scheme
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o
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Upon increasing the distances, the possibilities increase; the next working
combination is 10 plates/4 holes. But there are many ways we can combine
beams and plates to count 10 plates in height; you can see some of them in
Figure 1.8.

Figure 1.8 The Standard Grid
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First question: Is there a best grid, a preferred one? Yes, there 1s, in a certain
sense. The most versatile is version ¢ in Figure 1.8, which is a multiple of our basic
scheme from Figure 1.7, because it lets you lock the beams in an intermediate
point, also. So, when you build your models, the sequence 1 beam + 2 plates + 1
beam + 2 plates... is the one that makes your life easier: Connections are
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possible at every second hole of the vertical beam. This is what Eric Brok on his
Web site calls a standard grid (see Appendix A), a grid that maximizes your connec-
tion possibilities. Second question: Should you always stay with this scheme?
Absolutely not! Don’t curb your imagination with unnecessary constraints. This is
just a tip that’s useful in many circumstances, especially when you start something
and don’t know yet what exactly you’re going to get! In many, many cases we use
different schemes, and the same will be true for you.

Tilting the LEGO World:
Diagonal Bracing

Who said that the LEGO beams must connect at a right angle to each other? The
very nature of LEGO is to produce squared things, but diagonal connections are
possible as well, making our world a bit more varied and interesting, and giving
us another tool for problem solving.

You now know that you can cross-connect a stack of plates and beams with
another beam. And you know how it works in numerical terms. So how would
you brace a stack of beams with a diagonal beam?

You must look at that diagonal beam as if it was the hypotenuse of a right-
angled triangle. Look at or build a stack like that in Figure 1.9. Now proceed to
measure its sides, remembering not to count the first holes, because we measure
lengths in terms of distances from them. The base of the triangle is 6 holes. Its
height 1s 8 holes: Remember that in a standardized grid every horizontal beam is
at a distance of two holes from those immediately below and above (we placed a
vertical beam in the same picture to help you count the holes). In regards to the
hypotenuse, it counts 10 holes in length.

For those of you who have never been introduced to Pythagoras, the ancient
Greek philosopher and mathematician, the time has come to meet him. In what is
probably the most famous theorem of all time, Pythagoras demonstrated that
there’s a mathematical relationship between the length of the sides of right-angled
triangles. The sides composing the right angle are the catheti—let’s call them A
and B.The diagonal is the hypotenuse—Ilet’s call that C.The relationship is:

A+ B =C
Now we can test it with our numbers:

6 + 8 = 10°
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This expands to:
(6x6) + (8x8) =(10x10)
36 + 64 = 100
100 = 100
Figure 1.9 Pythagoras’ Theorem
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Yes! This is exactly why our example works so well. It’s not by chance, it’s
good old Pythagoras’ theorem. Reversing the concept, you might calculate if any
arbitrary pair of base and height values brings you to a working diagonal. This is
true only when the sum of the two lengths, each squared, gives a number that’s
the perfect square of a whole number. Let’s try some examples (Table 1.1).

Table 1.1 Verifying Working Diagonal Lengths

A (Base) B (Height) A2 B2 A? + B2 Comments

5 6 25 36 61 This doesn’t work.
3 8 9 64 73 This doesn’t work.
3 4 9 16 25 This works! 25 is 5 x 5.
15 8 225 64 289 This works too, though

289 is 17 x 17, this would
come out a very large
triangle.

Continued
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Table 1.1 Continued

A (Base) B (Height) A2 B’ A’ + B> Comments

9 8 81 64 145 145 is not the square of a
whole number, but it is so
close to 144 (12 x 12) that
if you try and make it
your diagonal beam it will
fit with no effort at all.
After all, the difference
in length is less than
1 percent.

At this point, you're probably wondering if you have to keep your pocket cal-
culator on your desk when playing with LEGO blocks, and maybe dig up your
old high school math textbook to reread. Don’t worry, you won’t need either, for

many reasomns:

m  First, you won't need to use diagonal beams very often.

® Most of the useful combinations derive from the basic triad 3-4-5 (see
the third line in Table 1.1). If you multiply each side of the triangle by a
whole number, you still get a valid triad. By 2: 6-8-10 (the one of our
first example), by 3: 9-12-15, and so on. These are by far the most useful
combinations, and are very easy to remember.

m  We provide a table in Appendix B with many valid side lengths,
including some that are not perfect but so close to the right number that
they will work very well without causing any damage to your bricks.

We suggest you take some time to play with triangles, experimenting with
connections using various angles and evaluating their rigidity. This knowledge
will prove precious when you start building complex structures.

Expressing Horizontal Sizes and Units

So far we’ve put a lot of attention into the vertical plane, because this technique
of layers locked by vertical beams is the most important tool you have to build
rock solid models. Well, almost rock solid, considering it’s just plastic!

Nevertheless there are some other ideas you’ll find useful when using bricks
in the horizontal plane, that is, all studs up.
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We said that the unit of measurement for length is the stud, meaning that we
measure the length of a beam counting the number of studs it has. The holes in
the beams are spaced at the same distance, so we can equally say “a length of
three studs” or “a length of three holes.” But looking at your beams, you have
probably already noticed that the holes are interleaved with the studs, and that
there is one hole less then the number of studs in each beam.

There are two important exceptions to this rule: the 1 x 1 beam with one
hole, and the 1 x 2 beam with two holes (Figure 1.10).You won'’t find any of
them in your MINDSTORMS box, but they’re so useful you’ll likely need some

sooner or later.

Figure 1.10 The 1 x 1 Beam with 1 Hole and the 1 x 2 Beam with 2 Holes

In these short beams, the holes align under the studs, not between them, and
when used together with standard beams, they allow you to get increments of
half a hole (Figure 1.11). We will see some practical applications of this in the
next chapter when talking about gearings.

Figure 1.11 How to Get a Distance of Half a Hole

Another piece that carries out the same function is the 1 x 2 plate with one
stud. This one also is not included in your MINDSTORMS kit, but it’s definitely
a very easy piece to find. As you can see in Figure 1.12, it’s useful when you want
to adjust by a distance of half a stud, and can help you a lot when fine tuning the
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position of touch sensors in your model. We’ll see some examples of usage later
on in this book.

Figure 1.12 The Single Stud 1 x 2 Plate

Bracing with Hinges

To close the chapter, we return to triangles. Before you start to panic, just
think—you already have all the tools you need to manage them painlessly. There’s
nothing actually new here, just a difterent application of the previous concepts.
Let us say in addition, that it’s a technique you can survive without. But for the
sake of completeness, we want to introduce it also.

First of all we need yet another special part, a hinge (Figure 1.13). Using these
hinges you can build many different triangles, but once again our interest is on
right-angle triangles, because they are by far the most useful triangle for connec-
tions. Their catheti align properly with lower or upper layers of plates or beams,
offering many possibilities of integration with other structures.

Figure 1.13 The LEGO Hinge

The LEGO hinges let you rotate the connected beams, keeping their inner
corners always in contact. Therefore, using three hinges, you get a triangle whose
vertices fall in the rotation centers of the hinges. The length of its inner sides is
the length of the beams you count (Figure 1.14). Regarding right-angled trian-
gles:You're already familiar with the Pythagorean Theorem, and it applies to this
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case as well. The same combinations we have already seen work in this case: 3-4-5,
6-8-10, and so on.

Figure 1.14 Making a Triangle with Hinges

Summary

Did you survive the geometry? You can see it doesn’t have to be that hard once
you get familiar with the basics. First, it helps to know how to identify the bricks
by their proportions, counting the length and width by studs, and recognizing
that the vertical unit to horizontal unit ratio is 6 to 5. Thus, according to the
simple ratio, when you'’re trying to find a locking scheme to insert axles or pins
into perpendicular beam holes, you know that every 5 bricks in height, the holes
of a crossed beam match up. Also, because three plates match the height of a
brick, the most compact locking scheme is to use increments of two plates and a
brick, because it gives you that magic multiple of 5. If you stay with this scheme,
the standard grid, everything will come easy: one brick, two plates, one brick,
two plates...

To fit a diagonal beam, use the Pythagorean Theorem. Combinations based
on the triad of 3-4-5 constitute a class of easy-to-remember distances for the
beam to make a right triangle, but there are many others. Either use the rules
explained here, or simply look up the connection table provided in Appendix B.
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Introduction

You might find yourself asking: Do I really need gears? Well, the answer is yes, you
do. Gears are so important for machines that they are almost their symbol: Just
the sight of a gear makes you think machinery. In this chapter, you will enter the
amazing world of gears and discover the powerful qualities they offer, trans-
forming one force into another almost magically. We’ll guide you through some
new concepts—velocity, force, torque, friction—as well as some simple math to
lay the foundations that will give you the most from the machinery. The concepts
are not as complex as you might think. For instance, the chapter will help you see
the parallels between gears and simple levers.

We invite you once again to experiment with the real things. Prepare some
gears, beams, and axles to replicate the simple setups of this chapter. No descrip-
tion or explanation can replace what you learn through hands-on experience.

Counting Teeth

A single gear wheel alone is not very useful—in fact, it is not useful at all, unless
you have in mind a different usage from what it was conceived for! So, for a mean-
ingful discussion, we need at least two gears. In Figure 2.1, you can see two very
common LEGO gears: The left one is an 8t, while the right is a 24t. The most
important property of a gear, as we’ll explain shortly, is its teeth. Gears are classified
by the number of teeth they have; the description of which is then shortened to
form their name. For instance, a gear with 24 teeth becomes “a 24t gear.”

Figure 2.1 An 8t and a 24t Gear

Let’s go back to our example. We have two gears, an 8t and a 24t, each
mounted on an axle. The two axles fit inside holes in a beam at a distance of two
holes (one empty hole in between). Now, hold the beam in one hand, and with
the other hand gently turn one of the axles. The first thing you should notice is

WwWw.syngress.com



Playing with Gears * Chapter 2

that when you turn one axle, the other turns too. The gears are transferring motion
from one axle to the other. This is their fundamental property, their very nature. The
second important thing you should notice is that you are not required to apply
much strength to make them turn. Their teeth match well and there is only a
small amount of friction. This is one of the great characteristics of the LEGO
TECHNIC system: Parts are designed to match properly at standard distances. A
third item of note is that the two axles turn in opposite directions: one clockwise
and the other counterclockwise.

A fourth, and more subtle, property you should have picked up on is that the
two axles revolve at different speeds. When you turn the 8t, the 24t turns more
slowly, while turning the 24t makes the 8t turn faster. Lets explore this in more
detail.

Gearing Up and Down

Let’s start turning the larger gear in our example. It has 24 teeth, each one
meshing perfectly between two teeth of the 8t gear. While turning the 24t, every
time a new tooth takes the place of the previous one in the contact area of the
gears, the 8t gear turns exactly one tooth, too. The key point here is that you
need to advance only 8 teeth of the 24 to make the small gear do a complete
turn (360°). After 8 teeth more of your 24, the small gear has made a second rev-
olution. With the last 8 teeth of your 24, the 8t gear makes its third turn. This is
why there is a difference in speed: For every turn of the 24t, the 8t makes three
turns! We express this relationship with a ratio that contains the number of teeth
in both gears: 24 to 8. We can simplify it, dividing the two terms by the smaller
of the two (8), so we get 3 to 1.This makes it very clear, in numerical terms, that
one turn of the first corresponds to three turns of the second.

You have just found a way to get more speed! (To be technically precise, we
should call it angular velocity, not speed, but you get the idea). Before you start
imagining mammoth gear ratios for racecar robots, sorry to disappoint you—there
is no free lunch in mechanics, you have to pay for this gained speed.You pay for it
with a decrease in forque, or, to keep in simple terms, a decrease in strength.

So, our gearing is able to convert torque to velocity—the more velocity we
want, the more torque we must sacrifice. The ratio is exactly the same, if you get
three times your original angular velocity, you reduce the resulting torque to one
third.

One of the nice properties of gears is that this conversion is symmetrical: You
can convert torque into velocity or vice versa. And the math you need to manage
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and understand the process is as simple as doing one division. Along common
conventions, we say that we gear up when our system increases velocity and
reduces torque, and that we gear down when it reduces velocity and increases
torque. We usually write the ratio 3:1 for the former and 1:3 for the latter.

Bricks & Chips...

What Is Torque?

When you turn a nut on a bolt using a wrench, you are producing
torque. When the nut offers some resistance, you’ve probably discov-
ered that the more the distance from the nut you hold the wrench, the
less the force you have to apply. Torque is in fact the product of two
components: force and distance. You can increase torque by either
increasing the applied force, or increasing the distance from the center
of rotation. The units of measurement for torque are thus a unit for the
force, and a unit for the distance. The International System of Units (SI)
defines the newton-meter (Nm) and the newton-centimeter (Ncm).

If you have some familiarity with the properties of levers, you will
recognize the similarities. In a lever, the resulting force depends on the
distance between the application point and the fulcrum: the longer the
distance, the higher the force. You can think of gears as levers whose ful-
crum is their axle and whose application points are their teeth. Thus,
applying the same force to a larger gear (that is to a longer lever) results
in an increase in torque.

When should you gear up or down? Experience will tell you. Generally
speaking, you will gear down many more times then you will gear up, because
you’ll be working with electric motors that have a relatively high velocity yet a
tairly low torque. Most of the time, you reduce speed to get more torque and
make your vehicles climb steep slopes, or to have your robotic arms lift some
load. Other times you don’t need the additional torque; you simply want to
reduce speed to get more accurate positioning.

One last thing before you move on to the next topic. We said that there is no
free lunch when it comes to mechanics. This is true for this conversion service as
well: We have to pay something to get the conversion done. The price is paid in
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friction—something you should try and keep as low as possible—but it’s unavoid-
able. Friction will always eat up some of your torque in the conversion process.

Riding That Train: The Geartrain

The largest LEGO gear is the 40t, while the smallest is the 8t (used in the previous
discussion). Thus, the highest ratio we can obtain is 8:40, or 1:5 (Figure 2.2).

Figure 2.2 A 1:5 Gear Ratio

What if you need an even higher ratio? In such cases, you should use a multi-
stage reduction (or multiplication) system, usually called a geartrain. Look at Figure
2.3. In this system, the result of a first 1:3 reduction stage is transferred to a
second 1:3 reduction stage. So, the resulting velocity is one third of one third,
which is one ninth, while the resulting torque is three times three, or nine.
Therefore, the ratio is 1:9.

Figure 2.3 A Geartrain with a Resulting Ratio of 1:9
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Geartrains give you incredible power, because you can trade as much velocity
as you want for the same amount of torque. Two 1:5 stages result in a ratio of
1:25, while three of them result in 1:125 system! All this strength must be used
with care, however, because your LEGO parts may get damaged if for any reason
your robot is unable to convert it into some kind of work. In other words, if
something gets jammed, the strength of a LEGO motor multiplied by 125 is
enough to deform your beams, wring your axles, or break the teeth of your
gears. We'll return to this topic later.

Designing & Planning...

Choosing the Proper Gearing Ratio

We suggest you perform some experiments to help you make the right
decision in choosing a gearing ratio. Don’t wait to finish your robot to
discover that some geared mechanics doesn’t work as expected! Start
building a very rough prototype of your robot, or just of a particular sub-
system, and experiment with different gear ratios until you're satisfied
with the result. This prototype doesn’t need to be very solid or refined,
and doesn’t even need to resemble the finished system you have in
mind. It is important, however, that it accurately simulates the kind of
work you're expecting from your robot, and the actual loads it will have
to manage. For example, if your goal is to build a robot capable of
climbing a slope with a 50 percent grade, put on your prototype all the
weight you imagine your final model is going to carry: additional motors
for other tasks, the RCX itself, extra parts, and so on. Don’t test it
without load, as you might discover it doesn’t work.

. N

"NoTE

- Remember that in adding multiple reduction stages, each additional

: stage introduces further friction, the bad guy that makes your world less

L than ideal. For this reason, if aiming for maximum efficiency, you should
try and reach your final ratio with as few stages as possible.
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Worming Your Way: The Worm Gear

In your MINDSTORMS box you’ve probably found another strange gear, a black
one that resembles a sort of cylinder with a spiral wound around it. Is this thing
really a gear? Yes, it is, but it is so peculiar we have to give it special mention.

In Figure 2.4, you can see a worm gear engaged with the more familiar 24t.
In just building this simple assembly, you will discover many properties. Try and
turn the axles by hand. Notice that while you can easily turn the axle connected
to the worm gear, you can’t turn the one attached to the 24t. We have discovered
the first important property: The worm gear leads to an asymmetrical system; that
is, you can use it to turn other gears, but it can’t be turned by other gears. The
reason for this asymmetry is, once again, friction. Is this a bad thing? Not neces-
sarily. It can be used for other purposes.

Figure 2.4 A Worm Gear Engaged with a 24t

Another fact you have likely observed is that the two axles are perpendicular
to each other. This change of orientation is unavoidable when using worm gears.
Turning to gear ratios, you're now an expert at doing the math, but you’re
probably wondering how to determine how many teeth this worm gear has! To

figure this out, instead of discussing the theory behind it, we proceed with our
experiment. Taking the assembly used in Figure 2.4, we turn the worm gear axle
slowly by exactly one turn, at the same time watching the 24t gear. For every
turn you make, the 24t rotates by exactly one tooth. This is the answer you were
looking for: the worm gear is a 1t gear! So, in this assembly, we get a 1:24 ratio
with a single stage. In fact, we could go up to 1:40 using a 40t instead of a 24t.
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The asymmetry we talked about before makes the worm gear applicable only
in reducing speed and increasing torque, because, as we explained, the friction of
this particular device is too high to get it rotated by another gear. The same high
friction also makes this solution very inefticient, as a lot of torque gets wasted in
the process.

As we mentioned earlier, this outcome is not always a bad thing. There are
common situations where this asymmetry is exactly what we want. For example,
when designing a robotic arm to lift a small load. Suppose we use a 1:25 ratio
made with standard gears: what happens when we stop the motor with the arm
loaded? The symmetry of the system transforms the weight of the load (potential
energy) into torque, the torque into velocity, and the motor spins back making
the arm go down. In this case, and in many others, the worm gear is the proper
solution, its friction making it impossible for the arm to turn the motor back.

We can summarize all this by saying that in situations where you desire pre-
cise and stable positioning under load, the worm gear is the right choice. And it’s
also the right choice when you need a high reduction ratio in a small space, since
allows very compact assembly solutions.

Limiting Strength with the Clutch Gear

Another special device you should get familiar with is the thick 24t white gear,
which has strange markings on its face (Figure 2.5). Its name is clutch gear, and in
the next part of this section we’ll discover just what it does.

Figure 2.5 The Clutch Gear
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Our experiment this time requires very little work, just put the end of an
axle inside the clutch gear and the other end into a standard 24t to use as a knob.
Keep the latter in place with one hand and slowly turn the clutch gear with the
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other hand. It offers some resistance, but it turns. This is its purpose in life: to
offer some resistance, then give in!

This clutch gear is an invaluable help to limit the strength you can get from a
geared system, and this helps to preserve your motors, your parts, and to resolve
some difficult situations. The mysterious “2.5:5 Nem” writing stamped on it (as
explained earlier, Ncm is a newton-centimeter, the unit of measurement for
torque) indicates that this gear can transmit a maximum torque of about 2.5 to 5
Ncm. When exceeding this limit its internal clutch mechanism starts to slip.

What’s this feature useful for? You have seen before that through some reduc-
tion stages you can multiply your torque by high factors, thus getting a system
strong enough to actually damage itself if something goes wrong. This clutch gear
helps you avoid this, limiting the final strength to a reasonable value.

There are other cases in which you don’t gear down very much and the
torque is not enough to ruin your LEGO parts, but if the mechanics jam, the
motor stalls—this is a very bad thing, because your motor draws a lot of current
and risks permanent damage. The clutch gear prevents this damage, automatically
disengaging the motor when the torque becomes too high.

In some situations, the clutch gear can even reduce the number of sensors
needed in your robot. Suppose you build a motorized mechanism with a
bounded range of action, meaning that you simply want your subsystem (arms,
levers, actuators—anything) to be in one of two possible states: open or closed,
right or left, engaged or disengaged, with no intermediate position.You need to
turn on the motor for a short time to switch over the mechanism from one state
to the other, but unfortunately it’s not easy to calculate the precise time a motor
needs to be on to perform a specific action (even worse, when the load changes,
the required time changes, too). If the time is too short, the system will result in
an intermediate state, and if it’s too long, you might do damage to your motor.
You can use a sensor to detect when the desired state has been reached; however,
if you put a clutch gear somewhere in the geartrain, you can now run the motor
for the approximate time needed to reach the limit in the worst load situation,
because the clutch gear slips and prevents any harm to your robot and to your
motor if the latter stays on for a time longer than required.

There’s one last topic about the clutch gear we have to discuss: where to put
it in our geartrain. You know that it is a 24t and can transmit a maximum torque
of 5 Ncm, so you can apply here the same gear math you have learned so far. If
you place it before a 40t gear, the ratio will be 24:40, which is about 1:1.67.The
maximum torque driven to the axle of the 40t will be 1.67 multiplied by 5 Ncm,
resulting in 8.35 Ncm. In a more complex geartrain like that in Figure 2.6, the
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ratio is 3:5 then 1:3, coming to a final 1:5; thus the maximum resulting torque is
25 Ncm. A system with an output torque of 25 Ncem will be able to produce a
force five times stronger than one of 5 Ncm. In other words, it will be able to lift
a weight five times heavier.

Figure 2.6 Placing the Clutch Gear in a Geartrain

From these examples, you can deduce that the maximum torque produced by
a system that incorporates a clutch gear results from the maximum torque of the
clutch gear multiplied by the ratio of the following stages. When gearing down,
the more output torque you want, the closer you have to place your clutch gear
to the source of power (the motor) in your geartrain. On the contrary, when you
are reducing velocity, not to get torque but to get more accuracy in positioning,
and you really want a soft touch, place the clutch gear as the very last component
in your geartrain. This will minimize the final supplied torque.

This might sound a bit complex, but we again suggest you learn by doing,
rather than by simply reading. Prototyping is a very good practice. Set up some
very simple assemblies to experiment with the clutch gear in different positions,
and discover what happens in each case.

Placing and Fitting Gears

The LEGO gear set includes many difterent types of gear wheels. Up to now, we
played with the straight 8t, 24¢t, and 40t, but the time has come to explore other
kinds of gears, and to discuss their use according to size and shape.
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The 8t, 24t, and 40t have a radius of 0.5 studs, 1.5 studs, and 2.5 studs, respec-
tively (measured from center to half the tooth length). The distance between the
gears’ axles when placing them is the sum of their radii, so it’s easy to see that
those three gears make very good combinations at distances corresponding to
whole numbers. 8t to 24t 1s 2 studs, 8t to 40t is 3 studs, and 24t to 40t equates to
four studs. The pairs that match at an even distance are very easy to connect one
above the other in our standard grid, because we know it goes by increments of
two studs for every layer (Figure 2.7).

Figure 2.7 Vertical Matching of Gears

Another very common straight gear is the 16t gear (Figure 2.8). Its radius is
1, and it combines well with a copy of itself at a distance of two. Getting it to
cooperate with other members of its family, however, 1s a bit more tricky, because
whenever matched with any of the other gears it leads to a distance of some studs
and a half, and here is where the special beams we discussed in the previous
chapter (1 x 1, 1 hole, and 1 x 2, 2 holes) may help you (Figure 2.9).
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Figure 2.8 The 16t Gear

E'J&I
o

i,
4
-

4
v

4

r

Figure 2.9 How to Match the 16t Gear to a 24t Gear

Bricks & Chips...

Idler Gears

Figure 2.7 offers us the opportunity to talk about idler gears. What's the
ratio of the geartrain in the figure? Starting from the 8t, the first stage
performs an 8:24 reduction, while the second is a 24:40. Multiplying the
two fractions, you get 8:40, or 1:5, the same result you'd get meshing
the 8t directly to the 40t. The intermediate 24t is an idler gear, which
doesn’t affect the gear ratio. Idler gears are quite common in machines,
usually to help connect distant axles. Are idler gears totally lacking in
effects on the system? No, they have one very important effect: They
change the direction of the output!
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As we’ve already said, you're not restricted to using the standard grid.You can
try out different solutions that don’t require any special parts, like the one showed
in Figure 2.10.

Figure 2.10 A Diagonal Matching
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When using a pair of 16t gears, the resulting ratio is 1:1.You don’t get any
effect on the angular velocity or torque (except in converting a fraction of them
into friction), but indeed there are reasons to use them as a pair—for instance,
when you want to transfer motion from one axle to another with no other
eftects. This is, in fact, another task that gears are commonly useful for. There’s
even a class of gears specifically designed to transfer motion from one axle to
another axle perpendicular to it, called bevel gears.

Designing & Planning...

Backlash

Diagonal matching is often less precise than horizontal and vertical
types, because it results in a slightly larger distance between gear teeth.
This extra distance increases the backlash, the amount of oscillation a
gear can endure without affecting its meshing gear. Backlash is ampli-
fied when gearing up, and reduced when gearing down. It generally has
a bad effect on a system, reducing the precision with which you can con-
trol the output axle, and for this reason, it should be kept to a minimum.
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The most common member of this class is the 12t bevel gear, which can be
used only for this task (Figure 2.11), meaning it does not combine at all with any
other LEGO gear we have examined so far. Nevertheless, it performs a very
useful function, allowing you to transmit the motion toward a new direction,
while using a minimum of space. There’s also a new 20t bevel conical gear with
the same design of the common 12t (Figure 2.12). Both of these bevel gears are
half a stud in thickness, while the other gears are 1 stud.

Figure 2.11 Bevel Gears on Perpendicular Axles

Figure 2.12 The 20t Bevel Gear

The 24t gear also exists in the form of a crown gear, a special gear with front
teeth that can be used like an ordinary 24t, which can combine with another
straight gear to transmit motion in an orthogonal direction (that is, composed of
right angles), possibly achieving at the same time a ratio different from 1:1
(Figure 2.13).

To conclude our discussion of gears, we’ll briefly introduce some recent types
not included in the MINDSTORMS kit, but that you might find inside other
LEGO sets. The two double bevel ones in Figure 2.14 are a 12t and a 20, respec-
tively 0.75 and 1.25 studs in radius. If you create a pair that includes one per kind
of the two, they are an easy match at a distance of 2 studs.
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Figure 2.13 The Crown Gear on Perpendicular Axles
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Figure 2.14 Double Bevel Gears
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Things get a bit more complicated when you want to couple two of the
same kind, as the resulting distance is 1.5 or 2.5. And even more complicated

when combined with other gears, causing resulting distances that include a
quarter or three quarters of a stud. These gears are designed to work well in per-
pendicular setups as well (Figure 2.15).

Figure 2.15 Double Bevel Gear on Perpendicular Axles

Using Pulleys, Belts, and Chains

The MINDSTORMS kit includes some pulleys and belts, two classes of compo-
nents designed to work together and perform functions similar to that of gears—
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similar, that is, but not identical. They have indeed some peculiarities which we
shall explore in the following paragraphs.

Chains, on the other hand, are not part of the basic MINDSTORMS kit. You
will need to buy them separately. Though not essential, they allow you to create
mechanical connections that share some properties with both geartrains and
pulley-belt systems.

Pulleys and Belts

Pulleys are like wheels with a groove (called a race) along their diameter. The
LEGO TECHNIC system currently includes four kinds of pulleys, shown in
Figure 2.16.

Figure 2.16 Pulleys
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The smallest one (a) is actually the half-size bush, normally used to hold axles
in place to prevent them from sliding back and forth. Since it does have a race, it
can be properly termed a pulley. Its diameter is one LEGO unit, with a thickness
of half a unit.

The small pulley (b) is 1 unit in thickness and about 1.5 units in width. It 1s
asymmetrical, however, since the race is not in the exact center. One side of the
axle hole fits a rubber ring that’s designed to attach this pulley to the micro-
motor. The medium pulley (c) is again half a unit thick and 3 units in diameter.
Finally, the large pulley (d) is 1 unit thick and about 4.5 units in diameter.
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LEGO belts are rings of rubbery material that look similar to rubber bands.
They come in three versions in the MINDSTORMS kit, with difterent colors
corresponding to difterent lengths: white, blue, and yellow (in other sets, you can
find a fourth size in red). Don’t confuse them with the actual rubber bands, the
black ones you found in the kit: Rubber bands have much greater elasticity, and
for this reason are much less suitable to the transfer of motion between two pul-
leys. This is, in fact, the purpose of belts: to connect a pair of pulleys. LEGO belts
are designed to perfectly match the race of LEGO pulleys.

Let’s examine a system made of a pair of pulleys connected through a belt
(Figure 2.17).The belt transfers motion from one pulley to the other, making
them similar to a pair of gears. How do you compute the ratio of the system? You
don’t have any teeth to count... The rule with pulleys is that the reduction ratio is
determined by finding the ratio between their diameters (this rules applies to
gears too, but the fact that their circumference is covered with evenly spaced
teeth provides a convenient way to avoid measurement). You actually should con-
sider the diameter of the pulley inside its race, because the sides of the race are
designed specifically to prevent the belt from slipping from the pulley and don’t
count as part of the diameter the belt acts over.

Figure 2.17 Pulleys Connected with a Belt

You must also consider that pulleys are not very suitable to transmitting high
torque, because the belts tend to slip. The amount of slippage is not easy to esti-
mate, as it depends on many factors, including the torque and speed, the tension of
the belt, the friction between the belt and the pulley, and the elasticity of the belt.

For those reasons, we preferred an experimental approach and measured some
actual ratios among the different combination of pulleys under controlled condi-
tions. You can find our results in Table 2.1.
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Table 2.1 Ratios Among Pulleys

Half Small Medium Large

Bush Pulley Pulley Pulley
Half bush 1:1 1:2 1:4 1:6
Small pulley 2:1 1:1 1:2.5 1:4.1
Medium pulley 4:1 2.5:1 1:1 1:1.8
Large pulley 6:1 4.1:1 1.8:1 1:1

Designing & Planning...

Finding the Ratio between Two Pulleys

How did we find out the actual ratio between two pulleys? By simply
connecting them with a belt and comparing the number of rotations
when one of the two gets turned and drags the other. But turning pul-
leys by hand would have been quite a boring and time-consuming task,
and could cause some counts to be missed. What better device for this
job than our RCX, equipped with a motor and two rotation sensors? So,
we built this very simple machine: a motor connected to a pulley, whose
axle is attached to the first rotation sensor, and a second pulley, placed
at a very short distance, with its axle attached to the second rotation
sensor. We used some care to minimize the friction and maintain the
same tension in the belt for all the pairs of pulleys.

When running the motor, the RCX counted the rotations for us. We
stopped the motor after a few seconds, read the rotation sensor counts,
and divided the two to get the ratio you see in Table 2.1.

These values may change significantly in a real-world application, when the
system is under load. Because of this, it’s best to think of the figures as simply an
indication of a possible ratio for systems where very low torque is applied.
Generally speaking, you should use pulleys in your first stages of a reduction
system, where the velocity is high and the torque still low. You could even view
the slippage problem as a positive feature in many cases, acting as a torque-
limiting mechanism like the one we discussed in the clutch gear, with the same
benefits and applications.
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Another advantage of pulleys over gear wheels is that their distance is not as
critical. Indeed, they help a great deal when you need to transfer motion to a dis-
tant axle (Figure 2.18). And at high speeds they are much less noisy than gears—
a facet that occasionally comes in handy.

Figure 2.18 Pulleys Allow Transmission across Long Distances

Chains

LEGO chains come in two flavors: chain links and tread links (as shown in Figure
2.19, top and bottom, respectively). The two share the same hooking system and
are freely mixable to create a chain of the required length.

Chains are used to connect gear wheels as the same way belts connect with
pulleys. They share similar properties as well: Both systems couple parallel axles
without reversing the rotation direction, and both give you the chance to con-
nect distant axles. The big difference between the two is that chain links don’t
allow any slippage, so they transfer all the torque. (The maximum torque a chain
can transfer depends on the resistance of its individual links, which in the case of
LEGO chains is not very high.) On the other hand, they introduce further fric-
tion into the system, and for this reason are much less efficient then direct gear
matches. You will find chains useful when you have to transfer motion to a dis-
tant axle in low velocity situations. The ratio of two gears connected by a chain is
the same as their corresponding direct connection. For example, a 16t connected
to a 40t results in a 2:5 ratio.
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Figure 2.19 Chain Links

Making a Difference: The Differential

There’s a very special device we want to introduce you to at this time: the differ-
ential gear.You probably know that there’s at least one differential gear in every
car. What you might not know is why the difterential gear is so important.

Let’s do an experiment together. Take the two largest wheels that you find in
the MINDSTORMS kit and connect their hubs with the longest axle (Figure
2.20). Now put the wheels on your table and push them gently: They run
smoothly and advance some feet, going straight. Very straight. Keep the axle in
the middle with your fingers and try to make the wheels change direction while
pushing them. It’s not so easy, is it?
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Figure 2.20 Two Connected Wheels Go Straight

The reason is that when two parallel wheels turn, their paths must have dif-
ferent lengths, the outer one having a longer distance to cover (Figure 2.21). In our
example, in which the wheels are rigidly connected, at any turn they cover the
same distance, so there’s no way to make them turn unless you let one slip a bit.

Figure 2.21 During Turns the Wheels Cover Different Distances
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The next phase of our experiment requires that you now build the assembly
shown in Figure 2.22.You see a differential gear with its three 12t bevel gears,
two 6-stud axles, and two beams and plates designed to provide you with a way
to handle this small system. Placing the wheels again on your table, you will
notice that while pushing them, you can now easily turn smoothly in any direc-
tion. Please observe carefully the body of the differential gear and the central bevel
gear: when the wheels go straight, the body itself rotates while the bevel gear is
stationary. On the other hand, if you turn your system in place, the body stays put
and the bevel gear rotates. In any other intermediate case, both of them rotate at
some speed, adapting the system to the situation. Difterentials offer a way to put
power to the wheels without the restriction of a single fixed drive axle.

Figure 2.22 Connecting Wheels with the Differential Gear

To use this configuration in a vehicle, you simply have to apply power to the
body of the differential gear, which incorporates a 24t on one side and a 16t on
the other.

The difterential gear has many other important applications. You can think of
it as a mechanical adding/subtracting device. Again place the assembly from
Figure 2.22 on your table. Rotate one wheel while keeping the other from
turning; the body of the differential gear rotates half the angular velocity of the
rotating wheel. You already discovered that when turning our system in place, the
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differential does not rotate at all, and then when both wheels rotate together, the
differential rotates at the same speed as well. From this behavior, we can infer a
simple formula:

(lavl + lav2) /2 = Oav

where Oav 1s the output angular velocity (the body of the differential gear), and Iav1
and Iav2 are the input angular velocities (the two wheels). When applying this equa-
tion, you must remember to use signed numbers for the input, meaning that if
one of the input axles rotates in the opposite direction of the other, you must
input its velocity as a negative number. For example, if the right axle rotates at
100 rpm (revolutions per minute) and the left one at 50 rpm, the angular velocity
of the body of the differential results in this:

(100 rpm + 50 rpm ) /2 = 75 rpm

There are situations where you deliberately reverse the direction of one
input, using idler gears, to make the differential sensitive to a diftference in the
speed of the wheels, rather than to their sum. Reversing the input means that you
must make one of the inputs negative. See what happens to the differential when
both wheels run at the same speed, let’s say 100 rpm:

(100 rpom - 100 rpm ) /2 = 0 rpm

It doesn’t move! As soon as a difterence in speed appears, the diftferential starts
rotating with an angular velocity equal to half this difference:

(100 rpm =98 rpm)/2 =1 rpm

This is a useful trick when you want to be sure your wheels run at the same
speed and cover the same distance: Monitor the body of the differential and slow
the left or right wheel appropriately to keep it stationary. See Chapter 8 for a
practical application of this trick.

Summary

Few pieces of machinery can exist without gears, including robots, and you
ought to know how to get the most benefit from them. In this chapter, you were
introduced to some very important concepts: gear ratios, angular velocity, force,
torque, and friction. Torque is what makes your robot able to perform tasks
involving force or weight, like lifting weights, grabbing objects, or climbing
slopes. You discovered that you can trade off some velocity for some torque, and
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that this happens along rules similar to those that apply to levers: the larger the
distance from the fulcrum, the greater the resulting force.

The output torque of a system, when not properly directed to the exertion of
work, or when something goes wrong in the mechanism itself, can cause damage
to your LEGO parts. You learned that the clutch gear is a precious tool to limit
and control the maximum torque so as to prevent any possible harm.

Gears are not the only way to transfer power; we showed that pulley-belt sys-
tems, as well as chains, may serve the same purpose and help you in connecting
distant systems. Belts provide an intrinsic torque-limiting function and do well in
high-speed low-torque situations. Chains, on the other hand, don’t limit torque
but do increase friction, so they are more suitable for transferring power at slow
speeds.

Last but not least, you explored the surprising properties of the differential
gear, an amazing device that can connect two wheels so they rotate when its
body rotates, still allowing them to turn independently. The difterential gear has
some other applications, too, since it works like an adder-subtracter that can
return the algebraic sum of its inputs.

If these topics were new to you, we strongly suggest you experiment with
them before designing your first robot from scratch. Take a bunch of gears and
axles and play with them until you feel at ease with the main connection
schemes and their properties. This will ofter you the opportunity to apply some
of the concepts you learned from Chapter 1 about bracing layers with vertical
beams to make them more solid (when you increase torque, many designs fall
apart unless properly reinforced). You won't regret the time spent learning and
building on this knowledge. It will pay oft, with interest, when you later face
more complex projects.
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Introduction

Motors will be your primary source of power. Your robots will use them to move
around, lift loads, operate arms, grab objects, pump air, and perform any other
task that requires power. There are difterent kinds of electric motors, all of them
sharing the property of converting electrical energy into mechanical energy. In this
chapter, we will survey different kinds of LEGO motors and will discuss how to
use, mount, connect, and combine them.

Before entering the world of motors, we would like to introduce you to
some basic concepts about electricity. There’s a very important distinction you
should be aware of concerning electrical current: There are two types, alternating
current (AC) and direct current (DC). Alternating current is the type of electricity
that comes out of the wall outlets in your house, while batteries are the most
typical source of direct current. All the electric LEGO devices, including motors,
work with DC only.

To understand what DC is, imagine a stream of water going down a hill.
Electricity flowing through a wire is not very different: When you connect a bat-
tery to a device like a lamp or a motor, you enable a circuit through which elec-
tricity flows more or less like water in a stream.You know that batteries have
positive (+) and negative (—) signs stamped on them: they indicate the direction
of the flow, which goes from minus to plus, as if the minus pole were the top of
the hill. You can place a water mill along the stream to convert the energy of
water into mechanical energy; similarly, an electric motor converts an electric
flow into motion. What would happen to the water mill if you could reverse the
direction of the stream? It would change its direction of rotation. The same hap-
pens to DC motors. Every motor has two connectors, one to attach to the nega-
tive pole and the other to connect to the positive end of a DC source.You can
imagine the current flowing from the negative pole of the battery into the
motor, making it move and then coming out again to return to the positive pole
of the battery. If you reverse the polarity, that is, if you swap the wires between
the motor and the battery, you will change the direction of the stream and thus
the direction of the motor.

Continuing with our hydraulics metaphor, how would you describe the quan-
tity of water that’s flowing in a stream? It depends on two factors: the speed of
the water, and the width of the stream. Both of them have an influence on the
kind of work your mill can perform. In the realm of electricity, the speed of the
stream is called woltage, and its width (its intensity) is called current. They are
respectively expressed in Volts (V) and Ampere (A), or sometimes in their
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submultiples, millivolt (mV) and milliampere (mA). The amount of work that an
electrical flow can perform, for example through a motor, depends on both these
quantities. To be more precise, it depends on their product, called power, and is
measured in Watts (W).

Every motor is designed to run at a specific voltage, but they are very tolerant
when it comes to decreases in the supplied voltage. They simply turn more
slowly. However, if you increase the voltage above the specific limit for a motor,
you stand a good chance of burning it out.

Current has a different behavior. It’s the motor that “decides” how much cur-
rent to draw according to the work it’s doing: the higher the load, the greater the
current. The situation you should avoid at all costs when working with your RCX
1s to have the motor stall (it is connected to the power source but something pre-
vents it from turning). What happens in this case is that the motor tries to win out
against the resistance, drawing in more current so it can convert it into power, but
as it doesn’t succeed in the task, all that current becomes thermal energy instead of
mechanical energy—in other words, heat. This is the most dangerous condition for
an electric motor. And here is where the clutch gear described in Chapter 2
comes into play, limiting the maximum torque and thus preventing stall situations.
You will discover later in the chapter that the RCX also has an active role in pro-
tecting your motors from dangerous draws of current.

Pacing, Trotting, and Galloping

Every motor contains one or more coils and permanent magnets that convert
electrical energy into mechanical energy, but you don'’t really need to know this
level of detail. What you, as a robot builder, must remember is that every motor
has a connector through which you can supply it energy, and an output shaft
which draws the power. The current LEGO TECHNIC line includes three types
of 9V DC motors (as shown in Figure 3.1): the ungeared motor (a), the geared
motor (b), and the micromotor (c). There are other special motors as well: the
train motor, the geared motor with battery pack, and the Micro Scout unit. These
are less common, less useful, and less versatile to robotics than the first three, so
we won’t be examining them here. Table 3.1 summarizes the properties of these
three motors.
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Table 3.1 Properties of the LEGO TECHNIC Motors

Ungeared Geared
Properties Motor Motor Micromotor
Maximum voltage 9V DC 9V DC 9V DC
Minimum current (no load) 100 mA 10 mA 5 mA
Maximum current (stall) 450 mA 250 mA 90 mA
Maximum speed (no load) 4000 rpm 350 rpm 30 rpm
Speed under typical load 2500 rpm 200 rpm 25 rpm

Figure 3.1 The LEGO TECHNIC Motors
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The ungeared motor (a) has been the standard LEGO TECHNIC motor for
a long time. Its axle is simply an extension of the inner electric motor shaft, and
for this reason we called it ungeared. Electric motors usually rotate at very high
speeds, and this one is no exception, turning at more then 4000 rpm (revolutions
per minute). This makes this motor a bit tricky to use, because it requires very
high reduction ratios for almost any practical application, leading to very cumber-
some and complex geartrains. Add the fact that it draws an amazing amount of
current, and you get a pretty good picture of how difticult it can be.

This motor s still easy to find in the shops of many countries as an expansion
pack (8720), but we strongly advise you against buying one for the reasons men-
tioned in the previous paragraph. In this book, you won't find any example that
includes the ungeared motor. Nevertheless, if you already have one, you can safely
use it; it won’t damage your RCX or be damaged itself. The only risk you're taking
is that, under heavy loads or stall situations, it drains your batteries very quickly.

The geared motor (b) is what we will generically refer to as a motor, the one
we will use extensively in the following chapters. It features an internal multistage
reduction geartrain and turns at about 350 rpm with no load (typically
200/250rpm with medium load). It’s much more efficient than the older kind,
and has low current consumption. It also uses more compact geartrains. If you
have the MINDSTORMS kit, you already have two of these.

Bricks and Chips...

How to Release a Jammed Micromotor

A micromotor jams so easily, you should know what to do when it
occurs. The following list should help:

1. Switch off the motor as soon as you can. Detach the cord or
switch the power off; it's important not to leave a stalled
motor under power for a long time because that could per-
manently damage it.

2. Decouple the motor from any connection (gearings, pulleys,
and so on). Leave the small pulley attached to the motor
shaft.

3. Holding the motor with your fingers, turn the pulley gently
but firmly in the same direction the motor was turning when

Continued
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it jammed. At the same time, push the pulley against the
motor until you hear a click. Your motor should be okay now.
If you don’t know what direction the motor was rotating
when jammed, try both directions.

This procedure usually works. If it doesn’t, try to power on the
motor in both directions with very brief current pulses, at the same time
doing what's described in Step 3.

The micromotor (c) is a geared motor as well. It’s geared down so much that
its output shaft turns at approximately 30 rpm. Nevertheless, its torque is incred-
ibly low, well below 1 Ncm. It is also surprisingly noisy, and very easy to jam. At
this point, you might wonder why you should ever consider this motor, but the
answer lies in its name: because it’s micro. There are situations where the size of
the motor is more critical than the amount of torque and speed needed. To be
used, it requires some special mounting brackets, and a small pulley to connect to
its shaft (Figure 3.1c).

Mounting Motors

The LEGO motor is 4 studs wide and 4 studs long, and has an irregularly shaped
top with a height of 2.33 bricks in the low part and 3 bricks in the high one.
The base of the motor is irregular too, because there’s a convex area of 2 x 2 that
makes a direct mount of the motor on a regular surface impossible. For these rea-
sons mounting LEGO motors requires some experience. In the following para-
graphs, we’ll show a few common solutions, but many others will work as well.

Despite its irregular shape, the motor fits well enough in the standard grid. In
Figure 3.2, you see that its lower part can be locked between two beams at a dis-
tance of four holes. It is very important that you build your motors inside a solid
structure, otherwise they will become loose when you apply a load. You can also
see in the figure that the shaft of the motor is two holes from the bottom beam,
which is perfect for some of the gearing combinations discussed in the previous
chapter: 8t to 24t, or 16t to 16t, to name a few.

In our second example (displayed in Figure 3.3), we show another very solid
assembly. This time we extended the output axle of the motor in order to mount a
worm gear on it so it can mesh with a 24t. While the previous case was suitable to
drive wheels from the 24t axle, this would fit a slow speed/high torque application.
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Figure 3.2 Locking a Motor between Beams
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The pictures here are mainly meant to highlight relations and distances.
So, in order to let you see inside, we didn’t lock the motor on both sides.
In actual applications, you will complete the assembly and adjust the
beams to the proper length for your needs.

Your MINDSTORMS kit contains eight 1 x 2 plates with rails which are
specifically designed as brackets for the motors (Figure 3.4). They permit compact
and solid attachments like the one in Figure 3.5. But even more importantly, they
give you the ability to remove motors without dismantling your robot. In the
example in Figure 3.5, if you remove the two 2 x 6 plates behind the motor, you
can easily slip it off without altering the rest of the assembly. This is a very desir-
able property, allowing you to recycle your motors in other projects without
being forced to take your robot apart.You will likely end up having more LEGO
parts than those contained in your MINDSTORMS kit, so it’s possible you’ll
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have more than a single assembled robot at one time. Motors are among the most

expensive LEGO components. Reusing them in different projects will help keep
the cost of your hobby at a reasonable level!

Figure 3.4 1 x 2 Plates with Rails Provide a Convenient Mounting Solution
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We suggest that, when mounting motors, you keep the wire free to be
removed. Don’t block it together with the motor, unless you're sure your
- design won’t change and you won’t need a wire of different length.

-

Figure 3.6 illustrates our last example. You can see how two pulleys and a belt
may solve the problem of transferring power to a distant axle through a narrow
space. In this particular example, the motor does not need to be locked with a
vertical beam because the torque on its shaft won’t ever reach high values (belt
slippage prevents this from happening). At the same time, the belt works like a
rubber band, too, keeping the motor from coming off its foundation.

Figure 3.6 Belts Don’t Require Very Solid Mountings

Wiring Motors

The LEGO wiring system 1s so easy to use you won't require any training. The
cables end with 2 x 2 x 2/3 connectors that attach as easily as standard bricks and
don’t need any special knowledge to be used.

As we already explained, LEGO motors are DC motors, therefore they are
sensitive to the polarity you connect them with, meaning it determines whether
the motor turns clockwise or counterclockwise. Usually, you don’t have to worry
about this, since you can control this property from your program. However, the
design of the LEGO connectors is very clever and not only prevents you from

49
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involuntarily short-circuiting the motor or the battery, but they also allow you to

reverse the polarity by simply turning them 180 degrees.

How can you test your motors without adjusting programming? There are

many different ways, as in the following:

RCX console Press the View button until you select the port your
motor is wired to. When the cursor (a small arrow) points to the proper
port, don’t release the button. Keeping the View button pressed, you can
press Prgm or Run to power the motor in the desired direction.

Software Browsing the Internet you can find and download many
good freeware programs that allow full direct control of your RCX via
your PC.They make running a motor as easy as a click of the mouse
(see Appendix A for links and resources).

External battery box Some LEGO TECHNIC sets include a battery
box (Figure 3.7). If you want an extra motor and buy an 8735 TECHNIC

Motor set, you'll get one. With this box you can test your motor with no
need of the RCX.

Figure 3.7 The LEGO Battery Box
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Remote control This useful tool is not included in the MIND-
STORMS kit, you have to buy it separately (Figure 3.8). It’s currently
sold inside the Ultimate Accessory Set that also contains additional parts.
If you can afford it, it’s a good buy.You can control all three output ports
at the same time, which is very useful when testing your robot during
the building phase.

Other sources All the components of the LEGO 9V electric system are
compatible with each other. If you have a LEGO train speed regulator, or
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a Control Center unit, you can safely use them to run your motors. Don’t
use non-LEGO electricity sources. They might harm your motors.

Figure 3.8 The LEGO MINDSTORMS Kit Remote Control

In some cases, you want to control more than a single motor from the same
RCX output port. Is this safe for your RCX and your motors? Yes, and with no
risk of damaging either item. The only thing to point out is that the RCX has a
current-limiting device behind each port that prevents your motor from drawing
too much current to avoid any possible damage during stall situations. When you
connect two or more motors to the same port, they must share the maximum
available current, thus limiting the work they can perform. Nevertheless, there are
situations where splitting the load on two or more motors is the preferable option.

There is another possible approach that bypasses the current-limiting circuit:
indirect control. Instead of supplying the motors from your RCX port, you control a
motor that activates a switch that turns on the other motors. This sounds compli-
cated, but it isn’t. You just need some extra parts: a polarity switch and a battery
box. In Figure 3.9, you see a system devised to drive the LEGO polarity switch
with a motor and two pulleys. The belt coupling makes the system less critical
about timing. If you accidentally power the controlling motor for longer than
what’s needed to activate the switch, the belt slips and your motor doesn’t stall.

The polarity switch is actually a three-state switch: forward, off, and reverse. At
one side, it switches the motors on, in the center it switches them off, while on
the other side it switches them on again but with reversed polarity. Our simple
assembly can control only two states (don’t rely on timing to position the polarity
switch precisely in the center!), so you have to choose whether you want an
on/oft system or a forward/reverse one.

As the battery box does not feature any current limiting device, your motors
can draw as much current as they need out of the batteries. Remember that with
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this wiring the controlled motors are not protected against overloads, thus stall
situations might permanently damage them.

Figure 3.9 Indirect Motor Control

Controlling Power

You know that your program can control the power of your motors. In fact, a
specific instruction will set the power level in the range 0 to 7 (some alternative
firmware, like legOS, provide higher granularity, e.g., 0 to 255). But what happens
when you change this number? And why do we care?

There are different ways to control the power of an electric motor. The
LEGO train speed regulator controls power through voltage: the higher the
voltage, the higher the power. The RCX uses a difterent approach, called pulse
width modulation (PWM).

To explain how this works, imagine that you continuously and rapidly switch
your motor on and off. The power your motor produces in any given interval
depends on how long it’s been on in that period. Applying current for a short
period of time (a low duty cycle) will do less work than applying it for a longer
time. If you could switch it on and oft hundreds of times a second, you would see
the motor turning in an apparently normal way; but under load you would notice
a decrease 1in its speed, due to a decrease in the supplied power (Figure 3.10).

This is exactly what the RCX does. Its internal motor controller can switch
the power on and oft very quickly (an on/oft cycle every 8 milliseconds), at the
same time varying the proportion between the on period and the off period. At
power level 0, the motor is on for 1/8 of the cycle; at power level 1, for 2/8 of it;
and so on until you reach level 7, when the motor is always on (8/8).
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Figure 3.10 Pulse Width Modulation Power Levels
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Why do we care about this technical stuff? Because this explains you aren’t
actually controlling speed, but power. LEGO motors are very efficient, and when
the motor has no load or a very small one, lowering the power level won’t
decrease its speed very much. Under more load, you will see how the power level
affects the resulting speed, too.

Braking the Motor

Controlling the power means also being able to brake your motor when neces-
sary. For this purpose, the RCX features a sort of electric brake. Once again, let
us explain how it works through an experiment.

You need a motor, a cable (any length), and a 24t gear. Assemble the three as
shown in Figure 3.11, paying attention to the way the cable is looped: the ends of
the wire go on opposite sides. Now try and turn the 24t with your fingers: it
turns smoothly, and continues to spin for a while after you’ve stopped turning it.

Then remove the cable and reconnect it as shown in Figure 3.12: the ends of
the wire go into the same side—this way the motor is short-circuited. We know
that a short circuit sounds like a bad thing, but in this particular case we mean only
that the circuit is closed. Don’t worry, your motor is not at any risk. Now try and
turn the 24t again. You see? The motor offers a lot of resistance, and as soon as
you stop turning, it stops, too.

What happened? A LEGO motor is not only able to transform electricity
into motion, it does the opposite, too: It can be used to generate electricity. In our
experiment the generated current short-circuits back into the motor, producing
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the force that resists the motion. This is the simple but eftective system the RCX
implements to brake the motor: When you set them to off, the RCX not only
switches the power off, it also short-circuits the port, making the motor brake.

Figure 3.11 In This Setup, the Motor Shaft Turns Smoothly

Figure 3.12 An Electric Brake

There’s another condition, called float mode, where the RCX simply discon-
nects the motor without creating any brake effect. In this case, the motor will
continue to turn for a few seconds after the power has been removed.
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Bricks & Chips...

Using Motors as Generators

If you are not convinced that a motor works as a generator, too, perform
this simple experiment. Connect one motor to another with a wire. Place
a 24t on each shaft. Take one motor in your hands and turn the 24t
while looking at the second motor. What happens? The first motor con-
verts the mechanical energy coming from your fingers into electric cur-
rent, which makes the second motor turn.

Coupling Motors

We previously discussed the case in which you want to wire two motors to the
same port. If you do this to get more power for a task, you will very likely need
to mechanically couple the motors as well, meaning that they will work together
to operate the same mechanism, sharing its load. It’s like when you have to move
something really heavy and call a friend to help you: each member of the party
bears only half the total weight. Though this rule works for all electric motors in
general, a specific limitation applies when attaching LEGO motors to the RCX:
Its current-limiting device won't allow the motors to draw as much current as
they want. Consider it a constraint to the maximum power each port can pay out.

In Figure 3.13, you see two motors acting upon the same 40t gear wheel.
People often wonder whether connections like these are going to cause any
problem to the motors. The answer is simply no. Unless you keep your motor
stalled for more than a brief moment, they are not easy to damage. In applications
like the one in Figure 3.13, you just have to be sure the motors don’t oppose
each other. With this in mind, we suggest you double-check both the connection
and turning directions before actually coupling the motors to the same gear.

It is true that no two motors turn exactly at the same speed, or output the
same torque either, but this doesn’t cause any conflict. A motor doesn’t know that
there’s another motor cooperating on the same task, it simply reacts to the load
absorbing more current and trying to keep the speed. This works even if the
motors are of different types, even if they are powered at different levels, and even
if they are geared with different ratios.

If you’re not convinced of this, think of a simple vehicle propelled by a single
motor. When the path becomes steeper, the load on the motor increases, causing
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it to reduce its speed. Essentially, the motor adapts itself to the load. The same
happens when two motors work together, they share the load and mutually adapt
themselves.

Figure 3.13 Two Mechanically Coupled Motors

Have you ever tried riding a tandem bicycle? Your partner might be much
weaker than you, but you would prefer him to pedal rather than simply ride
along watching the landscape.

Summary

LEGO electric motors are easy and safe to use, but they require a bit of experi-
ence to get the most from them and avoid any possible damage. On this latter
topic, the most important thing is to never let them stall for more than a few sec-
onds and to never keep them powered when they’ve stalled. You already know
from Chapter 2 that the clutch gear is a good ally in this venture, and you’ve now
learned that the RCX has further protections that limit the maximum current
and thus the risk that your motor will burn out.

You've seen that wiring LEGO motors 1s very simple: The special connectors
prevent short circuits and allow easy control of polarity, which affects the direc-
tion in which a motor turns. The different mounting options require a bit of
practice, the same as for gears. Don’t forget to brace motors with vertical beams
the way you were taught in Chapter 1: They produce enough torque to pull
themselves apart if not solidly locked!

On the topic of coupling motors, this option 1s useful when you want to split a
load over two or more of them to reduce their individual effort. The only impor-
tant thing to remember is that you must control them from the same port, so as to
avoid any dangerous conflict situation where one motor opposes to the other.

As a general tip, we suggest you make intense use of prototyping—don’t wait
to finish your robot to discover a motor is in the wrong place or has not been
geared properly—test your mechanisms while you are building them.
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Introduction

Motors, through gears and pulleys, provide motion to your robot; they are the
muscles that move its legs and arms. The time has come to equip your creature
with sensors, which will act as its eyes, ears, and fingers.

The MINDSTORMS box contains two types of sensors: the touch sensor (two
of them) and the light sensor. In this chapter, we’ll describe their peculiarities, and
those of the optional sensors that you can buy separately: the rotation sensor and
the temperature sensor. All these devices have been designed for a specific purpose,
but you’ll be surprised at their versatility and the wide range of situations they
can manage. We will also cover the cases where one type of sensor can emulate
another, which will help you replace those that aren’t available. Using a little trick
that takes advantage of the infrared (IR) light on the RCX, you will also discover
how to turn your light sensor into a sort of radar.

We invite you to keep your MINDSTORMS set by your side while reading
the chapter, so you can play with the real thing and replicate our experiments.
For the sake of completeness, we’ll describe some parts that come from MIND-
STORMS expansion sets or TECHNIC sets. Don’t worry if you don’t have them
now; this won’t compromise your chances to build great robots.

Touch Sensor

The fouch sensor (Figure 4.1) is probably the simplest and most intuitive member
of the LEGO sensor family. It works more or less like the push button portion of
your doorbell: when you press it, a circuit 1s completed and electricity flows
through it. The RCX is able to detect this flow, and your program can read the
state of the touch sensor, on or off.

Figure 4.1 The Touch Sensor

If you have already played with your RIS, read the Constructopedia, and built
some of the models, youre probably familiar with the sensors’ most common
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application, as bumpers. Bumpers are a simple way of interacting with the environ-
ment; they allow your robot to detect obstacles when it hits them, and to change
its behavior accordingly.

A bumper typically is a lightweight mobile structure that actually hits the
obstacles and transmits this impact to a touch sensor, closing it. You can invent
many types of bumpers, but their structure should reflect both the shape of your
robot as well as the shape of the obstacles it will meet in its environment. A very
simple bumper, like the one in Figure 4.2, could be perfectly okay for detecting
walls, but might not work as expected in a room with complex obstacles, like
chairs. In such cases, we suggest you proceed by experimenting. Design a tentative
bumper for your robot and move it around your room at the proper height from
the floor, checking to see if it’s able to detect all the possible collisions. If your
bumper has a large structure, don’t take it for granted that it will impact the
obstacle in its optimal position to press the sensor. Our example in Figure 4.2 is
actually a bad bumper, because when contact occurs, it hardly closes the touch
sensors at the very end of the traverse axle. It’s also a bad bumper because it trans-
mits the entire force of the collision straight to the switch, meaning an extremely
solid bracing would be necessary to keep the sensor mounted on the robot.

Figure 4.2 A Simple Bumper

Be empirical, try different possible collisions to see if your bumper works
properly in any situation.You can write a very short program that loops forever,
producing a beep when the sensor closes, and use it to test your bumper.

When talking of bumpers, people tend to think they should press the switch
when an obstacle gets hit. But this is not necessarily true. They could also release
the switch during a collision. Look at Figure 4.3, the rubber bands keep the
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bumper gently pressed against the sensor; when the front part of the bumper
touches something, the switch gets released.

Figure 4.3 A Normally Closed Bumper

Actually, there are some important reasons to prefer this kind of bumper:

®m  The impact force doesn’t transfer to the sensors itself. Sensors are a bit
more delicate than standard LEGO bricks and you should avoid
shocking them unnecessarily.

®m  The rubber bands absorbing the force of the impact preserve not only
your sensor but the whole body of your robot. This is especially impor-
tant when your robot is very fast, very heavy, very slow in reacting, or
possesses a combination of these factors.

Bumpers are a very important topic, but touch sensors have an incredible
range of other applications. You can use them like buttons to be pushed manually
when you want to inform your RCX of a particular event. Can you think of a
possible case? Actually, there are many. For example, you could push a button to
order your RCX to “read the value of the light sensor now,” and thus calibrate
readings (we will discuss this topic later). Or you could use two buttons to give
teedback to a learning robot about its behavior, good or bad. The list could be long.

Another very common task you’ll demand from your switch sensors is position
control.You see an example of this in Figure 4.4. The rotating head of our robot
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(Figure 4.4a) mounts a switch sensor that closes when the head looks straight
ahead (Figure 4.4b).Your software can rely on timing to rotate the head at some
level (right or left), but it can always drive back the head precisely in the center
simply waiting for the sensor to close. By the way, the cam piece we used in this
example is really useful when working with touch sensors, as its three half-spaced
crossed holes allow you to set the proper distance to close the sensor.

Figure 4.4 Position Control with a Touch Sensor

b

There would be many other possible applications in regards to position control.
We’ll meet some of them in the third part of this book. What matters here is to
invite you to explore many different approaches before actually building your
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robot. Let’s create another example to clarify what we mean. Suppose youre going
to build an elevator. You obviously want your elevator to stop at any floor. Your first
idea 1s to put a switch at every level, so when one of them closes you know that
the cab has reached that level. Okay, nice approach. There’s one small problem;
however, you have just two touch sensors, and an elevator with only two floors
doesn’t seem like such an interesting project to you.You could buy a third sensor,
but this simply pushes your problem one floor up, without solving the general case.
Meanwhile, the three input ports of your RCX are all engaged. Suddenly, an idea
occurs to you: Why not put the sensor on the booth instead of on the structure?
With a single sensor on the booth, and pegs that close it at any floor, you can pro-
vide your elevator with as many floors as you like. You see, by reversing our original
approach you found a much better solution. Are the two systems absolutely equiva-
lent? No, they aren’t. In the first, you could determine the absolute position of the
booth, while in the second you are able to know only its relative position. That is,
you do need a known starting point, so you can deduce the position of the cab
counting the floors from there. Either require that the cab must be at a specific
level when the program starts, or use a second sensor to detect a specific floor. For
example, place a sensor at the ground level, so the very first thing your program has
to do when started is to lower the elevator until it detects the ground level. From
then on, it can rely on the cab sensor to detect its position.

Now your elevator is able to properly navigate up and down.You have one
last problem to solve: How do you inform your elevator which floor it should go
to? Placing a touch sensor at every floor to call the elevator there is impractical.
You have only one input port left on your RCX. What could you do with a
single sensor? Can you apply the previous approach here, too?

Yes.You can count the pushes on a single touch sensor. For example, three clicks
means third floor, and so on. Now you are ready to actually build your elevator!

Bricks & Chips...

Counting Clicks

The following examples are written using a pseudo-code—that is, a code
that does not correspond to any real programming language, but rather
lies between a programming language and natural language. Using
pseudo-code is a common practice among professional programmers;

Continued
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you are “playing computer” and quickly stepping through an operation
in your head to plan and understand what your program will do.

Counting how many times a touch sensor is pressed requires some
tricks. Suppose you write some simple code, like this:

Counter = 0
repeat
if Sensorl is on then
Counter = Counter+l
end if
end repeat
Your code executes so fast on your RCX that during the short
instant you keep the touch sensor pressed, it counts too many clicks.

Thus, you need to have it wait for the button to be released before
counting a new click:

Counter = 0
repeat
if Sensorl is on then
Counter = Counter+l
wait until Sensorl is off
end if
end repeat
Now, your code counts properly the transitions from off to on.
There's one last feature you must introduce in your code: You want the
counting procedure to end when it doesn’t receive a click for a while. To

do this, you employ a timer that measures the elapsed time from the last
click:

Counter = 0
Interval = <a proper value>
reset Timer
repeat
if Sensorl is on then
Counter = Counter+l

wait until Sensorl is off

Continued
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or until Timer is greater then Interval
reset Timer
end if

until Timer is greater then Interval

Let's say your interval is two seconds. When the counting proce-
dure begins, it resets the timer and the counter to 0 then starts checking
the sensor. If nothing happens in two seconds, it exits the repeat group.
If a click occurs, it counts it, waits for the user to release the button, and
resets the timer so the user has again two seconds for another click
before the procedure ends.

Light Sensor

Saying that the light sensor (Figure 4.5) “sees” is definitely too strong a statement.
What it actually does is detect light and measure its intensity. But in spite of its
limitations, you can use it for a broad range of applications.

Figure 4.5 The Light Sensor

The most important difference between the touch sensor and the light sensor,
is that the latter returns many possible values instead of a simple on/oft state.
These values depend on the intensity of the light that hits the sensor at the time
you read its value, and they are returned in the form of percentages ranging from
0 to 100. The more light, the higher the percentage. What can you do with such
a device? A possible application is to build a light-driven robot, a light follower as
it’s called, that looks around to find a strong (or the strongest) light source and
directs itself toward it. Provided that the room is dark enough not to produce
interference, you could then control your robot using a flashlight.
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This ability to trace an external light source is interesting, but probably not
the most amazing thing you can do with this sensor. We introduce here another
teature of this device: not only does it detect light, but it emits some light as well.
There is a small red LED that provides a constant source of light, thus allowing
you to measure the reflected light that comes back to the sensor.

When you want to measure reflected light, you must be careful to avoid any
possible interference from other sources. Remember that this sensor is very sensi-
tive to IR light, too, like the one typically emitted by remote controls, video
cameras, or the LEGO IR tower.

Designing & Planning...

Reading Ambient Light

The LEGO light sensor is actually not a great device to measure external
sources, as its sensitivity is too low. The emitting red LED is so close to
the detector that it strongly influences the readings. If your target is an
external source, you might consider trying to reduce the effect of the
emitting LED. A simple solution is to place a 1 x 2 one-hole brick just in
front of the light sensor. Much more effective solutions require that you
slightly modify your sensor. On his Web site, Ralph Hempel shows how
to make modifications that neither permanently alter nor damage your
sensor (see Appendix A).

The amount of light reflected by a surface depends on many factors, mainly
its color, texture, and its distance from the source. A black object reflects less light
than a white one, while a black matte surface reflects less light than a black shiny
surface. Plus, the greater the distance of the objects from the sensor, the less light
returns to the detector.

These factors are interdependent, meaning that with a simple reading from
your light sensor, you cannot tell anything about them. But if you keep all the
factors constant except one, you are now able to deduce many things from the
readings. For example, if your light sensor always faces the same object, or objects
with the same texture and color, you can use it to measure its relative distance. On
the other hand, you can place different objects in front of the sensor, at a constant
distance, to recognize their color (or, more accurately, their reflection).
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Measuring Reflected Light

To illustrate the concept of measuring reflected light, let’s prepare an experiment.
Take your RCX, turn it on, attach a light sensor to any input port, and configure
the port properly using the Test Panel of your MINDSTORMS box (the red
LED should illuminate). Prepare the environment. You need a dark room, not
necessarily completely dark but there should be as little light as possible. The
RCX has a console mode that allows you to view the value of a sensor in real
time. Press the View button on your RCX until a short arrow in the display
points to the port the sensor is attached to. The main section of the display shows
the value your sensor is reading. Now you can proceed. Put the light sensor on
the table. Take some LEGO bricks of different colors and place them one by one
at short distances from the sensor (about 0.5 in., or 1 to 1.5 cm). Keep all of
them separated from each other at the same distance, and look at the readings.
You will notice how difterent colors reflect a difterent amount of light (you
might want to write down the values on a sheet).

For the second part of the experiment, take the white brick and move it
slowly toward the sensor and then away from it, always looking at the values in
the display. You see how the values decrease when you increase the distance. You
can find a distance where the white brick reads the same value you have read for
the black one at a shorter distance. This is what we meant to prove:You cannot
tell the distance and the color at the same time, but if you know that one of the
properties doesn’t change, you can calculate the other. We stress again that in both
cases you must do your best to shield your system from ambient light.

Bricks & Chips...

Understanding Raw Values

Understanding raw values is an advanced topic, and not strictly neces-
sary to successfully using the MINDSTORMS system. That said, it does
help to understand how to work with sensors.

The RCX converts the electrical signals coming from sensors (of any
type) into whole numbers in the range of 0 to 1023, called raw values.
When, in your program, you configure a port to host a specific kind of
sensor, the RCX automatically scales raw values to a different range,

Continued
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suitable for that particular kind of sensor. For example, readings from
touch sensors become a simple 1 or 0 digit, meaning on or off, while
readings from a temperature sensor convert into Celsius or Fahrenheit
degrees. Similarly, light sensor readings are converted into percentages
through use of the following equation:

Percentage = 146 - raw value / 7

Why should you need to know about this conversion? Well, for
most applications the percentage light value returned by the RCX works
well, but there are situations where you need all the possible resolution
your sensor can provide, and this conversion into percentages masks
some of the resolution your light sensor is capable of. Let’s explain this
with an example. Suppose that, in two different conditions, your light
sensor returns raw values of 707 and 713. Convert these numbers into
percentages, considering that RCX uses whole numbers only, and thus
rounds the result of a division to the previous integer:

146 - (707 /7) = 146 - 101 = 45
146 - (713 /7) = 146 - 101 = 45

The 101 in the second equation should have been 101.857..., but
it's been truncated to 101, and you lost the difference between the two
readings. We agree that in most situations this granularity of readings is
not very important, but there are others where even such a small interval
matters.

If you program your RCX using RCX Code, the graphic LEGO envi-
ronment, you must accept the scaled values, because you have no way
to access raw values. But if you use alternative programming tools you
can choose to receive the unprocessed raw values directly, taking advan-
tage, when necessary, of their finer resolution.

Reading colors is a very common application for light sensors. We already

explained that the sensor doesn’t actually read colors, rather it reads the reflected
light. For this reason, it’s hard to tell a black brick from a blue one. But, for now,
let’s continue to use the expression reading colors, now that you know what’s really

behind the reading.

Line Following

Probably the most widespread usage of the light sensor is to make the robot read

lines or marks on the floor where it moves. This is a way to provide artificial
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landmarks your robot can rely on to navigate its environment. The simplest case
is line following. The setup for this project is very simple, which is one of the rea-
sons it’s so popular. Despite its apparent simplicity, this task deserves a lot of
attention and requires careful design and programming. We will discuss this topic
in greater detail in Part II; for now, though, we want to bring your attention to
what happens when the light sensor “reads” a black line on a light floor.

When the sensor is on the floor, it returns, let’s say, 70 percent, while on the
black line, it returns 30 percent. If you move it slowly from the floor to the line
or vice versa, you notice that the readings don’t leap all of a sudden from one to
the other, they go through a series of intermediate values. This happens because
the sensor doesn’t read a single point, but a small area in front of it. So when the
sensor is exactly over the borderline, it reads half the floor and half the black
strip, returning an intermediate result.

Is this feature useful? Well, sometimes it is, sometimes it’s not. When dealing
with line following in particular, it is very useful. In fact, you can (and should)
program your robot to follow the “gray” area along the borderline rather than the
actual black line. This way when the robot needs to correct its course, it knows
which direction to turn: If it reads too “dark,” it should turn toward the “light”
region, and vice versa.

Designing & Planning...

Calibrating Readings

Sometimes you can’t know in advance what actual values your sensor is
going to read. Suppose you're going to attend a line following contest:
You cannot be sure of the values your sensor will return for the floor and
the black line. In this case, and as a good general practice, it is better
not to write the expected values as constants in your program, but allow
your robot to read them by itself through a simple calibration proce-
dure. Staying with the line following example, you can dedicate a free
input port to a touch sensor to be manually pressed when you put your
robot on the floor and then on the black line, so it can store the max-
imum and minimum readings. Or you can program the robot to perform
a short exploration tour to uncover those limits itself.
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When you need to navigate a more complex area, one, for example, that
includes regions of three different colors, things get more difficult. Imagine a pad
divided into three fields: white, black, and gray. How can you tell the gray area
from the borderline between the white and the black? You can’t, not from a
single reading, anyway. You must take into consideration other factors, like pre-
vious readings, or you can make your robot turn in place to make it gather more
information and understand where it is. To handle a situation like this, your soft-
ware is required to become much more sophisticated.

The light sensor 1s such a versatile device that you can imagine many other
ways to employ it. You can build a form of proportional control by placing a
multicolor movable block of LEGO parts in front of it. Figure 4.6 shows an
example of this kind. When you push or pull the upper side of the beam, the
sensor reads different light intensities.

Figure 4.6 An Analogue Control with a Light Sensor

Combining the light sensor with a lamp brick (not included in the MIND-
STORMS kit) you get a photoelectric cell (Figure 4.7); your robot can detect
when something interrupts the beam from the lamp to the sensor. Notice that
we placed a 1 x 2 one-hole beam in front of the light sensor to reduce the pos-
sible interference from ambient light.

Figure 4.7 A Photoelectric Cell
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Proximity Detection

You can also use the light sensor as a sort of radar to detect obstacles before your
robot hits them. This is called proximity detection. The technique is based on a
property we have already discussed and explored: that the light sensor can be used
to measure relative distances based on reflected light. Suppose your robot is going
straight, with a light sensor pointing ahead of it. Suppose also that your robot
moves in a dark room, with no other sources of light except the emitting red
LED of the sensor. While moving forward, the robot continuously reads the
sensor. If the readings tend to increase rapidly, you can deduce that the robot is
going toward something. There’s nothing you can tell about the nature of the
obstacle and its distance, but if nothing else moves inside the room, you are sure
the robot is getting closer to the obstacle. Great! We now have a system to avoid
obstacles instead of being limited to detecting them through collisions.

-

NoTE

The red LED in the sensor emits visible light, while the IR LED in the RCX
emits invisible light!

Unfortunately, this technique doesn’t work very well in a room with any
source of light, because your program cannot tell the difference between its red
light reflected back, or any other change in the ambient light. You would need a
stronger independent source on the robot to provide a better reference.
Thankfully, you just happen to have one! The RCX has an IR LED to send mes-
sages to the tower or to another RCX. Sending a message uses the IR LED in
the RCX to encode the bits in a format that can be received by the tower. We
don’t care about the contents of the message; we just want the light. Infrared
light, though not visible to the human eye, is of the very same nature as visible
light, and the LEGO light sensor happens to be very sensitive to it.

So you now have all the elements to use proximity detection in your pro-
grams. Send an IR message and immediately read the light sensor. You had better
average some readings to minimize the effect of external sources (we’ll discuss
this trick in Chapter 12). If you notice a significant increase between two subse-
quent groups of readings, for example, ten percent, your robot is very likely
headed towards an obstacle.
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Rotation Sensor

The third LEGO sensor we’ll examine is the rotation sensor (Figure 4.8). It’s a pity
this piece of hardware is not included in the MINDSTORMS kit, its versatility
being second only to the light sensor. However, there is one included in the 3801
Ultimate Accessory Set, together with a touch sensor, a lamp brick, the remote
control, and a few other additional parts.

Figure 4.8 The Rotation Sensor

Bricks & Chips...

How the Rotation Sensor Works

The rotation sensor returns four possible values that correspond to four
states, let’s call them A, B, C, and D. For every complete turn, it passes
through the four states four times—that’s why we get 16 counts per
turn. Turning the sensor clockwise, it will read the sequence ABCDA...,
while turning it counterclockwise will result in the sequence ADCBA....
The RCX polls the sensor frequently, and when it detects that the state
has changed, it can not only deduce that the sensor has turned, but also
tell in which direction it has turned. For example, transitions from A to
B, or from D to A, increment the counter by one unit, whereas transi-
tions from D to C, or from A to D, decrement it by one unit.

The rotation sensor, as its name suggests, detects rotations. Its body has a hole
that easily fits a LEGO axle. When connected to the RCX, this sensor counts a
unit for every sixteenth of a turn the axle makes. Turning in one direction, the
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count increases, while turning in the other, the count decreases. This count is rela-
tive to the starting position of the sensor. When you initialize the sensor, its count
is set to zero, and you can reset it again in the code, if necessary.

By counting rotations, you can easily measure position and speed. When con-
nected to the wheels of your robot (or to some gearing that moves them), you
can deduce the traveled distance from the number of turns and the circumference
of the wheel. Then you can convert the distance into speed, if you want, dividing
it by the elapsed time. In fact, the basic equation for distance is:

distance = speed x time

from which you get:
speed = distance / time

If you connect the rotation sensor to any axle between the motor and the
wheel, you must remember to apply the proper ratio to the count you read. Let’s
do an example along with the math together. In your robot, the motor is con-
nected to the main wheels with a 1:3 ratio. The rotation sensor is directly con-
nected to the motor, so it shares the same 1:3 ratio with the wheel, meaning that
every three turns of the rotation sensor, the wheels make one turn. Every rotation
of the sensor counts 16 units, so 16 x 3 = 48 increments, which correspond to a
single turn of the wheel. Now, to calculate the traveled distance we need to know
the circumference of the wheel. Luckily, most of the LEGO wheels have their
diameter marked on the tire. We had chosen the largest spoked wheel, which is
81.6cm in diameter (LEGO uses the metric system), thus its circumference is
81.6 x T = 81.6 x 3.14 = 256.22cm. At this point, you have all the elements: the
distance traveled by the wheel results from the increment in the rotation counter
divided by 48 and then multiplied by 256. Let’s summarize the steps. Calling R
the resolution of the rotation sensor (the counts per turn) and G, the gear ratio
between it and the wheel, we define I as the increment in the rotation count that
corresponds to a turn of the wheel:

l=GxR

In our example G is 3, while R is always 16 for LEGO rotation sensors. Thus,
we get:
l=3x16 =48

On each turn, the wheel covers a distance equal to its circumference, C.You
can obtain this from its diameter D by using the formula:
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C=Dxm
Which, in our case, means (with some rounding):

C=281.6x3.14 = 256.22

The final step is about converting the reading of the sensor, S, into the traveled
distance, T, with the equation:

T=SxC/I

If your sensor reads, for example, 296, you can calculate the corresponding
distance:

T =296 x 256.22 /48 = 1580

The distance, T, results with the same unit you use to express the diameter of
the wheel.

Actually doing this math in your program, even it is nothing more than a
division and a multiplication, requires some care (something we will discuss later
in Chapter 12).

Controlling your wheels with rotation sensors provides a difterent way to
detect obstacles, a sort of indirect detection. The principle is quite simple: If the
motors are on, but the wheels don’t rotate, it means your robot got blocked by an
obstacle. This technique is very simple to implement, and very effective; the only
requirement being that the driving wheels don’t slip on the floor (or don’t slip
too much), otherwise you cannot detect the obstacle.You can avoid this possible
problem by connecting the sensor to an idle wheel, one not powered by a motor
but instead dragged by the motion across the floor: If it stops while you're pow-
ering the driving wheels, you know your motor has stalled.

There are many other situations where the rotation sensor can prove its value,
mainly by way of controlling the position of an arm, head, or other movable
parts. Unfortunately, the RCX has some problems in detecting precisely any
count when the speed is too low or too high. Actually, this is not the fault of the
RCX itself, but its firmware, which misses some counts if the speed is outside a
specific range. Steve Baker proved through an experiment that 50 to 300 rpm is a
safe range, with no counts missed between those values. However, in ranges under
12 rpm or over 1400 rpm, the firmware will surely miss some counts. The areas
between 12 rpm and 50 rpm, and between 300 rpm and 1400 rpm, are in a gray
area where your RCX might miss some counts.

This is a small problem, if you consider that you can often gear your sensor
up or down to put it in the proper range.
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Temperature Sensor

This is the last sensor of the LEGO MINDSTORMS line. It’s an optional sensor,
not supplied with the MINDSTORMS kit, but it’s easy to get through the LEGO
online shop or through their Shop-At-Home service. Let’s just say that it’s a sensor
you can definitely live without, even though it can support some funny projects,
like a robot that warns you if your drink is getting too warm or too cold.

There are no movable parts, just a small aluminum cylinder that protrudes
from the body of the sensor (Figure 4.9). Depending on how you configure it in
your code, you can get the temperature values returned in Celsius or Fahrenheit
degrees. It can detect temperatures in the range -20°C to 70°C (-4°F to 158°F),
but is very slow in changing from one value to the next, so it’s not the best
device to use if you're looking to detect sudden changes in the temperature.

Figure 4.9 The Temperature Sensor

=

"NotEe

LEGO sensors come in two families: active and passive sensors. Passive
simply means they don’t require any electric supply to work. The touch
and temperature sensors belong to the passive class, while the light and
rotation sensors are members of the active class.

In case you're wondering how active sensors can be powered
through the same wire on which the output returns to the RCX, the
answer is that a control circuit cycles between supplying power (for
about 3 ms) and reading the value (about 0.1 ms).
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The equation used to convert raw values from this sensor into temperatures
(in C°) 1s the following:

C° = (785 —raw value) / 8

Celsius degrees translates into Fahrenheit according to the formula:

FF=Cx9/5+ 32

Sensor Tips and Tricks

Sooner or later you will probably find yourself without the proper sensor for a
particular project. For instance, you need three touch sensors, but have only two.
Or you need a rotation sensor, but don’t have any at all. Is there anything you can
do? There’s no way to turn any sensor into a light sensor or a temperature sensor,
but touch and rotation sensors are at some level replaceable.

Another problem we do battle with every time we build with the RCX is
the limited number of ports. Later in the book we’ll explore some non-LEGO
solutions to this problem, but for now we’ll talk about some simple cases where
you can connect two or more sensors to the same input port.

In the following sections, you’ll find some common and well-tested tips that
can help.

Emulating a Touch Sensor

Turning a light sensor into a touch sensor is an easy task; you already know the
solution. Basically, you build something similar to what we showed in Figure 4.6.
In its default state, the sensor has a LEGO brick just in front of it. The pressure
on a lever (or beam, axle, plate, and so on) moves a brick of a difterent color in
front of the light sensor, where your software detects the change. Use a belt to
keep your assembly in its default position. Try and protect the light sensor as
much as possible from external interferences.

Emulating a touch sensor with a rotation sensor is also doable by building a
small actuator that rotates the sensor at least a sixteenth of a turn when touched.
One of the many possible approaches is shown in Figure 4.10.

Emulating a Rotation Sensor

There’s a long list of possible alternatives to the rotation sensor. All the suggested
methods are based upon counting single impulses generated by a rotating part.
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They all work well, but usually they don’t detect the direction of rotation. In
many cases this is not a problem, because when coupled with a motor you know
which direction your sensor is moving.

Figure 4.10 Emulating a Touch Sensor with a Rotation Sensor

The assembly pictured in Figure 4.11 shows an axle with a cam that closes a
touch sensor. This is the principle, use either a cam or any other suitable part
that, while rotating, periodically pushes the touch sensor. Counting only a single
tick per turn, this sensor has a very low resolution.You can increase it by making
the sensor close more than once per turn, or simply by gearing the sensor up a
bit until you get the required accuracy.

Figure 4.11 Emulating a Rotation Sensor with a Touch Sensor

Making a rotation sensor out of a light sensor is not very different: build
some kind of rotating disk with sectors of different color, and count the transi-
tions from one color to the other (Figure 4.12). The general tip for the light
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sensor applies to this case, too: Try and insulate the light sensor from external
light sources as much as possible.

Figure 4.12 Emulating a Rotation Sensor with a Light Sensor

There are two LEGO electric devices that, though not being actual sensors,
can be successfully employed to emulate a rotation sensor. None of them is
included in the MINDSTORMS kit, but they’re not hard to find.

The first is the polarity switch we introduced in Chapter 3. Connect it as
shown in Figure 4.13, and configure it as a touch sensor. With every turn, it
closes the circuit twice.

Figure 4.13 Emulating a Rotation Sensor with a Polarity Switch
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\WARNING

When using a polarity switch to emulate a rotation sensor, due to higher
friction, the polarity switch cannot rotate as freely as a true rotation
sensor.

The second is the Fiber-Optic System (FOS) device (Figure 4.14). Designed
to be mainly a decorative item, this unit, when powered, emits a red light, and by
rotating it, you can address the light to one of eight possible small holes. Despite
its original purpose, it works surprisingly well as a rotation sensor. Try and con-
nect it directly to an input port of your RCX and configure it as a light sensor;
rotate it slowly while viewing its values on the display. They swing from about 70
percent down to 2 percent, then back to 70 percent.You can count sixteen tran-
sitions per turn. Thus, the resolution is the same as the original rotation sensor. It
has a very low friction quotient, too, resulting in an ideal substitute.

Figure 4.14 The Fiber Optic System Unit

Connecting Multiple Sensors to the Same Port

In some particular cases, connecting multiple sensors to the same port is doable
and safe for your devices. Touch sensors, for example, are easy to combine
together in an OR configuration, meaning that if any in a group of them gets
pressed, you read an on state. This is very easy to achieve, simply stacking all the
connectors that come from the sensors on the same port.You cannot tell which
one was pressed, but there are indeed situations where you can deduce this infor-
mation from other known facts. For example, say you have a robot with front and
rear bumpers. You can connect them to two switches wired to the same port.
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When a bumper closes, your program knows if the robot was going forward or
backward, thus it can properly interpret the information and behave accordingly.
In another example, perhaps your moving robot has a lift arm that requires a limit
switch to stop at a specific position. If your robot is stationary when it activates
the arm, you can safely use the same port for that limit switch and for a switch
wired to a bumper.

The scheme to combine two sensors in an AND configuration is a bit more
complex. Tom Schumm came up with the solution shown in Figure 4.15. It
works well, provided you connect the wires exactly as shown in the diagram.You
get an on state only when both sensors are pressed at the same time. The scheme
can be extended for an AND configuration using more than two sensors, though
it’s hard to imagine a situation where you might need such a combination.

Figure 4.15 Connecting Two Touch Sensors in an AND Configuration

1'
b
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The other sensors (light, rotation, and temperature), don’t go together well
when used on the same port. If you combine any of them with others of the
same or different kind, you will get unpredictable or useless results. There’s only
one very significant exception to this rule:You can connect a light sensor and a
touch sensor to the same port (when configured for a light sensor). This trick,
suggested by Brian Stormont, works because the light sensor actually never reads
more than about 90 percent, but when the touch sensor gets pressed, the reading
jumps to 100 percent, allowing your code to detect the event. The only drawback
is that you cannot read the light intensity while the touch sensor is closed. But
there are many situations where the touch receives only short impulses, and by
applying this trick, you conserve one of your input ports.

Other Sensors

There are other kinds of sensors in the LEGO universe, but we won'’t discuss
them in great detail because they are either difficult to acquire or not very useful.
The Cybermaster set (code 8482) includes three touch sensors that are very sim-
ilar to the MINDSTORMS variety, but that come in three flavors recognizable
by the different colors of the buttons (see Figure 4.16). Their transparent casing
allows you to see the internal mechanism, which feature internal resistors of dif-
terent values. For this reason, in terms of raw values, they return difterent indi-
vidual readings. This means you can wire them to the same port, and by reading
the resulting raw value, determine which one was pressed.

Figure 4.16 The Cybermaster Touch Sensors

The LEGO DACTA line of products includes other sensors designed to
survey weather conditions (like humidity) or other specific quantities. They are of
no general use, and tend to be very expensive.

Many people have developed their own designs when building custom sen-
sors, and some of them are quite useful if you're open to adding nonoriginal parts
to your system. We’ll return to this topic in Chapter 9.
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If you want to learn more about how LEGO (and non-LEGO) sensors work,
don’t miss the reference material in Appendix A, and be sure to check out
Michael Gasperi’s site as well. He 1s an authority in this field, having discovered
many functional details himself, and so displays them in his Web site along with
useful information collected from other people.

Summary

In this chapter, we’ve introduced you to the world of sensors, four basic types in
particular: touch, light, rotation, and temperature. Their basic behavior is easy to
understand, but here you’ve discovered that if you want to get the very most out
of them, you must study them in greater detail. The touch sensor, for example,
seems to be a simple device, but with some clever work on your part, it can
become an important tool for counting clicks, or can make a good bumper.

You were also introduced to the light sensor, a small piece of incredibly versa-
tile hardware, which can act as a substitute for both the touch and rotation sen-
sors with minimal effort. Together with the IR LED of the RCX, it makes
proximity detection possible, a technique that allows your robot to avoid obstacles
before it physically touches them.

The rotation sensor will be your partner in the most sophisticated project of
this book. Now you know how it works, and also how to replace it in case you
don’t have one.

Only the temperature sensor received very little attention. It’s the Cinderella
of this chapter, basically because it has very limited applications. Nevertheless, it
will have its moment of glory at the end of Part II.
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Introduction

Having discussed motors and sensors, and geometry and gearings, it’s now time to
put all these elements together and start building something more complex. We
stress the fact that robotics should involve your own creativity, so we won'’t give
you any general rule or style guide, simply because there aren’t any. What you’ll
find in this short chapter are some tips meant to make your life easier if you want
to design robust and modular robots.

Locking Layers

Recall the standard grid we discussed in Chapter 1. We showed how it leads to
easy interlocking between horizontal and vertical beams. The sequence was: 1
beam, 2 plates, 1 beam, 2 plates...

You can take advantage of the plate layer between the beams to connect two
groups of stacked beams, thus getting a very simple chassis like the one in Figure
5.1.If you actually build it, you can see how, despite its simplicity, it results in a
very solid assembly. This also proves what we asserted in Chapter 1 regarding the
importance of locking layers of horizontal beams with vertical beams. For
instance, if you remove the four 1 x 6 vertical beams, the structure becomes very
easy to take apart.

Figure 5.1 A Simple Chassis

You're not compelled to place all the beams in one direction and the plates in
another. Actually, you are likely to need beams in both directions, and Figure 5.2
shows a very robust way to mount them, locked in the intermediate layer of our
example structure.
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Figure 5.2 Alternating Plates and Beams

-
~NoTE

Remember to use the black pegs (or pins) when connecting beams. They

fit in the holes with much more friction than the gray ones, because they
- are meant to block beams. The gray pegs, on the other hand, were

designed for building movable connections, like levers and arms.

Sometimes you want to block your layers with something that stays inside the
height of the horizontal beams, maybe because you have other plates or beams
above or below them. The full beams we’ve used up to this point extend slightly
above and below the structure. The liftarms help you in such cases, as shown in

the three examples of Figure 5.3:
Liftarm a Two coupled 1 x 5 liftarms with standard black pegs
Liftarm b A single 1 x 5 liftarm and .75 dark gray pegs
Liftarm ¢ Two 1 x 3 liftarms with axle-pegs

-

“Note

Naming all the individual LEGO parts is not an easy task. Some people
call a half-beam what we refer to as a liftarm, because it has half the
2 thickness of a beam. Due to this, we chose to use the terminology
defined in a widely accepted source: the LUGNET LEGO Parts Reference
(see Appendix A for the URL to the site).

4
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Figure 5.3 Using Liftarms to Lock Beams

Despite our insistence on the importance of locking beams, there’s no need
to go beyond the minimum required to keep your assembly together. When the
horizontal beams are short, a single vertical beam is usually enough. The example
a in Figure 5.4 is better than its b counterpart, because it reaches the same result
with fewer parts and less weight. Weight is, actually, a very important factor to
keep under control, especially when dealing with mobile robots. The greater the
weight, the lower the performance, due to the inertia caused by the mass and
because of the resulting friction the main wheel axles must endure.

Figure 5.4 One Vertical Beam Is Sometimes Enough
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Bricks & Chips...

What Is Inertia?

In physics, inertia is the tendency objects have to resist changes when in
states of motion or rest. Objects at rest tend to stay at rest, while objects
in motion tend to stay in motion, moving with the same direction and
speed. All objects have this tendency, but some more so than others:
chiefly because inertia depends on mass (quantity of matter). A good
example of how mass affects inertia comes from something with which
most people have a direct experience: shopping carts! When the cart is
empty, you can easily start and stop it, or change its direction, with min-
imum effort. The more stuff you put inside, however, the more strength
is required to maneuver it. Why? Because its objective mass, and thus its
inertia, has increased. Similarly, the greater the mass of your robot, the
more force is required from its motors when accelerating or braking.

Maximizing Modularity

While building your robot, you will likely have to dismantle and rebuild it, or
parts of it at least, many times. This isn’t like following someone’s detailed instruc-
tions; it’s more of a trial and error process. Unless you're a very experienced
builder and are blessed with clear ideas, your design will develop in both your
mind and your hands at the same time.

For this reason, it’s best to make your model as easy to take apart as possible,
or, to term it more appropriately, your robot should be modular in construct.
Building in a modular fashion also gives you the opportunity to reuse compo-
nents in other projects, without having to rebuild common subsystems that
already work. This is not always possible, because when you want something
really compact, you have to trade away some modularity in favor of tighter inte-
gration. Nevertheless, it’s a good general building practice, especially when con-
structing very large robots.

The same principle applies to your most important components: motors, sen-
sors, and obviously the RCX itself. If you are becoming obsessed by LEGO
robotics, you will probably buy some extra parts to expand your building possi-
bilities. You might have the resources to start more than one project at a time, or
to not be forced to dismantle your last robot when building a new one—however
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R CXs, motors, and sensors are definitely not cheap, so your best option is to
install them in a way that makes them easy to remove without having to break
your robot down into single parts.

-, 9
“NoTtE

One good reason to make your RCX easily detachable is that you must
be able to change batteries when necessary. The most common solution
- is to keep the RCX at the very top of your robot—this way you can also
easily access the push buttons and read the display.

-

Loading the Structure

Even the most minimal configuration of a mobile robot has to carry a load of
about 300g (11 oz): the weight of one RCX (with batteries) and two motors.
Adding cables, sensors, and other structural parts, can easily push you up to about
500g (18 oz). Should you worry about this mass? Is its position relevant?

The first factor you need to consider is friction. You should take all possible
precautions to minimize it. This is especially true where the structure attaches to
the wheels, because it is there that you transfer all the weight to the wheels by way
of the axles. The wheel acts as a lever: the greater the distance from its support, the
greater the resulting force on the axle. Such forces tend to bend axles, twist beams,
and produce plenty of friction between the axle and the beam itself. For this
reason, it’s important you keep your wheel as close as possible to its supporting
beam. Figure 5.5 shows three examples: a being the worst case, with ¢ the best.

Figure 5.5 Keep a Wheel as Close as Possible to Its Supporting Beam

a - good b - bettar c - best
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We suggest you also support the load-bearing axles with more than a single
beam whenever possible. The three examples shown in Figure 5.6 are better than
those in Figure 5.5, with 5.6¢ being the best among all the solutions shown so
far. The use of two supports, one on either side of the wheel, like on a bicycle,
avoids any lever-eftect created by the axle on the support, thus reducing the fric-
tion to a minimum.

Figure 5.6 Two Supporting Beams Are Better than One

a - good b - better

© = bast

The position of the RCX has a strong influence on the behavior of mobile
robots. It’s actually the shape and weight of the whole robot that determines how
it reacts to motion, but the RCX (with batteries) is by far the heaviest element
and thus the most relevant to balancing load. To explain why balancing load is
important, we must recall the concept of inertia. We explained earlier in the
chapter that any mass tends to resist a change in motion. In some cases, to resist
acceleration. The greater the mass, the greater the force needed to achieve a given
variation in speed.

The Acrobot model shown in the MINDSTORMS Constructopedia works
under this same principle. If you have already built and tried it, did you wonder
why it turns upside down instead of moving forward? This happens because the
inertia of the robot keeps it in its present condition—which is stationary. Once
power is supplied to the motor, the wheels try to convert that power into
motion, accelerating the robot. But the inertia is so great that the force resorts to
the path with least resistance, turning the body of the robot instead of the
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wheels. After having turned upside down, the robot has the undriven wheels in
front of it, preventing it from turning again, and now can’t do anything other
than accelerate.

You probably don’t want your robots to behave like Acrobot. More likely,
you’re looking for stable robots that don’t lose contact with the ground.You can
use gravity to counteract this unwanted effect, putting most of the weight further
from the driving axles. There’s no need for complex calculations, simply experi-
ment with your robot, running a simple program that starts, stops, reverses, and
turns the robot to see what happens. Place the RCX in various positions until
you’re satisfied with the result.

Putting It All Together:
Chassis, Modularity, and Load

The following example summarizes all the concepts discussed so far in this
chapter. Using only parts from the MINDSTORMS kit, we built the chassis
shown in Figure 5.7. Its apparent simplicity actually conceals some trickiness.
Let’s explore this together.

Figure 5.7 A Complete Platform
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It’s built like a sandwich, with two layers of beams that contain a level of
plates. It’s robust, because vertical beams lock the layers together. Notice that for
the inner part of the robot, we used 1 x 3 liftarms instead of 1 x 4 beams. This
way the top results in a smooth surface where one can easily place the RCX or
other components.

The load-bearing axles are two #8 axles that support both the outer and
inner beams (#8 means that the axle is 8 studs long), while the wheels are as
close as possible to their supports.

The motors have been mounted with the 1 x 2 plates with rail, as explained
in Chapter 3 (look back to Figure 3.4). They are kept in place by two 2 x 4
plates on their bottom (Figure 5.8), but by removing those plates you can quickly
and easily take out the motors without altering the structure (Figure 5.9).

Figure 5.8 Bottom View

You can also remove the pivoting wheel and the two main wheels in a matter
of seconds to reuse them for another project (Figure 5.10). We should mention
here that the pivoting wheel is quite special, since it’s what makes a two-wheeled
robot stable and capable of smooth turns. The technique of making a good pivoting
wheel has its own design challenges, of course, which we’ll explore in Chapter 8.

The truth is that if you own only the Robotic Invention System, you prob-
ably won’t have enough parts to build another robot unless you dismantle the
whole structure. If you have more LEGO TECHNIC parts, however, you can
leave your platform intact and reuse wheels and motors in a new project.
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Figure 5.9 Removing the Motors

Figure 5.10 ...and the Wheels
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Now we can experiment with load and inertia. If you have the LEGO
remote control, you don’t need to write any code. If not, we suggest you write a
very short program that moves and turns the robot.You don’t need anything
more complex than the following pseudo-code example, which will drive your
robot briefly forward then backward, and make it turn in place:
start left & right motors forward
wait 2 seconds
stop left & right motors
wait 2 seconds
start left & right motors reverse
wait 2 seconds
stop left & right motors
wait 2 seconds
start left motors forward
start right motors reverse
wait 2 seconds

stop left & right motors

Place your RCX in difterent locations and test what happens. When it is just
over the main wheel axles (Figure 5.11), the robots tend to behave like the
Acrobot and overturn easily.

Figure 5.11 Poor Positioning of the Load RCX Makes This Robot Unstable
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As you move the RCX toward the pivoting wheel, the robot becomes more
stable (Figure 5.12). It still jumps a bit on sudden starts and stops, but it doesn’t
flip over anymore.

Figure 5.12 Better Positioning Improves Stability

Summary

The content of this chapter may be summarized in three words: layering, modu-
larity, and balancing. These are the ingredients for optimal structural results.

Thinking of your robot in terms of layers will help you in building solid,
well-organized structures. Recall the lessons you learned in Chapter 1 about lay-
ering beams and plates and bracing them with vertical beams to get a solid but
lightweight structure. A robust chassis comes more from a good design than from
using a large number of parts.

Modularity can save you time, allowing you to reuse components for other
projects. This is especially important when it comes to the “noble” parts of your
MINDSTORMS system—the sensors, motors and, obviously, the RCX—
because they are more difficult and expensive to replicate. You should put this
concept into operation not only for single parts, but for whole subsystems (for
example, a pivoting wheel), which you can transfer from one robot to another.

Balancing 1s the key to stable vehicles. Keep the overall mass of your mobile
robots as low as possible to reduce inertia and its poor effects on stability.
Experiment with different placements of the load, mainly in regards to the RCX,
to optimize your robot’s response to both acceleration and deceleration. We will
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look more deeply into this matter in Chapter 15, when we learn how to build
walking robots (where management of balance is a strict necessity).

Unfortunately, these goals are not always reachable; sometimes other factors
force you to compromise. Compactness, for example, doesn’t mesh well with
modularity. Certain imposed shapes, like those used in the movie-inspired droids
of Chapter 18, can force you to bypass some of the rules stated here. We aren’t
saying they can’t be violated. Use them as a guide, but feel free to abandon the
main road whenever your imagination tells you to do so.
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Introduction

As we explained in the Introduction, this book is not about programming—there
are already many good resources about programming languages and techniques,
and about programming the RCX in particular. However, the nature of robotics
(often called mechatronics) is such that it combines the disciplines of mechanics,
electronics, and software, meaning you cannot discuss a robot’s mechanics without
getting into the software that controls the electronics that drives the machine.
Similarly, you cannot write the program without having a general blueprint of
the robot itself in your mind. This applies to the robots of this book as well. Even
though we are going to talk mainly about building techniques, some projects
have such a strong relationship between hardware and software that explaining
the first while ignoring the latter will result in a relatively poor description. For
these reasons, we cannot simply skip the topic, we need to lay the foundations
that allow you to understand the few code examples contained in the book.

In the previous chapters, we mentioned the RCX many times, having
assumed that you are familiar with the documentation included in the MIND-
STORMS kit and know what the RCX is. The time has come to have a closer
look at its features and discover how to get the most from it. We will describe its
architecture and then give you a taste of the broad range of languages and pro-
gramming environments available, from which you can choose your favorite. Our
tocus will be on two of them in particular: RCX Code, the graphic program-
ming system supplied with the kit, and NQC, the most widespread independent
language for the RCX.

The last sections of the chapter provide a complete code example, which is
meant to help explain how to write well-organized code that is easy to under-
stand and maintain, and is designed to familiarize you with the programming
structures you’ll find later in the book.

What Is the RCX?

The RCX is a computer. You are used to seeing computers that have a keyboard,
a mouse, and a monitor—devices created to allow human users to interface with
their computers—but the RCX hasn’t got any of those features. Its only gates to
the external world are a small display, three input ports, three output ports, four
push-buttons, and an infrared (IR) serial communication interface. The RCX is
actually more similar to industrial computers created to control machinery than it
is to your normal desktop computer. So, how can you program it if it hasn’t any
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user interface? You write a program on your PC, then transfer it to the RCX
with the help of the IR tower (a device designed to work as a link between the
PC and the RCX), and, finally, the RCX executes it.

To understand how the RCX works, imagine a structure made of multiple
layers. At the very bottom is the processor, an Hitachi H8300, which executes the
machine code instructions. The processor cooperates with additional components
that convert signals from the ports into digital data, using chips that provide
memory for data and program storage. Just as with most computers, the memory
of the RCX is made up of two types: read-only memory (ROM) and random
access memory (RAM).The content of the ROM cannot be altered or cancelled
in any way, since it is permanently written on the chips, while the data in the
RAM can be replaced or modified. The RAM requires a continuous power supply
in order to retain its content. When the supply breaks, everything gets erased.

Above the processor and circuit layer you find the ROM code. When you
unpack your brand new RCX, there’s already some code stored in its internal
ROM that’s aimed at providing some basic functionality to the RCX: input ports
signal conversion, display and output ports control, and IR communication. If
you are familiar with the architecture of a personal computer, you can compare
this ROM code to the basic input/output system (BIOS), the low-level machine
code which is in charge of booting the computer at startup and interfacing with
the peripherals.

An RCX with just the ROM code is as useless as a personal computer with
just the BIOS. On top of the ROM code layer the RCX runs the firmware,
which, to continue with our comparison to computers, is its operating system. The
term firmware denotes a kind of software the user normally doesn’t alter or
change in any way; it’s part of the system and provides standard functionality, as
operating systems do. In RCX, the firmware is not burned into the system like
the ROM code, rather it is stored in the internal RAM, and you download it
from your PC using the infrared interface. The LEGO firmware was copied to
your PC during the installation of the MINDSTORMS CD-ROM, and trans-
ferred to your RCX by the setup process.

The firmware is not the final layer of the system: on top of it there’s your
own code and data. They will be stored in the same RAM where the firmware is,
but from a logical standpoint they are considered to be placed at a higher level.
As we explained earlier, you write your code on the PC, then send it to the
RCX through the infrared interface. The MINDSTORMS software on the PC
side, called RCX Code, translates your program (made of graphical code blocks)
into a compact form called byfecode. The RCX receives this bytecode via the IR
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interface and stores it in its RAM. When you press the Run button, the firmware

starts interpreting the bytecode and converting its instructions into actions.

WARNING

Because the firmware is stored in RAM, it will vanish if your RCX remains
without power for more than a few seconds, and you will have to reload
it before using your RCX again. When you power off your RCX, the RAM
remains supplied just to keep the firmware in existence, and this is the
reason why the RCX will slowly drain the batteries even when switched
off. If you plan not to use it for more than a few days, we suggest you
remove the batteries to preserve them. Remember that when you need
your RCX again, you will have to reload the firmware.

Let’s summarize the process from the top to the bottom level:

You write your program using RCX Code, the MINDSTORMS soft-
ware on the PC side.

RCX Code automatically translates your program into a compact
format called bytecode.

Using the IR link between the PC—via the IR tower—to the RCX,
you transfer the bytecode version of your program to the RAM of the
RCX.

The firmware interprets your bytecode and converts it into machine
code instructions, calling the ROM code routines to perform standard
system operations.

The RCX processor executes the machine code.

Most of these steps are hidden to the user, who simply prepares the program
on the PC, downloads it to the RCX, presses the Run button, and watches the
program execute.

A Small Family of Programmable Bricks

The RCX belongs to a small LEGO family of programmable bricks. The first to
appear on the scene was the Cybermaster, a unit that incorporates two motors,
three input ports, and one output port. It shares with the MINDSTORMS
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devices the ability to be programmed from a PC, with which it communicates
through the “tower,” which in this case is based on radio frequency instead of
infrared transmission. But the similarities end here, and the Cybermaster has more
limitations than the RCX:

m  [ts three input ports work with passive sensors only.

®m  The firmware is in ROM instead of RAM. This means that it’s not pos-
sible to upgrade it to a newer version.

m  The RAM is much smaller than the one in the RCX and can host only
very short programs.

The Scout, contained in the Robotics Discovery Set, is programmable from
the PC with the same IR tower of the RCX (not included in the set), but fea-
tures a larger display that allows some limited programming, or better said, it
allows you to choose from among various predefined behaviors. It features two
output ports, two input ports (passive sensors only), and one embedded light
sensor. Like for the Cybermaster, the firmware is in ROM and cannot be
upgraded or modified.

Using LEGO RCX Code

RCX Code is the graphical programming tool that LEGO supplies to program
the RCX. If you have installed the MINDSTORMS CD-ROM, followed the
lessons, and tried some projects, you're probably already familiar with it.

RCX Code has been targeted to kids and adults with no programming expe-
rience, and for this reason it is very easy to use.You write a program simply by
dragging and connecting code blocks into a sequence of instructions, more or less
like using actual LEGO bricks.

There are different kinds of code blocks that correspond to different func-
tions: You can control motors, watch sensors, introduce delays, play sounds, and
direct the flow of your code according to the state of sensors, timers, and coun-
ters. RCX Code also provides a simple way to organize your code into
subroutines, groups of instructions that you can call from your main program as if
they were a single code block.

When you think your code is ready to be tested, you download it to the
RCX through the IR tower. The RCX has five program slots that can host five
independent programs. When downloading the code, you choose which slot to
download to, and with the Prgm push-button on your RCX, you select which
program to execute.

101
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The intuitiveness of RCX Code makes it the ideal companion for inexperi-
enced users, but it has some major drawbacks:

m  [ts set of instructions is very limited, and doesn’t disclose all the power
your RCX is capable of. Sooner or later you will start desiring a more
powerful language.

m  [ts graphical interface is not suitable for large programs. The sequence of
code blocks, though very intuitive for small programs, becomes hard to
follow when you have tenths or hundredths of them.

For these reasons, you’ll find that RCX Code is a barrier to the development
of complex projects.

Using the NQC Language

The LEGO firmware is a solid, well-tested software that provides a rather com-
plete functionality. The surprising thing is that it actually offers many more possi-
bilities than what the RCX Code discloses to us. It’s like having a car whose
motor is capable of 100 mph but with an accelerator pedal that allows you to
reach no more than 50 mph. The power 1s there, but the interface doesn’t allow
you to get at it. This fact drove some independent developers to create new pro-
gramming environments able to get the most from the LEGO firmware, pro-
viding access to those features that RCX Code conceals. All of them share the
same approach, which consists of making a new interface on the PC side that’s
able to generate bytecode and transfer it to the RCX.

Developed and maintained by Dave Baum, the language called Not Quite C
(NQC) has achieved enormous popularity among MINDSTORMS fans and is by
far the most widespread of this category. NQC is based on C-like syntax; if you’re
not a programmer, or if you have no experience with C, don’t be frightened by
this. NQC has a very smooth learning curve, and comes with a lot of documenta-
tion and tutorials. The success of NQC has come about for many reasons:

® [t based on the original LEGO firmware, thus taking advantage of its
ability to produce very reliable code, and at the same time freeing all of
RCX Code’s hidden power. Even from its very first releases NQC has
proven to be rock solid.

®  Dave Baum puts a lot of effort into maintaining it, continuously adding
new features and acknowledging new opportunities oftered by the
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LEGO firmware. NQC supported the new RCX 2 firmware version
well before it was officially released in any LEGO product.

m [t is multiplatform, both on the host side (it runs on PC, Mac, and Linux
machines) and on the target side (it supports all the LEGO pro-
grammable bricks: RCX, Scout, Cybermaster).

m [t is self-contained. To use NQC you don’t need any other tools than a
simple text editor (Windows Notepad is enough). The installation proce-
dure is as easy as copying a file.

m  There are many documents and tutorials, in many different languages,
that help new users understand all the details.

®  The NQC compiler is a command-line tool, with no user interface, but
people have developed nice integrated development environments that
encapsulate NQC inside a productive system that includes editors, tools,
diagnostics, data logging, and other utilities, as well as, most importantly,
the Bricx Command Center.

m NQC is free software released under the Mozilla Public License (MPL).

Some of the projects discussed in this book actually require that you go
beyond the limits imposed by RCX Code. This is the main reason why we chose
NQC to illustrate the few programming examples. NQC also has the advantage
that, being a textual language, it allows for a very compact representation that
better suits the format of a book.

Using Other Programming Languages

The fact that LEGO placed the firmware of the RCX in the RAM left the
system open to other languages that follow a more radical approach. Instead of
substituting the software that produces bytecode on the PC side, they replaced the
firmware on the RCX. It’s important to note that installing any of these alterna-
tive environments doesn’t entail any risk at all for your RCX.You can always
return to your original system.

All the work that has been done in this direction heavily relies on Kekoa
Proudfoot’s pioneering hacking of the RCX. Kekoa patiently disassembled the
LEGO firmware and documented all the routines and their calls, thus laying the
foundations for the subsequent alternative firmware versions.
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Using legOS

In 1999, Markus Noga started The 1legOS Project, the first attempt to write a
replacement firmware for the RCX. Noga’s goal was to bypass all the limitations
of the bytecode interpreter to run the code directly on the Hitachi H8300 pro-
cessor of the RCX. A 1legOS program is a collection of system management rou-
tines that you link to your own C or C++ code and load to the RCX in place
of the firmware.

What was initially an individual effort turned into a collective open source
project under the Mozilla Public License. The legOS Project is now managed by
Luis Villa and Paolo Masetti and maintained by a team of a dozen developers.

The installation is not always straightforward, especially for Windows
machines. You need to be a programming expert, because what you have to deal
with here is true C, not the simplified and friendly NQC version. You have to
manage cross-compilers and Unix emulators if you don’t run a Unix-like
machine, so legOS is definitely not for everyone. But for this price it unleashes
the full power of your RCX up to its last bit. You get full control of any resource
and any device, can use any C construct and structure, and can address any single
byte of memory. Plus, your code runs at an astonishing speed when compared to
the interpreted bytecode.

Using pbForth

The pbForth language (the name stands for programmable brick FORTH) is the
result of Ralph Hempel’s experience in designing and programming embedded
systems, a field where FORTH is particularly well suited. Conceived in the six-
ties, the FORTH language has a strong tradition in robotics, automation, and sci-
entific applications. More than a language, FORTH is an interactive
environment. The traditional concepts of editing source files, compiling, linking,
and so on, don't translate very well to FORTHj; it’s mainly a stand-alone system.

Ralph Hempel’s implementations make no exception to this rule. You down-
load the pbForth kernel to your RCX, and from that moment on you dialog with
it using a simple terminal emulator. For this reason, pbForth is very portable and
very easy to install on any platform.

If you haven’t any experience with FORTH, it will probably seem a bit
strange to you in the beginning. The language is based on the postfix notation, also
called reverse polish notation (RPN), which requires you to write the operator
after the operands.
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If you decide to give pbForth a try, you will discover the benefits of an
extensible system that naturally leads you to program in terms of layers. You
might find it challenging to learn, but it’s a productive—and fun—tool with
which you can write compact and efficient code.

Using leJOS

Jose Solorzano started the TinyVM Project, a small Java footprint for the RCX.
TinyVM was designed to be as compact as possible, and for this reason lacked
much of the extended functionality typical of Java systems. Over the foundation
of TinyVM, Jose and other developers designed leJOS, a fully functional Java
implementation that includes floating point support, mathematical functions,
multiprogram downloading, and much more. LeJOS is an Open Source project
and, like legOS, is under continuous development.

leJOS is the newcomer on the scene of MINDSTORMS programming, but
we foresee a great future for it. It’s complete, portable (currently to PC and
Unix-like machines), very easy to install, fast, efticient, and based upon a
widespread language. There are also some visual interfaces under development
that will make this system even more attractive to potential users.

Using Other Programming
Tools and Environments

We know we didn’t cover all the available programming tools for the RCX.
There are others, like Gordon’s Brick Programmer, or Brick Command, that
follow the same solution of NQC and convert a textual program into bytecode.
There are also a few more replacements for the firmware, like QC or TinyVM.
And, finally, some other tools, like ADA for the RCX, that translate source code
into NQC code. They are good tools, solid and well-tested, but we choose to
describe the most representative and widespread in each class. We recommend
you look at Appendix A for further information about the software we intro-
duced here and about other possible choices; the list is so long we are sure you’ll
find the tool that fits your needs. In the same appendix, you will find some links
to other tools that, though not intended for programming, can help you monitor
your RCX, transfer data to the PC, graph the status of the input ports, and more.
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Divide and Conquer:
Keeping Your Code Organized

Up to this point the few programming examples you met were written in a sort
of pseudo-code very close to plain natural language. The use of pseudo-code
allows the programmer to “play computer” and understand what the program
does, but to complete the projects of the book, some of which are a bit complex,
you need a real environment to run and test the code with. We chose to write all
the examples using NQC because it combines power with compactness, it’s easy
to install and learn, and has become a widespread standard among thousands of
MINDSTORMS programmers. In the following example, we will describe some
of the most important features of NQC, but we strongly recommend you read
the documentation available from its official Web site, listed in Appendix A. Even
if you don’t choose NQC, we’re sure you can easily translate our examples into
your favorite programming language.

What we said in Chapter 5 about keeping your construction designs modular
applies to programming as well. Organizing the code into logical sub units is a
good programming practice that will often help you in the debugging process.
Unless your robot is designed for a very simple task, try to split its code into
blocks that correspond to the different situations it’s expected to manage and to
the actions it should perform.The Latin motto “divide et impera” applies well to
programs: the more you divide the code into small sections, the better you can
control and understand the program’s behavior.

We will use an example to clarify this concept and introduce other tips: Say
your robot has been designed to follow a black line, detect small obstacles with a
bumper and remove them from its path by pushing the obstacles away with some
kind of arm. As we explained earlier, it’s impossible to write a program without
having a precise idea of how the robot 1s designed and what it is expected to do.
For the example we are going to illustrate, we made the following assumptions
about the robot and the environment:

B The line is darker than the floor.

®m  The robot will follow the left border of the line (e.g., It turns right to
go toward the line, left to go away from line).

®  Output ports A and C control the left and right drive wheels respectively.

m  Output port B operates the arm.
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®m  Input port 1 is attached to a touch sensor connected to the bumper. It
closes (goes from 0 to 1) when the bumper is pressed.

m  Input port 2 is attached to a face-down light sensor that reads the line.

Here is the initial code you should write:

int floor, line;

task Main ()

{
Initialize();
Calibrate() ;

Go_Straight () ;

while (true)
{
Check_Bumper () ;

Follow_Line() ;

The main level of your program is quite simple, because at this point you’re
not concerned with what Go_Straight or the other subroutines mean in terms
of actions, you’re only concerned with the logic that connects the difterent situa-
tions. You are deciding the rules that affect the general behavior of the robot and
you don’t want to enter into the details of how it can actually go straight. This
result is achieved by encapsulating the instructions that make your robot go
straight into a subroutine, a small unit which “knows” what the robot requires in
order to go straight. This approach has another important advantage: Your code
will be more general because it doesn’t depend on the architecture of the robot.
For example, for one specific robot “go straight” will mean switching motors A
and C on in the forward direction, while for another it might mean switching on
motor B in the reverse direction. When you want to adapt the program to a dif-
ferent architecture, you simply change the implementation details contained in
the low-level subroutines, without having to intervene on the logic flow.

Let’s come back to your main task to examine it in deeper detail. The first
instruction is actually placed before the beginning of the task: It declares that you
are going to use two variables named floor and line and intended to contain integer
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numbers. A variable is like a box with a name written on it: You can place some-
thing inside, a specific number—that is, you can assign a value to the variable. Or
you can watch what’s inside the box, reading the variable. At this stage, you are
neither assigning nor reading the variables, you are simply declaring that you
need two of them. In other words, you are asking NQC to prepare two boxes
with the names just mentioned.

When the user presses the Run button on the RCX, the main task begins.
After it has completed initialization and calibration procedures, the program starts
the robot in straight motion, then it enters an endless loop where the program
continuously manages its two tasks: removing obstacles and following the line.
The while(true) statement repeats all the instructions delimited by the open and
close brace forever. In your case, it will execute the Check_Bumper subroutine,
then the Follow_line, then the Check_Bumper again in a continuous loop that
only the user can interrupt using the Run button.

Everything is clear and simple, as it should be. Now let’s have a look at what
happens at a lower level in our subroutines.

Any program will typically include an initialization section, where you set the
motor power, configure the sensors, reset timers and counters and initialize vari-
ables. This 1s not required when you use RCX Code, because it automatically
configures the input ports for you. NQC, like the other textual environments,
requires that you explicitly declare what kind of sensor you connect to each port:

void Initialize()

{
SetSensor (SENSOR_1, SENSOR_TOUCH) ;

SetSensor (SENSOR_2, SENSOR_LIGHT) ;

The word void is what tells NQC that you are describing a subroutine, and
it’s followed by the name you choose for it. The SetSensor statements are used
to configure input port 1 for a touch sensor and input port 2 for a light sensor.

The calibration routine is designed to inform your robot of the actual light
readings it should expect on its path. We discussed this topic briefly in Chapter 4,
explaining that keeping your program independent from particular cases is a good
general programming practice. In this example, it means you should not write the
light sensor thresholds into the code, but rather give your robot the possibility to
read them from the environment, and this is what you have declared the floor and
line variables for.
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void Calibrate()

{
WaitBumperPress () ;
floor=SENSOR_2;
WaitBumperPress () ;
1ine=SENSOR_2;

WaitBumperPress () ;

void Wait_Bumper_ Press ()
{
PlaySound (SOUND_DOUBLE_BEEP) ;
while (SENSOR_1==0); // wait for bumper press

while (SENSOR_1==1); // wait for bumper release

This code shows that in some situations you can recycle a sensor and use it
for more than a single purpose: during the calibration process, the bumper is used
as a trigger to tell the robot that it’s time to read a value. It also shows that sub-
routines can be nested. In other words, you can make a subroutine call another
subroutine. In this particular case, the WaitBumperPress is a small service sub-
routine that produces a beep and then waits until the bumper switch gets pressed
and released.

When you run the program, the calibration procedure begins and informs
you with a beep that it waits for the first reading. You place your robot with the
light sensor on the floor, far from the line, and push the bumper. The program
reads the light sensor and stores that value as a typical “floor” value in the floor
variable. Then it beeps again while waiting to read the line.You place the robot
with the sensor just over the line and push the bumper again, making it detect
the “line” light value and store it in the line variable. The robot finally beeps
again, meaning the calibration process has finished and that the next push on the
bumper will put it in motion.

This sort of pre-run phase is quite useful in many other situations, such as
when you need to prepare the robot for operations by either reading some envi-
ronmental variable or resetting mechanisms that might have been left in an
unknown state by previous executions.
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The Check_Bumper procedure is in charge of testing whether the robot
has hit an obstacle, and if so, how it should react:

void Check_Bumper ()
{
if (SENSOR_1==1)
{
Stop () ;
Remove_Obstacle() ;

Go_Straight () ;

It checks the bumper, and, if found closed, stops the robot, calls the
Remove_Obstacle subroutine to clear the path and then resumes motion.
Testing the bumper is as simple as checking if SENSOR _1 has become equal to
1, which means that the touch sensor connected to port 1 has been pressed. You
notice that we apply here the same concepts used at the main level: encapsulating
details into routines at a lower level.

The Follow_Line routine is what keeps your robot close to the line edge—
let’s say the left edge. If the light sensors read too much of the “floor” value, it
turns right toward the line. If, on the contrary, it reads too much of the “line”
value, it turns left, away from the line. (See Chapter 4 for a discussion of this

method.)
void Follow_Line()
{
#define SENSITIVITY 5
if (SENSOR_2<=floor+SENSITIVITY) // reading too "floor"
Turn_Right () ;
else if (SENSOR_2>=1ine-SENSITIVITY) // reading too "line"
Turn_Left () ;
else

Go_Straight () ;

The method used in this subroutine deserves some explanation. First of all, the
word #define tells NQC that the following word denotes a constant; for the sake
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of simplicity, you can consider a constant to be like a variable whose value cannot
be changed by the program. In this particular case, your program defines the con-
stant SENSITIVITY with the value 5.This value is used together with the floor
and line variables to decide what the robot should do. An example with actual
numbers can make the things clearer: suppose the Calibrate routine placed the
value 55 in the floor variable and the value 75 in the line variable. The program
tests if SENSOR_1 is less than or equal to floor + SENSITIVITY, which results in
55 + 5 = 60, to decide if the robot has to turn right toward the line. Similarly, it
tests if SENSOR_1 is greater than or equal to floor — SENSITIVITY, which cor-
responds to 75 — 5 = 70, and if this is the case, it makes the robot turn left, away
from the line. While the readings remain greater than 60 and lower than 70, the
robot goes straight. You can change the value of SENSITIVITY to make your
robot more or less reactive to readings: An increase will narrow the range of values
that allow the robot to go straight, thus your robot will make more corrections in
order to remain close to the edge of the line.

The code you wrote so far is rather general and could work for a broad class
of robots. Now the time has come to write the part of the program that depends
on the physical architecture of your robot.

The Go_Straight routine will be very straightforward in most cases. You
know from the initial assumptions that the robot has two side wheels (or tracks)
driven by two independent motors. In Chapter 8, we will explore this configura-
tion, called differential drive, in greater detail. For the moment, let’s stick to the fact
that if both the motors go forward, the robot goes forward and straight. If one of
the motors stops, the robot turns toward the side of the stationary wheel. This
knowledge is enough to write the following routines, which control motion:

void Go_Straight ()
{
OnFwd (OUT_A+OQUT_C) ;

void Stop ()
{
Off (OUT_A+OUT_C) ;

void Turn_ Left ()
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Off (OUT_A) ;
OnFwd (OUT_C) ;

void Turn_Right ()
{
Off (OUT_C) ;

OnFwd (OUT_A) ;

Designing & Planning...

Benefits of Designing Modular Code

If you follow the principles illustrated in this chapter when writing a
modular and well-structured code, your program will result in greater
readability, reusability, and testability:

m Readability The program is organized into small sections that
are easy to comprehend with just a quick glance. This means
that your program will be easier to maintain, and more easily
understood by the friends with whom you share it.

m Reusability Separating the logic of the program from the
instruction related to the physical structure of the robot, you
make your code more flexible and reusable for different
architectures. The general principle is: the upper levels of the
code reflect what the robot does, while the lower ones
reflect how the robot does it.

m Testability A nice side effect of well-structured code is that it
speeds up your testing procedures, segmenting possible
problems into small portions of code. Remove (or comment
out) the call to Follow_Line from inside the repeat block in
the main task: Your robot should simply go straight until it
hits an obstacle, then activate the arm and remove it.
Conversely, you can remove the call to Check_Bumper to
turn your robot into a simple line follower!
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There’s one last routine left: Remove_Obstacle. Let’s say your robot features
a very simple arm that works with a single motor and only requires a timed acti-
vation:

void Remove_ Obstacle ()
{

OnFwd (OUT_B) ;

Wait (200) ;

OnRev (OUT_B) ;

Wait (200) ;

Off (OUT_B) ;

The statement Wait(200) makes the program wait for 200 hundredths of a
second, or two seconds. This parameter depends on the time your mechanism
needs to remove the obstacle, and it is once again related to the physical structure
of the robot.

Your program is now finished and ready to be tested. We hope this example
made you realize the benefits of a modular and well-structured code.

Running Independent Tasks

All the tools you can choose from to program your RCX support some form of
multitasking, that is, they support two or more independent tasks that run at the
same time. This is not particularly evident when you use RCX Code, but it’s a
well-documented feature in all the alternative environments.

Multitasking can be helpful in many situations and it’s often a tempting
approach, but you should use it with a lot of care because it will not always make
your life easier. Let’s go back for a moment to our previous example: would mul-
titasking have been a good choice? Didn’t your robot have two difterent tasks to
manage: line following and obstacle detection? Well, it did, but they were mutu-
ally exclusive—after all, your robot was not following the line while it removed
the obstacle. In cases like this, and in many others, your robot is asked to perform
different activities one at a time more often than it is asked to perform different
activities at the same time. Using multitasking, you would have made your code
more complex, because of the additional instructions needed to synchronize the
tasks. When the Remove_Obstacle task stops the robot, it should communicate
the Follow_Line task to suspend line following, and communicate again when it
can be resumed.
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In designing a multitasking application, you are required to move from a
sequential, step-by-step flow to an event-driven scheme, which usually requires
additional work to keep the processes coordinated. While sequential program-
ming 1s like following a recipe to cook something, you can compare multitasking
to preparing two or more recipes at the same time. This is quite a common prac-
tice in any kitchen, but requires some experience to manage the allocation of
resources (stoves, oven, mixer, blender...), respond to the events (something’s ready
to be taken out of the oven) and coordinate the operations so the tasks don’t
conflict with each other. You have to think in terms of priorities: Which dish
should you put in the oven first? Programming independent tasks implies the
same concerns: You must handle the situations where two tasks want to control
the same motor or play two different sounds. The RCX is well-equipped to
manage resource allocation and to support event-driven programs, and NQC
gives you full access to these features. However, most of the effort is still on your
shoulders: no tool makes up for the disadvantages inherent in a bad design.

In our experience with LEGO robotics, there are few actual situations where
multitasking is absolutely necessary, or even useful. Our suggestion is that you
approach it only when your robot performs some really independent activities,
like playing background music while navigating a room, or responding to mes-
sages while looking for a light source.

Summary

In this chapter, you took some first steps on your path to programming LEGO
robots. We started describing the RCX, the LEGO programmable unit that’s the
core of your robots, to unveil some of its secrets. You discovered how its architec-
ture can be easily understood in terms of layers: your program, its translation into
bytecode, the interpreter in the firmware, and the processor which executes the
operations.

To create your program on a PC, you can choose from many available tools;
we briefly described RCX Code, the original LEGO graphic programming envi-
ronment, and NQC, the most widely accepted independent language for the
RCX. We also reviewed a few other environments—IlegOS, ppFORTH, leJOS—
which follow a more radical approach to the goal of getting the most from the
R CX: replacing its firmware.

The second part of the chapter does for programming what the previous
chapter did for building: it establishes some guidelines. Oddly enough, the two
arenas share a lot, since layered architecture and modularity principles apply just
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as much to the body of the robot as they do to its brain—with the notable dif-
ference that sometimes you have good reason not to follow those principles in
the hardware. In other words, there is no excuse for badly organized software! We
used a short but complete program written in NQC to put these principles into
practice, showing how they can improve the readability, reusability, and testability

of your code.
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Introduction

The RCX features an internal speaker and the hardware necessary to drive it,
thus making your robot able to produce sounds. Do not underutilize this feature!
It not only offers you a fun way to give your robots a more defined personality,
but gives you a simple communication protocol which will help in testing and
debugging your programs.

This is why we decided to devote a book chapter to playing sounds and
music with the RCX, even though the topic is more related to programming
than to building techniques. However, as we explained in Chapter 6, when you
are dealing with robotics, the two matters are seldom separable. For some of the
robots described in the second part of the book, sounds are an important compo-
nent in their interface with the external world; for others, sounds are an inter-
esting addition that enriches their behavior.

If you are not familiar with musical terminology or audio file formats, you
might find topics in this chapter a bit complex. But the prize is worth the effort,
because the techniques explained here open exciting new opportunities in your
robot world. You will discover how to use simple tones, how to write melodies,
even how to convert digital audio files into sound effects that can be incorpo-
rated into your program!

Communicating through Tones

As we explained in the introduction, the RCX features an internal speaker. There
1s little evidence of it on the outside: The RCX 1.5 has two very small slits on
the sides with the LEGO logo stamped on it, from which the sound emanates.
The sound system of the RCX is designed to be accessed from your program;
you are not allowed to alter the volume of the speaker, which is predefined, but
you have full control over the frequency (pitch) and the duration of the notes.
The language Not Quite C (NQC), which we will be using in our examples,
includes two basic instructions on how to produce sounds, called PlaySound and
PlayTone. Through the PlaySound command, the RCX can output one of six
predefined sound patterns, such as a short click, a double beep, or a short
sequence of tones:

PlaySound (SOUND_CLICK) ;
PlaySound (SOUND_DOUBLE_BEEP) ;
PlaySound (SOUND_UP) ;

PlaySound (SOUND_DOWN) ;
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The PlayTone command plays a single note of a given pitch (in Hertz) and
duration (in hundredths of a second). The following statement plays a tone of 262
Hertz for half a second:

PlayTone (262,50) ;

The RCX is capable of reproducing any frequency from 31 Hertz to more
than 16,000 Hertz; however, you will usually limit yourself to the frequencies
which correspond to the musical notes (see the table in Appendix C). All the
programming languages built over the LEGO firmware offer this same feature,
while most of the others include some kind of more or less sophisticated control
over sound.

Sounds are the most immediate way your RCX has to inform you about a
specific situation. There is, of course, the display, but it’s not always in sight, espe-
cially when your robot is running across the room! There’s also the datalog, the
teature that allows your PC to read values accumulated in a special memory area
in the RCX, but to use it you must be sitting in front of your computer the
whole time. Sounds, on the other hand, can be emitted by the robot without
interrupting any other activities, and can be heard by you even if the robot is out
of sight or far away.

Through simple sound patterns you can make your robot inform you that an
operation has ended, something has gone wrong, its batteries are low, and much
more. It can acknowledge the push of a button, or tell you it’s waiting for specific
input from you, as in the case of the Calibration routine described in Chapter 6.
At the 1999 Mindfest gathering of MINDSTORMS fans and professionals at the
Massachusetts Institute of Technology (MIT), we built a Tic-Tac-Toe-playing
robot—a version of which you’ll see in Chapter 20—that used difterent musical
themes to inform its human opponent about the result of the game.

Playing Music

Sometimes a sound pattern can give your creatures a specific character. Could
you imagine a silent reproduction of the famous R2-D2 droid from the Star
Wiars saga?

Music can enrich the personality of your robot even more then tone
sequences. A wrestling robot probably appears more resolute if, while facing its
opponents, it plays Wagner’s “Ride of the Valkyries” rather than a Chopin piano
sonata or nothing at all. Our LEGO reproduction of Johnny Five from the movie
Short Circuit—described in Chapter 18—plays the Saturday Night Fever theme
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song while dancing—but if you switch off the soundtrack, it becomes simply a
robot that moves around swinging its arms and head.

Playing music requires that you patiently code every single note into your
program. LEGO RCX Code is not a suitable tool for melodies longer than just a
few notes, but with other textual languages, like NQC, you can write and store
very long songs.

Every note in the song requires two attributes: pitch and duration—the first
expressed by a frequency and the second by a time. You must introduce delays
between the notes to let the CPU wait out the note’s duration before playing the
next note.

PlayTone (440,50) ;
Wait (50) ;
PlayTone (220,100) ;
Wait (100) ;

In this example, the RCX plays an A (440 Hertz) that’s half a second long,
waits for the note to finish, then plays another A (220 Hertz) one octave below
the previous note for one second.

The RCX is limited to playing a single note at a time, thus we say it’s a mono-
phonic device. There’s no chance to play chords, which require two or more notes
played at the same time, but you can adjust note timing to get various effects. In
our previous example, the duration of the first note filled the entire interval
before the second note, thus producing a legato effect. You can just as easily get a
staccato effect—shortening the duration of the note inside the interval produced
by the Wait statement—by introducing a pause with no sound between the two
notes:

PlayTone (440,10) ;
Wait (50) ;
PlayTone (220,100) ;
Wait (100) ;

Coding a melody by hand is a long and tedious task. What happens if when
you’re finished you discover that the execution is faster or slower than what you
intended? Unfortunately, you'd have to go back and change all the time intervals.
A better approach takes advantage of a feature that all textual programming envi-
ronments offer: the definition of constants. Using constants you can make all the
intervals relative to a specific duration that controls the execution speed:
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#define BEAT 50
PlayTone (440, BEAT) ;
Wait (BEAT) ;

PlayTone (220, 2*BEAT) ;

Wait (2*BEAT) ;

This code behaves exactly like our first example, but you’ll see that by having
defined a constant, the code is clearer and easier to maintain, simply changing the
value of BEAT to change the overall speed. We can extend the usage of constants
to include note frequencies as well, making our code more readable:

#define BEAT 50
#define A3 220

#define A4 440
PlayTone (A3, BEAT) ;
Wait (BEAT) ;

PlayTone (A4, 2*BEAT) ;

Wait (2*BEAT) ;

You can also patiently define a table of constants for all the notes, so you can
reuse it in many different programs:

#define C1 33

#define Csl 35

#define D1 37

#define Dsl 39

/]

#define C4 262
#define Cs4 277
/]

#define B8 7902

We coded, for example, the D# note as Ds (D sharp) because most languages
don’t allow the use of special symbols like # in the names of constants and vari-
ables. Don’t worry about the length of this table, because constants get resolved
by the compiler and don’t change the length of your actual code or the space it
takes up in memory.
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Creating a soundtrack for your robot is a typical example of where multi-
tasking proves to be really helpful. You will typically enclose your song in a sepa-
rate task, starting and stopping it from the main task, as required by the situation.

Converting MIDI files

By using constants, your program becomes more clear, but you don’t save any
time in coding your melody. You still have to write the notes one by one. The
good news is that some tools can do some or all the work for you. The Bricx
Command Center, for instance, lets you click notes on a virtual piano keyboard
on the PC screen, generating the corresponding NQC code for you. A more
complete solution comes from the conversion of standard musical files.

The Musical Instruments Digital Interface (MIDI) is a complex standard that
includes communication protocols between instruments and computers, hardware
connections, and storage formats. A MIDI file is a song stored in a file according
to the format defined by this standard.

MIDI files have achieved incredible success among professionals, amateurs,
and instrument manufacturers, and are by far the most preferred way for musi-
cians to exchange songs. For this reason, you can easily find virtually any song
you're looking for already stored in a MIDI file.

But what is a MIDI file? It is simply a sequence of notes to play, their dura-
tion, their intensity, and, of course, a code that denotes the instrument to be used.
Thus a MIDI file is not an audio file. It does not contain digital music like CDs,
WAV files, MP3 files or other common audio formats. Rather, it contains
instructions for a player (either a human being or a machine) to reproduce the
song, almost a score, to be performed by actual musicians. And, as with a real
score, the result rests heavily on who actually performs it. For MIDI files, this
means that the output depends on the device which renders the music: with a
professional MIDI expander you can get impressive results, while execution of
the notes by a low-end PC audio card will probably be very poor. What makes
MIDI files so interesting to musicians is that they are easy to read and edit (with
special programs) in terms of standard musical notation.

So, the key question is: Is there a way you can render MIDI files with the
RCX? Though you cannot import them directly to the RCX, there’s a very nice
utility that can convert any MIDI file into the proper code: MIDI2R CX, a free
conversion utility developed by Guido Truftelli. It currently runs on Windows
machines only, producing either NQC or legOS code, but Truffelli plans to imple-
ment more target languages. You can find it at Truffellis site (see Appendix A).
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Before going into the details about how to use it and what it can do for you,
there’s another characteristic of MIDI files you must be aware of. The notes
inside a MIDI file are grouped into channels, and each channel is assigned to the
instrument meant to reproduce those notes. For example, channel 1 could be
assigned to an Acoustic Piano, channel 2 to a Bass, channel 3 to a Nylon String
Guitar, and so on. Channel 10 1s always assigned to Drums, while channel 4 is
usually, but not always, assigned to the melody line, that is, the notes sung by the
vocalist or played by the leading instrument. As we explained earlier, the RCX
has monophonic sound capabilities and cannot reproduce more than a note at a
time, so you have to choose carefully the notes it plays. Before you start con-
verting a MIDI file into code straight away, we suggest you do some exploring
using a specific software to see which channel could better render the idea of the
song. There are many commercial products which are capable of manipulating
MIDI files in almost every possible way, but you don’t actually need all the power
and complexity they provide. The Internet is crammed with freeware and share-
ware programs perfectly suitable for the task of identifying the best single channel
to be converted into instructions for the RCX.You open your MIDI file with
the editor, mute all the channels except one in turn, and decide which one to
use. If you feel at ease with the MIDI editor, you can cut away some notes from
the selected channel, since you probably don’t need the whole song, only a
chunk ofit, the part that contains the refrain or main theme. If you do this
through editing, you will save the modified MIDI file, of course.

.

NoTE

You can save a lot of work if you find a MIDI file targeted to cellular
phones. These typically have sound reproduction limits very similar to
" those of the RCX.

Now you’re ready to use MIDI2ZRCX. It is a console application, not a
graphic interface, so you need to run it from a Command Prompt window. It
requires the name of the MIDI file, and two optional parameters that specify the
channel to convert (it defaults to all) and the target language (it defaults to
legOS).Your typical command will be something like this:

c:\midi2rcx>midi2rcx letitbe.mid 4 ngc
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where letithe.mid is your original MIDI file, 4 is the converted channel, and nqc
the target language. With this command, MIDI2R CX will produce a file named
letitbe.nqc containing plain NQC code ready to be compiled, downloaded to
your RCX and executed, or more likely, pasted into your own program. We
strongly advise you against converting all the channels: The result will be almost
unrecognizable.

Converting WAV Files

Guido Truftelli also wrote a WAV2R CX application that converts WAV files into
NQC or legOS instructions. Unlike MIDI files, WAV files contain digitalized
audio ready to be executed. If you are familiar with graphic file formats, you can
think of MIDI files like vector graphics, while WAV files resemble raster graphics.

Sequencing MIDI files on the RCX is a challenging task. Playing a WAV file,
however, is a lot more challenging. As far as we know, no one has succeeded in
getting very good quality. Most likely, the RCX audio hardware has limits that
aren’t easy to overcome.

Truffelli’s program adopts a simple strategy that leads to good results with
many WAV files: It splits the source into small intervals and for each of these
computes the dominant frequency using an algorithm called FFT; it then con-
verts these frequencies into RCX program statements using the same approach as
MIDI2R CX.This is not enough to make your RCX speak, but works well with
simple audio patterns like the ding.wav or ringing.wav files included in the
Windows system. WAV2R CX is a prized tool with which you can equip your
robots with sounds in the best science fiction tradition: laser guns, jump sparks,
and buzzing!

Summary

The purpose of this short journey into the sound system of the RCX was to
show that, despite its strong limitations, it’s still an invaluable resource. It can sup-
port you in debugging, return information in the form of sounds of different pat-
terns or frequencies, or complete the personality of your robots.

NQC offers two commands to control the sound system: PlaySound to per-
form predefined sound patterns, and PlayTone to play any note of a desired
pitch for the desired duration. While PlaySound is suitable for most user inter-
facing needs, PlayTone ofters finer control and lets you create melodies.
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Thanks to the work of independent developers, you can convert some of the
most common digital audio formats straight into NQC instructions. Considering
the hardware limitations of the RCX, MIDI files translate very well and are the
ideal candidates to provide your robots with a musical soundtrack. The conver-
sion of WAV files, on the other hand, present greater difficulties and ofter poorer
results; nevertheless, they can equip your robot with amazing sound eftects.

More than one robot in this book relies on sounds as a relevant feature. For
example, the Tic-Tac-Toe and Chess players of Chapter 20 beep to inform the
user they are ready for input, and in the Flight Simulator of Chapter 24 the
sound system is entrusted with an essential part of the simulation: reproducing
the noise of the engine. Other robots, which can work without sound, would
benefit a great deal from some sound effects—good examples of this are the ani-
mals and droids of Chapters 17 and 18. In Chapter 21, we will take a difterent
approach, offering ideas about how to build robots capable of playing instruments
themselves!
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Introduction

Most robots are designed with some kind of mobility in mind. Motion makes
your creatures animated and “alive,” and offers a limitless number of interesting,
fun, and challenging projects with which to test your creativity and skills. Most
mobile robots belong to one of two categories: wheeled robots or legged robots.
Though legs provide an effective way to move on rough terrains, wheels are gen-
erally much more efficient on smooth surfaces.

In this chapter, we will survey the most common wheeled mobility configu-
rations, discussing some of their pros and cons. Please bear in mind that the
chassis shown in the following examples are designed to highlight the details of
gearings and connections, and for this reason, many of them need some rein-
forcement to be used in actual robots.

Building a Simple Differential Drive

If you have built some of the robots described in the LEGO Constructopedia, or
put together the test platform outlined in Chapter 5, you're already familiar with
the differential drive architecture. It has so many advantages, particularly in its sim-
plicity, that it’s by far the most often used configuration for LEGO mobile robots.

A difterential drive is made of two parallel drive wheels on either side of the
robot, powered separately, with one or more casters (pivoting wheels) which help
support the weight but that have no active role (Figure 8.1). Note that it is called
a difterential drive because the robot motion vector results from two independent
components (it’s of no relation to the differential gear, which isn’t used in this
configuration).

When both the drive wheels turn in the same direction at the same speed,
the robot goes straight. If the wheels rotate at the same speed but in opposite
directions, the robot turns in place, pivoting around the midpoint of the line that
connects the drive wheels. Table 8.1 shows the behavior of a differential drive
robot according to the direction of its wheels (assuming that when it’s in motion
they run at the same speed).
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Figure 8.1 A Simple Differential Drive

Table 8.1 Behavior of a Differential Drive Robot According to the Direction of

Its Wheels

Left Wheel Right Wheel Robot

Stationary Stationary Rests stationary

Stationary Forward Turns counterclockwise pivoting around the
left wheel

Stationary Backward Turns clockwise pivoting around the left
wheel

Forward Stationary Turns clockwise pivoting around the right
wheel

Forward Forward Goes forward

Forward Backward Spins clockwise in place

Backward Stationary Turns counterclockwise pivoting around the
right wheel

Backward Forward Spins counterclockwise in place

Backward Backward Goes backward

At different combinations of speed and direction, the robot makes turns of

any possible radius. This maneuverability, the capability to turn in place in partic-
ular, makes the differential drive the ideal candidate for a broad class of projects.
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Add to this the fact that it is very easy to implement, and you can understand
why more than 50 percent of all mobile LEGO robots belong to this category.
If tracking the robot position is one of your goals, again the differential drive is a
good candidate, requiring very simple math. (We’ll discuss this later in the book.)
There’s only one real drawback to this architecture: It’s not easy to get your
robot to move in a perfectly straight line. Because no two motors have exactly
the same efficiency, you will always have one wheel turning a bit faster than the
other, thus making your robot turn slightly left or right. In some projects, this
isn’t a problem, particularly those programmed for continuous route correction,
like following a line or finding a path through a maze. But when you want your
robot to simply go straight in an open space, this problem can be really frustrating.

Keeping a Straight Path

There are many ways to maintain a straight path when using a simple differential
drive. The easiest approach involves reducing the effect by choosing two motors
with similar speeds. If you have more than two motors, try finding a combination
with the closest matching speeds. This won’t guarantee your robot actually goes
straight, but it can reduce the problem to a tolerable level. We have a friend who
measured the speed of his motors under a small load, and wrote the actual rpm
on the bottom of each one with a permanent marker to be able to combine
them with satisfactory performance.

A second simple way involves adjusting the speed via software. As described
in Chapter 3, your program can control the power of each motor.You can trim
the power level of the faster motor until you get an acceptable result. The
problem with this approach is that when the load changes (when the robot runs
on different terrains), the power levels required to maintain speed will change.

Using Sensors to Go Straight

A more sophisticated approach that has several positive side effects requires you to
introduce a feedback mechanism into your system, thus controlling each wheel
with sensors and adjusting their speed according to the readings. This is what most
of the “real life” differential drives do.You can attach to each drive wheel an
encoder that counts rotations, and then control the power level in your software to
compensate for the difference in the number of turns. The LEGO rotation sensor is
ideal for this task. Connect one to each wheel and measure the difference in
counts, then stop or slow down the faster of the two for a while to keep the counts
equal. One positive side eftect is that you can use the same sensors to detect obsta-
cles utilizing the technique described in Chapter 4. If a motor is on but the wheel
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doesn’t rotate, you can deduce your robot is stuck against something. Another ben-
efit is that you can use the rotation sensors to perform turns of a precise angle.
Finally, they provide the basic equipment to make your robot compute its position
using a technique called odometry which we’ll discuss later in Chapter 13.

Using Gears to Go Straight

If you have only one rotation sensor, there’s a little trick you can use to control
the difference in speed between the drive wheels instead of the actual speed of the
wheels. Recall our discussion of the difterential gear in Chapter 4.You can use it
to add and subtract. If you connect the drive wheels with a differential so that
one wheel enters the differential with a direction that’s inverted with respect to
the other, the body of the differential itself should stay still when the wheels
rotate at the same speed.

If there is any difference in speed, the difterential gear rotates and its direction
tells you which wheel is turning faster. Figure 8.2 shows a possible setup (a bit
tricky, isn’t it?). We strongly suggest you build this chassis even if you don’t have a
rotation sensor, because the mechanism is instructive and fascinating by itself. We
omitted the motors and any reinforcing beams to keep the picture as clear as pos-
sible, but in your implementation you should add two motors, each one acting on
its wheel like in a standard differential drive. The purpose of the geartrain on the
right 1s to reverse the rotation direction of the axle that enters the differential gear,
at the same time keeping the original gear ratio. The rotation sensor, meanwhile,
connects to the body of the difterential gear to detect whether it turns.

Figure 8.2 Monitoring the Difference in Right and Left Wheel Speed with a
Single Rotation Sensor
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A more radical solution is to lock the wheels together when you need to go
straight. This system is very effective, making your robot go perfectly straight, but
it requires a third motor to activate the locking system as well as some additional
gearing, which makes the solution less than compact. Figure 8.3 shows an
example of a locking mechanism that requires special parts: a dark gray 16t gear
with clutch, a transmission driving ring, and a transmission changeover catch,
which combine in a sort of clutch mechanism (Figure 8.4). That special gear has
a circular hole instead of the standard cross-shaped hole, thus it rotates freely on
the axle. The driving ring should then be mounted on an axle joiner. When you
push the driving ring into the gear (with the help of the changeover catch), the
gear becomes solid with the axle.

Figure 8.3 A Lockable Differential Drive

You can also use the setup shown in Figure 8.2, inserting a motor in place of
the rotation sensor. Recall from Chapter 4 that a motor works as an electric brake,
too: In its off state, it opposes motion, while in the float state it is still not powered
but free to turn. In this solution, you will not power this motor, but rather operate
it as an electric brake for the body of the differential. When you brake the motor in
off state, the differential hardly turns, making your robot go straight. On the other
side, with the motor in float state, the difterential can rotate and the robot is able to
turn. Table 8.2 summarizes some of the possible combinations: The rule is that
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when the left and right motor run with different directions, the differential gear
lock motor must be in float state.

Figure 8.4 The 16t Gear with Clutch, the Transmission Driving Ring, and the
Transmission Changeover Catch

16t gear with clutch

.l'* urummi:-.uun driving ring

-%"55—

transmission changeover catch

Table 8.2 How to Control a Differential Drive Robot Provided with Electric
Differential Gear Lock

Left Wheel Right Wheel Differential Gear

Motor Motor Lock Motor Robot

Off Off Off Rests stationary
Forward Forward Off Goes straight forward
Forward Reverse Float Spins clockwise in place

Continued
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Table 8.2 Continued

Left Wheel Right Wheel Differential Gear

Motor Motor Lock Motor Robot

Reverse Forward Float Spins counterclockwise
in place

Reverse Reverse Off Goes straight backward

Consider that even in float mode the motor has significant mechanical resis-
tance, so the robot will not turn as quickly and the drive motors will be under
more stress when turning.

Using Casters to Go Straight

Casters are another key factor in getting your differential drive moving and
turning smoothly. Most often, though, they are not given enough consideration.
The LEGO Constructopedia suggests the caster shown in Figure 8.5, but we will
take the liberty of saying that it is a poorly designed caster. It uses two wheels
coupled on the same axle.You already know from Chapter 2, however, that this
configuration doesn’t allow the wheels to turn independently. Keep the assembly
gently but firmly pressed on a table, and try to rotate it in a tight turn—it doesn’t
turn very well, does it? In fact, unless you let one of the wheels skid, it doesn’t
turn at all.

Figure 8.5 The Coupled Caster from Constructopedia
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The casters shown in Figure 8.6 get much better results. The one on the left
uses a single wheel, thus avoiding the problem entirely. The one on the right,
which is more solid, uses two free wheels that allow the caster to turn in place
without friction or slippage problems. The difterence is in the wheel hubs. In the
assembly on the left, the axle turns with the wheel, while the one on the right
has the wheels spinning on the axle.

Figure 8.6 Casters Designed to Avoid Skidding

The choice of using one or more casters depends on what task the robot is
designed for. A single caster is enough for most applications, but two casters at the
front and rear of the robot are a better option when stability is important.

In some cases, as with a simple robot of limited weight that has a smooth sur-
face on which to navigate, you can substitute the caster with inverted round tiles or
other parts that provide limited friction when contacting the floor (Figure 8.7).

Figure 8.7 Inverted Round Tiles Can Replace Casters
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Building a Dual Differential Drive

A dual differential drive is an improvement on the simple differential drive. It is
designed to mechanically solve the problem of following a straight path, and uses
only two motors (see Figure 8.8). Its gearing setup is a bit complex, and relies
again on the differential gear—two of them to be precise (see Chapter 9 about
getting supplementary parts).

Figure 8.8 A Dual Differential Drive

maotor 1

motor 2

The dual differential drive inverts the common use of the difterential gear.
Normally, the wheels are connected to the axles coming out of the difterential gear,
while in this case, the wheels are connected to the body of two difterential gears. In
Chapter 4, we explained that a differential gear can be used to mechanically add or
subtract two independent motions; to do this, use the axles coming out of the dif-
terential gear as input, and the body of the differential gear will move according to
the result of their algebraic sum (a sum that takes direction into account).

In this setup, both motors provide one input to the two difterential gears. The
trick is that one of the motors rotates the input axles of the two differentials in
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the same direction, while the other is geared to rotate the other input axles in
opposite directions. To operate a dual differential drive, you will normally use just
one of the motors, keeping the other braked.

In Figure 8.9, you see the same assembly as in Figure 8.8, but without motors.
When motor 1 rotates the 40t gear A, and motor 2 keeps B braked, motion gets
transmitted along the dotted line path in the picture, the two differentials rotate in
sync and the robot goes straight. On the other hand, keeping motor 1 oft and
consequently A braked, and operating motor 2 to rotate B will make the motion
transfer along the solid line and the differentials rotate at the same speed, but in
opposite directions. The result is that the robot spins perfectly in place.

Figure 8.9 The Dual Differential Drive Dissected

Thus, you would normally use a single motor at a time, one for going
straight, the other for turning. Nothing bad happens if you power both motors—
depending on their direction. One of the differentials will receive two opposing
inputs, nullifying them and remaining stationary, while the other adds two inputs,
doubling the resulting speed, in which case the robot pivots around the stationary
wheel, exactly like a simple difterential drive does when one of its wheels moves
and the other rests.
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A very nice feature of the dual differential drive is that with a single rotation
sensor you can precisely monitor any kind of movement of your robot. Couple
the sensor to one of the wheels (it doesn’t matter which one). When the robot
goes straight, you can use the sensor to measure the traveled distance, and when
the robot turns in place, the sensor measures the change in heading.

Of course, remember we said earlier that there are no free lunches in
mechanics. In other words, this ingenious configuration has its drawbacks. The
first, obviously, is its complexity. We deliberately built our example flat on a plane
to keep all the connections easy to understand; however, you can build more
compact versions by stacking some of the gearing (it will still require all those
gear wheels, maybe just a couple less). The complex gearing leads to the second
side effect: our nemesis friction. To make matters worse in this case, you have just a
single motor to fight it!

Building a Skid-Steer Drive

A skid-steer drive 1s a variation of the difterential drive. It’s normally used with
tracked vehicles, but sometimes with 4- or 6-wheel platforms as well. For tracked
vehicles, this drive is the only possible driving scheme. Good examples of skid-
steer drives in real life are excavators, tanks, and a few high-end lawnmowers.

Figure 8.10 shows a simple tracked skid-steer drive. Each track is powered by
its independent motor, that mounts an 8t gear and meshes a 24t gear connected
to the track wheel. The front track wheels need not be powered.

Figure 8.10 A Tracked Skid-Steer Drive
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A wheeled skid-steer drive requires a trickier setup. You must transmit the
power to all the wheels, otherwise your platform won’t turn smoothly, or might
not even turn at all. The model shown in Figure 8.11 uses a row of five meshed
24t gears for each side, all of them receiving power from two motors like in the
tracked version. Every wheel axle mounts its gear, and they are interleaved with
idler gears that serve the purpose of transferring motion from one wheel to the
other. If you do have enough 24t gears, you can mix them with 24t crown gears,
which are exactly the same size. The balloon tires in the picture come from sup-
plementary sets.

Figure 8.11 A Wheeled Skid-Steer Drive

Tracked robots are easy to build and fun to see in action, thus placing them
among the favorites of many builders. Just as with differential drives, when the
tracks go the same direction, the robot goes forward; differences in their speeds or
directions make the robot turn; in-place steering is possible, too. Skid-steer drives
also share with differential drives the same difficulties in getting them to move in
a straight line.

Here is where the similarities end, and some peculiarities of skid-steer
emerge:
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m  Tracks have a better grip than wheels do on rough floors and terrains,
but this is not true on smooth surfaces.

m  Tracks introduce more friction which uses up some of the power sup-
plied by the motors.

m  The unavoidable skidding intrinsic in the nature of these vehicles makes
them absolutely unsuitable for applications where you need to deter-
mine the position by utilizing the motion of the robot.

Building a Steering Drive

A steering drive is the standard configuration used in cars and most other vehicles
that features two front steering wheels and two fixed rear wheels. Thankfully, it’s
suitable for robots too.You can drive either the rear or the front wheels, or all
four of them, but the first is by far the easiest solution to implement with LEGO
parts, so this is what we’ll cover here. Though less versatile than differential drives,
and impossible to steer in place or in very tight turns, this configuration has
many advantages: It’s very easy to drive straight, and very stable on rough terrain.

When building a steering drive robot from the basic MINDSTORMS equip-
ment, you have only one motor to power the drive wheels, because you need the
other to steer the front wheels. Thus your steering drive robot will have about
half the power of a differential drive one, which can benefit from both motors
during straight motion.

In Figures 8.12 and 8.13 you see two simple steering platforms. Apart from
implementation details, these two models share the same construction principles.
For instance, the rear wheels are connected to the driving motor through a dif-
ferential gear. As explained in Chapter 2, you cannot avoid the differential if you
want your vehicle to turn. A second motor steers the front wheels, providing
your robot with a way to change direction. Notice that we used a belt to drive
the steering mechanism, taking advantage of its implicit torque-limiting transmis-
sion to avoid any damage to the mechanism or the motor if the motor remains
on after the steering mechanism has reached one of its limits. You would probably
add a sensor to detect the steering position, allowing your robot to control its
direction. A single touch sensor is the bare minimum needed—make it close
when the steering is centered, so you can use timing to steer the wheels and uti-
lize the sensor to center them back after the turn (Chapter 14 contains an
example of this technique).
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Figure 8.12 A MINDSTORMS-only Steering Drive

Figure 8.13 Another Steering Drive
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Designing & Planning...

Using Ackerman Steering for Smooth Turns

True-life steering vehicles implement a more sophisticated scheme called
Ackerman steering (from the name of the person who first studied it).
In our simple design, the steering wheels turn at the same angle, but
this is not entirely correct—during turns, the inner wheel goes along a
tighter bend than the outer one. During large radius turns, the differ-
ence is small and its effect negligible. In tight turns, however, the effect
becomes quite noticeable, causing one of the steering wheels to skid.
Ackerman’s steering system is designed to compensate for the different
turning angle of the inside wheel, thus eliminating any skidding. The
theory says that the vehicle turns smoothly when the “lines” extended
from every wheel axle meet and revolve around one common point
(Figure 8.14).

Figure 8.14 Ackerman Steering Scheme: The Inner Wheel Turns More
than the Outer One

= l

Building an Ackerman scheme with LEGO is definitely possible.
Chapter 14 incorporates the prototype of a front-wheel drive that fea-
tures the Ackerman correction.

Both models employ a rack and pinion steering mechanism where an 8t gear
(the pinion) meshes with a special plate with teeth, a sort of “unrolled gear” (the
rack). The difference between the chassis in Figure 8.12 and the one in Figure 8.13
is that we built the latter using extra parts that make our life easier: three 1 x 10
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TECHNIC plates, two steering arms, and two tiles. These components are
designed to be combined together, creating a very simple steering mechanism
used in many LEGO TECHNIC car and truck models. In the model presented
in Figure 8.12, built only from MINDSTORMS parts, we had to use a 2 x 8
plate, instead of the 1 x 10 ones, and replace the steering arms with a home-
made version. The whole front section of the vehicle has been built with the
beams oriented studs-front, to provide the necessary support for the wheels and
the steering mechanism, but mostly to provide a smooth surface (the side of the
beam) which the rack can slide over (you will find more information about this
setup in Chapter 14).

When you build the steering assembly, you can move the wheel behind its
pivoting axle for self-centering steering (an advisable property in many situa-
tions). In version a in Figure 8.15, you see a wheel mounted just below the piv-
oting axle, which does not eftect the steering. If you mount the wheel behind its
steering column, friction causes the dynamic forward motion of the car to push
the wheels toward the rear, resulting in a self-centering action. Look at the design
of a shopping cart, and you will see that the actual wheel contact area is behind
the pivoting axis. The more you move the wheel behind the pivoting axis, like
in versions b and ¢, the more self-centering you get. Don’t ever mount the wheel
in front of the pivoting axle, like in version d. This will make your steering
unstable. In fact, the wheel will tend to go toward the rear, causing your car to

f
¥

d

turn spontaneously.

Figure 8.15 Moving the Wheel from the Pivoting Axle

We encourage you to experiment with these concepts, building a simple chassis
and exploring the properties of the various assemblies shown in Figure 8.15.
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The steering drive is a suitable configuration for rough terrains, since it’s very
stable on its four wheels. You can improve the grip of the wheels on the ground
by using some kind of suspension. It’s very important that none of the drive
wheels permanently lose contact with the ground, otherwise the differential
would find the path of least resistance and transfer all the power to that wheel,
resulting in the wheel spinning and your robot becoming immobilized.

A limited slip differential can help reduce this problem (see Figure 8.16) by
connecting the wheel axles to a common supplementary axle through pulleys
and belts. The belts tend to keep the driven axles rotating at the same speed, but
during turns they slip a bit on their pulleys, allowing the wheel to adjust their
speeds. Should a wheel lose contact with the ground, the belts will still be able to
transfer a good portion of power to the other wheel.

Figure 8.16 A Limited Slip Differential

Building a Tricycle Drive

A tricycle drive configuration involves a front wheel that drives and steers and is
matched with two passive independent rear wheels which provide stability
(Figure 8.17).The peculiarity of this configuration lies in the fact that the front
wheel is both powered and steering, giving the robot a high grade of mobility.
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Figure 8.17 A Tricycle Drive

You might think that driving the rear wheels instead of the front one would
give you the same results, but this is true only for a limited range of steering angles.
In fact, like in a steering drive, when narrowing the turn radius, you ultimately
reach a point where the rear wheels can no longer convert power into motion. The
maximum turning angle that a steering vehicle can reach is when the inner wheel
1s stationary and the outer one draws a circle around that point. A front-wheel
driven tricycle, on the other hand, can manage any steering angle, even when the
wheel is perpendicular to the direction of motion of the rear wheels.

Ideally, the driven wheel can rotate 360° to point in any possible direction.
This means you should build a system with no constraints on a full turn (an
example of this architecture is the mechanism used to drive bumper cars at
amusement parks). Our example in Figure 8.14 is capable of rotating the steering
a full 360°, but cannot make more than a single 360° rotation due to the wire
that connects the motor to the RCX.

In practical applications, a 180° turn is enough to allow the robot any pos-
sible movement, because any angle in the range of 180° to 360° is equivalent to
an angle in the range of 0° to 180° with the motion reversed. In other words,
210° with the motor in forward motion corresponds to 30° (210 — 180 = 30)
with the motor in reverse. As with the steering drive, you will probably use a
sensor to detect the position of the steering.
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Building a Synchro Drive

A synchro drive uses three or more wheels, all of them driven and steering. They
all turn together in sync, always remaining parallel, thus the robot changes its
direction of motion without changing its orientation.

Synchro drives are quite challenging to build with LEGO parts. Until a few
years ago, there was general agreement that it should have been possible, yet
nobody had succeeded in the undertaking. Now the barrier has been broken, and if
you navigate the Internet, you can find many well-designed LEGO synchro drives.

To make a full 360° synchro drive and avoid any limitations in its turning
ability, the key point is to transfer motion along the pivoting axle of each wheel.
The simplest approach requires a special part called the turntable, a large round
rotating platform usually employed in LEGO models to support revolving cranes
or excavators (Figure 8.18).

Figure 8.18 The LEGO Turntable

You can attach the wheel to one side, and drive it with an axle that passes
through the hole in the center of the turntable. In Figure 8.19, you can see an
example of this technique. Notice that the turntable is upside down, because the
wheel must be connected to the part of the turntable that gets rotated by the
external gear. Because of this, the robot will result in an entirely, or at least partly,
studs-down design!

We want our synchro drive robot to be able to change direction in place
without moving. To this aim, the two assemblies in Figure 8.19 and 8.20 are sim-
ilar, but not interchangeable. With the driving axle blocked, the lower part of the
turntable should turn smoothly in place—in Figure 8.19 it does, but in Figure
8.20 it doesn’t. This happens because the wheel in Figure 8.20 is not centered
below the pivoting axle, and so when it changes its direction it has to travel some
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distance. The gearing in Figure 8.19 makes the wheel rotate in the proper direc-
tion, the one that complies with the turn, while the gearing in Figure 8.20 makes
the wheel oppose the turn. We realize this is a subtle difference, and we invite
you once again to learn by experience, building the two versions by yourself and
verifying how they work.

Figure 8.19 A Possible Wheel Assembly for a Synchro Drive

To build a complete synchro drive, you need at least three of these turntables.
Then you have to connect them so that one motor can drive all the axles at the
same time, while another can turn all the wheels in sync.
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In Figure 8.21 you see the bottom view of a four-wheeled synchro drive.
Notice that we linked the turntables with 8t gears so they all turn together.
Powering any one of those 8t is enough to make the robot change direction.

Figure 8.21 A Complete Synchro Drive (Bottom View)

Figure 8.22 shows the top view of the same platform: the large 40t gear (a)
drives the wheels through four pairs of bevel gears, while the other 40t (b) is in
charge of turning the wheels. To complete this synchro, you have to add two
motors to power a and b, possibly using an 8t gear to get a ratio which is capable
of reducing the friction introduced by all that gearing.

Synchro drives are quite amazing to see in action, and yours will be no excep-
tion. But if you expect it to navigate the room detecting obstacles, your challenge
isn’t quite over yet: You still have to manage bumpers. In a synchro drive, the con-
cept of “front” and “rear” has no meaning, since the robot can travel using any of
its sides as a front. Consequently, you have to place bumpers all around it. As you
learned in Chapter 4, if your robot has four sides, you are not compelled to use
four sensors for four ports (which your RCX doesn’t have).You can connect four
touch sensors to the same port, using an OR configuration by which any sensor
that gets closed puts the RCX into an “on” state. Or you could simply use a single
omni-directional sensor like the one shown in Figure 8.23; the touch sensor is
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normally closed, but opens whenever the upper axle departs from its default posi-
tion (kept by the rubber bands). Surround your robot with a ring of tubes or
axles, connect the ring to the omni-directional sensor, and that’s it!

Figure 8.22 A Complete Synchro Drive (Top View)
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Other Configurations

Our roundup doesn’t cover all the possible mobile configurations. There are other

more sophisticated or specialized types:

Multi-Degree-of-Freedom (MDOF) vehicles MDOF vehicles have
three or more wheels, or groups of wheels, both independently turned
and driven. Imagine a synchro drive where each wheel can change its
speed and direction with no connection to the others: such a robot
would be able to behave like a differential drive, a steering drive, or a
synchro drive just by controlling its configuration from the software.
Though interesting to study and very versatile in their use, they are also
extremely difficult to build and control. In fact, not all of their possible
configurations result in a coordinated motion!

Articulated Drive This is very similar to the steering drive, but instead
of steering the wheels, it steers a whole section of the vehicle. The front
wheels always remain parallel to the front part of the chassis, and the
same applies to the rear wheels in regards to the rear portion of the
chassis. Nevertheless, the two sections connect through an articulation
point that lets them pivot in the middle. This configuration is common
in wheeled excavators and other construction equipment.

Pivot Drive Keith Kotay defines a pivot drive as a configuration made
of a chassis with non-pivoting wheels with a platform in the middle that
can be lowered or raised. When the platform is up, the robot moves per-
tectly straight on its wheels. When it requires turning, it stops and lowers
the platform until the wheels don’t touch the ground anymore. At this
point it rotates the platform to change its heading, then raises the plat-
form again and resumes a straight motion.

Tri-Star Wheel Drive The Tri-Star configuration has been designed
for high-mobility, all-terrain vehicles. Each “wheel” is actually an equi-
lateral triangle with wheels in each vertex; the vehicle features three of
them for a total of twelve wheels. The wheels turn, and the triangles can
also turn like larger wheels. During normal motion, two wheels of each
triangle touch the ground, but when a wheel sticks against an obstacle, a
complex gearing system transfers motion to the triangular structure,
which turns and places its upper wheel past the obstacle. As complicated
to build as it is interesting!
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m  Killough Platform Developed by Francois Pin and Stephen Killough,
the official name of this mechanical configuration is Omnidirectional
Holonomic Platform (OHP). Holonomy is the capability of a system to
move toward any given direction while simultaneously rotating. While
conventional wheeled vehicles aren’t holonomic at all, this platform
allows for unprecedented mobility. Seen from the top, a Killough drive
shows three wheels placed at the vertices of an equilateral triangle. Each
“wheel” is a sort of sphere made of actual wheels combined together
and used in a quite unconventional way: on their side!

We hope we’ve made you curious about these configurations, and invite you
to find out more about them using the reference material provided in Appendix
A.All of them can be built from LEGO parts, and give you further challenges for
when the standard configurations shown in this chapter have become old hat.

Summary

This chapter has been quite dense, but we hope we’ve been able to help you in
choosing a drive configuration. When building a mobile robot, different architec-
tures are relevant to its resulting shape, and most importantly, to its performance.
The difterential drive is simple and versatile, but can’t go straight. The steering
drive, meanwhile, goes straight but cannot turn in place. The dual differential
drive can do both, but it’s more cumbersome and complex to build. Robotics is
like cooking: there are many recipes for the same dish, but to be successful you
still must know the ingredients well and use them in the right proportions. Of
course, don’t forget to add the most important ingredient of all: your creativity.
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Introduction

If, by now, you are caught up in robotics, you may feel a bit constrained by the
limitations of the MINDSTORMS kit. You want more. What do you perceive
most limiting: the number and range of parts, or the fact your RCX has only
three input and three output ports? Maybe you would like to use new kinds of
sensors, or servo-motors. And why not try out some pneumatic devices?

If the MINDSTORMS was your first LEGO set, you will be pleased to see
that there are many additional parts to boost and support your creativity. If
MINDSTORMS is an addition to your large collection of LEGO TECHNIC
sets, you already know what parts the line includes and probably already have
them—but there is a also wealth of compatible non-LEGO custom parts and kits
you may never have dreamed of: infrared and ultrasonic proximity detectors,
compasses, sound frequency decoders, magnetic switches, and voice recognition
units, just to mention a few. In this chapter, we will explore some options for
expanding your designs and plans, surveying the most important additions, pro-
viding you with information about where and how you can get them, and
describing also the most significant non-LEGO custom devices.

Extra parts are not the only way to expand your project ideas. Some mechan-
ical tricks can also help you in getting the most from the limited number of
output ports oftered by the RCX.You will learn how a single motor can power
two or more mechanisms, and how you can apply this trick to some of the
mobile configurations we described in Chapter 8.

Acquiring More Parts

Describing all the components that make up the LEGO world would be a
tremendously difficult task. The vast LEGO system includes tens of thousands of
difterent parts, belonging to different themes, but all are easily integrated with
each other. That’s the beauty of LEGO:You can always find a new use for some-
thing that might have been built with a completely different purpose in mind.
Whether it be towns, trains, or pirates, any or all of the LEGO themes might add
something useful to your set of equipment. Of course, when it comes to building
robotics, the natural choice is the LEGO TECHNIC line.

Created in 1977 to introduce older children to the world of mechanics and
motors, the TECHNIC line developed into a complete system that includes
many specialized parts. You are already familiar with the almost 140 varieties
found in the MINDSTORMS kit, organized into some of the classes previously
mentioned—beams, plates, axles, liftarms, gears, and so on.
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Introducing Some Specialized Components

Many other TECHNIC parts come in a broader variety than shown in the
MINDSTORMS kit. Liftarms, for example, are increasingly prevalent in recent
TECHNIC releases (Figure 9.1). There’s an evident trend in this direction, and in
fact, some of the newest sets don’t include traditional beams or plates at all.
They're instead composed only of liftarms, axles, and connectors.

Figure 9.1 Liftarms
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Liftarms have many possible uses. We showed in Chapter 5 that they can prof-
itably replace beams to brace the layers of a structure, especially in those cases
when you need a vertical lock that remains within the height of the horizontal
beams because you have other plates or beams above or below them. Other
common transformers include levers and arms, since their cross-shaped holes pro-
vide an ideal attachment point for axles when you need to operate them through
some kind of mechanism.

In previous chapters, we covered some representatives of the new class of
gears not included in the MINDSTORMS kit, like the 20t bevel gear, the 20t
and 12t double-bevel gears, and the 16t gear with clutch (Figure 9.2). There isn’t
currently a service pack specific to gears only, and to increase your inventory, you
have to buy TECHNIC models or MINDSTORMS expansion sets, which
include many other parts.

Figure 9.2 Gears Not Included in the MINDSTORMS Kit
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Special components called gearboxes help you in assembling compact and solid
gearings (Figure 9.3).Version a combines a worm gear with a 24t, thus per-
forming a 1:24 reduction. We explained in Chapter 2 that worm gears can transfer
motion but not receive motion—in other words, they can turn a gear but cannot
be turned by it. We also explained that this feature is of great help when you
want a mechanism to rest in its current position when you’ve switched the power
off—for example, in an arm aimed to lift weights. This gearbox is ideal for such
high-torque applications, because it encloses the 24t and the worm gear into a
solid body case where the gears cannot fall apart.

Version b, the newest of the three, integrates well with standard beams and
provides a convenient way to change the direction of motion or to split power
onto two or three axles using 12t bevel gears.

Version ¢ comes from older TECHNIC sets and corresponds to b in the way
of functionalities. It’s a bit harder to integrate with other parts, but has the advan-
tage of allowing vertical mounts for the gears.

Figure 9.3 Gearboxes
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Chain links, another component not included in the MINDSTORMS kit,
come in two types. The first is meant for use in transmissions, as explained in
Chapter 2 (chain links), while the second was designed to make up tracks of arbi-
trary length (track links, see Figure 2.19 in Chapter 2). Theyre a nice feature,
although it’s a pity the tracks’ links don’t get a better grip on most surfaces and
that they come apart rather easily.

In Chapter 8, you were introduced to the turntable (see Figure 8.15 in
Chapter 8), a very useful part for building rotating subassemblies, as well as some
TECHNIC plates and connectors specially suited for building steering assemblies
in association with the rack gear. Figure 9.4 shows how to combine three 1 x 10
TECHNIC plates, a rack gear, two 8t gears, two steering arms and some axles and
connectors into a fully functional rack and pinion steering assembly. Two of the
plates brace the beams of the chassis, enclosing the steering arms at their ends. The
third plate connects the free ends of the steering arms and lets them pivot while
remaining parallel with each other; a rack on the plate meshes with the pinion
connected to the steering motor (not visible). Notice that the pinion is made up
of two 8t gears; one wouldn’t be enough, because while steering, the plate would
move toward the stationary plates and it would lose contact with a single 8t gear
pinion. Mount the wheels on the steering arms using axles with a stud.

Figure 9.4 TECHNIC Plates and Connectors for Building a Steering Assembly
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The movable plate is supported by two 1 x 4 files, which are like plates with
no studs and which provide the ideal smooth surface other parts can slide over
(Figure 9.5). Racks and tiles are a very good combination for producing linear
motion, and we confess we’ve never understood why LEGO didn’t put any tiles
in the MINDSTORMS kit.

Figure 9.5 Tiles Are Like Plates with No Studs

Some of the largest and most famous TECHNIC sets reproduce cars. They
are a useful source for, among other things, shock absorbers (Figure 9.6), and large
wheels (Figure 9.7). The use of shock absorbers is not limited to their traditional
function, that is, keeping the wheels of a vehicle in touch with the ground on
uneven or rough terrains; you can profitably employ them as springs in many
kinds of mechanisms, including bumpers.

Figure 9.6 A Shock Absorber
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Figure 9.7 The Wheel from the 8448 Super Street Sensation

The flex system (Figure 9.8) allows the transference of linear motion from one
point to another distant one, exactly like the wire ropes that control the acceler-
ator and clutch in motorcycles, or the brakes on a bicycle. You probably won’t
need them very often, but they allow you to operate a part through a distant
motor. They also prove extremely useful in making compact and lightweight
mechanisms—for example, you can open/close a robotic hand at the end of a
long arm that extends from a motor placed in the main body of the robot.
Figure 9.8 The Flex System

LEGO TECHNICS also features a line of pneumatic devices: small and large
cylinders, small and large pumps, pipes, and valves (Figure 9.9). They ofter so
many possibilities when it comes to robotics that we decided to dedicate an
entire chapter to them (Chapter 10).
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Figure 9.9 Components of the Pneumatic System
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Choosing Colors

Most TECHNIC parts come in a large assortment of colors, which include
the traditional LEGO colors (white, red, blue, yellow, green, black, and
gray) and some more recent ones (tan, dark gray, light blue, light-green,
lime, purple, orange, and brown). If you care about colors as much as we
do, this is great news; a conscious use of colors can improve the appear-
ance of robots. However, there’s much more that colors can do for you:
they can help in making the structure and the mechanisms of your robot
more evident. In our favorite scheme, we use two colors for the body of
the robot: one for plates and another for beams, liftarms, and all the other
static parts. This makes the layered structure very easy to read. Then we
use one or two additional colors for mobile parts to highlight their func-
tion in the robot. For example, the fact that you employ a beam as a con-
necting rod between two parts of a mechanism is more apparent if its
color stands out against the prevalent colors of the robot.

In large and complex robots, you can use colors to identify its sub-
systems: one color for the mobile platform, another for the grabbing
arm, a third for the rotating head, and so on for each relevant unit.

Continued
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Colors help also in keeping the wiring neat when necessary. A dual
RCX robot, for example, can use up to 12 input and output connections,
and some of these wires are probably not so easy to trace inside the
structure of the robot. Place pairs of small plates on the connectors at
both ends of a wire, using a different color for each wire, and you’ll have
no problem understanding which port is connected to the motor and
which is connected to the sensor.

Buying Additional Parts

Now that you’ve seen all these parts, you might wonder where you can get them.
This is a very good question which, unfortunately, has no easy answer. There are
general accessory sets, themed sets, expansion sets, and service packs, as well as
general catalogues. Each may offer more or less than you need at one time, and
price may also be a factor.

The MINDSTORMS line has many sets, but in our opinion some of them
are priced a bit too high for their actual value. The 3801 Ultimate Accessory Set
is a good choice, including a rotation sensor, a touch sensor, a light brick, a
remote control, and other parts.

The 9732 Extreme Creatures Set contains few interesting parts for its price,
but remember the Fiber Optic System unit, as explained in Chapter 4, can be
used as a rotation sensor, too. The 9730 RoboSports Set is a bit more interesting,
as it contains an extra motor. The most notable parts contained in the 9736
Exploration Mars Set are two gearboxes, six balloon tires, two very long cables
(3m) and a bunch of beams, plates, gears, and connectors. In our opinion, these
three sets are good purchases only if you find them at a reduced price.

The 9735 Robotics Discovery Set contains a unit called Scout that’s a sort of
younger brother of the RCX. Scout incorporates a light sensor, and features two
output ports for motors and two input ports for sensors (passive types only: touch
and temperature). It has a large display and ofters some limited programmability
from its console, without the need for a PC, thus offering an easy start to
robotics. Despite this nice characteristic, we feel it’s a bit too limited.

The two Star Wars MINDSTORMS sets, the 9748 Droid Developer Kit and
the 9754 Dark Side Developer Kit contain an even more limited unit,
MicroScout, that incorporates a motor and a light sensor, but has no ports. It has
seven predefined programs, and can be interfaced to the Scout with an optical
link to act as its third motor. Through the Scout you can also download a tiny
program to the MicroScout. In our opinion, MicroScout is definitely too simple
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to be used for robotics, so we again suggest you buy these sets for their parts, and
only if you find them for sale at a discounted price. If you really want another
programmable brick, we strongly recommend a second MINDSTORMS kit,
which with its RCX, two motors, three sensors, and more than 700 additional
parts, in our opinion remains your best option.

LEGO also released a video camera system called 9731Vision Command. The
camera connects to your PC, and a dedicated LEGO software can send IR com-
mands to your RCX unit, through the tower, according to what happens inside the
observed area. Don’t dream of recognizing shapes or performing other sophisticated
artificial vision tasks, since Vision Command allows only very basic reactions to
changes in some predefined areas of the screen. You will discover also that the cable
that links the camera to the PC is a constraint to your robot mobility. Despite these
limitations, however, Vision Command opens up a world of possibilities.

MINDSTORMS expansion sets are an option, and TECHNIC sets another.
Sad to say, but the current TECHNIC line does not include many expansion sets
with suitable parts for robotics. Old TECHNIC sets had more beams and plates
then current ones do, which, as we explained, tend to rely more and more on stud-
less liftarms, which are useful but somewhat complicated to use. If you are so lucky
as to find some discontinued TECHNIC sets, you have a good chance of it better
suiting your needs. Being bound to the current production, large sets are a better
purchase than small ones, having a higher ratio between functional and decorative
parts. We prefer not to suggest any specific model here, as each fan has his or her
own preferences; also, every year LEGO releases new sets and discontinues others.

With all that said, it is perfectly understandable that you may simply wish to
buy only the specific parts you need. LEGO ofters a mail service, called Shop-At-
Home, from whose catalog you can order both sets and elements packs or service
packs. Recently LEGO started an online service called LEGO Direct, through
which you can order from your computer, pay with your credit cards, and get the
parts or sets shipped to your door. LEGO Direct has been greeted with great
enthusiasm by LEGO fans who see it as the promising beginning of a new era,
one where everybody can order only the specific parts they need from a com-
plete catalog. Currently, LEGO Direct ofters the current line of sets and a limited
choice of service packs, but the range is increasing and we all hope that it ends in
a thorough and practical worldwide service.

Another useful resource is the DACTA service. DACTA is the branch of
LEGO devoted to educational products, whose catalog includes a wide range of
sets and supplementary kits. Though packed with a different assortment, the
DACTA boxes contain the same parts used in commercial LEGO products. In all
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countries, the sale of the DACTA line is entrusted to companies specialized in
selling educational items to institutions, though they normally sell to the public, too
(for example, PITSCO in the USA and Spectrum Educational in Canada). Though
not exactly cheap, the DACTA catalog includes many parts no longer available in
sets or service packs, like the turntable or the track links, and many other parts that
remain hard to find in large quantities, like the 40t gear and the rotation sensor.

Last but not least, LEGO fans from all over the world have formed a sort of
community that has its own selling services. Some fan-run Web sites offer an
impressive array of new and used parts and sets, in either mint or used condition,
and most of the sellers accept credit cards and ship internationally. See Appendix
A for some links to these commercial and private Internet LEGO shops.

Creating Custom Components

In the following sections, you will see that some of the proposed enhancements
involve parts not supplied by the LEGO company. This applies in particular to
electronics like motors and sensors.

We understand that your attitude toward non-LEGO parts could range from
enthusiasm to hostility. You might see the benefit in making your own tempera-
ture sensor (spending only $2 instead of the $30 that the original costs), or you
might be keen on the opportunity of giving your robot a voice recognition
device. On the other hand, you might feel that using non-LEGO parts is a viola-
tion of the rules of the game, or you may be so fond of LEGO that you wish not
to contaminate it with foreign components.

We can not, and will not, recommend one viewpoint over the other—the
choice must be yours. We are personally open to some nonoriginal devices, pro-
vided that they “look like” LEGO parts. These can be cased into LEGO bricks,
use standard LEGO wires and connectors, and quite closely resemble the origi-
nals. However, the use of aluminum plates, brass nuts, and bolts through LEGO
beams, axles or plates cut to match a specific size, and visible chips and resistors
are all unacceptable options to us. This is, again, our own choice, however.

Limiting your choices to LEGO parts has a certain appeal. Its like a common
paradigm inside which you challenge yourself and other people to reach higher
and higher goals. Most of the time, we build pure LEGO robots, using other
devices only when we have something special in mind that we feel can really
benefit from that particular hardware. Staying with original LEGO is particularly
important when approaching contests and public challenges. It’s a simple way to
regulate what’s admitted and what’s not, and to be sure, too, that all competitors
are pulling from identical resources.
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On the other side, if youre open to experimenting with non-LEGO devices,
your horizons become much broader. In this section, we’ll provide some exam-
ples of what can be done with them, our assumption being that you continue to
use LEGO parts to build your robots, and the RCX to run them; thus, we’ll dis-
cuss the use of non-LEGO sensors and motors only.

The LEGO company doesn’t release much information about the internals of
its electronic devices, so most of the technical details currently available to the
public are based on the work of the pioneer hackers who analyzed and dissected
the sensors and motors. Michael Gasperi is the person who made the strongest
single contribution to this process, his Web site and book being reference points
for any work in the field. Some of these custom devices are really easy to make if
you can solder, or have a friend who can. In this chapter, we will show you some
of what can be done; refer to Appendix A to find resources that teach you how to
make this stuff, or tell you where to buy it.

Building Custom Sensors

Michael Gasperi ‘s site explains how to build some simple custom sensors. The
simplest of all is probably the passive light sensor built with a cadmium sulfide
(CdS) photo-resistor and nothing more (Figure 9.10). This sensor is much better
than the original LEGO light sensor in measuring ambient light, though it’s a bit
slow in acknowledging variations. With two CdS cells and some electronics, you
can build a differential light sensor, which tells you in a single value if there’s any
difference in the amount of light received by the two units; this is very useful in
pinpointing light sources.

Figure 9.10 Single and Double CdS Light Sensors
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Recycling junk is an option when trying to save money. Figure 9.11 shows a
touch sensor made with a switch from a computer mouse. Pulling apart a broken
mouse, you will discover that there are some micro-switches connected to its
push-buttons. Unsolder them from their circuit plate, solder their terminal to an
electric plate, then add some parts to the case in the switch.

Figure 9.11 A Mouse Switch Recycled into a Touch Sensor

There are many people who describe in their Web sites how to make custom
sensors, providing schematics and detailed instructions. Some of them also sell
construction kits or finished sensors. Pete Sevcik is a good example of this latter
category; his sensors are very well engineered and professionally cased into
LEGO bricks. Figure 9.12 shows three of his infrared proximity detectors (IRPD).
An IRPD is a sensor based on the IR light proximity measurement system we

WwWw.syngress.com



166 Chapter 9 * Expanding Your Options with Kits and Creative Solutions

explained in Chapter 4, with the advantage being that you are not required to do
anything in your code, just read the sensor value. IRPD sensors have an incred-
ible range of applications. They are perfect for obstacle detection, of course, but
you can use them also to make your robot follow your hand movements, to
trigger the grabbing feature of a robotic hand, to find soda cans or locate your
opponent during competitions. As we explained in Chapter 4, the proximity
detection technique cannot measure distances, but it can tell you if an object is
coming closer or entering its field of detection. The rightmost sensor in Figure
9.12 is a dual IRPD, able to detect an obstacle within a wider angle and tell you
it it’s front, left, or right with a single reading.

Figure 9.12 Different Kinds of Infrared Proximity Sensors

Sevick also produces a pitch sensor, a sophisticated sound sensor that returns a
value proportional to the frequency of the incoming sound. You can thus control
your robot by simply whistling or playing a flute or recorder like a modern Pied
Piper. The robotic pianist of Chapter 21 represents a possible application for this
sensor: It can learn a simple melody just by listening to it.

John Barnes is another person who has shown incredible creativity and com-
petence in building custom sensors. Barnes made one of the first LEGO compat-
ible ultrasonic sensors (Figure 9.13), a device able to measure distances evaluating
the delay between the emission of a sound and its returning echo. Like a sonar,
the sensor emits an ultrasonic signal (not audible), reads its echo, and returns a
value that represents the distance of the closest object. The fields of application of
these sensors are similar to what’s described for the IRPD sensors, with the fur-
ther advantage that ultrasonic sensors return an absolute distance value. This
means that your robot can improve its navigation abilities, because it can not
only avoid obstacles but also find the best route evaluating the distances of the
surrounding objects.
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Figure 9.13 An Ultrasonic Distance Sensor

Barnes has assembled many other amazing devices, including a compass with a
resolution of 3.75° (Figure 9.14) and a pyroelectric sensor able to detect the pres-
ence of humans or animals by measuring the changes in ambient IR radiation
(Figure 9.15). The compass sensor just looks like a pile of bricks, because there
isn’t any device emerging from its body, but the inside contains a small electronic
compass and a circuit to convert its output into values that the RCX can inter-
pret. Connect the compass sensor to an input port of the RCX configured for a
light sensor, and it will return values in the range of 0 to 95, where 0 is North,
24 is East, 48 is South, and 72 is West. Having the RCX know which way it’s
pointing in order to keep going straight and having it make known angle turns
makes a big difference in solving navigation problems!

Figure 9.14 A Compass Sensor
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Figure 9.15 A Pyroelectric Sensor

The casing around the pyroelectric sensor has a small hole that lets its internal
“eye” receive the infrared light any warm body produces. It requires some time to
adapt to the ambient radiation, but afterward it can detect any change in intensity.
These features make it unsuitable for mobile robots, but it’s very useful in those pro-
jects where a robot must start doing something when it detects a human presence.

Probably the most astonishing of Barnes’ devices is his Voice Recognition unit
(Figure 9.16). After a short teaching session, you will be able to give simple one-
or two-word commands to your robot like “go,” “stop,” “left,” “take” and see your
robot perform the required task. It’s rather large and heavy, because it contains its
own set of batteries, and, consequently, is not very easy to place in a compact
robot. However, it gives reality to the dreams of robots harbored by every sci-f1
fan: the ability to respond to vocal commands!

Figure 9.16 John Barnes’ Voice Recognition Unit
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No-contact switches are very useful tools, too. These are switches that close
without the need of physical contacts with the casing of the sensor. We integrated
Michael Gasperi’s General Purpose Analog Interface with a Hall-effect detector to
build a sensor capable of detecting magnetic fields (Figure 9.17). A Hall-eftect
detector is a small integrated circuit which returns difterent signals depending on
whether it 1s in the presence of a strong magnetic field or not. Gluing a small per-
manent magnet on a LEGO peg, you can easily mount it on any mobile part of
the robot. When the magnet comes very close to the sensor, the latter detects it.

Figure 9.17 A Hall-Effect Sensor

Chris Phillips followed a simpler and more eftective approach to get the same
result using a cheap and easy-to-mount Reed switch. A Reed switch is a small bulb
containing two thin metal plates very close to each other. When you put the bulb
close to the source of a strong magnetic field, the metal plates touch and com-
plete the circuit. Small permanent magnets are the ideal parts to trigger this
sensor, with the same procedure we described for the Hall-effect sensor. You can
also use the LEGO magnets designed to couple train cars. Detecting trains is
actually what Phillips devised his sensor for, but it is suitable for many other
applications: It can replace touch sensors in almost all applications, and even emu-
late rotation sensors if you mount the permanent magnet on a wheel that makes
it pass periodically in front of the sensor.

Figure 9.18 shows a Reed bulb mounted in series with a 100K resistor over a
LEGO electric plate, which provides an easy way to interface custom sensors to the
standard LEGO 9v wiring system. The final sensor will be cased in a hollowed
brick to make it look like a standard LEGO component.

169

WwWw.syngress.com



170 Chapter 9 ¢ Expanding Your Options with Kits and Creative Solutions

Figure 9.18 A Reed Switch Sensor before Final Assembly

Solving Port Limitations

Some of the electronic devices that have appeared in the LEGO robotics com-
munity are meant to solve the endless dilemma of the limited input and output
port number. The common approach involves multiplexing, a technique through
which signals from different sources are combined into a single signal. Michael
Gasperi explains how to build a very simple multiplexer that can host up to three
touch sensors and return a value that the RCX decodes into their respective
states (Figure 9.19).This device takes advantage of the fact that the RCX can
read raw values instead of simple on/oft states, and returns a unique number for
any possible combination of three sensors.

Figure 9.19 A Three Touch Sensor Multiplexer

Nitin Patil designed a more complex multiplexer suitable for connecting a
single input port to three active sensors, like the original light and rotation sensors,
or any other custom active sensor like IRPDs, sound, and so on. Active sensors use
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the entire raw value range, thus this device cannot combine their signals into a
single number like the three touch sensor multiplexer does. Actually Patil’s device
connects a single sensor at a time to the port, and requires the RCX to send a
short impulse to select the desired sensor (Figure 9.20).

Figure 9.20 A Three Active Sensor Multiplexer

Pete Sevcik’s Limit Switch, though not a multiplexer, allows you to save some
ports by combining two touch sensors and a motor on a single output port
(Figure 9.21). Until a switch closes, the motor is under normal control from the
RCX.When a touch sensor gets pressed, the inner circuit prevents the motor
from turning into a specific direction, thus automatically limiting the motion of a
mechanical device. If your robot has a rotating head, this limit switch can make it
stop at its left and right bounds using just a single port.

Figure 9.21 Pete Sevcik’s Limit Switch
- =

-

Output port multiplexing, though technically possible, doesn’t get the same
attention as input port multiplexing, thus there are few schematics and little doc-
umentation on this topic. The focus seems most on using difterent kinds of
motors, servo motors in particular. Servos are typically used in radio-controlled
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models to steer vehicles, move ailerons, and handle other movable components.
They are cheap and have high torque, thus they are ideal for some applications.
Unfortunately, they expect power in a specific waveform that the RCX cannot
supply. Ralph Hempel solved the puzzle creating a simple electronic interface
that performs the appropriate conversion, thus revealing the power of servo
motors to LEGO robotics hobbyists.

.

NoTEe

The number of electronic expansion devices is vast, and still growing. If
you are curious about these devices, we once again invite you to visit
. some of the Web links we provide in Appendix A.

Creative Solutions When
More RCX Ports Are Needed

When you start gaining experience with LEGO robotics, and wish to build
something more complex than your early robots, you will quickly find yourself
facing the heavy constraints imposed by the limited number of ports the RCX
has. Are three motors and three sensors too few for you? If you feel a bit frus-
trated, remember that youre in good company. Thousands of other MIND-
STORMS fans feel the same!

In Chapter 4, we provided some tips on connecting more sensors to a single
input port. We are going to describe here some tricks that, using only LEGO
components, allow you to somewhat expand your motor outputs.

Start by observing that in some applications you don’t need a motor turning
in both directions, just one motor in one direction. Your robot can take advantage
of this fact by driving two different gearings with a single motor. Figure 9.22
shows how you can achieve this using a difterential gear: Its output axles mount
two 24t gears that can rotate each one only in a single direction. The two 1 x 4
beams work like rafchets. They let the gear turn in one direction but block its
teeth in the other. If you connect the motor to the body of the differential, it will
drive either the right or the left axle depending on its direction.

Another setup, shown in Figure 9.23, is based on the fact that the worm gear
is free to slide along the axle.
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Figure 9.22 Splitting a Rotary Motion on Two Axles

Provided that there is some friction in the output axles B and C, when axle A
turns clockwise, the worm crawls left until it engages the B 8t gears and gets
stopped by the beam. Turning A counterclockwise, the worm crawls right, disen-
gaging the B gears and engaging the C pair. Thus, with a single input axle you
get two pairs of outputs, each pair having one axle turning clockwise and the
other counterclockwise. We invite you once again to build and test this simple
assembly. It’s almost unbelievable to see!
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To put theory into practice, let’s see how you apply these principles to the
mobility configurations of Chapter 8. The difterential drive is a good starting
point. Can you drive two wheels with a single motor? Yes, you can—using the
differential gear to split its power onto two separate outputs. Then, copying the
design of Figure 9.22, add a ratchet beam that acts on one of the wheels (Figure
9.24). The motor drives both wheels through the differential when going for-
ward, but one of them gets blocked during reverse motion, making the robot
pivot around it. Simple, but limited. It’s not guaranteed to go straight, and cannot
spin in place. Nevertheless, it allows you to make a mobile platform that uses
only one port of your RCX!

Figure 9.24 A Single Motor Differential Drive

The dual differential drive shown in Chapter 8 is a good starting point for a
more sophisticated solution. Its design uses one motor to drive straight and the
other to change direction.You should replace these motors with a mechanism
similar to that of Figure 9.22, making the output axles of its differential gear (the
third of the robot!) take the place of the motor shafts. Now apply a motor to the
last differential gear: In one direction it will make the robot go forward, in the
other it will make the robot spin in place. It works, though we realize that the
resulting gearing probably isn’t the simplest thing we’ve ever seen!

Even in the synchro drive (Figure 9.25) you can get full motion control with
a single motor. Relying on the fact that the synchro drive has the freedom to
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turn on its wheels at any angle, you can keep them turned in the same direction
until they reach the desired position. Again, apply the scheme of Figure 9.22 and
make one output axle of the differential gear operate the steering mechanism,
while the other provides drive motion.

When the motor turns one way, the wheels change their orientation, and
when the motor turns in the other direction, the wheels move the robot forward.
Backward motion is not required, because the wheels can point to any heading
and the motion reversal is performed by a 180° change in their direction. With a
platform like this, you have complete control over navigation, and you still have
two free output ports to drive other devices.

Figure 9.25 A Single Motor Synchro Drive

Single motor tricycle drives are possible, too, requiring a gearing very similar
to that of our single motor synchro drive. Make just one of those steering-driven
wheels, add two rear free wheels, and you’re done.

This trick of splitting the turning directions over two separate axles obviously
won’t cover all your needs for extra ports. In many cases, you must control both
directions of your gearings, but you probably don’t need all motors running at
the same time. In a robotic arm with three independent movements, for example,
you use three motors, but using just one at a time doesn’t affect its global func-
tionality. The idea is to use one motor to make a second motor switch among
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several possible outputs. This approach will always require two motors, and
engages two output ports, but can give you a virtually unlimited number of inde-
pendent bi-directional outputs, only one of them running at any time. A possible
implementation of such a device is shown in Figure 9.26. The motor at the
bottom drives five 16t gears all linked together. On the other side of the assembly
there are five 8t output gears not connected to the previous 16t. A second motor
at the top slides a switching rack that, through a 16t on one side and a 24t on the
other, connects the input gears to one of the five possible outputs. We used a
touch sensor to control the position of the switching rack: five black pegs close
the switch in turn when the gears are in one of the five matching positions. Due
to its large size, this setup is probably more suitable for static robots than for
mobile ones.

Figure 9.26 Switching a Motor among Five Output Axles
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The previous example requires two output ports and one input port. In this
case, as well as some others, we can save an input port by implementing a sort of
stepper motor. A stepper motor is a motor that, under a given impulse, turns pre-
cisely at a known angle, just a single step of a turn. Stepper motors are
widespread devices. You can find them in any computer printer or plotter, and in
digital machine tools. LEGO doesn’t make a stepper motor, nor does the RCX
have dedicated instructions for them, but Robert Munafo found a pure-LEGO
solution. Our version is a slight variation of Robert’s original setup (see Figure
9.27). A rubber band keeps the output axle down in its default position.You have
to power the motor for a short time, enough to make the axle get past the resis-
tance of the rubber band and make a bit more than half a turn. Now put the
motor in float mode, wait another short interval, and let the rubber band com-
plete the turn of the axle. For any impulse made of a run time and a float time,
the output shaft makes exactly one turn.

Figure 9.27 A Stepper Motor

The beauty of the system is that timing is not at all critical. The on time can
be any interval that makes the axle rotate more than half a turn but less than one
and a half, while the float time can be any interval equal to or greater than the
time needed for the rubber band to return to its default position.

Summary

In this chapter, we have been discussing extra parts, expansion sets, custom sensors,
and tricks for using the same motor for more than one task:
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m  Extra parts come from either sets or service packs. Unfortunately, it’s not
always easy to buy just the parts you need, because sometimes they don’t
come in a service pack and you have to buy a set that contains many
other elements you don’t need. The LEGO Direct Internet shop is
growing quickly, and it promises to become a very thorough and prac-
tical service. DACTA supplier and fan-run online shops fill the gap in
the offer of spare parts, giving you countless opportunities to improve
your equipment set.

m  Custom sensors are a new frontier, and reveal a whole new world of
possibilities. Would you like your robot to measure the distances of the
objects around it? It’s possible. Would you like it to recognize vocal com-
mands? Again, it can be done. Proximity detectors, sound sensors, mag-
netic switches, electronic compasses, input multiplexers... the Internet is
crowded with Web sites that teach you how to build your own MIND-
STORMS-compatible custom sensors, or that sell them ready to use.

®  Mechanical tricks enable you to use the same motor to power multiple
mechanisms. Through the use of a differential gear and a couple of
ratchet beams, you can split the output of a motor between two output
axles. This principle extends to the point of driving a complete platform
with a single motor.

There’s a common denominator for these apparently unconnected topics—
we want to push the limits farther. What this means (and can mean) depends on
you, on what your rules are in regards to using non-LEGO parts, on how much
you can spend on expansion sets, and how imaginative you are in finding new
solutions to problems. Don’t give up without a fight! Reverse the problem, or
start again from scratch, or let the problem rest for a while before you attack it
again. Look around you for inspiration, and talk to friends. Most of the greatest
MINDSTORMS robots ever seen came from ideas that seemed impossible at
first glance.
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Introduction

In Chapter 9, we mentioned that pneumatics might be a nice addition to your
robotic equipment. Now, we’ll explore the topic in more detail. Pneumatics is the
discipline that describes gas flows and how to use its properties to transmit
energy or convert the same into force and motion. Most pneumatic applications
use that gaseous mixture most widely available—air—and the LEGO world is no
exception.

Pneumatics is a great tool for robotics, and is especially useful when your
mechanisms need linear motion or an elastic behavior. Its also very useful as a
way to store energy for subsequent uses. We will briefly cover the basic concepts
of pneumatics, then put those theories into practice, explaining how LEGO
pneumatic components work and what you can do with them, along the way
showing you how to stop and start airflow in order to produce motion in your
robot. By the end of the chapter, you should hopefully be up to speed on many
pneumatic components, including: valves, pumps, cylinders, compressors, and
pneumatic engines.

Recalling Some Basic Science

To understand pneumatics, you have to recall the properties of gases. The most
important property is that they have neither specific shape nor volume, because
they expand and fill all available space within a container. This means that the
quantity of gas inside a tank does not solely depend on the tank’s volume. The
greater the quantity of gas in a given volume, the higher its pressure.

-

NoTE

The science that describes the properties of gases is called thermody-
namics. Its Ideal Gas Law relates four quantities: volume, pressure, tem-
perature, and mass (expressed in moles). In our simplified discussion, we
will deliberately ignore temperature, since, in our situation, it shall essen-
tially remain constant throughout.

We all have the opportunities to experiment with pneumatics using everyday
objects. The tires of a bicycle are a good example: Their inner volume is constant,
but you can increase their pressure by pumping air in. The more air inside, the
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greater the pressure, and the more it opposes external forces—in other words, the
tires become harder.

This example leads to a second important property of compressed gases: Their
pushing outward on the walls of their containers illustrates their elasticity.
Elasticity is the property of an object that allows it to return to its original shape
after deformation. The greater the elasticity, the more precisely it returns to its
original configuration. In the example of the bicycle tire, if you push your finger
against it, you can temporarily create a dimple in the surface, but as soon as you
remove the finger, the tire resumes its shape—the greater the pressure inside, the
higher the resistance to deformation.

The fact that gases are so easy to compress is what makes pneumatics different
from hydraulics (the science of liquid flow). Essentially, liquids are uncompressible.

When you compress a gas into a tank, increasing its pressure, you are storing
energy. Pressure can be interpreted also as a density of energy, that is, the quantity
of energy per unit volume. This leads to a very interesting application of pneu-
matics: You can use tanks to accumulate energy, which can then be later released
when needed.You pump gas in to increase the pressure in the tank, storing
energy, and draw gas out to use that energy, converting it into motion.

A flow of air or gas in general is produced by a difterence in pressure: The air
flows from the container with the higher pressure into the one with the lower
pressure, until the two equalize. (In this context, we’ve given the term container
the widest possible meaning. It can be a tank, a pipe, or the inner chambers of a
pump or cylinder.)

Pumps and Cylinders

LEGO introduced the first pneumatic devices in the TECHNIC line during the
mid-eighties, then a few years later modified the system to make it more com-
plete and efficient. After a long tradition of impressive pneumatic TECHNIC
sets, including crane trucks, excavators, and bulldozers, they discontinued the pro-
duction of air-powered models. Fortunately, LEGO pneumatic devices have been
recently reissued in a specific service pack (#5218) available through Shop-At-
Home or at the LEGO Internet shop.

The basic components of the LEGO pneumatic systems are pumps and cylin-
ders (see Figure 10.1). The function of a pump is to convert mechanical work into
air pressure. They come in two kinds, the large variety, designed to be used by
hand, and its smaller cousin, suitable for operation with a motor. Cylinders, on
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the other hand, convert air pressure back into mechanical work, and come in two

'

o o K-

large pump small pump large cylinder small eylinder

different sizes as well.

Figure 10.1 Pumps and Cylinders

Figure 10.2 shows a cutaway of the large pump in action. When you press its
piston down, you reduce the volume of the interior section, thus increasing the
pressure and forcing air to exit the output port until the inner pressure equals
that outside. When you release the piston, the spring pushes the piston up again; a
valve closes the output port so as not to let the compressed air come back inside
the pump, while another valve lets new air come in around the piston-rod. The
small pump follows the same working scheme exactly, with the difference being
that it doesn’t contain a spring and its piston needs to be pulled after having been
pushed. It’s designed to be operated through an electric motor.

Cylinders are slightly different from pumps. Their top is airtight and doesn’t
let air escape from around the piston-rod. The piston divides the cylinder into
both a lower and upper chamber, each one provided with a port. The basic prop-
erty of a pneumatic cylinder is that its piston tends to move according to the dif-
ference in pressure between the chambers, expanding the volume of the one with
higher pressure and reducing the other until the two pressures equalize, or until
the piston comes to the end of its stroke. When you connect the lower port to a
pump using a tube, and supply compressed air into the lower chamber, its pres-
sure pushes the piston up. Doing this, the volume of the chamber increases, and
this lowers the pressure until it’s equal to that of the upper chamber. During the
operation, the port of the upper chamber has been left open, so its air can freely
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escape, reaching equilibrium with the outside air pressure. Similarly, when you
connect the upper port to the pump, and supply compressed air, the piston moves
down (Figure 10.3).

Figure 10.2 Cutaway of the Large Pump in Action
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Figure 10.3 Cutaway of the Large Cylinder in Action
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Surely you don’t want to move the tube from one port or the other to
operate the cylinder. It may work, but it’s not very practical. The LEGO valve has
been designed precisely for this task: It can direct the airflow coming from a
pump to any one of the two ports of a cylinder, while at the same time let the
pressure from the other chamber of the cylinder discharge into the atmosphere
(see Figure 10.4). The valve also has a central (neutral) position, which traps the
air in the system so the cylinder can neither move up nor down.

Figure 10.4 The Basic Pneumatic Connection
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The LEGO tubing system 1s completed by a T-junction and a tank (see Figure
10.5). T-junctions allow you to branch tubes, typically to bring air from the
source to more than a single valve. The tank is very useful for storing a small
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quantity of compressed air to be used later. We explained that increasing pressure
is like storing energy, thus the air tank can be eftectively considered an accumu-
lator: charge it with compressed air and release it through the valve when neces-
sary to convert that energy into mechanical work.

Figure 10.5 A T-Junction and a Tank

T

Pneumatic cylinders provide high-power linear motion, and thus are the ideal
choice for a broad range of applications: articulated arms or legs, hands, pliers,
cranes, and much more. In describing the basic concepts about pneumatics, we
told you that compressed gases tend to make their containers react elastically to
external forces.You can test this property with LEGO cylinders, too: connect a
cylinder to a pump and operate the pump until the piston of the cylinder extends
in full. Now, press the rod of the cylinder. You can push it down, but as soon as
you stop applying force, the rod comes back up again. This property is quite
desirable in many situations.

Let’s suppose youre going to build a robotic hand. If you try to use an electric
motor to open and close the hand, you must somehow know when to stop it. To
do this, you can use some kind of sensor as a feedback control system that tells your
RCX the object has been grabbed and the motor can be stopped. However, a
pneumatic cylinder, in most cases, needs no feedback. The air pressure closes the
hand until it encounters enough resistance to stop it. This approach works in a
wide variety of objects. (If your robot is designed to hold eggs, be sure it exerts a
very gentle pressure!) Figure 10.6 shows a simple pneumatic hand grabbing dif-
ferent kinds of objects.You see that we used a scissor-like setup that gives our hand
a rather large range in regards to the size of the things it can handle.

The previous example gives you an idea of what pneumatics can be used for.
Likely, you're already imagining other interesting applications. Unfortunately, the
LEGO pneumatic system was not designed to be electrically controlled, so to
effectively use it in your robotic projects you need an interface that allows your
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RCX to open and close valves. And, unless you plan to run behind your robot
pumping like crazy, you probably would like to provide it with an automatic
COMpressor.

Figure 10.6 A Simple Pneumatic Hand

o

==

Controlling the Airflow

Almost every LEGO robotics fan would like LEGO to release an electric valve to
control pneumatic cylinders, but until it does, you have to get by with mechan-
ical solutions.

What you need in this case is a kind of indirect control similar to the one we
showed in Chapter 2 when talking about the polarity switch. Figure 10.7 shows
one of many possible solutions: The motor turns the clutch gear through a crown
gear; on the same axle of the clutch gear there’s a liftarm that operates the valve.
We used the clutch gear as usual to make the timing less critical and avoid any
motor problems should it stay on a bit longer than required. You can use a stan-
dard 24t gear as well. This might even be necessary if you find a valve stiffer than
average. Theyre not all the same, and some are really hard to operate.
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Figure 10.7 An Electric Valve

The downside of our electric valve is that it’s able to switch between the two
outermost positions, but centering the valve in its neutral position is almost
impossible. This is not a big problem, because in most applications you can leave
the cylinders connected to the air supply. However, if you really need the central
position, you can use a touch sensor that controls when the valve is centered, and
utilize a slightly slower gearing, like that shown in Figure 10.8.

Figure 10.8 The Electric Valve with a Sensor

This electric valve is not very compact, but there’s not much more you can
do considering the size of the LEGO motor. Just the same, it works rather well,
and you may feel satisfied with it. But could you make something better? Try
applying some of the tricks you learned in previous chapters. For example, you
know you can control more than one valve with a single motor. You have seen
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that, using a differential, it’s possible to separate the two turning directions of a
motor on two different axles. Now you only need to connect each axle to a valve
so the valve cycles between its positions using only one turning direction. This is
done using a liftarm as a connecting rod, like in old steam locomotives (see
Figure 10.9).

Figure 10.9 A Cycling Valve

Figure 10.10 shows a prototype of a complete double electric valve, which
combines two setups like those of Figure 10.9 with a motor, a differential gear
and some additional gearing. We had to use a worm gear to drive the body of the
differential because this mechanism requires a lot of torque to be operated. The
differential splits the power onto two 40t gears, each one featuring a ratchet beam
that lets it rotate only in a specific direction. Thus, when the motor turns clock-
wise, one valve moves, while if it turns counterclockwise, the other does, each
one cycling between all positions.

Figure 10.10 A Single Motor Dual Electric Valve
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There’s one last problem to solve: How do you know which state each valve
is in? And how do you stop the motor precisely when a valve reaches the desired
position? Timing it is not an option. As we’ve said before, it’s very difticult to
control mechanisms through timing only. You can use sensors, of course, but
where should you put them?

Two touch sensors per valve would add up to four sensors; that’s a bit too
much for your RCX, and anyway you are looking for an option that conserves
ports. If you use just two touch sensors, putting them so they close when the
valves are at an extreme, you can use timing to go to the other position. In this
case, you would avoid timing errors, because you have a sensor that gives you
absolute positioning. Can you connect the two sensors to the same port? No,
because you wouldn’t be able to tell which valve closed the sensor.

What if you placed the sensor so it’s closed when the valves are centered? You
are not going to use that position to control the pneumatics, but it would still be
useful as a reference point for positioning. In order to change the position of the
valve, your code has to drive the valve until the sensor closes, and from then on
keep the motor running for a small interval to reach the limit point. As in the
previous case, you partly rely on timing, but without cumulative errors. The
advantage of this configuration is that you can connect both sensors to a single
port, because they only close as they pass through a reference point.

So, we finally figured out how to use one input and one output port instead of
two output ports. It’s one alternative, and not a big advantage—ryou can still make it
better. If you could just count motor rotations without using a sensor but you can!
Do you remember the stepper motor from Chapter 9? Using that configuration,
you can avoid using any sensors, thus fully operating two valves with a single
motor! The resulting, rather complicated setup is shown in Figure 10.11.

To be honest, we’ve never used such a thing in any model. It’s more of an
academic issue, used here to make you understand there are always many ways to
solve a problem, and many difterent paths by which to reach your goals.

Building Air Compressors

Now that you have discovered a way to operate pneumatic cylinders from your
RCX, the next step is to provide them with a good supply of compressed air.
Some applications require only a small quantity of air for each motion, in which
case you have the option to preload a tank by pumping it manually before you
run the robot. A good example is a robot that blows out a candle. All it has to do
is find the candle in the room, then release its air supply to blow it out.You can
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extend the range using more tanks (In Chapter 27, we’ll describe a robot with
seven air tanks.), but for most practical applications you will need something
more substantial: an unlimited source of compressed air.

Figure 10.11 A Stepper Motor Dual Electric Valve

This goal is easily achieved by building an electric compressor, like the one
shown in Figure 10.12.The small LEGO pump is connected to a pair of pulleys
mounted on the shaft of a motor. There are many possible setups, but it’s very
important you design yours to take advantage of the entire stroke of the pump,
because this will make it more efficient. In fact, if your compressor, for example,
uses half of the stroke of the pump, it will release only half the maximum quan-
tity of air it could potentially release. In our example, we adjusted the distance
using a 1 x 2 two-hole beam, but there are many other possibilities.

The whole LEGO robotics community is grateful to C.S. Soh, who carefully
tested many different compressors, some using two or even four pumps, others
using the large hand pump with the spring removed. Using a pressure sensor
connected to the RCX, he tested all the common designs and published the
results on his site, which, by the way, contains a huge amount of information
about LEGO pneumatics in general.
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Figure 10.12 A Simple Compressor

According to Soh’s results, the most efficient design is a slightly modified ver-
sion of Ralph Hempel’s compressor (see Figure 10.13). It uses two small pumps
and belongs to the category of double acting compressors, meaning that one of the
pumps takes air in while the other is pumping, thus providing a continuous flow.

Figure 10.13 Ralph Hempel’s Double Acting Compressor

In Figure 10.14, you see another double acting compressor with a different
design but with an efficiency comparable to Hempels.
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Figure 10.14 Another Double Acting Compressor

The nice thing about compressors is that they don’t need to be wired to one
of the precious output ports of your RCX: A battery box is enough to run them.
But you might wonder when you should stop your compressor, and how. The
simplest option is not to stop it. Instead, you can place a torque-limiting compo-
nent in the gearing, like a pulley or a clutch gear, so that when the pressure
reached a given level, the gearing idles. A much more elegant solution again
comes from Ralph Hempel and is shown in Figure 10.15.

This clever pressure switch is built around a LEGO polarity switch, a small
cylinder, two rubber bands, and some structure beams and plates. The bottom
cylinder inlet connects to the air supply circuit of your pneumatic system, and as
the pressure increases, the cylinder starts overcoming the resistance of the rubber
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bands. The movable part of the cylinder connects to two liftarms that operate the
polarity switch, one side of which is wired to the battery box, while the other is
hooked to the compressor. The polarity switch has three positions: forward, oft,
and reverse. In this application, you use the first two of them. When the cylinder
1s retracted, the polarity switch connects the battery box to the compressor. Just
before the cylinder reaches its maximum extension, the polarity switch turns off,
thus stopping the motor. By adjusting the number and strength of the rubber
bands, you can set your pressure switch for the maximum desired pressure, com-
plementing your compressor in a totally automatic system.

Figure 10.15 A Pressure Switch

Building a Pneumatic Engine

We mentioned before that you can make cylinders control other cylinders. This is
accomplished by making a cylinder operate the valve that controls a second
cylinder. This is not useful in itself, but you can make a cylinder do something
and move a valve. One very interesting case is one in which you connect two
cylinders in a loop where each one controls the other, resulting in an unstable
system that continuously, and automatically, changes its state (Figure 10.16).
Provided that you have a supply of compressed air, you can take advantage of this
feature to make your robot perform an action.

Figure 10.17 shows a diagram of this pneumatic circuit. Cylinder 1 operates
valve 1, which controls cylinder 2, which operates valve 2, which controls
cylinder 1!

Probably the first robot based on this system to appear publicly on the
Internet was Bert van Dam’s pneumatic insect. Our slightly modified replica is
shown in Figure 10.18.
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Figure 10.16 An Unstable Pneumatic System

Figure 10.17 Diagram of the Cyclic Pneumatic System

cylinder 1

alr input
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Figure 10.18 Bert van Dam’s Pneumatic Insect

The complicated tubing hides the same basic circuit shown in Figure 10.16—
one of the control cylinders moves the three leg assemblies forward and back-
ward, while the other moves the legs up and down. These are made of six
cylinders, split into two groups of three, controlled by the same valve. Each group
has a leg in a central position on one side, and one leg front and one leg rear on
the other side (see Figure 10.19).

Figure 10.19 Leg Connection Scheme for the Pneumatic Insect
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Though rather complicated to build, and more academic an example than

practical,Van Dam’s insect is quite amazing to see in action.

Using the same principle, it’s possible to build a true pneumatic engine,

where the push of the cylinders is converted into rotary motion exactly like in

steam engines. Figure 10.20 shows our implementation of C.S.Soh’s pneumatic

engine. The key points are:

Each cylinder has a dead point in its cycle, when it 1s either fully
extended or retracted. In this position the cylinder is not able to perform
any work, as its push/pull force cannot be converted into rotary motion.
This happens because the two connection points of the cylinder (on the
chassis and the wheel) and the fulcrum of the wheel align along the
same line. For this reason, a pneumatic engine with a single cylinder
would not work. The addition of a second cylinder solves the problem:
You must mount it with a difference of 90° in its phase against the first
one, so when one reaches a dead point, the other is at mid-stroke.

The phasing of the valves is very important: You must take care to posi-
tion them precisely, otherwise your engine won’t work. Mount the
wheels on the axles in such a way as to align one of their holes with the
holes on the cams. Attach the liftarms to that hole with a gray pin.
Connect the tubing exactly like that shown in Figure 10.20.

Figure 10.20 Soh’s Pneumatic Engine
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Pneumatic engines are capable of high torque, but due to their intrinsic fric-
tion are not suitable for high-speed applications. Most of the friction comes from
the cylinders themselves, which, in order to be airtight, are a bit stift to move.

Generally speaking, a vehicle moved by this engine, and supplied by an
onboard compressor, is not very efficient. But it’s indeed fun to see in action and
might have its special uses, too (see Part III).

Summary

Beyond the fascinating sight of all those tubes, and the dramatic hissing of the air
coming out of the valves, pneumatics have their practical strong points. In this
chapter, you reviewed some basic concepts about the properties of gases, and
learned how to exploit these when building your robots. Cylinders are definitely
a better choice than electric motors for performing particular tasks, and, most sig-
nificantly, have the capability to grab objects and create linear motion.

Electric compressors can provide a constant airflow to supply your cylinders,
and can be used to control this low from the RCX. Unfortunately, interfacing
pneumatics to the RCX is not so simple, and requires a bulky assembly that
includes an electric motor and some gearing. Perhaps in the future, the LEGO
Company will produce a smart and compact interface able to control many
valves from a single output port.

Pneumatics also offer the opportunity to implement simple automation
based on cyclical operation, as we showed in the six-legged walker with its
pneumatic engine.
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Introduction

It’s always great fun and very satisfying to see your robot pick things up from the
ground, or take an object when you offer it. In this chapter, we’ll illustrate some
ways to build arms, hands, clamps, pliers, and other tools to grab and handle
objects. One of the basic measurements of movement we’ll explore is the degree of
freedom (DOF), or the number of directions in which an object (like a robotic
arm) has a range of motion. In the last part of the chapter, we’ll show you
methods by which your robot can find the objects, the most challenging part of
the job.

Operating Hands and Grabbers

In Chapter 10, we illustrated that pneumatic cylinders are generally the ideal
choice to make grabbing devices, or grippers. Unfortunately, pneumatics is not
always a possible option. You might not have LEGO pneumatic parts, or you
don’t have room on your robot to fit a pneumatic compressor plus a pressure
switch and some motor-driven valve switches. We’ve seen that RCX-to-pneu-
matics interfaces are rather cumbersome. So you must fall back on good old elec-
tric motors to drive your gripper.

The problem with motors is not opening or closing the hand, it’s in getting
the hand to apply a continuous pressure on the object to prevent it from falling.
This means you cannot only position the fingers around it, you must also exert a
force that tightens around the object even though you are not moving the fingers
anymore. We have explained in Chapters 2 and 3 that if there’s one thing that
damages electric motors it is having them stalled, or rather having them powered
but their movements blocked. For this reason, you cannot simply keep a motor
turned on as the hand holds the object, you must employ a trick to prevent the
motor from being permanently damaged. When you know you’re going to
handle a soft object that has some intrinsic elasticity, you can sometimes simply
stop the motor and let the friction among gears keep the fingers against it. You
can see a simple example of this in Figure 11.1, with an asymmetrical hand
designed to grab sponge balls. The worm gear that drives the fingers prevents
them from releasing the ball when the motor is not powered. Recall, from
Chapter 2, that the worm gear is a one-way gear: It can turn a meshing gear but
cannot be turned by it.
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Figure 11.1 A Simple Hand Operated with a Worm Gear

Figure 11.2 shows a different design, where the rotary motion from the
motor gets converted into linear motion through a worm gear and two trans-
lating axles. It’s this motion that operates the movable fingers of a small hand.
This mechanism is based on Leo Dorst’s Electric Piston: Two half-bushings mesh
the teeth of a worm gear; when the worm gear rotates, the bushings get pushed
or pulled, and the axles where they are mounted move accordingly. Dorst’s solu-
tion solves the problem of converting rotary to linear motion using a very com-
pact scheme.

Figure 11.2 This Small Hand Uses Linear Motion
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This approach doesn’t work when your robotic hand is expected to handle
rigid objects or ones of unknown shape and consistency. In these cases, you must
introduce some elasticity into your system. Recall from Chapter 2 that you can
use a pulley-belt setup to keep the motor running with no harm done even if
the system gets blocked. Figure 11.3 shows a simple hand based on this principle:
When you turn the motor on, the hand moves until it encounters enough resis-
tance that the belt slips. While you keep the motor on, the belt transmits some
force to the fingers and they hold the object. As soon as you stop the motor,
however, the pressure of the finger drops and the object is released.

Figure 11.3 Running the Motor to Hold the Object

Even though it works, this solution is not very elegant because youre com-
pelled to keep the motor running the entire time you want to hold the object.
We suggest you use this system only if the robot must hold the object a very
short time. In all other cases, you need something more reliable.

We've repeatedly said that pneumatic cylinders are your best choice in this
field, but let’s analyze what makes them so good to see if we can learn something
and replicate the same behavior. A pneumatic cylinder can be considered a two-
state system: The cylinder is either extended or retracted. (We are deliberately
ignoring that you can somehow manually stop the cylinder in an intermediate
position, centering the switch, and assuming that the switch is either in one of its
extreme positions.) If something prevents the cylinder from actually reaching one
of these states, it can, however, continue to push in that direction. Its natural
behavior is to move until it finds resistance that balances its inner pressure. This
pressure is what keeps the fingers applying a force to the object, thus making
your robotic hand hold it firmly.
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The point now is to replicate this behavior in a nonpneumatic device. Is it
possible? Yes. Figure 11.4 contains an example of a simple bi-stable system, called
bi-stable because it has two default states, two possible rest positions which it
tends to go to. A rubber band forces the liftarm to stay against one of the two
black pegs, either in A or in B. If you move the liftarm slightly from the peg and
then release it, it goes back against the peg. If you move it a bit more and pass the
midpoint between A and B, it goes to the other peg.You need to provide only
enough force to make the system switch from one to the other; the rubber band
will do the rest.

Figure 11.4 A Simple Bi-Stable Mechanism

Applying this principle, we designed the pliers shown in Figure 11.5, which
are suitable for grabbing very small objects like a 1 x 2 brick (seen at the bottom
of the Figure between the two plates). To actually use them in a robot you must
add a motor that, through brief impulses, pushes the pliers into their open or
closed states. As usual, you would probably involve a belt or a clutch gear to make
the timing of the motor not critical.

The same approach can be used for larger and more complex hands, like the
one shown in Figure 11.6, where the bi-stable mechanism has been placed on
intermediate gearing.

Transferring Motion Using Tubing

In discussing the advantages of pneumatics when grabbing objects, we must also
mention that tubing provides a simple way to keep bulky things far from the
movable parts. Compare the simplicity of the pliers in Figure 11.7 with the com-
plex gearings of the previous examples. The difference is dramatic.
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Figure 11.5 Bi-Stable Pliers
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The flex system we briefly described in Chapter 9 has similar properties,
allowing you to transfer motion to distant parts. Our robot, Cinque, features a
small operating hand based on this technique (see Figure 11.8). A pair of
opposing rubber bands introduce a degree of elasticity into the system, and help
the fingers return to their default setting once the hand comes to rest in its open
position.

Figure 11.8 The Flex System Helps in Making Lightweight Hands

Understanding Degrees of Freedom

If you look carefully at your hands, you’ll discover they are an incredible piece of
machinery, capable of handling a wide array of objects of every size and shape.
Just think about the long list of verbs describing all the things hands can do: grab,
handle, hold, take, squeeze, grip, point, pinch, shake, roll, press, grasp, push, pull
and those are only a few of the terms. Where does all this versatility come from?
Observe a finger while you move it, you notice four independent move-
ments: three for the joints—from the finger tip to the hand—that let you bend
the finger, and a fourth that allows for slight left-right motion where the finger
joins the hand. Multiply this by five (for a hand’s five fingers) and add the
mobility given by the wrist, and 25 movements or so come to mind, which, in
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turn, lead to a huge number of combinations and configurations. This is what
makes your hand able to conform to the shape of the object you want to handle.
To complete the picture, consider that you can control the strength of each
muscle so finely that you can pick up a delicate wine glass without damaging it,
yet so firmly grip a baseball bat that you can send a ball over the right field wall.

Every independent movement represents a degree of freedom (DOF), some-
thing that can happen without affecting and being affected by other movements
in the same device. Our previous examples were very simple mechanisms with
just one degree of freedom, being that all the possible positions of the “fingers”
were determined by a single motor or pneumatic cylinder. The DOF concept
helps you understand in terms of numbers why those simple hands diverged so
widely from the flexibility a human hand has.

Obviously, you cannot aim at making a robotic hand with 25 degrees of
freedom using your MINDSTORMS kit. Each degree of freedom will typically
require a dedicated motor or pneumatic cylinder, and this puts the task out of
reach. You should stay with something much simpler and consequently reduce
the range of objects your mechanical hand will be able to grab. This 1s sometimes
limiting, but in many situations you will know in advance the type and shape of
objects your robot will be expected to handle, making your task less demanding.
In contests that involve collecting things, for example, your robot usually will deal
with very specific objects like soda cans, small LEGO cubes or marbles, and
because of this you can design it to target those types of objects.

It is possible, however, to build more versatile hands with more degrees of
freedom. Figure 11.9 shows a 3 degrees of freedom pneumatic finger. This is a
nice design, but it’s a pity it requires all three ports of your RCX to be fully con-
trolled. How could you control more than a finger if you are already out of
ports? To make the system simpler, though still useful, you can connect all the
cylinders together. (You won’t be able to move a single segment of the finger by
itself, but the finger can still adapt well to the shape of many different objects.)
This is the technique we used in the three-finger pneumatic hand shown in
Figures 11.10 and 11.11, which is controlled by a single valve switch.

WwWw.syngress.com



Finding and Grabbing Objects * Chapter 11 207

Figure 11.9 A Three Degrees of Freedom Pneumatic Finger

Figure 11.10 A Three-Finger Pneumatic Hand
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Figure 11.11 The Three-Finger Pneumatic Hand with Complete Tubing

The degrees of freedom concept applies not only to hands but to any
mechanical device. The arm of Figure 11.12, taken from our R2-D2 styled robot
“Otto,” has two degrees of freedom: A large cylinder extends the arm from the
body of the robot, and a small one operates the hand.

Figure 11.12 The Robotic Arm from Our “Otto” Robot

Generally speaking, locating a point in a plane requires two DOFs, while
locating a point in space requires three. There are many examples of 2 DOF- and
3 DOF-mechanisms in everyday objects: An ink-jet printer has two DOFs, one
corresponding to the head movement and the other to the paper feeding. A
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construction crane is an example of a machine with three DOFs: The hook can go
up and down, it’s attached to a carriage that moves back and forth along the boom,
and, finally, the boom can rotate. With the three output ports of your RCX, you
can drive a robotic arm that addresses any point inside a delimited space, called the
operating envelope, exactly like the crane of the previous example. If you also want to
pick up and drop objects, you would need another port, or use some of the tricks
from Chapter 9 to control more than a DOF with a single motor.

Finding Objects

Building robotic arms and hands is the easy part of the job, the hard part is
finding the objects to grab. We will skip the case where your robot knows the
position of one of the objects, because this brings into play a general navigation
problem we’ll discuss in Chapter 13. So, for the time being, we’ll stick with the
fact that the robot knows nothing about the location of the object.

As we explained when talking about bumpers in Chapter 4, navigation in real
environments is quite a tough task, and distinguishing a specific object from others
makes things much harder. So the second assumption we make here is that you
know what kind of object you're expected to handle, as well as all the details of
the environment where your robot moves (typically an artificial one prepared for
the task).You might think that we are introducing too many simplifications here,
but even in these conditions, the task remains quite hard. It’s very important that
you progress in short steps. The most common mistake of beginning builders is to
start out with goals too difficult for their robots, where mechanical and program-
ming difficulties add to navigation problems. As a general approach, we suggest
you apply the “divide and conquer” strategy and solve the problems one by one.

Let’s make an example: A simple variation on line following that might involve
removing objects placed along the path. A very simple bumper is probably enough
to detect objects. The arm will be more or less sophisticated depending on
whether you have to collect them or just move them out of the way.

In wider environments, things become trickier. Imagine you have to find
things in a delimited space with no walls. (How could a space be delimited
without having walls? By using different colors on the floor and reading them
with a light sensor facing down!) You can still use a bumper, and make your robot
move around at random or follow some kind of scheme. Depending on whether
you are participating a contest with specific rules, you could make this approach
more efficient using a sort of funnel to convey the objects against the bumper, or
some long antennas to help you detect contacts in a wider area. The robot of
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Figure 11.13 was designed to find small LEGO cubes during a contest, and takes
advantage of the fact that the height of the object is known precisely enabling us
to detect the cubes with a top bumper.

Figure 11.13 StudWhite, a LEGO Cubes Finder

In other situations, you can apply the proximity detection technique, either
with standard LEGO components as described in Chapter 4, or with custom
IRPD sensors like the one shown in Chapter 9. Let’s go back to the example
where there are no walls. You can use proximity to “see” the objects, maybe
improving final detection with a bumper as in previous scenarios. And if there are
walls? Well, you’ll need a way to distinguish the objects from the walls.

The easiest approach is to rely again on the shape of the object. Usually the
walls are taller then the soda cans or marbles you have to find, so you can prepare
two bumpers at different heights and see which one closes to decide what your
robot ran into. The same works with proximity detection: Placing two sensors at
difterent heights will tell you whether you’ve found a soda can or the wall
(Figure 11.14). Be careful though... Two or more active custom proximity sen-
sors, the kind that emit their own IR beam, can interfere with each other,
resulting in unreliable readings. Instead of receiving back just the IR light that
they emit, each one will also receive the IR light emitted by their brother. To
avoid this problem, you have to write your software to make them active one at a
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time. This can be achieved configuring them as passive sensors (for example, as
touch sensors), so they don’t receive any power, and consequently don’t emit any
IR beam.Your program will configure them as active sensors just before per-
forming the reading, and will change them to passive sensors again afterward.

Figure 11.14 Using Two IRPDs to Distinguish Objects from Walls

A different case is when you want to manually trigger your robot to grab or
release objects. This is very easy to implement with a touch sensor, a push button
that you press when you want your robot to open or close its hand. Proximity
detection makes your robot even more impressive to see in action.You can, for
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instance, build a robot that navigates the room, and that, when you offer it an
object, stops to grab it. This technique is a bit tricky to use if your robot is
expected to navigate a room with walls and other obstacles, because it won’t be
able to tell what triggered its proximity detection, unless you have a custom
sensor that returns some relative or absolute measurement of the distance. In this
case, you can continuously monitor the distance and interpret a sudden radical
change in its movement as a request to grab or release objects.

Summary

Designing a good robotic hand or arm is more of an art than a technique. There
are indeed technical issues when it comes to gearing and pneumatics that you
must know and consider to successfully position the grippers or hands, apply the
right amount of pressure, troubleshoot the elasticity of the object to be grabbed,
and not allow your robot to drop the ball (or object rather). Even then, there’s
still a lot of space for good intuitions and heavy prototyping. You can choose
pneumatic or nonpneumatic approaches, design for different degrees of freedom
in your gripping arm, use a flex system with tubing for lightweight designs, and
create solutions that reserve ports for additional functions.

To make an easy start, target your first projects around a specific type of
object, then progress to more versatile grabbers only when you feel experienced
and confident enough to meet the challenge.

We also explained that finding the object is the hardest part of the job, but
there are cases where you can use a random search pattern, or where the object
sits on the robot’s path, as in the line following example.
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Introduction

You may be surprised to find a chapter about mathematics in a book aimed at
explaining building techniques. However, just as one can’t put programming aside
totally, so too we cannot neglect an introduction to some basic mathematical
techniques. As we’ve explained, robotics involves many different disciplines, and
it’s almost impossible to design a robot without considering its programming
issues together with the mechanical aspects. For this reason, some of the projects
we are going to describe in Part II of the book include sample code, and we
want to provide here the basic foundations for the math you will find in that
code. Don’t worry, the math we’ll discuss in this chapter doesn’t require anything
more sophisticated than the four basic operations of adding, subtracting, multi-
plying, and dividing. The first section, about multiplying and dividing, explains in
brief how computers deal with integer numbers, focusing on the RCX in partic-
ular. This topic is very important, because if you are not familiar with the logic
behind computer math you are bound to run into some unwanted results, which
will make your robot behave in unexpected ways.

The three subsequent sections deal with averages, interpolation, and hysteresis.
Though they are not essential, you should consider learning these basic mathe-
matical techniques, because they can make your robot more effective while at the
same time keep its programming code simpler. Averages cover those cases where
you want a single number to represent a sequence of values. School grades are a
good example of this: They are often averaged to express the results of students
with a single value (as in a grade point average). Robotics can benefit from aver-
ages on many occasions, especially those situations where you don’t want to put
too much importance on a single reading from a sensor, but rather observe the
tendency shown by a group of spaced readings.

Interpolation deals with the estimating, in numerical terms, of the value of an
unknown quantity that lies between two known values. Everyday life is full of
practical examples—when the minute hand on your watch is between the Three
and Four marks, you interpolate that data and deduce that it means, let’s say, eigh-
teen minutes. When a car’s gas gauge reads half a tank, and you know that with
the full tank the car can cover about four hundred miles, you make the assess-
ment that the car can currently travel approximately two hundred miles before
needing refueling. Similarly in robotics, you will benefit from interpolation when
you want to estimate the time you have to operate a motor in order to set a
mechanism in a specific position, or when you want to interpret readings from a
sensor that fall between values corresponding to known situations.
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The last tool we are going to explore is hysteresis. Hysteresis defines the prop-
erty of a variable for which its transition from state A to state B follows difterent
rules than its transition from state B to state A. Hysteresis is also a programmed
behavior in many automatic control devices, because it can improve the efti-
ciency of the system, and it’s this facet that interests us. Think of hysteresis as
being similar to the word “tolerance,” describing, in other words, the amount of
fluctuation you allow your system before undertaking a corrective action. The
hysteresis section of the chapter will explain how and why you might add hys-
teresis to the behavior of your robots.

Multiplying and Dividing

If you are not an experienced programmer, first of all we want to warn you that
in the world of computers, mathematics may be a bit difterent from what you’ve
been taught in school, and some expressions may not result in what you expect.
The math you need to know to program the small RCX is no exception.

Computers are generally very good at dealing with infeger numbers, that s,
whole numbers (1, 2, 3...) with the addition of zero and negative whole numbers.
In Chapter 6, we introduced variables, and explained that variables are like boxes
aimed at containing numbers. An integer variable is a variable that can contain an
integer number. What we didn’t say in Chapter 6 is that variables put limits on
the size of the numbers you can store in them, the same way that real boxes can
contain only objects that fit inside. You must know and respect these limits, oth-
erwise your calculations will lead to unexpected results. If you try to pour more
water in a glass than what it can contain, the exceeding water will overflow. The
same happens to variables if you try to assign them a number that is greater than
their capacity—the variable will only retain a part of it.

The firmware of the RCX has been designed to manipulate integer numbers
in the range —32768 through 32767.This means that when using either RCX
Code, NQC, or any other language based upon the LEGO firmware, you must
keep the results of your calculations inside this range. This rule applies also to any
intermediate result, and entails that you learn to be in control of your mathe-
matics. If your numbers are outside this range, your calculations will return incor-
rect results and your robot will not perform as expected; in technical terms, this
means you must know the domain of the numbers you are going to use.
Multiplication and division, for different reasons, are the most likely to give you
trouble.
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Let’s explain this statement with an example.You build a robot that mounts
wheels with a circumference of 231mm. Attached to one wheel is a sensor geared
to count 105 ticks per each turn of the wheel. Knowing that the sensor reads a
count of 385, you want to compute the covered distance. Recall from Chapter 4
that the distance results from the circumference of the wheel multiplied by the
number of counts and divided by the counts per turn:

231 x 385/ 105 = 847

This simple expression has obviously only one proper result: 847. But if you
try to compute it on your RCX, you will find you can not get that result. If you
perform the multiplication first, that is, if the expression were written as follows:

(231 x 385) / 105

you get 222! If you try and change the order of the operations this way:
231 x (385/105)

you get 693, which is closer but still wrong! What happened? In the first case, the
result of performing the multiplication first (88,935) was outside the upper limit
of the allowed range, which is only 32,767. The RCX couldn’t handle it properly
and this led to an unexpected result. In the second case, in performing the division
operation first, you faced a different problem: The RCX handles only integers,
which cannot represent fractions or decimal numbers; the result from 385 / 105
should have been 3 2/3, or 3.66666..., but the processor truncated it to 3 and this
explains the result you got.

Unfortunately, there is no general solution to this problem. A dedicated
branch of mathematics, called numerical analysis, studies how to limit the side
effects of mathematical operations on computers and quantify the expected errors
and their propagation along calculations. Numerical analysis teaches that the same
error can be expressed in two ways: absolute errors and relative errors. An absolute
error is simply the difference between the result you get and the true value. For
example, 4355 / 4 should result in 1088.75; the RCX truncates it to 1088, and
the absolute error is 1088.75 — 1088 = 0.75.The division of 7 by 4 leads to the
same absolute error: The right result is 1.75, it gets truncated to 1, and the abso-
lute error is again 0.75.To express an error in a relative way, you divide the abso-
lute error by the number to which it refers. Usually, relative errors gets converted
into percentage errors by multiplying them by one hundred. The percentage errors
of our previous examples are quite different one from the other: 0.07 percent for
the first one (0.75 / 1088.75 x 100) and an impressive 42.85 percent error for
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the latter (0.75 / 1.75 x 100)! Here are some useful tips to remember from this

complex study:

You have seen that integer division will result in a certain loss of preci-
sion when decimals get truncated. Generally speaking you should per-
form divisions as the last step of an expression. Thus the form (A x B) / C
is better than A x (B / C), and (A + B) / C is better than its equivalent
A/C+B/C

While integer divisions lead to small but predictable errors, operations
that go oft-range (called overflows and underflows) result in gross mistakes
(as you discovered in the example where we multiplied 231 by 385).You
must avoid them at all costs. We said that the form (A x B) / C is better
than A x (B / C), but only if you’re sure A x B doesn’t overflow the
established range!

When dividing, the larger the dividend over the divisor, the smaller
the relative error. This is another reason (A x B) / C is better than
A x (B / C):The first multiplication makes the dividend bigger.

Prescaling values to relocate them in a different range is sometimes a
good option, especially if you can do so without a loss in accuracy. For
example, if you are dealing with raw values coming from a light sensor,
they will likely be in the range of 550 to 850. In the event you had to
multiply them with other numbers, you could subtract 500 from all your
readings to move them down into the range of 50 to 350.

Designing & Planning...

Floating-Point Numbers
If you are familiar with computer programming, you probably know that

many languages support another common numeric format: floating-
point. The internal representation of a floating-point number is made up
of two values, a mantissa and an exponent, and corresponds to the
number that results multiplying the mantissa by a conventional base
raised to the exponent. This technique allows floating-point variables to
handle numbers in a very wide domain.

Continued

217

WwWw.syngress.com



218

Chapter 12 » Doing the Math

Up to this point, we deliberately omitted talking about them for
two reasons. First, the RCX firmware doesn’t support floating-points
(currently only legOS and leJOS can handle them), and second, they
don’t result, by themselves, in a greater precision. As for integers, their
precision is limited to the number of bits used to map them in memory.

We admit that they do provide a convenient way to represent
values from a wider range then integers, with fewer concerns about
overflows and truncations, but in robotics it's really possible to face
most situations with only integer math.

Averaging Data

There are situations when you may prefer that your robot base its decisions not
on a single sensor reading but on a group of them, to achieve more stable
behavior. For example, if your robot has to navigate a pad made up of colored
areas rather than just black and white, you would want it to change its route only
when it finds a different color, ignoring transition areas between two adjacent
colors (or even dirt particles that could be “read” by accident).

Another case 1s when you want to measure ambient light, ignoring strong
lights and shadows. Averaging provides a simple way to solve these problems.

Simple Averages

You're probably already familiar with the simple average, the result of adding two
or more values and dividing the sum by the number of addends. Let’s say you read
three consecutive light values of 65, 68, and 59, their simple average would be:

(65 + 68 + 59) /3 = 64
which is expressed in the following formula:
A=WV, +V,+...+V,)/n

The main property of the average, what actually makes it useful to our pur-
pose, is that it smoothes single peak values. The larger the amount of data aver-
aged, the smaller the effect of a single value on its result. Look at the following
sequence:

60, 61, 59, 58, 60, 62, 61, 75
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The first seven values fall in the range of 58 to 62, while the eighth one
stands out with a 75. The simple average of this series is 62, thus you see that this
last reading doesn’t have a strong influence (Figure 12.1).

Figure 12.1 How Averaging Smoothes Peaks and Valleys in the Data

In your practical applications, you won'’t average all the readings of a sensor,
usually just the last n ones. It is like saying you want to benefit from the
smoothing property of an average, but only want to consider more recent data
because older readings are no longer relevant.

Every time you read a new value, you discard the oldest one with a technique
called the moving average. It’s also known as the boxcar average. Computing a
moving average in a program requires you to keep all the last n values stored in
variables, then properly initialize them before the actual executions begins. Think
of a sequence of sensor values in a long line. Your “boxcar” is another piece of
paper with a rectangular cutout in it, and you can see exactly n consecutive
values at any one time. As you move the boxcar along the line of sensor values,
you average the readings you see in the cutout. It is clear that as you move the
boxcar by one value from left to right along the line, the leftmost value drops oft
and the rightmost value can be added to the total for the average.

Going back to the series from our previous example, let’s build a moving
average for three values.You need the first three numbers to start: 60, 61, and 59.
Their average is (60 + 61 + 59) / 3 = 60. When you receive a new value from
your sensor, you discard the oldest one (60) and add the newest (58). The average
now becomes (61 + 59 + 58) / 3 = 59.333... Figure 12.2 shows what happens
to the moving average for three values applied to all the values of the example.

When raw data shows a trend, moving averages acknowledge this trend with
a “lag.” If the data increases, the average will increase as well, but at a slower pace.
The higher the number of values used to compile the average, the longer the lag.
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Suppose you want to use a moving average for three values in a program. Your
NQC code could be as follows:

int ave, vl1, v2, Vv3;

v2 SENSOR_1;

v3 SENSOR_1;

while (true)

{

vl = v2;

v2 = Vv3;

v3 = SENSOR_1;

ave = (v1+v2+v3) / 3;

// other instructions...

}

Figure 12.2 A Moving Average for Three Values

..":..___'___;_,,---'-"

L]

Note the mechanism in this code that drops the oldest value (v1), replacing it
with the subsequent one (v2), and that shifts all the values until the last one is
replaced with a fresh reading from the sensor (in v3). The average can be com-
puted through a series of additions and a division.

When the number of reading being averaged is large, you can make your
code more efficient using arrays, adopting a trick to improve the computation
time and keep the number of operations to a minimum. If you followed the
description of the boxcar cutout as it moved along the line, you would realize
that the total of the values being averaged did not have to be calculated every
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time. We just need to subtract the leftmost value, and add the rightmost value to
get the new total!

A circular pointer, for example, can be used to address a single element of the
array to substitute, without shifting all the others down. The number of additions,
meanwhile, can be drastically decreased keeping the total in a variable, subtracting
the value that exits, and adding the entering one. The following NQC code pro-
vides an example of how you can implement this technique:

#define SIZE 3

int v [SIZE],i,sum,ave;

// initialize the array
sum = 0;
for (i=0;i<SIZE-1;i++)
{
v[i] = SENSOR_1;

sum += vI[i];

// first element to assign is the last of the array
1=SIZE-1;

v[i]=0;

// compute moving average
while (true)
{

sum -= v[il; //

v[i] = SENSOR_1;

sum += vI[i];

ave = sum / SIZE;

i = (i+1) % SIZE;

// other instructions...

The constant SIZE defines the number of values you want to use in your
moving average. In this example, it is set to 3, but you can change it to a different
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number. The statement int declares the variables; v[SIZE] means that the vari-
able v is an array, a container with multiple “boxes” rather than a single “box.”
Each element of the array works exactly like a simple variable, and can be
addressed specifying its position in the array. Array elements are numbered
starting from 0, thus in an array with 3 elements they are numbered 0, 1, and 2.
For example, the second element of the array v is v[1].

This program starts initializing the array with readings from the sensor. It uses
the for control statement to loop SIZE-1 times, at the same time incrementing
the i variable from 0 to SIZE-1. Inside the loop, you assign readings from the
sensor to the first SIZE-1 elements of the array. At the same time, you add those
values to the sum variable. Supposing that the first readings are 72 and 74, after
initialization v[0] contains 72, v[1] contains 74, and sum contains 146. The ini-
tialization process ends assigning to the variable i the number of the first array
element to replace, which corresponds to SIZE-1, which is 2 in our example.

Let’s see what happens inside the loop that computes the moving average.
Before reading a new value from the sensor, we remove the oldest value from
sum. The first time i is 2 and v[i], that is v[2], is O, thus sum remains
unchanged. v[i] receives a new reading from the sensor and this is added to sum,
too. Supposing it is 75, sum now contains 146 + 75 = 221. Now you can com-
pute the average ave, which results in 221 / 3 = 73.666..., and which is trun-
cated to 73.The following instruction prepares the pointer i to the address of the
next element that will be replaced. The symbol % in NQC corresponds to the
modulo operator, which returns the remainder of the division. This is what we call
a circular pointer, because the expression keeps the value of i in the range from 0O to
SIZE-1. It is equivalent to the code:

i = 1i+41;

if (i==SIZE) 1i=0;

which resets i to 0 when it reaches the upper bound. The resulting eftect is that i
cycles among the values 0, 1, and 2.

During the second loop i is 0, so sum gets decreased to v[0], that is 72, and
counts 221 — 72 = 149. v[0] is now assigned a new reading, for example 73, and
sum becomes equal to 149 + 73 = 222.The average results 222 / 3 = 74,and i
1s incremented to 1. Then the cycle starts again, and it’s time for v[1] to be
replaced with a new value.

This program is definitely much more complicated than the previous one, but
has the advantage of being more general: It can compute moving averages for any
number of values by just changing the SIZE constant. The only limit to the max-
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imum value of SIZE is the total number of variables allowed by the LEGO
firmware, which is 32. Each array element counts as a variable.

Weighted Averages

We explained that simple averages have the property of smoothing peaks and val-
leys in your data. Sometimes, though, you want to smooth data to reduce the
effect of single readings, yet at the same time put more importance on recent
values than older ones. In fact, the more recent the data, the more representative
the possible trend in the readings.

Let’s suppose your robot is navigating a black and white pad, and that it’s
crossing the border between the two areas. The last three readings of its light
sensor are 60, 62, and 67, which result in a simple average of 63. Can you tell the
difference between that situation and one where the readings are 66, 64, and 59
using just the simple average? You can’t, because both series have the same average.
However, there’s an evident diversity between the two cases—in the first, the read-
ings are increasing, in the latter they are decreasing but the simple average cannot
separate them. In this case, you need a weighted average, that is, an average where
the single values get multiplied by a factor that represents their importance.

The general formula is:

A=N xW, +V,xW, + ... +V, xW,) / W, +W, + ...+ W)

Suppose you want to give a weight of 1 to the oldest of three readings, 2 to
the middle, and 4 to the latest one. Let’s apply the formula to the series of our
example:

(60x1+62x2+67x4)/(1+2+4)=06457
(66x1+64x2+59x4)/(1+2+4)=6143

You notice that the results are very different in the two cases: The weighted
average reflects the trend of the data. For this reason, weighted averages seem
ideal in many cases. They allow you to balance multiple readings, at the same
time taking more recent ones into greater consideration. Unfortunately, they are
memory- and time-consuming when computed by a program, especially when
you want to use a large number of values.

Now, there is a particular class of weighted averages that can be of help, pro-
viding a simple and efficient way of storing historical readings and calculating
new values. They rely on a method called exponential smoothing. (Don’t let the
name frighten you!)
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The trick is simple: You take the new reading and the previous average value,
and combine these into a new average value using two weights that together rep-
resent 100 percent. For example, you can take 40 percent of the new reading and
60 percent of the previous average, or instead take only 10 percent of the new
reading and 90 percent of the previous average. The less weight you put on the
new value, the more stable and slow to change the average will be.

The general equation for exponential smoothing is expressed as follows:

An = (Vn X W1 + An_1 X Wz) / (W1 + Wz)

You can choose W4 and W5 to add up to 100, so that you can easily read
them as a percentage. For example:

A, =(V,x20 + A,,x80) /100

Let’s apply this formula to the series of the previous example. The first
number in the first series was 60. There is no previous value for the average, so
we simply take this number:

When the next reading (62) arrives, you compute a new value for the average
using the whole formula:

A, = (62 x 20 + 60 x 80) / 100 = 60.4

Then you apply the rule again for the third value:
A; = (67 x 20 + 60.4 x 80) /100 = 61.72

The result tells you that the average is slowly acknowledging the trend in the
data. This happens because the last reading counts only for 20 percent, while 80
percent comes from the previous value. If you want to make your average more
reactive to recent values, you must increase the weight of the last factor. Let’s see
what happens by changing the 20 percent to 60 percent:

A, = 60
A, = (62 x 60 + 60 x 40) / 100 = 61.2
A; = (67 x 60 + 61.2 x 40) / 100 = 64.68

You notice that the formula is still smoothing the values, but gives much
more importance to recent values. One of the advantages of exponential
smoothing is that it is very easy to implement. The following is an example of
NQC code:
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int ave;

// initialize the average

ave = SENSOR_1;

// compute average
while (true)
{
ave = (SENSOR_1 * 20 + ave * 80) / 100;

// other instructions...

Simple, isn’t it? You could be tempted to reduce the mathematical expression,
but be careful, remember what we said about multiplying and dividing integer
numbers. These are okay:

ave = (SENSOR_1 * 2 + ave * 8) / 10;
ave = (SENSOR_1 + ave * 4) / 5;
But this, though mathematically equivalent, leads to a worse approximation:

ave = SENSOR_1 / 5 + ave * 4 / 5;

Designing & Planning...

Exponential Smoothing

Those of you with a gift for math might be interested in understanding
where exponential smoothing got its name. Let's try to analyze the
equation:

An = (Vn X W1 + An_1 X Wz) / (W1 + Wz)

We can rewrite the weights W1 and W2 as fractions: w; = W, / (W,
+ W,) and w, = W, / (W; + W,), where w; and w, result in the range
of 0to 1. As w,; + w, = 1, we can substitute w, with (1 —w;,). Our equa-
tion then becomes:

A, =V, xw; + A, x(1-w,)

Continued
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Expanding the term A, we get:

A=V xw, + A, x(1T-w,)
and substituting in the previous:

A, =V, xw, +V,;xw; x(1-w,) + A, x(1-w,)?
Continuing this expansion, we get the general form:

A, =V, xw; + Vo xw; (1T-w,) + V.5 xw; x(1T-w,)2
+ o+ Vo xwy x (1T =w)M + .+ Vi xw; x (1 —wy)n

This average is thus equivalent to an average of all the values,
where the older they are the more they get smoothed by the exponen-
tial term (1 — wy)™. The term (1 — w,) being less than zero, means the
higher the exponent, the smaller the result.

Using Interpolation

You’ve built a custom temperature sensor that returns a raw value of 200 at 0°C
and 450 at 50°C. What temperature corresponds to a raw value of 315? Your
robotic crane takes 10 seconds to lift a load of 100g, and 13 seconds for 200g.
How long will it take to lift 180g? To answer these and other similar questions,
you would turn to interpolation, a class of mathematical tools designed to estimate
values from known data.

Interpolation has a simple geometric interpretation: If you plot your known
data as points on a graph, you can draw a line or a curve that connects them.You
then use the points on the line to guess the values that fall inside your data. There
are many kinds of interpolation, that is, you can use many diftferent equations
corresponding to any possible mathematical curve to interpolate your data. The
simplest and most commonly used one is linear interpolation, for which you con-
nect two points with a straight line, and this is what we are going to explain here
(Figure 12.3).

Please be aware that many physical systems don’t follow a linear behavior, so
linear interpolation will not be the best choice for all situations. However, linear
interpolation is usually fine even for nonlinear systems, if you can break the
ranges down into almost linear sections.
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Figure 12.3 Linear Interpolation

known data interpalation

In following standard terminology, we will call the parameter we change the
independent variable, and the one that results from the value of the first, the depen-
dent variable. With a very traditional choice, we will use the letter X for the first
andY for the second. The general equation for linear interpolation is:

(Y=Y / (Yp = Ya) = (X=X,) / (Xp = X,)

Where Y, is the value of Y we measured for X = X, and Y}, the one for X,.
With some simple work we can isolate the Y and transform the previous equa-
tion into:

Y= (X=X)x (Y, =Y. / (X, - X.) + Y,
This is very simple to use, and allows you to answer your question about the

custom temperature sensor. The raw value is your independent variable X, the
one you know. The terms of the problem are:

X,=200Y,=0
X, = 450 Y, = 50
X=315Y=7?
We apply the formula and get:
Y = (315-200) x (50 - 0) / (450 — 200) + 0 = 23

To make our formula a bit more practical to use, we can transform it again.
We define:

m = (Yb_Ya)/(Xb_Xa)

227

WwWw.syngress.com



228

Chapter 12 » Doing the Math

If you are familiar with college math, you will recognize in m the slope of
the straight line that connects two points. Now our equation becomes:

Y=mxX-mxX,+Y,

As s, X, and Y, are all known constants, we compute a new term b as:
b=Y,-mxX,

so our final equation becomes:

Y=mxX+b

This is the standard equation of a straight line in the Cartesian plane. Looking
back to our previous example, you can now compute m and b for your tempera-
ture sensor:

m = (50 - 0) / (450 - 200) = 0.2
b=0-0.2x200=-40
Y=0.2xX-40

You can confirm your previous result:
Y=0.2x315-40 =23

Implementing this equation inside a program for the RCX will require that
you convert the decimal value 0.2 into a multiplication and a division, this way:

temp = (raw * 2) / 10 - 40;

Interpolation is also a good tool when you want to relocate the output from
a system 1in a different range of values. This is what the RCX firmware does
when converting raw values from the light sensor into a percentage (see Chapter
4).You can do the same in your application. Suppose you want to change the
way raw values from the light sensor get converted into a percentage. The LEGO
firmware defines that 1022 converts to 0 percent and 322 to 100 percent, but this
range is quite wide with regard to the readings you actually experience with the
light sensor. Let’s say you want to fix an arbitrary range of 900 converting to 0
percent and 500 converting to 100 percent, and this is what you get from the
interpolation formula:

m = (0 - 100) / (900 - 500) = -0.25
b =100 + 0.25 x 500 = 225
Y= -0.25 x X+ 225

WwWw.syngress.com



Doing the Math * Chapter 12

Multiplying by 0.25 is like dividing by 4, so we can write this expression in
code as:

perc = - raw / 4 + 225;

Understanding Hysteresis

Hysteresis 1s actually more a physical than a mathematical concept. We say that a
system has some hysteresis when it follows a path to go from state A to state B,
and a difterent path when going back from state B to state A. Graphing the state
of the system on a chart shows two different curves that connect the points A
and B, one for going out and one for coming back (Figure 12.4).

Figure 12.4 Hysteresis in Physical Systems

Hysteresis is a common property of many natural phenomena, magnetism
above all, but our interest here is in introducing some hysteresis in our robotic
programs. Why should you do 1t? First of all, let us say this is quite a common
practice. In fact, many automation devices based on some kind of feedback have
been equipped with artificial hysteresis.

A very handy example comes from the thermostat that controls the heating
in your house. Imagine your heating system relies on a thermostat designed to
maintain an exact temperature, and that during a cold winter you program your
desired home temperature to 21°C (70°F). As soon as the ambient temperature
goes below 21°C, the heating starts. In a few minutes the temperature reaches
21°C and heating stops, then a few minutes later starts again and so on all day
long. The heater would turn off and on constantly as the temperature varies
around that exact point. This approach is not the best one, because every start
phase requires some time to bring the system to its maximum efficiency, just
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about when it gets stopped again. In introducing some hysteresis, the system can
run smoother: We can let the temperature go down to 20.5°C, then heat up the
house until it reaches 21.5°C. When the temperature in the house is 21°C, the
heating can be either on or oft, depending whether it’s going from on to off or
vice versa.

Hysteresis can reduce the number of corrective actions a system has to take,
thus improving stability and efficiency at the price of some tolerance. Auto-pilots
for boats and planes are another good example. Could you think of a task for
your robots that could benefit from hysteresis? Line following is a good example.

In Chapter 4, in talking about light sensors, we explained that the best way to
follow a strip on the floor is to actually follow one of its edges, the borderline
between white and black. In that area, your sensor will read a gray value, some
intermediate number between the white and black readings. Having chosen that
value for gray, a robot with no hysteresis may correct left when the reading is
greater than gray and right when reading is less than gray. To introduce some
hysteresis, you can tell your robot to turn left when reading gray+h and right
when reading gray-h, where / is a constant properly chosen to optimize the per-
formance of your robot. There isn’t a general rule valid for any system, you must
find the optimal value for h by experimenting. Start with a value of about 1/6 or
1/8 of the total white-black difference; this way the interval gray-h to gray+h
will cover 1/3 or 1/4 of the total range. Then start increasing or decreasing its
value observing what happens to your robot, until you are happy with its
behavior. You will discover that by reducing h your robot will narrow the range
of its oscillations, but will perform more frequent corrections. Increasing h, on
the other hand, will make your robot perform less corrections but with oscilla-
tions of larger amplitude (Figure 12.5).

Figure 12.5 How Hysteresis Affects Line Following
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We suggest a simple experiment that will help you put these concepts into
practice by building a real sensor setup that you can manipulate by hand to get a
teeling of how the robot would behave. Write a simple program that plays tones
to ask you to turn left or right. For example, it can beep high when you have to
turn left and low to turn right. The NQC code that follows shows a possible
implementation:

#define GRAY 50
#define H 3

task main ()

{
SetSensor (SENSOR_1, SENSOR_LIGHT) ;

while (true)
{
if (SENSOR_1>GRAY+H)
PlayTone (440, 20) ;
else if (SENSOR_1<GRAY-H)
PlayTone (1760,20) ;

Wait (20);

Equip your RCX with a light sensor attached to input port 1 and you are
ready to go.You should tune the value of the GRAY constant to what your
sensor actually reads when placed exactly over the borderline between the white
and the black. When the program runs, you can move the sensor toward or away
from the line until you hear the beep that asks you to correct the direction. (Keep
the sensor always at the same distance from the pad.) Experiment with difterent
values for H to see how the accepted range of readings gets wider or narrower.

If you keep a pencil in your hand together with the light sensor, you can
even perform this experiment blindfolded! Try to follow the line by just listening
to the instructions coming from your RCX, and compare the lines drawn by
your pencil for different values of H.

231

WwWw.syngress.com



232

Chapter 12 » Doing the Math

Summary

Math is the kind of subject that people either love or hate. If you fall in the latter
group, we can’t blame you for having skipped most of the content of this chapter.
Don’t worry, there was nothing you can’t live without, just make an eftort to
understand the part about multiplication and divisions, because if you ignore the
possible side eftects, you could end up with some bad surprises in your calculations.

Consider the other topics—averages, interpolation, hysteresis—to be like tools
in your toolbox. Averages are a useful instrument to soften the differences
between single readings and to ignore temporary peaks. They allow you to group
a set of readings and consider it as a single value. When you are dealing with a
flow of data coming from a sensor, the moving average is the right tool to process
the last n readings. The larger n is, the more the smoothing eftect on the data.

Weighted averages have an advantage over simple averages in that they can
show the trend in the data:You can assign the weights to put more importance
on more recent data. Exponential smoothing is a special case of weighted aver-
ages, the results of which are particularly convenient on the implementation side,
because they allow you to write compact and efficient code.

The interpolation technique proves useful when you want to estimate the
value of a quantity that falls between two known limits. We described linear
interpolation, which corresponds to tracing a straight line across two points in a
graph.You then can use that line to calculate any value in the interval.

Hysteresis, a concept borrowed from physics, will help you in reducing the
number of corrections your robots have to make to keep within a required
behavior. By adding some hysteresis to your algorithms, your robots will be less
reactive to changes. Hysteresis can also increase the efticiency of your system.

It’s not necessary that you remember all the equations, just what they’re useful
for! You can always refer back to this chapter when you find a problem that
might benefit from these mathematical tools.
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Solutions in this chapter:

m Choosing Internal or External Guidance
m  Looking for Landmarks:

Absolute Positioning
. Measuring Movement:

Relative Positioning
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Introduction

After our first few months of experimenting with robotics using the MIND-
STORMS kit, we began to wonder if there was a simple way to make our robot
know where it was and where it was going—in other words, we wanted to create
some kind of navigation system able to establish its position and direction. We
started reading books and searching the Internet, and discovered that this is still
one of most demanding tasks in robotics and that there really isn’t any single or
simple solution.

In this chapter, we will introduce you to concepts of navigation, which can get
very complex. We will start describing how positioning methods can be catego-
rized into two general classes: absolute and relative positioning, the first based on
external reference points, and the latter on internal measurements. Then we will
provide some examples for both the categories, showing solutions and tricks that
suit the possibilities of the MINDSTORMS system. In discussing absolute posi-
tioning, we will introduce you to navigation on pads equipped with grids or gra-
dients, and to the use of laser beams to locate your robot in a room. As for relative
positioning, we will explain how to equip your robot for the proper measure-
ments, and will provide the math to convert those measurements into coordinates.

Choosing Internal or External Guidance

As we mentioned, there is no single method for determining the position and
orientation of a robot, but you can combine several different techniques to get
useful and reliable results. All these techniques can be classified into two general
categories: absolute and relative positioning methods. This classification refers to
whether the robot looks to the surrounding environment for tracking progress, or
just to its own course of movement.

Absolute positioning refers to the robot using some external reference point
to figure out its own position. These can be landmarks in the environment, either
natural landmarks recognized through some kind of artificial vision, or more
often, artificial landmarks easily identified by your robot (such as colored tape on
the floor). Another common approach includes using radio (or light) beacons as
landmarks, like the systems used by planes and ships to find the route under any
weather condition. Absolute positioning requires a lot of effort: You need a pre-
pared environment, or some special equipment, or both.

Relative positioning, on the other hand, doesn’t require the robot to know
anything about the environment. It deduces its position from its previous (known)
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position and the movements it made since the last known position. This is usually
achieved through the use of encoders that precisely monitor the turns of the
wheels, but there are also inertial systems that measure changes in speed and direc-
tion. This method is also called dead reckoning (short for deduced reckoning).

Relative positioning is quite simple to implement, and applies to our LEGO
robots, too. Unfortunately, it has an intrinsic, unavoidable problem that makes it
impossible to use by itself: It accumulates errors. Even if you put all possible care
into calibrating your system, there will always be some very small difference due
to slippage, load, or tire deformation that will introduce errors into your mea-
surements. These errors accumulate very quickly, thus relegating the utility of rel-
ative positioning to very short movements. Imagine you have to measure the
length of a table using a very short ruler: You have to put it down several times,
every time starting from the point where you ended the previous measurement.
Every placement of the ruler introduces a small error, and the final result is usu-
ally very difterent from the real length of the table.

The solution employed by ships and planes, which use beacons like Loran or
Global Positioning Systems (GPS) systems, and more recently by the automotive
industry, is to combine methods from the two groups: to use dead reckoning to
continuously monitor movements and, from time to time, some kind of absolute
positioning to zero the accumulated error and restart computations from a
known location. This is essentially what human beings do: When you walk down
a street while talking to a friend, you don’t look around continuously to find ref-
erence points and evaluate your position; instead, you walk a few steps looking at
your friend, then back to the street for an instant to get your bearings and make
sure you haven’t veered oft course, then you look back to your friend again.

You're even able to safely move a few steps in a room with your eyes shut,
because you can deduce your position from your last known one. But if you walk
for more than a few steps without seeing or touching any familiar object, you
will soon lose your orientation.

In the rest of the chapter, we will explore some methods for implementing
absolute and relative positioning in LEGO robots. It’s up to you to decide
whether or not to use any one of them or a combination in your applications.
Either way, you will discover that this undertaking is quite a challenge!
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Looking for Landmarks:
Absolute Positioning

The most convenient way to place artificial landmarks is to put them flat on the
floor, since they won'’t obstruct the mobility of your robot and it can read them
with a light sensor without any strong interference from ambient light. You can
stick some self adhesive tape directly on the floor of your room, or use a sheet of
cardboard or other material over which you make your robot navigate.

Line following, which we have talked a lot about, is probably the simplest
example of navigation based on using an artificial landmark. In the case of line
following, your robot knows nothing about where it 1s, because its knowledge is
based solely on whether it is to the right or left of the line. But lines are indeed
an effective system to steer a robot from one place to another. Feel free to exper-
iment with line following; for example, create some interruptions in a straight
line and see if you are able to program your robot to find the line again after the
break. It isn’t easy. When the line ends, a simple line follower would turn around
and go back to the other side of the line. You have to make your software more
sophisticated to detect the sudden change and, instead of applying a standard
route correction, start a new searching algorithm that drives the robot toward a
piece of line further on.Your robot will have to go forward for a specific distance
(or time) corresponding to the approximate length of the break, then turn left
and right a bit to find the line again and resume standard navigation.

When you’re done and satistied with the result, you can make the task even
more challenging. Place a second line parallel to the first, with the same interrup-
tions, and see if you can program the robot to turn 90 degrees, intercept the
second line, and follow that one. If you succeed in the task, youre ready to navi-
gate a grid of short segments, either following along the lines or crossing over
them like a bar code.

You can improve your robot navigation capabilities, and reduce the com-
plexity in the software, using more elaborate markers. As we explained in Chapter
4, the LEGO light sensor is not very good at distinguishing different colors, but is
able to distinguish between difterences in the intensity of the reflected light. You
can play with black and gray tapes on a white pad, and use their color as a source
of information for the robot. Remember that a reading at the border between
black and white can return the same value of another on plain gray. Move and
turn your robot a bit to decode the situation properly, or employ more than a
single light sensor if you have them.
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Instead of placing marks on the pad, you can also print on it with a special
black and white gradient. For example, you can print a series of dots with an
intensity proportional to their distance from a given point a. The closer to a, the
darker the point; a is plain black (see Figure 13.1). On such a pad, your robot will
be able to return to a from any point, by simply following the route until it reads
the minimum intensity.

Figure 13.1 A Gradient Pad with a Single Attractor

The same approach can be used with two points a and b, one being white
and the other black. Searching for the whitest route, the robot arrives at a, while
following the darkest it goes to b (Figure 13.2). We first saw this trick applied
during the 1999 Mindfest gathering at the Massachusetts Institute of Technology
(MIT): two robots were playing soccer, searching for a special infrared (IR) emit-
ting ball. When one got the ball, it used the pad to find the proper white or black
goal. Months later, we successfully replicated this setup with Marco Berti during
a demonstration at an exhibition in Italy.

Figure 13.2 A Gradient Pad with Two Attractors
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There are other possibilities. People have suggested using bar codes on the
floor: When the robot finds one, it aligns and reads it, decoding its position from
the value. Others tried complex grids made out of stripes of difterent colors.
Unfortunately, there isn’t a simple solution valid for all cases, and you will very
likely be forced to use some dead reckoning after a landmark to improve the
search.

Designing & Planning...

Making a Gradient Pad

To print a gradient pad with a single attractor A simply make the dark-
ness (or brightness) of any point proportional to its distance from A. If
ax and ay are the coordinates of A, and x, y are the coordinates of the
given pixel, the distance will be:

dist = sqgrt((x-ax)*(x-ax)+(y-ay)*(y-ay))

Scale the distance so as to have 100 percent black in A and 0 per-
cent at the maximum distance from A measured in your pad, then mul-
tiply it by the constant that represents the maximum brightness of a
pixel in your system:

intensity = dist/maxdist*maxbrite

Now apply this value to all three color components of a pixel using
something similar to:

pixels[x,y] = rgb(intensity,intensity,intensity )

To generate a pad with two attractors A (ax, ay) and B (bx, by)
respectively white and black, make the intensity of each pixel propor-
tional to the ratio of the distance from B over the sum of the distances
from A and from B:

adist = sqgrt((x-ax)*(x-ax)+(y-ay)*(y-ay))
bdist = sqgrt((x-bx)* (x-bx)+(y-by)* (y-by))
intensity = bdist/ (adist+bdist) *maxbrite

pixels[x,y] = rgb(intensity,intensity,intensity)
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Following the Beam

In the real world, most positioning systems rely on beacons of some kind, typi-
cally radio beacons. By using at least three beacons, you can determine your posi-
tion on a two-dimensional plane, and with four or more beacons you can
compute your position in a three-dimensional space. Generally speaking, there are
two kinds of information a beacon can supply to a vehicle: its distance and its
heading (direction of travel). Distances are computed using the amount of time
that a radio pulse takes to go from the source to the receiver: the longer the
delay, the larger the distance. This is the technique used in the Loran and the GPS
systems. Figure 13.3 shows why two stations are not enough to determine posi-
tion: There are always two locations A and B that have the same distance from the
two sources.

Figure 13.3 There are Two Locations with the Same Distance from
Two Stations

station 1

20 % /20

¥
station 2

Adding a third station, the system can solve the ambiguity, provided that this
third station does not lie along the line that connects the previous two stations
(see Figure 13.4).

The stations of the VHF Omni-directional Range system (VOR) can not tell
you the distance from the source of the beacon, but they do tell you their
heading, that is, the direction of the route you should go to reach each station.
Provided that you also know your heading to the North, two VOR stations are
enough to locate your vehicle in most cases. Three of them are required to cover
the case where the vehicle is positioned along the line that connects the stations,
and as for the Loran and GPS systems, it’s essential that the third station itself
does not lay along that line (see Figure 13.5).
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Figure 13.4 Three Nonaligned Stations Allow for Positioning with No
Ambiguities Using Distances
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Figure 13.5 VOR-Like Systems Allow Positioning through the Headings
of the Stations

station 1

Using three stations, you can do without a compass, that is, you don’t need to
know your heading to the North. The method requires that you know only the
angles between the stations as you see them from your position (see Figure 13.6).

To understand how the method works, you can perform a simple experi-
ment. Take a sheet of paper and mark three points on it that correspond to the
three stations. Now take a sheet of transparent material and put it over the pre-
vious sheet. Spot a point anywhere on it which represents your vehicle, and draw
three lines from it to the stations, extending the lines over the stations themselves.
Mark the lines with the name of the corresponding stations. Now, move the
transparent sheet and try to intersect the lines again with the stations. There’s an
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unlimited number of positions which connect two of the three stations, but
there’s only one location which connects all three of them.

Figure 13.6 Three Nonaligned Stations Allow for Positioning with No
Ambiguities Using Angles
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If you want to give this approach a try, the first problem you have to solve is
that there’s currently nothing in the LEGO world that can emit beacons of any
kind, so you have to look for some alternative device. Unless you’re an electrical
engineer and are able to design and build your own custom radio system, you
better stick with something simple and easy to find. The source need not be nec-
essarily based on radio waves—Ilight is effective as well, and we already have such
a detector (the light sensor) ready to interface to the RCX.

By using light sources as small lighthouses, you can, in theory, make your
robot find its way. But there are a few difficulties to overcome first:

m  The light sensor isn’t directional—you must shield it somehow to
narrow its angle.

m  Ambient light introduces interference, so you must operate in an almost
lightless room.

m  For the robot to be able to tell the difterence between the beacons, you
must customize each one; for example, making them blink at different
rates (as real lighthouses do).

Laser light is probably a better choice. It travels with minimum diffusion, so
when it hits the light sensor, it is read at almost 100 percent. Laser sources are
now very common and very cheap.You can find small battery-powered pen laser
pointers for just a few dollars.
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\WARNING

Laser light, even at low levels, is very damaging to eyes—never direct it
towards people or animals.

If you have chosen laser as a source of light, you don’t need to worry about
ambient light interference. But how exactly would you use laser? Maybe by
making some rotating laser lighthouses? Too complex. Let’s see what happens if
we revert the problem and put the laser source on the robot. Now you need just
one laser, and can rotate it to hit the different stations. So, the next hurdle is to
figure out how you know when you have hit one of those stations. If you place
an RCX with a light sensor in every station, you can make it send back a mes-
sage when it gets hit by the laser beam, and using different messages for every
station, make your robot capable of distinguishing one from another.

When we actually tried this, we discovered that the light sensor is a very small
target to hit with a laser beam, and as a result, realized we had set an almost impos-
sible goal. To stick with the concept but make things easier, we discovered you
could build a sort of diftuser in front of it to have a wider detection area. Jonathan
Brown suggested one made with a simple piece of paper, which worked very well.

Now you have a working solution, but it’s a pity you need so many RCXs, at
least three for the stations and one for your robot. Isn’t there a cheaper option? A
different approach involves employing the simple plastic reflectors used on cars,
bikes, and as cats-eyes on the side of the road. They have the property of
reflecting any incoming light precisely back in the direction from which it came.
Using those as passive stations, when your robot hits them with its laser beam
they reflect it back to the robot, where you have placed a light sensor to detect it.

This really seems the perfect solution, but it actually still has its weak spots.
First, you have lost the ability to distinguish one station from the other.You also
have to rely on dead reckoning to estimate the heading of each station. We
explained that dead reckoning is not very accurate and tends to accumulate
errors, but it can indeed provide you with a good approximation of the expected
heading of each station, enough to allow you to distinguish between them. After
having received the actual readings, you will adjust the estimated heading to the
measured one. The second flaw to the solution is that most of the returning beam
tends to go straight back to the laser beam.You must be able to very closely align
the light sensor to the laser source to intercept the return beam, and even with
that precaution, detecting the returning beam is not very easy.
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To add to these difficulties, there is some math involved in deducing the posi-
tion of the robot from the beacons, and it’s the kind of math whose very name
sends shivers down most students spines: trigonometry! (Don’t worry, you can
find formulas in some of the resources referenced by Appendix A.) This leads to
another problem: The standard firmware has no support for trig functions, and
though in theory you could implement them in the language Not Quite C
(NQC) using some tables and interpolation, the LEGO firmware does not give
you enough variables to get useful results. If you want to proceed with using bea-
cons, you really have to switch to leJOS or legOS, which both provide much
more computational power.

If you’re not in the mood to face the complexity of trigonometry and alter-
native firmware, you can experiment with simpler projects that still involve laser
pointers and reflectors. For example, you can make a robot capable of “going
home.” Place the reflector at the home base of the robot, that is, the location
where you want it to return. Program the robot to turn in place with the laser
active, until the light beam intercepts the reflector and the robot receives the light
back, then go straight in that direction, checking the laser target from time to
time to adjust the heading.

Measuring Movement:
Relative Positioning

Relative positioning, or dead reckoning, is based on the measurement of either
the movements made by the vehicle or the force involved (acceleration). We’ll
leave this latter category alone, as it requires expensive inertial sensors and gyro-
scopic compasses that are not easy to interface to the RCX!

The technique of measuring the movement of the vehicle, called odometry,
requires an encoder that translates the turn of the wheels into the corresponding
traveled distance. Choosing among LEGO supplies, the obvious candidate is the
rotation sensor. However, you already know from Chapter 4 that you can emulate
the rotation sensor with a touch or a light sensor. You typically will need two
of them, though by using some of the special platforms seen in Chapter 8 (the
dual differential drive and synchro drive) you can implement odometry with a
single rotation sensor. If you don’t have any, look in Chapter 4 for some possible
substitutes.

The equations for computing the position from the decoded movements
depends on the architecture of the robot. We will explain it here using the
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example of the differential drive, once again referring you to Appendix A for fur-
ther resources on the math used.

Suppose that your robot has two rotation sensors, each connected through
gearing to one of the main wheels. Given D as the diameter of the wheel, R as
the resolution of the encoder (the number of counts per turn), and G the gear
ratio between the encoder and the wheel, you can obtain the conversion factor F
that translates each unit from the rotation sensor into the corresponding traveled
distance:

F=({MDxm) /(GxR)

The numerator of the ratio, D x T, expresses the circumference of the wheel,
which corresponds to the distance that the wheel covers at each turn. The
denominator of the ratio, G x R, defines the increment in the count of the
encoder (number of ficks) that corresponds to a turn of the wheel. F results in the
unit distance covered for every tick.

Your robot uses the largest spoked wheels, which are 81.6mm in diameter.
The rotation sensor has a resolution of 16 ticks per turn, and it is connected to
the wheel with a 1:5 ratio (five turns of the sensor for one turn of the wheel).
The resulting factor is:

F=81.6mmx3.1416/ (5 x 16 ticks) = 3.2 mm/tick

This means that every time the sensor counts one unit, the wheel has traveled
3.2mm. In any given interval of time, the distance T} covered by the left wheel
will correspond to the increment in the rotation sensor count I; multiplied by
the factor F:

TL = IL x F
And similarly, for the right wheel:

The centerpoint of the robot, the one that’s in the middle of the ideal line
that connects the drive wheels, has covered the distance T-:

TC:(TR+TL)/2

To compute the change of orientation AO you need to know another
parameter of your robot, the distance between the wheels B, or to be more
precise, between the two points of the wheels that touch the ground.
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This formula returns AO in radians. You can convert radians to degrees using
the relationship:

AODegrees = AORadians x180/m

You can now calculate the new relative heading of the robot, the new orien-
tation O at time 1 based on previous orientation at time i — 1 and change of ori-
entation AO. O is the direction your robot is pointed at, and results in the same
unit (radians or degrees) you choose for AO.

Oi = Oi_1 + AO

Similarly, the new Cartesian coordinates of the centerpoint come from the
previous ones incremented by the traveled distance:

X; = Xiq + Tc x cos O;

Yi = Via + Tcxsin O

The two trigonometric functions convert the vectored representation of the
traveled distance into its Cartesian components.

O’ this villainous trigonometry again! Unfortunately, you can’t get rid of it
when working with positioning. Thankfully, there are some special cases where
you can avoid trig functions, however; for example, when you’re able to make
your robot turn in place precisely 90 degrees, and truly go straight when you
expect it to. In this situation, either x or y remains constant, as well as the other
increments (or decrements) of the traveled distance T . Thinking back to Chapter
8, two platforms make ideal candidates for this: the dual differential drive and the
synchro drive.

Using a dual differential drive you need just one rotation sensor, attached to
either the right or the left wheel. The mechanics guarantees that when one
motor is on, the robot drives perfectly straight, while when the other is on, the
robot turns in place. In the first case, the rotation sensor will measure the traveled
distance T, while in the second, you must count its increments to turn exactly
in multiples of 90 degrees. In Chapter 23, you will find a robot which turns this
theory into a practical application, a dual difterential drive that navigates using a
single rotation sensor. We will go through the math again and will describe a
complete NQC implementation of the formulas.

The synchro drive can be easily limited to turn its wheels only 90 degrees.
With this physical constraint regarding change of direction, you can be sure it
will proceed using only right angles. Connect the rotation sensor to the motion
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motor. Just as in the previous case you will use it to measure the traveled dis-
tance. In this setup, as with that using the dual differential drive, one rotation
sensor is enough.

Summary

We promised in the introduction that this was a difficult topic, and it was.
Nevertheless, making a robot that has even a rough estimate of its position is a
rewarding experience.

There are two categories of methods for estimating position, one based on
absolute positioning and the other on relative positioning. The first category usu-
ally requires artificial landmarks or beacons as external references, both of which
we explored. Artificial landmarks can range from a simple line to follow, to a grid
of marks, to more complex gradient pads. All of them allow a good control of
navigation through the use of a light sensor. The MINDSTORMS line is not
very well equipped for absolute positioning through the use of beacons; however,
we described some possible approaches based on laser beams and introduced you
to the difficulties that they entail.

Relative positioning is more easily portable to LEGO robots. We explained
the math required to implement deduced reckoning in a difterential drive robot,
and suggested some alternative architectures that help in simplifying the involved
calculations. Unfortunately, relative positioning methods have an unavoidable ten-
dency to accumulate errors; you can reduce the magnitude of the problem, but
you cannot eliminate it. This is the reason that real life navigation systems—Iike
those used in cars, planes, and ships—usually rely on a combination of methods
taken from both categories: Dead reckoning isn’t very computation intensive and
provides good precision in a short range of distances, while absolute references
are used to zero the errors it accumulates.
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Exploring Your Room
(Chapter 14)

A simple differential drive
designed to explore your
room and to detect and
avoid any obstacles using
its large bumpers. It can
be equipped with an
additional sensor that
“makes it capable of
detecting drop-offs
like stairways.

Six-Legged Steering
Walker (Chapter 15) ‘
This hexapod walks

keeping its left and right

legs synchronized; since

three legs always have contact
with the ground, it maintains its
balance. Its turning ability comes
from a mechanism that can change
the stride of the legs.



Skier (Chapter 16)

This simple robot is able to
snowplow on a snowy slope. The
left ski pole has a wheel attached
to a rotation sensor, through which
the robot can evaluate its speed. A
motor on the back operates the
legs, making them more or less
convergent and thus keeping
its speed in the desired range.

A Center of Gravity (COG)-
Shifting Biped (Chapter 15)
In order to keep its balance, a
biped robot needs to move its
center of gravity over one foot
before lifting the other. This
two-legged walker has its RCX
mounted on a sled, which
slides over the supporting leg
with each step.



Mouse (Chapter 17)
Just try to catch this
fast robotic mouse—it
will speed around your
room, only stopping
(briefly) if you grasp

its tail! Its steering
drive configuration with
a caster wheel
gives it a fast
responsive action. Its
entire head is a
bumper.

Turtle (Chapter 17)

This is a slow walking turtle with a sensor in its nose. When it
detects an obstacle, it stops and retracts its head.

After a while it resumes motion and

maneuvers to avoid the
obstacle. -




Johnny Five (Chapter 18)
This reproduction of the Johnny Five robot Lol
from the Short Circuit film has been built

from the parts contained in the INDSTORMS
kit plus one additional motor. Program it to
find the strongest light source with the light
sensor in its head, and you will be able to
drive it with a flashlight.

Maze Runner (Chapter 19)
Build a MINDSTORMS robot
able to find its way out of a

labyrinth. This Maze Runner

has been designed to
run through a maze
following the left wall
out to the exit.



Tic-Tac-Toe Machine
(Chapter 20)

Play Tic-Tac-Toe against your
MINDSTORMS robot! Follow
the programming tips described
in Chapter 20 and your Tic-Tac-Toe
machine will become unbeatable.

Broad Blue (Chapter 20)
Are you looking for a chess
opponent? This extra-large
robotic arm is able to handle
chess pieces and position
them precisely in any square
of the chessboard.
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Drummer (Chapter 21)
With the aid of some plastic wrap, this
robot turns LEGO wheel hubs into a

drum set. Just a few programming
instructions, and it's ready to rock!

Piano Player (Chapter 21)

Our Piano Player has been designed
to play on a real keyboard. It is
capable of playing notes and chords
on six consecutive keys.



Pinball Machine (Chapter 22)
The MINDSTORMS kit is not bound
to build only robots. This Pinball
machine demonstrates
that there's plenty of
opportunities for
projects which—though
not considered pure
robotics—are indeed a
lot of fun to imagine,
build, and play with.

Logo Turtle (Chapter 23)

The educational Logo programming system
aimed at controlling a small robot, called a
turtle, is able to draw lines on the floor. Our
Logo turtle reproduces most
of its features and is able
to draw precise
geometric

shapes from
simple commands.

il



Control this Flight Simulator through a
remote console that works like a sort
of portable cockpit—the RCX displays
speed and altitude and produces the

engine sound—or a stall warning. You

can experiment with the effects of
thrust, lift, drag, acceleration, speed,
heading, and altitude!

Milk Guard (Chapter 25)
A truly useful robot! Now you can warm
your milk leaving the pan unattended
on the stove. This robot will warn you
when it reaches the right temperature,
preventing it from boiling over.




Part Il

Projects




Classic Projects

Chapter 14

Solutions in this chapter:

= Exploring Your Room
= Following a Line

=  Modeling Cars
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Introduction

From this chapter on, we will explore several example projects that could be the
inspiration for many others of your own creation. As we already explained, the
spirit of the book is not to provide you with step-by-step instructions, but rather
to give you a foundation of information and let your imagination and creativity
do the rest. For this reason, you will find some pictures of each model, some text
that describes their distinguishing characteristics, and tricks that could be useful
for other projects. Of course, we don’t expect each detail to be visible in the pic-
tures. It 1sn’t important that your models look exactly like ours!

Another point we want to bring to your attention is that there is no reason to
read the project chapters in Part II in order. Feel free to jump to the project that
attracts you most, since they aren’t ordered according to their level of difficulty.

In this chapter, we’ll show you some projects that could be considered
“classic,” because almost everybody with a MINDSTORMS kit tries them
sooner or later. Though you might not find them exciting, working with them is
a good way to build up some solid experience and learn tricks that will prove
useful in more complex projects. If this is among your first forays into robotics,
we strongly suggest you dedicate some time to them.

All the robots appearing in this chapter have been built solely from the RIS
1.5 equipment. Only in describing some of the possible additions to the robots
do we suggest extra parts.

Exploring Your Room

Well, actually “exploring” your room is too strong a term for what we are
proposing here, it’s more like surviving your room—your robot and your furniture
could take some hits! The task here is to build a robot with the basic ability to
move around, detect obstacles, and change its route accordingly.

For simplicity of design, and for the robot’ ability to turn in place, we suggest
you make this robot from a differential drive architecture, like the one shown in
Figure 14.1.

We deliberately chose a gear ratio that makes the robot rather slow: 1:9,
obtained from two 1:3 stages (Figure 14.2). This ensures that if you make some
error in the code and the robot fails to properly detect the obstacle, it won’t col-
lide with it at too high a speed. Never expect everything to go well on the first
try—Dbecause it won’t!
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Figure 14.1 Start with a Simple Differential Drive
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When you feel satisfied with your software and your robot runs safely around
your room, you can always try a faster ratio. Substituting the second 1:3 gearing
with two 16t gears will give you an overall 1:3 ratio, making your robot about
three times faster.

This robot has been designed to host the RCX behind the motors, and
without the weight of the RCX in that position it actually does a wheelie
(flips up)!

Another thing we’d like you to notice is that we made the robot rather large,
keeping the main wheels far from the body of the robot. There’s a reason for this,
too: In a differential drive, the distance between the drive wheels affects the
turning speed of the robot, because the wheels have to cover a longer distance
during turns. The further the wheels are from the midpoint, the slower the turns.
Since you’re going to control turns through timing, slow turns are a desirable
property which means finer movement control.

The caster wheel is the same kind we showed in Chapter 8. Now add the
RCX and a couple of bumpers that are normally closed, like those in Chapter 4
(see Figure 14.3), and you’re ready to go—well, ready to program the robot,
anyway. Check out Figure 14.4 to see what the completed robot looks like.

Figure 14.3 Detail of the Bumper
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Figure 14.4 The Robot, Complete with RCX and Bumpers

The program itself is very simple: Go straight until one of the touch sensors
opens. When that happens, reverse for a few fractions of a second, then turn in
place, right or left depending on which bumper found the obstacle. Finally,
resume straight motion.

Experiment with different timing for turns, until you are happy with the
result. You might also use some random values for turns to make the behavior of
your robot a bit less predictable and thus more interesting. If you feel at ease with
the programming, you can add more intelligence to your creature—for example,
to make it capable of realizing when it’s stuck in a cul-de-sac. This can be
achieved by monitoring the number of collisions in a given time, or the average
time elapsed between the last n collisions, and then adopting a more radical
behavior (like turning 180°).

Detecting Edges

If your room has a flight of stairs going down, you can equip the robot with a
kind of detector to sense the edge and avoid a bad fall. Normally, you would use
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a touch sensor for this, connecting it to a feeler flush with the ground (see Figure
14.5 for a detail). When the feeler in front of the robot drops, you have detected
an edge.

Unless you have a third touch sensor, you are forced to use the light sensor.
It’s time to look back at some of the tricks explained in Chapter 4 and see if you
find something useful. A light sensor can actually emulate a touch sensor: You
have to place movable parts of different colors in front of it, so that when contact
is made, the parts move, and the color of the brick in front of the light sensor

changes.

Figure 14.5 Edge Detection System Detail
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We kept the edge sensor behind the bumpers, so that in most cases it doesn’t
interfere in the obstacle detection (Figure 14.6).

Unfortunately, this system doesn’t cover all possible scenarios, because your
robot could approach the edge at an angle that allows a wheel over the edge
before detection occurs. You can improve upon the design and avoid this by pro-
viding the robot with two left- and right-edge sensors, but you’ll probably have
to give up the double bumper and go with a single sensor bumper.
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Figure 14.6 The Edge Detection System Installed on the Robot

Using a different approach, you could write the software to make the robot
very cautious, turning slightly left and right from time to time to see if there’s a
dangerous precipice around.

Variations on Obstacle Detection

If you own a couple of rotation sensors, you can experiment with indirect
obstacle detection. Connect them to the main wheels, and program the robot to
monitor their count while in motion. If both the motors are on forward, but the
count doesn’t increase, the robot knows an obstacle has blocked it. As a positive
side eftect, the rotation sensors allow you to use the same platform for experi-
menting with navigation, applying some of the concepts about dead reckoning
explained in Chapter 13.

You can also implement indirect obstacle detection using a drag sensor. The idea
requires that your robot keep a mobile part in touch with the ground, and that the
friction that this part exerts against the floor surface when the robot moves activates
a touch sensor. For example, you can use the friction of a rubber tire to oppose
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the force of a rubber band that keeps a touch sensor closed. When the robot
moves, the friction of the tire on the floor overcomes the force of the rubber band
and opens the touch sensor; as soon as the robot stops—or has gotten blocked by
an obstacle—the friction disappears and the touch sensor closes.

Following a Line

The line-following theme is often mentioned in Part I of the book, as we think
it 1s a very useful indicator of how difterent techniques can improve the behavior
of a robot. The time has come to give it an official place, and face the topic in its
entirety. Let’s review what we have already said about line following:

®  You must actually follow the edge between the tape and the floor,
reading an average value between dark and bright, so when you read too
dark or too bright you know which direction to turn to find the route
back (Chapter 4).

m  [f you want to keep your software and robot as general as possible, you
should use some kind of self-calibration process before the actual fol-
lowing begins. Calibration consists of taking readings of light and dark
areas on the pad before actually starting line following. This lets your
robot adjust its parameters to the actual lighting conditions at the time it
runs, which are almost certainly different from the conditions it was
designed in (Chapter 6).

®m  Some platforms can benefit from the introduction of a small quantity of
hysteresis to reduce the number of corrections and get a higher effi-
ciency. We explained in Chapter 12 that hysteresis widens the gray area
between light and dark, which keeps the robot from spending too much
time on course correction instead of moving forward!

To turn theory into practice and experiment with line following, you can use
the same differential drive as in the previous project in this chapter. Remove the
bumpers and mount a light sensor facing down, as shown in Figure 14.7.

The light sensor is stacked on a 2 x 4 black brick, which is attached to the
structure with two black pegs placed into its tubes at the bottom. In fact, the diam-
eter of those tubes is very close to one of the holes in the beams, so the pegs and
axles fit very well (isn’t LEGO wonderful?) The distance of the sensor from the pad
1s very important (Figure 14.8). Our experience teaches us that for the best results
this distance should fall in the range of Tmm to 5mm (0.04 to 0.2 inches).
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Figure 14.7 The Differential Drive Equipped for Line Following
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Now that you've finished, youre ready to program and test your robot for
line following. If you want to, you can use the NQC code from Chapter 6. It
shouldn’t be difticult to adapt it to the language of your choice.

Suppose you have succeeded in the task of programming for line following,
and you feel quite happy with the result. You have good reason to, but you should
also wonder, as always, if there is anything else you can do to make it better. What
could “better” mean in this case? Probably “faster,” along with little to no errors.
This is what standard line-following competitions are about: going from one end
of a line to the other in the shortest time, and at the highest speed.

Observe carefully your difterential drive in action. When it turns in place to
adjust the course, it makes no progress along the line. This approach gives your
robot the ability to follow a winding line closely with very tight turns, but it isn’t
very efficient. A first step could involve changing the course adjustment algorithm
to a better one—for example, making the robot turn with one wheel stopped and
the other in motion, instead of turning with one going forward and the other
reversed. Try this technique, and you’ll see that your robot progresses much faster.

We haven’t yet mentioned the most obvious improvement—increasing the
speed of your robot! Try different gearings until you find the fastest setup that
still allows your software to keep the course.

Nothing more you can think of? Imagine yourself standing over a line, strad-
dling it with one leg on the left side and the other on the right. Now, gazing at
the line, you advance one foot or the other trying to keep your eyes centered
above the line. Do you feel a bit stupid? We would. This isn’t actually what you
would do to follow a line in a real situation. You're not a differential drive.You
would rather walk as usual, putting one foot before the other, simply changing
your direction without changing your speed.

That’s the key:You need something that changes its direction without
affecting the speed. Looking back at Chapter 8 with a difterent eye you will dis-
cover that the steering drive, the tricycle drive, and the synchro drive actually
share this property of allowing changes in direction without changing the speed
of their driven wheels. The synchro is probably too complex in gearing to be
really efficient, so choose between a traditional steering and a tricycle drive. They
are almost equivalent except on very tight turns. If you exclude turns with a very
short radius from your path, proceed with the steering drive architecture that is
simpler to implement.

It’s not imperative that a steering drive have four wheels, so ours will actually
be a tricycle, because this makes the platform easier to build. Figure 14.9 shows
our version of a steering line follower.

WwWw.syngress.com



Classic Projects * Chapter 14 259

Figure 14.9 A Steering Line Follower

Let’s dissect it to understand some of the choices we made, starting with
the drive gearing; you might think this is a bit more complex than necessary
(Figure 14.10).

Figure 14.10 Bottom View: The Gearings
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While it is possible to drive the differential from the motor without so many
additional gears, we were looking for an easy way to change the gear ratio
without having to take the robot apart. While you build the robot, you don’t
know yet at what maximum speed it will be able to keep following the line. Our
solution brings a pair of gears on the outside of the model at a distance that
allows at least three combinations, so it will be easy to experiment with different
speeds (Figure 14.11, version a, b, and ¢):

a. 8t to 24t (1:3)
b. 16t to 16t (1:1)
c. 24t to 8t (3:1)

Figure 14.11 These Gears Are Easy to Replace with Different Combinations
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Now turn your attention to the front assembly. It’s very simple, and there
are just a few things worth mentioning. There is a green 1 x 2 brick with an
axle hole that makes the fork drivable by the steering assembly, and another
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perpendicular axle that holds the light sensor at some distance in front of the
wheel (Figure 14.12).

Figure 14.12 The Front Wheel Fork Assembly

Notice that we used the indented side of the bushings to attach the axle to
the plates: It perfectly matches the area among the four studs, and its friction is
enough to allow the axle to carry a small weight.

The front fork is driven by a steering assembly based on a worm gear, a 24t
and two pulleys. As you learned in Chapter 2, the pulley-belt systems prevent any
stall situation if the robot doesn’t control the steering wheel properly when the
software is not yet fully tested and debugged (Figure 14.13).

Now it’s time to program and test the robot. If you wrote the line-following
program for the difterential drive, it will work for this robot with a few minor
modifications. During the run, the drive motor will always stay on, while the
robot will adjust its course using only the steering motor, either in forward or
reverse direction.

As for the calibration procedure, we suggest that with the robot still and
placed on the borderline, you make it rotate the front wheel slightly left and right
to read the minimum and maximum light values, then compute the average and
position the light sensor onto that. This architecture needs very small hysteresis, or
none at all.
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Figure 14.13 The Steering Assembly

Start at slow speed, mounting an 8t gear onto the motor shaft, and when your
robot is able to follow the line properly, try to change the ratio and increase the
speed. Our own version (see Figure 14.14), programmed in NQC, was able to
tollow the line with the two 16t gears, running at about 20cm/s (0.65ft/s).

Figure 14.14 The Steering Line Follower in Action
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The minimum radius that the robot can follow depends on a combination of
the forward speed of the robot, how quickly the turn drive motor can move the
steering wheel, and how far in front of the robot the light sensor is. We encourage
you to experiment with these variables and see how the robot behaves when fol-
lowing lines with turns of different radius.

Further Optimization of Line Following

You should be happy with this line follower, it runs very smoothly compared to
the differential drive configuration. Nevertheless, you might wonder if there’s
anything you can do to make it run at an even higher speed.

Changing the gear ratio is not enough. There is a large margin for an increase
in speed—it’s not difficult to set up a LEGO robot to run at about 2 m/s (6.5 ft/s).
The problem is keeping the robot on the line.

When targeting excellence, the finer details are vital. There is a big difference
between building a robot that “works” and a robot that is optimized for a given
task. You already switched from a differential drive to a steering drive, and this
change of architecture has proved a significant improvement, but now you have
to dig into the particulars if you want to gain some further speed. In working
with line following, one of the key factors is to make the steering fast and accu-
rate. To achieve this, you can reduce the backlash between the 24t and the worm
gear, for example, keeping the steering gently pulled back from one side with a
rubber band. Use a long and soft rubber band, because you don’t want to intro-
duce too much friction, you want to simply keep the teeth of the 24t in contact
with the worm gear, and always from the same side (Figure 14.15).

At this point, speed limitations are probably due to the rotation speed of the
steering assembly. This pulley, belt, and worm gear system is safe and accurate, but
a bit slow. We leave you the task of developing a faster steering assembly. It’s not
very difficult: Try connecting difterent pulley sizes to the steering mechanism.

Now you will meet the last barrier: the reaction time of the software. If you
used the standard firmware, either with RCX Code, NQC, or other tools, the time
it needs to interpret the instructions becomes relevant to the performance of your
robot. Another very critical factor is the sampling frequency of the sensors, which is
much higher in most replacement firmware than in the original LEGO one.

For these reasons, you have to switch to legOS, leJOS, or pbForth if you want
to overcome this limitation and get the fastest reactivity from the software.

With a setup like the one described here, and using legOS, Paolo Masetti
won a line following contest with a robot that ran at about 70 cm/s (2.3 ft/s)!
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Figure 14.15 Using a Rubber Band to Reduce Gear Slack

Modeling Cars

For some reason, many people find the building of a robotic car a very attractive
project, and we have more than a few friends that made this their very first
experiment with robotics. This is more a mechanical task than anything else, but
indeed offers some interesting topics of discussion and deserves its place among
the “classic” MINDSTORM projects. The robot we’re going to describe has been
designed to allow basic obstacle detection while driving around the room.
However, you can easily adapt it to other tasks, like line following, or enhance its
abilities with edge detection as we did for the difterential drive.

We started with the simple car chassis shown in Chapter 8, slightly modified
to include a sensor that detects the position of the steering and another one for
the bumper (Figure 14.16).

Starting again from the driving wheels, you’ll notice that the gearing here
introduces a small multiplication—a 24t against the 16t side of the differential
gear makes a 1.5:1 ratio (Figure 14.17). As the differential drive of the model in
the first part of the chapter was deliberately slow, we designed this vehicle to be
deliberately fast so you can experiment with the problems that arise when
detecting obstacles at (relatively) high speeds.

265
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Figure 14.16 A Simple Steering Drive Robot

Notice also in Figure 14.17 that we placed the intermediate 24t gear at a
height that does not correspond to the standard grid. (If you look carefully, you’ll
see the 24t gears don’t mesh as closely as usual.) You can see this more clearly in
Figure 14.18, which shows the rear view of the vehicle.

As we explained in Chapter 8, the construction of a steering drive using parts
from the MINDSTORMS kit requires a little trick. In our model, we built the
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entire front section of the car with the beams turned on their side. This has some
advantages: It makes a solid support for the front wheel axles, and provides a
smooth surface over which the racked plate can slide (see Figure 14.19).

Figure 14.18 Rear View

To connect the front and rear sections, we used two yellow connectors with
two pegs per side and a crossed hole in the middle, named the 3L Double Pin.You
can see the details in Figure 14.20.
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Figure 14.20 Bottom View: Front and Rear Section Connection Detail

In comparison with the version of this vehicle shown in Chapter 8, here we’ve
added two sensors. The first serves the purpose of noting the position of the
steering, or more precisely put, the touch sensor closes when the wheels are cen-
tered (Figure 14.21). Its only the tip of the cam that operates the sensor; this gives a
narrow band of center indication and makes it easy to keep the car going straight.

Figure 14.21 The Touch Sensor that Monitors the Steering
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The second sensor is operated by the bumper. Having just one touch sensor
left, we decided to equip the vehicle with a single bumper, again one that is nor-
mally closed (Figure 14.22).

Figure 14.22 The Bumper

To program this robot, we suggest this simple sequence:

1. The robot goes straight, monitoring the bumper in a tight loop so it
stops as soon as it detects an obstacle. If you want eftective braking, you
can also briefly reverse the main motor.

2. To avoid the obstacle, the robot maneuvers like real cars do. It turns the
steering left (or right) and goes back a bit, then turns right (or left) and
goes forward another short distance before finally centering the steering
and resuming straight motion.

Your program will include three subroutines Steer_left, Steer_right, and
Center_steer. The first two assume the steering is in its central position, and
simply switch the steering motor on for a few hundredths of a second in the
proper direction. The Center_steer subroutine needs to steer left or right until
the touch sensor closes. The direction of the steering motor depends on which
steering routine has been called:You have to reverse the direction. The following
NQC code fragment suggests a possible implementation, which assumes that the
steering motor is connected to output port B and the steering touch sensor to
input port 1:
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void Steer_ left()
{
OnFwd (OUT_B) ;
Wait (10);
Off (OUT_B) ;

void Steer_right ()
{
OnRev (OUT_B) ;
Wait (10);

Off (OUT_B) ;

void Center_steer ()

{

Toggle (OUT_B) ; // invert the direction of the motor
On (OUT_B) ;

while (SENSOR_1==0); // waits for the sensor closes

Off (OUT_B) ;

The Toggle(OUT_B) command in the Center_steer routine instructs the
RCX to invert the turning direction of the motor connected to out port B,
whichever it was. For example, after Steer_right, the direction of the motor was
“Reverse;” a call to Center_steer will toggle the direction to “Forward.”

Front-Wheel and Four-Wheel Drives

If you feel inclined towards tough challenges, you can try to make a front-wheel
drive vehicle. The main difticulty is transferring the drive to the steering wheels,
in which case you have to face problems similar to those we discussed in Chapter
8 about the synchro drive, though in this case the wheels don’t need to rotate
360° and you can feel satisfied with something like +/-45° from the straight
position.
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If you’re limited to using only MINDSTORMS parts, your life won’t be
made easy. Nevertheless, you can achieve your goal. In Figure 14.23, you see an
assembly which, though not very compact or elegant, solves the problem.

Figure 14.23 A MINDSTORMS-Only Front-Wheel Drive Assembly

The trick we used here is to send the motion to the wheels along their piv-
oting axles, exactly like in a synchro drive. And the wheel assembly also works
like the one used for our synchro of Chapter 8 (Figure 14.24).

-

“Note

- This section describes an alternative to using gears to transfer drive
motion to the wheels by using universal joints. Universal joints suffer

. from the side effect of changing the rotational velocity of the output
shaft as the angle between the axles increases. That's why big trucks
have long drive shafts: The angles don’t change that much. Modern
front-wheel drive cars use a more complicated version of the universal
joint called the constant-velocity (CV) joint.
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Figure 14.24 Detail of the Wheel Assembly

Years ago, the LEGO company released a classic model, the 8880 Supercar,
that featured four-wheel drive and four-wheel steering systems (and a gear shift
and many other amazing things like full suspension and an eight-cylinder motor).
That model, still considered by collectors to be one of the best LEGO
TECHNIC models ever, used some very special parts to drive and steer all four
wheels. Unfortunately, those parts are hard to find, but even using more common
extra parts, you can still design an effective front-wheel drive.

Our design is based on an original concept by Fabio Sali. The key compo-
nent is the LEGO universal joint located inside the steering assembly, which hosts
two axles that connect the differential to the wheel (Figure 14.25).

The universal joint is able to transfer motion through two angled axles. It
cannot even get close to 90°, but for a vehicle with a maximum steering angle of
about 45°, it works well. Keep in mind, it’s very important to keep the joint per-
tectly aligned along the pivoting axle.

Sali’s design also has the merit of introducing some Ackerman correction in
the steering geometry (see Chapter 8). As you can see in Figure 14.26, when
steering, the inner wheel turns more than the outer one, achieving a shorter
radius.
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Figure 14.25 A Front-Wheel Drive Based on the Universal Joint

Notice also that the arm connecting the wheels does not remain parallel to
the front side of the chassis. For this reason, it’s not possible to employ the simple
rack and pinion scheme we used before. You should substitute the jointed arm for
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the straight and rigid arm carrying the rack. We used a different approach, and
mounted a 24t gear over the left wheel steering assembly, driving it with a worm
gear (to be connected to the steering motor).

Once you've solved the front-wheel drive problem, youre more than half way
to your goal of a four-wheel drive. What you must do next is build a traditional
rear-wheel drive system with a differential gear, then connect the front and rear dif-
ferentials with a third differential, whose body is powered by the main motor.

Switching Gears

If you want, you can complete your robotic car with a gear switch. A simple two-
speed gear switch is not difficult to build, and your car could use the first speed
when starting, maneuvering, and climbing slopes, then the second when traveling
on level terrain.

If you have the special parts referred to as the 16t gear with clutch, the trans-
mission driving ring, and the transmission changeover catch, you can assemble a
simple gear switch like that in Figure 14.27. The two dark gray 16t are normally
free to rotate on their axles, since they don’t have a crossed axle hole but rather a
circular hole. The driving ring, on the other hand, rotates solidly with the axle.
When the changeover catch pushes the ring partly inside the gear with clutch,
the latter becomes engaged.

Figure 14.27 A Gear Switch Based on the Transmission Ring
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You can just as easily build your gear switch using more available compo-
nents. The switch in Figure 14.28 resembles what we incorporated into our first
robotic car. There is a movable shaft that can engage either an 8t to 24t pair (first
speed) or a 16t to 16t (second speed).

Figure 14.28 A Gear Switch
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The problem with this gear switch is that the gears are not very easy to
engage and they tend to grind, which is exactly what happened in pioneer cars
before the invention of the synchronized gear switch. Remember to keep the
drive motor running while switching, as this helps the gears in finding their
match.

Both the switches shown here require that a motor be operated, so your car
will mount three motors for the three functions: drive, steer, and gear switch.

Using the Gear Switch

How would you use the gear switch? Your software will know when the vehicle
1s starting or maneuvering rather then traveling, and can consequently engage the
proper speed. Our first robotic car was programmed to begin in first gear, and
switch from first to second gear after a few seconds of straight motion. When
blocked by an obstacle, it stopped and maneuvered to avoid it according to the
following sequence: switch to first gear, steer left, go back for a short distance,
stop again, center steering, resume forward motion.

You can make your robotic car even more sophisticated by equipping it with
a sensor capable of detecting changes in the slope or in the quality of the terrain
that may require the first speed. The simplest solution involves a rotation sensor,
through which the program can monitor the actual speed of the vehicle and
switch to first speed if something slows it down. This is an indirect approach: The
robot knows nothing about the nature of the terrain, but detects that “some-
thing” 1s slowing it down. So, just as we suggested for the differential drive, this
steering drive can also use the rotation sensor to detect obstacles—when the
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drive motor is powered but the wheels don’t rotate, an obstacle has surely
blocked your robot.

You can use a different approach, which does not require a rotation sensor,
and build a slope sensor, something that informs your software that the car is
climbing a slope. For example, you can make a sort of pendulum that releases a
touch sensor when the car inclines more than a given angle, or, using a technique
similar to the one described for the edge detector, make your pendulum alternate
colored bricks in front of a light sensor.

Summary

You may not have any interest in the topics covered in this chapter—you may
think: What a bore. I'd like my robots to do more than just follow a black line or
run around my room bouncing against obstacles...

You're right, there are more interesting activities you can program your robots
for, but these classic tasks help lay the foundation for more complex projects in
the future. They reveal that even apparently trivial projects conceal unexpected
difficulties, and we’re sure the time you spend experimenting with line following
and simple navigation will indeed pay off in the end. In this chapter, you also had
the opportunity to review many of the tricks learned in the first part of the book
and see them at work. We applied the concepts of Chapter 5 to make solid struc-
tures and build two of the most important types of mobile configurations
described in Chapter 8: the differential drive and the steering drive. Naturally, to
build these configurations we used the principles of the first two chapters con-
cerning the geometric relationships of LEGO parts and the proper use of gears.
We recalled the techniques of Chapter 4 about making good bumpers, about
using light sensors for line following, and even about emulating a touch sensor
with a light sensor. From Chapter 6, we took the idea that good code should be
as general as possible, and for this reason we suggested using a self-calibration
routine to make your line-follower suitable under any light conditions. Even the
math of Chapter 12 had its applications here: We recalled the idea that hysteresis
can improve the efficiency of your robot in tasks like line following.

Like a thread sewing together most of the topics of Part I, the simple robots of
this chapter demonstrated what we’ve stated on more than one occasion: Robotics
involves many disciplines, and a good design cannot neglect any of them!

Another theme that pervades the chapter concerns the care you should put
into the particulars: building a robot that works roughly as expected, compared to
looking for optimal performance, are two very difterent approaches. Obviously,
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the concept behind the design of a robot is an important element in regards to its
functioning; we explained how shifting from the difterential drive to the steering
drive can have an impressive effect on the resulting efficiency. But even after
finding a satisfactory architecture, there is still much work to be done to optimize
the single subsystems of the robot. The details, as often happens, make the differ-
ence. You will see this prove true in the last part of the book, where we will
explore the world of robotic contests. Contests are a great incentive to pursue
optimization, the kind of motivation that makes you spend all night rebuilding a
working robot from scratch in search of that little improvement that will make all
the difference!
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Introduction

So far in this book, we have discussed in depth many mobility configurations, all
of them based upon one of the most important inventions of humankind: the
wheel. In this chapter, we will try and emulate what nature invented long before
the wheel to provide humankind with a mode of transportation—legs!

Legged robots are rather unpractical for all but some special applications, but
there’s much to learn in designing and building a walking robot, and the matter is
both challenging and fascinating.

This chapter owes a lot to all the great designers who published their creations
on the net, and patiently explained their choices through text and pictures,
including Joe Nagata, Jin Sato, Kazuhiro Umeda, Miguel Agullo, and many others.

The Theory behind Walking

How can one define walking? Its the process of lifting a leg from the ground
while one or more other legs support the body. When the leg has been lifted, it
gets advanced and lowered back to the ground. From there the process continues
with another leg, and so on.

The crucial point is this: What prevents a creature from falling down when a
leg is lifted? To discover this, we need to introduce some basic concepts from a
branch of physics called statics, which explains the laws of balance.

The weight of an object is the resulting effect of the force of gravity against
the mass of the object. To describe a force, you need to determine three variables:
its intensity, its direction, and its point of application. For example, if you want to
move a piece of furniture in your room, the intensity is the amount of strength
you must apply to make it move, the direction is the bearing of the course you're
pushing it on, and the point of application is where you place your hands to
apply the force. Returning to gravity, its intensity is proportional to the mass of
the object. Its direction points vertically downward, but where is its application
point? To answer this question, you should consider an object as being the sum of
a very large number of very small particles, each one having its own mass. The
gravity exerts a force upon every particle, and thus all of them can be considered
a point of application. However, physics teaches that a combination of forces can
be interpreted as a single force—called the resultant—which has its own intensity,
direction, and point of application. The resultant of the force of gravity has an
intensity which corresponds to the weight of the objects, a direction pointing
downward, and a point of application called the center of gravity (COG) of the
object (Figure 15.1).
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Figure 15.1 The Center of Gravity of an Object

The force of gravity acts on any object and tries to move its COG as close as
possible to the ground; this is why objects fall and shift until they reach a stable
position. But what makes a position stable? Statics teaches that a body becomes
stable when the vertical passing for its center of gravity falls inside its supporting
base. The supporting base is the surface whose perimeter results from connecting
the supporting points with straight lines, where the supporting point is any point
on the object which is in contact with the ground or with any other stable
object (like the floor of your room or your desk). For example, a book placed on
a table has the whole surface of its cover in touch with the table, and that defines
its supporting base. A table has four legs, each one having a small surface in touch
with the floor: its supporting base is the area delimited by the legs, which
includes points untouched by the table (Figure 15.2).

Every child learns this rule by experience when building towers of stacked
blocks: while the COG remains within the supporting base, the tower is stable; as
soon as it falls outside the base, the tower itself falls down (Figure 15.3).

Okay, now you know the rule, but where’s the COG of an object? For
objects that are symmetrical in shape and density, the COG coincides with their
geometrical center, but in more complex objects the COG is not very easy to
find, and it is not guaranteed to be inside the object. A table is again a good
example: The COG of a typical table lies somewhere below its top, as demon-
strated by the fact that it has more than just one stable position (Figure 15.4).
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Figure 15.2 The Supporting Base of a Table

supporting base

Figure 15.3 Stable and Unstable Piles of Bricks
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Figure 15.4 The COG of an Object May Lie Outside It

Fortunately, you don’t need to find the actual position of the COG of your
robots. You are actually interested in the position of the vertical line that passes
through the COG, in order to see if it falls inside the supporting base. This is easier
to find. If your robot is mainly symmetrical, this line will pass very close to its geo-
metrical center. Thus, what you really need is to look at your robot from the top, to
figure out if the COG falls over the supporting base delimited by the legs.

For example, in Figure 15.5 you see a scheme that represents a robot with
four large legs (top view). One of the legs is lifted, and you see that the COG
falls inside the surface delimited by the other three legs. Thus, the robot is stable.
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Figure 15.5 A Four-Legged Robot with One Leg Lifted
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The same robot can stay balanced even with just two legs, because the COG
still falls inside the supporting base (Figure 15.6).

Figure 15.6 A Four-Legged Robot with Two Legs Lifted
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When the robot advances the two lifted legs, part of its mass moves forward,
and the COG moves forward a bit, too. But the large contact surfaces of the legs
delimit a zone wide enough to make the COG fall within the boundaries (see
Figure 15.7).

Using more than four legs, you don’t need to rely on their size anymore. A
six-legged robot, for example, can walk with very thin feet provided it always has
at least three of them touching the ground (Figure 15.8).

On the contrary, when reducing the number of legs, things become more
complicated. The making of two-legged (biped) robots requires a very careful
design. A little trick is to build U-shaped legs that partly interlace, providing a
large support for the robot (Figure 15.9). LEGO suggested a similar approach in
one of its Idea Books (8891, back in 1991).
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Figure 15.7 A Four-Legged Robot with Two Legs Lifted and Advanced

Figure 15.8 A Six-Legged Robot with Three Legs Lifted
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Figure 15.9 A Two-Legged Robot with Interlaced Legs
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Though this works, it’s a bit like cheating! If you want to emulate the way we
human beings walk, you must understand what happens in the human body. Let’s
do a simple experiment. Stand still, being sure to distribute your weight evenly
over your feet. Keep your arms at your side and keep all your muscles relaxed.
Now slowly try and lift one leg: your body tends to fall to that side. While
walking under normal conditions, you unwittingly move your COG over one
foot before lifting the other. This gives you balance and stability and prevents you
from falling.

This is the behavior you have to replicate to build a true biped robot. You
have to shift its COG over one foot before lifting and advancing the other
(Figures 15.10 and 15.11).

Figure 15.10 A Biped Robot Standing

Figure 15.11 A Biped Robot Shifts Its COG over One Foot before Lifting
the Other
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Actually, the way human beings and animals walk follows not only the rules of
statics but also those of dynamics, the branch of physics which deals with matter in
motion. When a man runs, for example, he is in dynamic balance, producing forces
that oppose gravity and temporarily violate the rules of statics. To understand how
this happens, you can study how you walk, and also look carefully at how animals
phase their walking (bipeds, four-legged animals, insects, and arachnids). For
example, elephants and other very large animals only lift one leg when walking
slowly, to keep the static COG within the triangle bounded by their remaining
legs. Once the pace picks up, the opposing gait takes over, which is similar to the
sequence we described in Figures 15.6 and 15.7. Most four-legged animals use this
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scheme when trotting. At further increases of speed, like in galloping, dynamic sta-
bility is more important than static: only one leg needs to contact the ground, and
this allows the animal to cover more ground with every cycle.

Building a robot that walks or runs using dynamic balance is a very compli-
cated task, and for this reason in this chapter we will stay inside the comforting
walls of statics.

Building Legs

Whatever kind of walking robot you’re going to build, you must find a way to
convert the rotary motion provided by the electric motors into the proper
sequence of movements necessary for a leg to work. Animals and human beings
use a very complex geometry operated by an impressive number of independent
muscles. You must stick to the constraints imposed by the MINDSTORMS
system, thus finding simpler solutions.

Figure 15.12 illustrates an initial idea: a leg mounted on two gear wheels of
the same size, which are then connected in phase through a third gear. It’s very
important that the leg attaches to two corresponding holes of the gears, otherwise
it won’t work because the holes will change their spacing as the gears turn

Figure 15.12 This Leg Always Remains Vertical and Follows a Circumference
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By driving any of the three gears, this simple leg will go up and down, for-
ward and back, always in a circle. The leg always remains vertical. Figure 15.13
shows a slightly difterent approach, where only one point of the leg is attached to
the wheel, and the leg itself slides freely into a rotating support (fulcrum).

Figure 15.13 This Leg Describes an Ellipse

In this assembly, the terminal point of the leg describes an ellipse—a flattened
circle—whose height is equal to the distance between the uppermost and lower-
most positions of the point where the leg is attached to the wheel, and whose
length is a function of the distance between the fulcrum and the wheel. The
closer the fulcrum to the wheel, the longer the ellipse and, consequently, the
stride of the leg.You can adjust this distance to make your robot take longer or
shorter steps, affecting its speed. We invite you to experiment with this setup,
changing the distance between the wheel and the fulcrum, to understand the
effect on the stride. Later in the chapter, we’ll use this feature to provide a legged
robot with turning ability.

WwWw.syngress.com



Building Robots That Walk *« Chapter 15 289

More complex leg geometries are also possible (see Figure 15.14). Designing
legs is almost an art—it requires good intuition, and a lot of patience to test and
improve your initial idea.

Figure 15.14 A Leg with a More Complex Geometry

Building a Four-Legged Robot

Let’s start by building a robot with four legs in order to demonstrate the center of
gravity principle explained in Figures 15.5 to 15.7.The architecture 1s very simple,
and symmetrical: keep the COG as close as possible to the center (Figure 15.15).
We built it solely from RIS parts.

Removing the RCX, you’ll notice there’s a single motor which, through two
worm gears, provides motion to the front and rear leg assemblies (Figures 15.16
and 15.17).The other thing to notice is the phase of the legs: they are diagonally
paired. The front left goes together with the rear right, while the front right
accompanies the rear left, which implements the walking scheme shown in
Figures 15.6 and 15.7.
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Figure 15.15 Our Four-Legged Robot

Figure 15.16 Top View (RCX Removed)
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Figure 15.17 Bottom View

The legs follow the scheme of Figure 15.12, where just the gear wheels are
inside the robot, their axles mounted on short 1 x 3 liftarms to which the legs are
connected (Figure 15.18). We also used four cams because the MINDSTORMS
kit includes only four liftarms.

When the robot walks, it lifts two legs diagonally opposed, while standing on
the other two (Figure 15.19). Even when moving the legs, this robot always
remains symmetrical, thus its COG doesn’t change position.

There’s actually not much this robot can do. It’s easy to build, somewhat
instructive, but it’s only able to go straight forward or backward.You can mount
two front and rear bumpers to make it reverse direction, but that’s all you can
expect from it. To provide your robot with directional control, unlocking all the
opportunities that navigation aftfords, you need further sophistication. Let’s move
on and discuss some more challenging projects.
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Figure 15.18 The Front Left Leg

Figure 15.19 Front View, the Robot Stands on Two Legs

WwWw.syngress.com



Building Robots That Walk *« Chapter 15

Building a Six-Legged Steering Robot

By increasing the number of legs, you can easily make a steering walker. The
robot shown in Figure 15.20 (MINDSTORMS parts plus 2 x 24t gears) has six
legs similar to that in Figure 15.13.

Figure 15.20 A Simple Six-Legged Robot

The left and right leg groups are powered by two independent motors
(Figure 15.21), and in each group the wheels are phased so as to have the mid
one raised when the front and rear legs are lowered (Figure 15.22).

This robot turns and walks. You can make it turn by stopping or reversing
one of the motors as if it were a skid steer drive. But it’s affected by a serious
problem: stability. The two groups of legs are not synchronized. Because of this,
only the central legs are down at certain times. Since two legs are not enough for
a stable balance, the robot tilts forward or backward a bit, ensuring the additional
legs make contact. As a result, its walking is rather irregular and jolting.
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Figure 15.21 Top View (RCX Removed)
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What could you do to smooth the walking motion? Using two sensors to
detect the position of the legs, you could keep the two groups in sync so that
one side goes on the mid leg only when the other one has two legs down.

There is another approach, more on the hardware side, that requires you to
vary the geometry of the legs to make them change their stride. The left and
right leg groups are connected together, and powered by a single motor, so that
the robot is always supported by a triangle like that shown in Figure 15.8.To
change the stride of the legs, you have to change the distance of their fulcrums
from the gear wheels.

The robot in Figure 15.23 uses this technique. (You can replicate it using
MINDSTORMS parts plus 2 x 24t gears.)

Figure 15.23 A More Sophisticated Steering Walker

All the legs are powered by a single motor, while the second motor controls
the leg geometry (Figure 15.24).

It’s crucial that you connect the six legs in phase, so that each side has the
mid leg raised when the other two are down, and the left side has the mid leg
down while the right one has its mid one up (see Figure 15.25).

The fulcrums of the legs are attached to a swinging chassis that the second
motor can incline on one side or the other (Figure 15.26). The stride of the legs
becomes shorter at the side where the fulcrums have been lowered, and longer at
the other, thus making the robot turn.
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Figure 15.24 Top View (RCX Removed)
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Figure 15.26 Rear View

The front and rear sides of the swinging chassis are operated through a long
joined axle and two 1 x 2 bricks with an axle hole (Figure 15.27).

Figure 15.27 Bottom View

WwWw.syngress.com



298

Chapter 15 ¢ Building Robots That Walk

This robot needs no sensors to control its motion. When you want to make it
turn, switch the motor on for a few seconds to change the geometry, then brake
it to hold it in position. Recall that floating the motor might allow the swing
chassis to turn. To resume straight motion, let the motor float and the swinging
chassis will return to its central positions after a few steps.

The limit of this architecture is that the robot will turn only with a very large
radius. It will be able to follow a line only if this doesn’t make tight angles.

To give high maneuverability to your robot, you must remain with a skid-
steer type drive, possibly increasing the number of legs to improve stability. We
designed a 12-legged walker to attend a line following contest in Rome. Being
that always had three legs down at each side it was very stable, and was able to
follow the black line through right angles, too (see Figure 15.28).

Figure 15.28 Dodi, Our 12-Legged Line Follower

To minimize interference from ambient light, and to be sure the light sensor
was always at the same distance from the line, we placed the sensor on a sort of
sled pushed by the robot (see Figure 15.29).
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Figure 15.29 The Light Sensor Was Always at the Same Height from
the Ground

Designing Bipeds

Biped robots are among the most challenging projects you can ever face. In a
biped, the position of any single part, any single gram of mass, is critical to a
stable balance. If you replicate the designs that follow, you will see that all of them
walk very smoothly, but you will discover also that you can’t add additional parts
anywhere in their body and not feel the pain!

We will go through the approaches described in the The Theory Behind
Walking section at the beginning of the chapter: interlacing legs (Figure 15.9)
and COG shifting (Figure 15.11). For this latter category, we will explore two
techniques: The first relies on an independent mechanism which moves a mass
from one side of the robot to the other to change the position of its COG, while
the second requires that the whole body of the robot bend at the ankles to move
the COG over a foot.

At the end of the section, we will give you some tips about the next step in
the challenge: the making of a biped robot capable of turning!

Interlacing Legs

Let’s start with a biped based on the technique shown in Figure 15.9 using inter-
lacing legs. The feet must be U-shaped and large enough to support the weight
of the whole robot (Figure 15.30, MINDSTORMS parts only).
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Figure 15.30 A Biped with Interlacing Legs

This robot uses a simple gearing, only a 24t and a worm gear. The axle of the
24t connects to two opposed liftarms that operate the legs. The motor shaft has
been prolonged with a 12 axle that juts out from the back and to which we
attached a short decorative tail (Figure 15.31).

Figure 15.31 Top View (RCX Removed)
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The leg geometry is very similar to the one in Figure 15.14, but here we
used a double series of parallel beams in order to form two connected parallelo-
grams, an upper (body to knee) and a lower (knee to foot) one (Figure 15.32).
Making this allows the foot to always remain parallel to the body, and thus the
body always parallel to the ground.

Figure 15.32 The Left Leg

Looking at the robot from the bottom, it’s easy to see how the feet interlace
with each other (Figure 15.33).

Figure 15.33 Bottom View
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The feet aren’t really flat on the ground. We placed a 1 x 2 plate under each
2 x 8 plate to keep the inner part of the feet a bit raised. This compensates for
the slackness of the leg that otherwise would make the robot lean at the side of
the lifted leg, causing the COG to move beyond the base and make the robot fall
(Figure 15.34).

Figure 15.34 Front View

Don'’t forget to add some decorative parts to your walker! We used some of
the parts left over in the MINDSTORMS box to provide the robot with a
dinosaur-like appearance. In Figures 15.30 and 15.31, you can clearly distinguish
its fierce-looking head and the short front legs.

COG Shifting

At the beginning of 1999, we built our first COG-shifting biped, S6, challenged
by the widespread belief that a COG shifting robot was very hard, if not impos-
sible, to build with LEGO. Though not an exact replica of S6, the robot in Figure
15.35 works on the same principle. (It requires some extra beams and liftarms of
various sizes, along with four 1 x 8 tiles.)
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Figure 15.35 A COG-Shifting Biped

Though the feet are quite large and solid, they are well-separated in the
middle (by a distance of two studs). The RCX i1s installed on a sled, and as the
robot walks it moves side to side to act as ballast. Before lifting a leg, the robot
shifts the RCX over the opposite leg, and doing so moves its COG over the base
of a single foot (see Figure 15.36).

The legs are operated using the same geometry employed in Figure 15.12,
but this time realized in a more solid design. In Figure 15.37, notice that there’s a
touch sensor on the side of the robot, closed by a pair of opposing cams when
the feet are both on the ground. A second touch sensor, located at the top front
of the robot, detects the movements of the sled: Two black pegs close it when the
sled 1s either at its left or right limit.
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Figure 15.36 The Robot Standing on One Leg
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In the walkers seen so far there have been no need for sensors, but this robot
relies on them to keep its synchronization. Starting with both legs down with the
right one advanced, the sequence is:

1. Slide right the RCX until the sled sensor closes.

2. Advance the legs. Their sensor was closed, wait for it to open
and close again.

3. Slde left the RCX until the sensor closes.
4. Advance the legs again.

The sled with the RCX moves through a (upside-down) rack and pinion
assembly (Figure 15.38), while the legs use a second motor located at the very
bottom of the robot (Figure 15.39).

Figure 15.38 Rear View
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Figure 15.39 Detail of the Motor that Operates the Legs

Ankle Bending

There’s another, completely different approach to shifting the COG of a walker:
bending its ankle sideways in order to carry the COG over the foot. The robot in
Figure 15.40 uses this technique.You’ll notice that the right leg inclines outside
and that the RCX rests over the foot.

We used the leg designed by Miguel Agullo for his very nice Hammerhead.
The key component of the ankle is a crankshaft that manages the bending of the
leg over the foot (Figure 15.41). It looks pretty funny as it walks, lurching from
side to side.

The hips are free to swing back and forth, and their supporting axle serves to
also transfer motion to the ankle with a technique similar to what we described
for the making of synchro drives or front-wheel drive cars (Figure 15.42). A
second axle at the rear provides motion to the legs, through two crankshafts and
two liftarms.
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Figure 15.40 An Ankle-Bending Walker

Figure 15.41 Detail of One Foot
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Figure 15.42 Top View (RCX Removed)

This walker uses a single motor and two worm gear and 24t pairs
(Figure 15.43).

The difticulty of this model lies in finding the proper synchronization
between ankle and leg movements. If you decide to give this technique a try, we
suggest you follow Miguel’s detailed instructions on his site (see Appendix A) to
replicate his geometry.

\WARNING

This ankle-bending model is not completely symmetrical, and can walk
forward only. Its COG lies in front of the hip joint, so the robot tends to
lean forward and transfer its weight from one leg to the other that is
advancing. If you run it backward, it will fall.
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Figure 15.43 Bottom View

Making Bipeds Turn

Is it possible to make a biped robot turn? It is, though it’s definitely not an easy
task. Once again we invite you to experiment for yourself to find a working
strategy. Observe your feet while you walk slowly, taking short steps and going
straight: One foot is ahead of the other, but they remain parallel, as if they were
running on tracks. Now try to change direction, but only take the very first step.
If you look at your feet again, you notice that they are no longer parallel: the foot
that’s ahead is pointing in the new direction.

How can you emulate this behavior in your robot? By using an architecture
similar to that of Figure 15.34, but jointed in the middle so the legs can slightly
converge or diverge. You will need a third motor to control the parallelism
between the legs, and probably a third sensor to detect the straight position.

The list of Web sites in Appendix A includes resources that will help you in
investigating this technique.
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Summary

In this long chapter, we covered, hopefully, all the most important aspects about the
making of robotic walkers. Along the way we discussed some important concepts,
such as the center of gravity, that will prove useful in many other applications.

If you had the impression that we talked a lot about mechanics and not much
about software, you’re right. The task of balancing the weight over the legs is by
itself so demanding that not much space remains to make your robot perform other
actions. Although we showed some possible basic behaviors like line following,
more complex tasks like grabbing objects are usually beyond the scope of walking
robots due to the changes brought about regarding their delicate balance. Precise
navigation is also not very suited to walkers, because the natural tendency of their
legs to skid a bit on the floor makes them somewhat unreliable for positioning.

However, all this shouldn’t keep you from experimenting with walkers. The
pure reward of seeing them move compensates for all the effort put into building
them. And who knows, in your enthusiasm you could develop some new solutions,
or maybe design something as complex as a running robot!
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Introduction

In the previous chapters, we discussed the two most common propulsion systems,
wheels and legs, and looked into the many details regarding possible implementa-
tion schemes. Actually we didn’t exhaust all the possibilities, so we are going to
describe a few more robotic vehicles suited to very special tasks.

What mainly affects the mobility of a vehicle is the nature of the terrain that
it has to move over. The scale of the robot, also, has a strong influence on the size
of the obstacles it can overcome: A pebble two inches high is nothing for a wheel
20 inches in diameter, but it’s insurmountable for a differential drive with wheels
of only 3.5 inches (the largest contained in the MINDSTORMS kit). Scaling
your robot up, however, is not always a practical option. In the specific case of
LEGO, you're limited to the size of the available parts and their mechanical prop-
erties, and just like with real-life robots, they, too, often face constraints when it
comes to weight and size.

The two robots of this chapter, a SHRIMP rover and a skier, are completely
different in nature, but share the fact that they are designed for special surfaces:
rough terrain for the first model, and snow for the second.

Creating Your Own SHRIMP

The original SHRIMP is a high-mobility wheeled rover designed by the
Autonomous Systems Lab based in Lausanne, Switzerland. It features six wheels
powered by independent motors: one front wheel mounted on an articulated
fork; one rear wheel directly connected to the body; four wheels mounted on
two lateral swinging bogies. (A bogie is a wheeled assembly that pivots one or
more axles.) It performs amazingly well on many surfaces and against many kinds
of obstacles. It’s able to overcome obstacles as high as its wheels, even if they take
the form of a stairway.

During summer 2000, we built our first LEGO version of SHRIMP, which
had capabilities very similar to that of the original robot that inspired its design.
The version described here is our first attempt at a turning SHRIMP; the first
one, like the original, was not designed to turn.

Unfortunately, this project requires a lot of extra parts: seven motors, six gear-
boxes, ten universal joints, two polarity switches... not to mention a couple
dozen of 1 x 16 beams. Later on in the chapter, we will give you some sugges-
tions to help reduce the requirements, but the project remains rather demanding.
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Let’s start by looking at the SHRIMP in action to understand how it works.
While the first wheel climbs the obstacle (Figure 16.1), the wheel assembly remains
vertical, attached to the body with two parallel pairs of beams. This parallelogram
geometry is the key to all of the SHRIMP abilities: The beams that connect the
wheel assembly to the body convert the push from the other five wheels into ver-
tical lift, while the front wheel itself follows the shape of the obstacle.

Figure 16.1 The SHRIMP Front Wheel Climbs a Step

When the first wheel is up, it’s the bogies’ turn to climb (Figure 16.2). They
rely on the same principle: The bogie is a parallelogram attached to the body in
the midpoints of its horizontal sides. When the bogie approaches the obstacle,
those horizontal beams act like levers, with their fulcrums on the second wheel
of the bogie. The load is applied in the midpoint of the levers, thus the first
wheel has to lift only half of the weight applied to the bogie.

In Figure 16.3, the bogies are over the step, and pull up the rear wheel.

SHRIMP has an incredible ability to adapt to very complex terrain configu-
rations. Some of its wheels may descend while others climb. Nevertheless, the
body remains stable (Figure 16.4).

To turn properly, that is, with no skidding, the SHRIMP should rotate a min-
imum of four wheels. Do you remember the rule? If we extend imaginary lines
through the axles of all the wheels, they must meet at a single point. This would be
perfect, but very complex to build and control.
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Figure 16.2 The First Wheels of the Bogies Climb the Step
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Figure 16.4 The SHRIMP Traversing a Rough Terrain

In our turning SHRIMP, we adopted a simplified scheme: the front and rear
wheels turn, while the bogie wheels behave like a skid-steer. In other words, the
inner ones stop while the outer ones continue to run. This is an approximate
solution that introduces some slippage, but that in practice works very well on
most terrains.

Though we reduced the complexity, there are still too many motors to con-
trol for a single RCX:

m  The front and rear wheels form a group. Their motors need to always be
powered when the robot is in motion.

® A motor turns the front and rear wheels.
m  The wheels of the left bogie always run except when the robot turns left.

m  The wheels of the right bogie always run except when the robot
turns right.

We really wanted to avoid a second RCX, mostly so as not to add further
weight to the robot. After long experimenting, and many useful tips from the
LUGNET friends, we came out with a solution that saves not only the fourth
motor port, but the third one also!

Our design requires two polarity switches, here used as simple on/oft
switches. The idea is that the steering system controls those switches too, and
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when the front and rear wheels turn, the inner bogie stops as a result. Figure 16.5
should help to explain the concept.

Figure 16.5 The SHRIMP Steering Control System

Two rubber bands keep the polarity switches gently pulled back in the on
position. The pivoting axle of the rear wheel mounts a traverse axle, then, when
turned, pushes the inner switch to the oft position (the left switch controls the
left bogie).

In the same picture, notice the touch sensor that detects the neutral position
of the steering system, the only sensor used on this robot.

A single motor operates the entire steering system. It’s placed in the bottom
part of the body, and connects to the main steering axle through a pulley-belt-
worm-24t geartrain (see Figure 16.6).

The main steer axle is a long joined axle that turns both the front and rear
wheels. The rear steer assembly is rigidly attached to the body, while the front
one forms one side of the parallelogram described previously. For this reason the
steer axle requires two universal joints positioned precisely where the swinging
beams connect to the body and to the steer assembly (see Figure 16.7).
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Figure 16.6 Bottom View: The SHRIMP Steering Motor
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The long steer axle ends with bevel gear pairs on both sides, which transfer
motion to the pivoting axles (see Figure 16.8).

Figure 16.8 The SHRIMP Rear Wheel, Rear View

The bogies mount four identical wheel groups, where a motor powers the
wheel through a joined axle and a gearbox (see Figure 16.9).

In our first SHRIMP, the front and rear wheels were identical to the side
ones, while in this version, the motor has been moved down to make the

assembly more compact and leave the space above for the steering mechanism
(Figure 16.10).
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Figure 16.9 Close-Up of a SHRIMP Side Wheel

Figure 16.10 The SHRIMP Front Wheel
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The RCX stays on the top, just behind the point where the bogies connect
to the body (see Figure 16.11).

Figure 16.11 The SHRIMP Top View

Building a SHRIMP

If you want to create your own SHRIMP, but don’t have all the parts we used,
the LEGO inventory ofters many possible substitutes:

Gearboxes A gearbox is a convenient way to match a worm gear to a
24t. But as you’ve seen in this book, there are many other assembly solu-
tions, they’re just a bit less compact.

Universal joints Those that power the wheels are easily avoidable with a
different construction. For example, our setup for the front wheel doesn’t
use them, and you can replicate this for all the wheels. In Figure 16.12, we
show a wheel with no universal joints and no gearbox.

Polarity switches You can use the free port of the RCX to control
one bogie, and connect the other to the same port that drives the front
and rear wheels. No polarity switches are needed for this configuration,
but your SHRIMP would only turn in one direction.

Motors A nonsteering SHRIMP also saves one motor. We didn't try,
but we are sure it’s possible to use a single motor instead of two in each
bogie. In theory, with a lot of gearing, you can power your SHRIMP
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with a single central motor: transport motion to the bogies through their
supporting axles, and to the front and rear wheels with a system similar
to the one we used for the steering setup. Such a SHRIMP will sufter
from a lack of power and therefore climbing ability, due to the reduced
number of motors and increased friction.

Figure 16.12 A Wheel Assembly

Creating a Skier

What we find most interesting in this project is not just the fact that this “skibot”
robot can be used in the snow, but that without propulsion it descends snowy
slopes like a true skier (well, almost!). It uses a technique known as snowplowing,
due to the V-shape of the skis, often used by human skiers. In snowplowing of
the human variety, the skier angles his toes inward in order to put the tips of his
skis together and simultaneously dig the inside edges of the skis into the snow. To
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reduce speed, the skier pushes out the tails of his skis, increasing their angle to
make a wider V; to increase speed, the skier draws the tails nearer, making the
V narrower.

Our robotic skier is based on the same principle. It mounts onto a pair of
skis, and while descending a slope, it varies the angle of the skis to increase or
decrease the resistance and maintain a roughly constant speed. It uses only one
motor and one sensor: The motor is on the back and operates the legs, making
them more or less convergent, thus keeping the speed in the desired range; the
sensor 1s a rotation, attached to a wheel at the end of the left ski pole, and serves
to measure the speed.

Another interesting feature of this robot is that its geometry and the position
of its center of gravity make it always point toward the direction of the max-
imum slope. There’s no need to shift weight to control direction, this happens
automatically because the motion along the longitudinal axis of the robot is the
one that offers the lower resistance.

A general view of our skier can be seen in Figure 16.13.

Figure 16.13 The Skier
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To build the skis you need some extra beams and, more important, many tiles
(see Figure 16.14). We used 36 2 x 2 and two 1 x 4 tiles (available as spare parts at
the LEGO Online Shop). If you are open to employing non-LEGO parts, you can
build the skis from other materials, like strips of plastic available in hobby shops.

Figure 16.14 Side View of the Skier

The legs are not vertical, but rather are inclined outward. This is very impor-
tant. For a human skier, it’s what keeps the skis resting on their inner edges and
producing the necessary resistance to gravity when in the convergent (snowplow)
position (see Figure 16.15).

We achieved this eftect by using some hinges and forming the legs from the
diagonal of a perfect right triangle. If you don’t have hinges, other possible solu-
tions exist, like the one shown in Figure 16.16.

Each leg is rigidly attached to a 40t gear. The pictures don’t show them, but
we used the extra crossed holes of the gears to place pin-axle connectors into.
The two gears meet a worm gear in the middle of the assembly, which receive
motion from the motor and controls the convergence of the legs (Figure 16.17).

Looking at the bottom, you notice a longitudinal beam that locks the struc-
tures, and a transverse axle and beam that serve as boundaries to the movement
of the legs (Figure 16.18). There are no limit switches. If the RCX tries to close
or open the legs more than what’s allowed, the belt will slip on the pulley.
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Figure 16.15 Front View of the Skier
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Figure 16.16 Alternative Leg Geometry
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Figure 16.17 Rear View of the Skier
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Figure 16.18 Bottom View of the Skier
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What’s peculiar about this robot is that it has beams with all the possible ori-
entations. The skis are studs down, the legs studs front, the body partly studs front,
partly studs right, and partly studs up (see Figure 16.19).
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Figure 16.19 Skier Top View (RCX Removed)

There’s not much to say about the ski poles. The right one is just decorative,
placed there for the sake of symmetry. The left one, meanwhile, incorporates a
rotation sensor that’s directly connected to a wheel (see Figure 16.20).

Figure 16.20 Detail of the Left Ski Pole
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Programming this robot is so simple that the topic deserves only a few words.
Inside the main program cycle, test the increment in the rotation sensor counts: If
this falls in the range that represents the desired speed you chose, switch the
motor off; if it’s above the range, start the motor in the direction that closes the
skis, and vice versa if it’s below the range. This will speed up or slow down the
skibot as needed.

If you test your skibot in the snow, try to find or create well-packed powder,
like those normally found on ski runs. It’s not able to ski on black diamond runs
or in loose powder!

How Did We Test the Skibot without Snow?

Suppose you want to build this robot and test it, but currently there's
no snow outside. This book was written during the hot Italian summer,
so we faced that very question ourselves.

Well, we admit we had thought of going to the Alps to visit a
glacier where some of the winter snow had survived. Unfortunately, we
had to settle for a less expensive and time-consuming solution. We
placed four large ice-packs, the kind used in portable camping refriger-
ators, on an inclined board. Then we covered them with frost taken from
the freezer, gently pressing it down. It didn’t make for a particularly long
run, but it was enough to verify that our robot actually skied. A positive
side effect of this experiment was that Mario’s wife, coming back home,
exclaimed: “You defrosted the freezer—bravo!”

What else could you improvise with to simulate a snowy run?
Prepare an inclined plane (a table top would do the trick), and cover it
with some fabric like a blanket, a sheet, a tablecloth or anything else you
have handy. You have to adjust the slope depending on the kind of
fabric you use, and the top will likely need to be steeper that the snowy
slopes your robot can actually descend, because real snow produces
much less friction.
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Creating Other Vehicles

Here we present you with a list of suggestions for possible projects, their
common denominator being that all of them are, at least in part, vehicles. They’re
meant just as starting points.

Elevator

We briefly discussed an elevator project in Chapter 4, in which we explained that
a single touch sensor, placed in the elevator car, can control the positioning at an
unlimited number of floors. We said also that a second touch sensor could serve
the purpose of addressing the car to the proper level, using a simple system where
the RCX counts the number of clicks on the sensor.

A variation on this theme is the car park elevator, where you emulate one of
those automatic storing systems. It would be nice if your robotic parking could
decode a sort of ticket, maybe using colors or shapes, so it can return the corre-
sponding vehicle.

Train

The RCX is almost a natural extension to the LEGO 9v electric train system.
They share the same voltage and the same connectors, and in fact many train fans
currently use one or more RCXjs to introduce automation in their layouts. This
topic is so vast it would require a dedicated book, so we will provide only some
basic tips.

There are two basic approaches to control a train with the RCX: a) the RCX
is on the train; b) it supplies power to the tracks.

In case a), you put the RCX in the locomotive or in one car and connect an
out port to the train motor. The train motor is also wired to the wheels, which
normally draw current from the tracks, so it will happen that your RCX will
supply power to the tracks, too. Nothing bad happens, but DON’T connect the
train speed regulator to the tracks as well; you could damage your RCX.

If you are the kind of person who likes customizing things, you can open the
train motor and interrupt the connection to the wheels, so your train will be
totally independent from external sources. This way you can run many RCX-
controlled trains on the same track.You can create some external references to
read with sensors, so your train knows when to slow down or stop, or place a
proximity sensor on the locomotive to avoid collisions.
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In the second approach, b), you substitute the train speed regulator with the
RCX and power the tracks from one out port.You can control three indepen-
dent tracks or segments with a single RCX, and use the input ports, for example,
to detect the arrival of the train at the station.

There are many other devices you can automate in your layout: switching
points, level crossings, decouplers, semaphores, swing or draw bridges, and so on.

Cable Railway or Gondola

In a real cable railway, there are two pairs of cables: two supporting ones and two
pulling ones. The supporting cables are more or less rigidly attached to the lower
and upper stations, and work as railways for the cabs that have their pulleys run-
ning over them. The pulling cables transfer motion to the cabs: one cable goes
from the first cab to the second across the upper station, while the second con-
nects the two across the lower station.

You can place the motor either in the upper or the lower station. If you use
the upper station, you can avoid the second pulling cable. Use touch sensors to
control when the cab enters the station so you can stop the motor, possibly after
a short slow down.

Boat

LEGO inventory includes difterent kinds of propellers, so one might wonder if
it’s possible to make a robotic boat. It is indeed possible, but it’s not easy to pro-
vide the necessary flotation lift using only LEGO parts. The two solutions that
come to our mind require uncommon parts, either single mould boats coming
from the System product line, or a bunch of TECHNIC air tanks. The idea is to
build a sort of catamaran, with both hulls made of two System boats or a row of
air tanks.

A simple, cheap, and handy non-LEGO alternative for the hulls is to use
common soft drink plastic bottles and attach them to long beams with rubber
bands or duct tape.

The RCX will stay on the deck, together with the motor that drives the pro-
peller and the other that controls direction. You can place bumpers on the front
to make your robotic boat change direction when hitting an obstacle.
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\WARNING

The RCX, the motors and most other electronic components don’t like
water at all. While distilled water is a good insulator, common tap water,
or water from the sea, lakes, or pools, conducts electricity extremely well
and will damage your devices. Take every precaution not to soak or sub-
merge them.

To minimize the risk of damages in case of an accidental bath, put
the RCX into a small transparent plastic bag, with just the wires coming
out from the opening, and seal the bag with a rubber band. Run your
robot in a controlled environment with calm waters, like a pool with no
people in it.

Sailing Tricycle

We are both fans of sailing, and in the wake of the great success of Luna Rossa,
the Italian sailboat that won the Luis Vitton Cup 2000, we decided to build a
robotic sailing tricycle or land yacht. We named it Duna Rossa (Red Dune) to
mimic the original Luna Rossa (Red Moon).

Though building that tricycle has been a lot fun, we must admit that the per-
formances were less than exciting. With a strong wind and a favorable slope... it
moved!

See if you’re able to do better: keep the structure as lightweight as possible,
use a very large sail, and reinforce the mast with shrouds, forestays, and backstays
(ropes).

The RCX controls two motors, one to steer the rudder and the other to
operate the winch for the mainsail. You can detect the wind direction through a
vane on the masthead connected to a rotation sensor. Monitor the position of the
boom with a second rotation sensor to adjust it for the proper angle with the
electric winch. Finally, you’ll need a third sensor (a touch is enough) to control
the position of the rudder.

You can program your robotic sailing tricycle for two basic behaviors: adjust
the mainsail to keep with the desired course, or adjust the course to maintain a
specific sailing point.
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Summary

If there’s a lesson you can draw from this chapter, it is that any problem in robotics
requires a custom-tailored solution. After having long talked of standard mobility
configurations, we described some situations where none of them applies.

You’re not necessarily required to invent new solutions any time, more often
you can just look around you, or on the net, and find something that helps you
or points you in the right direction. SHRIMP was designed to move on bumpy
terrains, but there are obviously other possible configurations. For example, the
robotic vehicles designed for planetary exploration are a good source of inspira-
tion, and there’s a large quantity of documentation available in the public
domain.

We must confess that our skier was born more for purposes of fun than to
demonstrate some general principle. Nevertheless, this small and simple robot has its
merits, helping us picture the wide range of applications robotics can be used for.

331

WwWw.syngress.com



Robotic Animals

Chapter 17

Solutions in this chapter:

m Creating a Mouse
m Creating a Turtle

. Creating_O-ther AniMaIs

333



334

Chapter 17 * Robotic Animals

Introduction

Trying to emulate animals in designing and constructing a LEGO robot is a fun
and instructive experience.You can approach the problem from different view-
points—for example, concentrating your attention on the behavior of the animal,
or on its shape; you can even create a pure fantasy animal or develop your inter-
pretation of some mythological creature.

In the following pages, we will show you two projects: a mouse and a turtle.
The mouse is probably the simplest project of the book, using just one motor
and two touch sensors, and it’s easy to replicate using only the parts contained in
the Robotic Invention System. The turtle, on the contrary, is a bit more sophisti-
cated and requires a few additional parts.

Once again, the robots of this chapter offer us the opportunity to revise and
apply some of the concepts stated in the first part of the book.You will discover a
new use for caster wheels—through which we will implement a sort of auto-
matic steering feature for our robotic mouse—and a leg geometry for the turtle
with a design not shown in Chapter 15. Both the robots employ touch sensors to
detect collisions, but we’ll also suggest other techniques that result in more intel-
ligent behavior from your robotic animals.

The last section of the chapter contains a list of proposals intended as starting
points for new projects inspired by the world of animals: squirrel, mole, ostrich,
kangaroo, crab—take your pick!

Creating a Mouse

Our LEGO mouse doesn’t claim to look very similar to a real one, instead it
resembles one of those simple mechanical mice seen in cartoons, which drive cats
crazy. The programmed behavior is very simple, too: the mouse goes straight until
it hits an obstacle, then goes back for a while, changes direction and goes forward
again. If someone pulls its tail, it stops for a few seconds, then restarts. Very young
children love to run after it trying to catch its tail, and in case you have a dog or
a cat at home they very likely will love it, too—maybe even too much!

In this project, we used the Scout, the younger brother of the RCX found in
the Robotics Discovery Set, but you can obviously build yours around the RCX
(Figure 17.1).

We thought that size was a very important factor for a robotic mouse: We
wanted ours to look like an adorable mouse and not a large rat! For this reason, in
designing this robot we put a lot of attention into restraining its dimension. This
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goal affected our choices regarding the driving system, which employs a technique
not yet described in the book: a variation of a steering drive that requires only
one motor. In fact, the motor is used to power the drive wheels, while the
steering capability comes from the unconventional use of a caster wheel.

Figure 17.1 The LEGO Mouse

Looking at the bottom, you can see the very simple mechanics: a motor drives
the differential gear with a 1:1 ratio (Figure 17.2). Combined with the large diam-
eter of the wheels, this makes our mouse very fast. Exactly what we wanted.

The front caster wheel is the key to the turning ability of the mouse. All piv-
oting wheels tend to follow the direction of the body they are attached to, but
this has its range limited by mechanical constraints. In fact, the liftarm attached to
the pivoting axles cannot go further than the two left and right plates that block
it (Figure 17.3). When the robot goes backward, the caster turns until the liftarm
hits the blocking plate, and with the caster in that position, the robot turns.
Resuming forward motion, the robot will go straight again. To make the caster
even more reactive, we built it asymmetrical.

When describing the steering-drive configuration in Chapter 8, we explained
how the distance of a steering wheel from its pivoting axle affects positively its
tendency to self-center: the greater the distance, the more effective the self-cen-
tering. This applies to caster wheels, too, and it is the reason why we used that
particular connector to attach the front wheel: It’s the one that keeps the wheel

farthest from its pivoting axle.
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Figure 17.2 Bottom View of the Mouse

WwWw.syngress.com



Robotic Animals * Chapter 17

Removing the RCX, you see the two touch sensors that control the head
and tail (Figure 17.4). The rear one is normally kept closed by two rubber bands
attached to the tail assembly. Pulling the tail opens the switch and the software
stops the mouse.

Figure 17.4 Top View of the Mouse (Scout Removed)

The entire head is a bumper that detects hits through its nose, whiskers, or
any other part (Figure 17.5). The short tubes we used as whiskers are the only
parts you won't find in the MINDSTORMS kit. We are not suggesting you cut
the longer one in two, however! You can use axles in place of tubes.

The head is what actually makes this robot a mouse instead of any other pos-
sible creature (Figure 17.6). This demonstrates how a few parts can deeply affect
the “personality” of a robot! We leave to you the exercise of converting this
mouse into a different animal by changing some of its decorative elements.
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Figure 17.5 The Front Bumper of the Mouse (Head Removed)

Improvements Upon the Mouse’s Construction

We explained that one of our goals was limiting the size of the robot, and we
achieved it through a single motor steering drive. The limitation of this setup is
that it doesn’t allow you to control the direction of the robot, which results in a
mouse whose movements are very predictable. Using a second motor to control
the front steering wheel you can enrich the behavior of the mouse with some
random changes in direction. You should redesign and enlarge the body of the
robot to make room for the second motor.
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You can also add legs to the mouse to make it more realistic. Some of the legs
shown in Chapter 15 will suit this model, but with working legs it will be defi-
nitely much slower. We wanted a fast mouse, and this is the reason we chose
wheels. An intermediate solution comes from attaching legs to the wheels so that
they move and give the illusion they are propelling the robot (Figure 17.7).

Figure 17.7 A Pseudo-Leg

When the programmable brick faces the direction of motion, you can use the
IR message emitter of the RCX and a light sensor in the nose to implement the
proximity detection technique described in Chapter 4, thus saving your mouse
from too many collisions.

Creating a Turtle

The LEGO turtle project is a bit more ambitious than the mouse project, as we
really tried to mimic the size, shape, and way of walking (as well as other basic
behaviors) of a real turtle. Our robotic version walks around, and when it hits
something, retracts its head and waits a few seconds. Then it goes backward a
while, trying to avoid the obstacle, eventually resuming straight motion.

We used a few extra parts, the most important ones being four universal
joints and four #3 angle connectors.You can save the third motor and the tiles if
you eliminate the retractable head.

Figure 17.8 shows a general view of the turtle. We made a strong effort to fit all
the components into a design not too different from the shape of an actual turtle.

The most relevant parts are the legs. In contrast to what we made for the
mouse, this turtle walks on feet and uses a leg geometry not shown in Chapter
15. In fact, all the legs shown in Chapter 15 tend to produce tall robots. In this
case, however, we needed a compact design suitable for a short creature.You can
understand the principle behind our mechanism by way of a simple experiment.
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Connect two axles with a bend connector, rotate one of them with your fingers
and observe the tip of the other: it rotates in a circle (see Figure 17.9 a and b).
Keeping the first axle horizontal, you’ll notice the end of the second behaves
similarly to the leg assemblies in Chapter 15. We implemented this solution using
the angle connector #3, one side of which is attached to the foot and the other
to the leg gearing, as you can see in Figure 17.9.

Figure 17.8 The Turtle

We couldn’t rigidly attach the leg to the end of the axle, because an animal
whose feet turn upside-down would have been ridiculous! Thus, we needed a
second connection point for the leg to keep the foot parallel to the ground while
the angle connector rotates. The universal joint was the perfect candidate: It
allows the leg to cycle ahead, down, back, and up, remaining parallel to the floor
all the while. The axle that supports the universal joint is free to slip back and
forth inside the hole of the beam to comply with the movements of the leg.

To match the 16t with the worm gear, the distance between the intersecting
beams is one plate instead of two as in the standard grid.
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Figure 17.9 Detail of the Turtle’s Leg Assembly

Bricks & Chips...

Using Angle Connectors

There are currently six types of angle connectors in the LEGO line, num-
bered 1 to 6. In case you're wondering how the numbers relate to
angles, here are the correspondences: 1 = 0°, 2 = 180°, 3 = 157.5°, 4 =
135°, 5 = 112.5° 6 = 90°. They go by increments of 22.5°, a quarter of
a right angle.

This turtle is not a real walker, meaning that it doesn’t only employ its legs to
support its weight; it helps itself along with the rest of the body. Its walk resem-
bles that of very young babies; when they begin to crawl they still need their
belly as an additional support, because they are not yet able to co-ordinate arms
and legs. Recall the four-legged walker of Chapter 15: It has the legs diagonally
paired, the front left with the rear right, and the front right with the rear left. In
this turtle, such synchronization doesn’t exist; instead, the legs are paired side by
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side, and go up and down together. The feet of each side are in contact with the
ground only during the lower part of their circular motion; during the phase
when the feet are raised, the turtle rests on additional supporting points under its
body. Figure 17.10 shows clearly the four tiles placed at the bottom for this pur-
pose, as well as the complete transmission system.

Figure 17.10 Bottom View of the Turtle

5
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The fact that there is no coordination between the left and right legs makes
the gait of the turtle very irregular. Sometimes the two sides go up and down
together and the turtle advances with short but regular steps. Other times the two
sides are out of phase and the turtle proceeds by swinging left and right. We really
cannot say that this robotic turtle is particularly efficient in its progress, but have
turtles ever been the image of efticiency?

The head incorporates a touch sensor, used as a very simple bumper (Figure
17.11). When the software detects a hit, it briefly operates the third motor, placed
at the rear side of the robot, to retract the head.

The head motor transmits motion through a basic pulley and belt set that
makes the system tolerant about timing. A long (joined) axle runs along the left
side of the turtle and through a pair of bevel gears, which transmits motion to
the liftarms that retract the head (Figure 17.12).
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Figure 17.11 Close-Up of the Head of the Turtle

The body structure is rather simple and solid, the only notable detail being
that it doesn’t use the standard grid. As we explained before, the lower layer is
separated by only one plate from the mid layer in order to make the 16t gears
match the worm gears. To be able to brace the chassis with vertical beams we also
had to adjust the distance between the mid and upper layers, so we used three
plates (one brick) instead of two (Figure 17.13).
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Figure 17.13 Top View of the Turtle (RCX Removed)
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Improvements Upon the Turtle’s Construction

If you have the necessary parts, you can build a carapace (shell) to cover the
R CX, the motors, and other mechanical details thus making your robotic turtle a
more refined model.

On the mechanical side, you could try and design retractable legs as well as a
retractable tail, but were sure you’d have to increase the size of the model to fit
the required mechanisms.

There are many things you can do to improve the behavior. For example, it
doesn’t necessarily have to always go straight until it hits an obstacle, but could
instead stop or change its direction at random intervals thus showing a more nat-
urally random behavior. Turtles are very cautious creatures, and you can add some
additional sensors to make yours more sensitive to changes in the environment: a
light sensor could detect any sudden variation in light, or a custom sound sensor
could perceive noises, all of which might put the robot on alert.

The nose-bumper is quite a primitive system with which to detect obstacles.
It works well when the turtle goes straight into a wall, but it is not very effective
in collisions against other types of objects. As with the robotic mouse, proximity
detection 1s a nice addition to this turtle, too, either in the form of a custom
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proximity sensor that replaces the touch sensor in the nose, or in using the IR
message-light sensor scheme described in Chapter 4.

Creating Other Animals

Nature is a wonderful source of inspiration, and you can collect tons of great ideas
just by browsing through books about animals. Insects and spiders can be used as
templates for multilegged walkers, while other creatures higher on the evolu-
tionary scale present an incredible range of shapes and behaviors. Take your pick.

Matching the shape to the function is almost an art. Even our simple turtle
required many trials before we felt satisfied with its design. Top of the list in this
field is Jin Sato with his MIBO robotic dog: a nicely shaped puppy with a very
sophisticated dual RCX robot that’s quite surprising to see in action. But don’t
be intimidated in the slightest by such an advanced design.You can build many
interesting robotic animals without having to reach that level of complexity. The
following list provides some examples of what you could make. Keep in mind,
there are many other creatures at least as interesting and challenging as these just
waiting for you:

m A squirrel This robot would collect 2 x 2 bricks as if they were nuts,
and perhaps bring them back to its hole (ditficult).

®  An ostrich It won’t bury its head in the sand, but it can hide its head
between its legs.

m A kangaroo We like the challenge of designing a jumping robot, but
so far we haven’t succeeded. The idea was to implement a sort of spring
or rubber band mechanism that, when slowly loaded by a motor, could
release its energy all at once, thus making the kangaroo jump. We con-
ducted a few experiments, and although our prototype actually skipped
and advanced a bit, we didn’t consider it fully successful. It’s still an open
challenge!

®  An armadillo This robot would roll up like a ball when disturbed.

®  An oyster Even a simple animal like this ofters some ideas. For
example you can build one that closes its shell very quickly when
someone steals its pearl, and the game could be to try and take it out
without being touched by the shell.

m A dinosaur This category includes such a broad variety of creatures
that you shouldn’t have any problem finding one to emulate.

345

WwWw.syngress.com



346

Chapter 17 * Robotic Animals

m A porcupine or hedgehog This robot could raise its quills (axles)
when detecting some stimulus.

®m A crab or lobster This type of robot would clamp down on every-
thing that touches its claws.

m A koala This robot would climb on a tree. (You’d probably need a spe-
cially shaped LEGO tree for this one!)

m A mole A dark seeking robot that looks for the darkest places in your
room, presumably under some piece of furniture, and rests there until
some light disturbs it.

With additional RCXs you could model two or more animals, either of the
same kind to cooperate in certain tasks, like ants, or of different types, so that one
hunts the other, which tries to escape.

Summary

In this chapter, we discussed designing a robot after existing creatures, animals in
particular. In addition to technical issues, you have to face the difticulties that
come from the necessity of matching the shape to the function. In fact, in the
previous chapters we concentrated our attention on solving technical problems
without introducing concerns about the size or appearance of our robots.
However, when trying to emulate animals, you cannot do so without a careful
study of the shape of the robot; actually, it 1s the most important factor—it’s what
makes your robot look like an animal instead of a vehicle. Decisions about the
appearance of a robotic animal usually come before any other mechanical choice,
and they will push you to look for technical solutions that suit the desired struc-
ture. Sometimes you will find them and will be able to carry out your original
design; other times you will have to introduce some adaptations into the structure
to make a mechanical solution possible.

The mouse and turtle described in this chapter are good examples of this
approach. In describing the mouse, we explained that one of our goals was to
limit its size. This led us to use a variant of the steering drive configuration
which, at the price of reduced control regarding direction, works with a single
motor. Another goal was to make the robot very fast, which resulted in the use of
wheels instead of true legs.

The turtle project started with a difterent premise: the robot could be slow, or
had to be slow, thus a legged configuration was quite appropriate. But the turtle
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had to be short and flat too, and none of the leg designs described in Chapter 15
were suitable. So we had to figure out a new design that, though not particularly
efficient, was appropriate for this robot.

Having stated the importance of shape when emulating animals, we don’t
want you thinking it’s the only thing that counts. Knowledge from the previous
chapters should still be taken into account, making you pay attention to the
solidity of the structure, to the gear ratio of the mechanisms, to the effectiveness
of the bumpers, or to the position of the COG.

As for programming, when the behavior you want to emulate is very simple,
like in the case of our mouse and turtle, it is somewhat secondary to the design,
and usually does not require a great deal of effort. However, if you aim is to
reproduce more complicated behavioral schemes, programming will become an
important factor in the success of your project.

The last lesson to remember from this chapter is that by studying and
observing animals, you can learn many tricks useful to robotics. Animals provide
endless inspiration when it comes to challenging robotic projects!
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Introduction

If you’re a fan of science fiction novels and movies like we are, it’s quite natural
to try and reproduce some of their leading robotic characters. Obviously, you
cannot hope to get even close to the complex behavior they show in films. That
would be an impossible task even with resources well beyond those of the
MINDSTORMS system, but even with a much more modest goal in mind, you
will discover this is not an easy task. The difticulties come from trying to model a
small scale robot after a large-sized one with a complex shape; something not
easy to reproduce using LEGO parts.

In this chapter, we describe the clones of two very famous robots: R2-D2
from George Lucas’ Star Wars saga, probably the most beloved android of all time,
and Johnny Five/Number Five from John Badham’ film Short Circuit. We chal-
lenged ourselves to build both of them using only MINDSTORMS parts, plus
an optional third motor, with both of them designed for light following, a matter
not yet explored in the book. As always, you’re invited to use our models as
starting points for your own variations either in shape or functionality.

Building an R2-D2-Style Droid

The “real” R2-D2 is essentially made of a cylindrical body culminating in a
hemispherical head. Two rigid legs come out from its sides, ending with the
wheels that provide motion to the robot. R2-D2 is a differential drive. The orig-
inal character also features a front retractable wheel used only under certain con-
ditions; in our model this is the third supporting point necessary for balance.
Figure 18.1 shows our R2-D2.You’ll notice it’s more of a symbolic represen-
tation than a realistic model! The RCX, mounted vertically, constitutes the main
part of the body, while the head is mimicked by a compound structure of tubes.
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Figure 18.1 Our R2-D2-Style Droid

The three motors are behind the RCX (Figures 18.2 and 18.3). Two of them,
at the bottom, connect to the wheels with a 1:3 ratio, while the third rotates the
head. As we explained at the beginning of the chapter, if you don’t have the third
motor, you can build a fixed-head version of the robot. It, too, will be able to

follow light.
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Figure 18.2 Front View (with RCX Removed)

Each of the drive motors mounts a 24t crown gear, which engages another
(plain) 24t whose axle ends with an 8t gear. The latter engages a third 24t gear
connected to the wheel (Figure 18.4).

The legs are built mainly with plain bricks and 2 x 2 round bricks. They end
in a 1 x 2 TECHNIC brick attached to the horizontal beam that locks the upper
part of the chassis and carries the RCX (see Figure 18.5). The front wheel is a
simple caster, which is very important for the proper balance of the model. When
a robot has a vertical shape, like R2-D2 has, the position of its mass is critical for
its stability during changes of direction and speed. It’s not just a matter of keeping
the COG inside the supporting base, but mainly of opposing the eftect of inertia,
which could make your robot flip over (see Chapter 5).
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Figure 18.3 Rear View (with RCX Removed)
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Figure 18.5 Side View

Looking at the bottom of the robot, you can see the beam that supports the
pivoting wheel (Figure 18.6).

The head mounts a light sensor (Figure 18.7) that you’ll use to locate the
light source, and gets rotated through a pulley-belt worm-24t gearing system
(Figure 18.8).This is one of those cases where pulleys and belts help in transmit-
ting motion to a distant subsystem. A touch sensor detects the central position of
the head through the tip of a cam, with a system similar to the one described in
Chapter 14 about the steering assembly of a car.
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Figure 18.6 Bottom View
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Figure 18.8 The Head Mechanism

Programming the Droid

This model of R2-D2 has been conceived as a light follower. The idea is that you
drive it using a source of light, like a flashlight. Though similar to line following
in some aspects, this task requires a different strategy. The main difference is that
unlike line following, in which your robot gets consistent readings (that is, the
light sensor always reads the same values for black or white), when the robot fol-
lows a flashlight beam, the intensity of the driving light will change as the dis-
tance from the source to the robot’s sensor varies.

Thus, you have to difterentiate the driving light source from all the other
sources of direct or indirect light in the room. To achieve this, you must scan the
environment, rotating the head of the robot (or the robot itself) to find the
strongest value. Then you will rotate the robot until it finds that intensity again
(Figure 18.9).

In our first variation in which the robot has a rotating head, the robot is
stationary; it rotates the head some degrees left, then centers it again at the same
time reading the light sensors and storing the maximum value into a variable. The
following NQC code fragment shows an implementation of the algorithm. It
assumes that the light sensor is attached to input port 1 and the touch sensor to
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input port 3, and that the motor that operates the head is connected to output
port B.You have to adjust the value of the ROTATION_TIME constant to reflect
the time your robot takes to rotate its head left at the desired angle:

#define ROTATION_TIME 50
maxlight left=0;
OnFwd (OUT_B) ;
Wait (ROTATION_TIME) ;
OnRev (OUT_B) ;
while (SENSOR_3==0)
{
1ight=SENSOR_1;
if (light>maxlight_left)
{
maxlight left=1light;

}
Off (OUT_B) ;

Figure 18.9 The Flashlight Finding Procedure
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Then you repeat exactly the same procedure for the right side, storing the
maximum reading into the maxlight_right variable. Now you know which side is
the strongest light source, left if maxlight_left > maxlight_right or vice versa, and
you make the robot turn in place, with its head still and centered, until it finds a
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similar value. It’s important that your test has some tolerance, as the light intensity
might have changed a bit from the first moment you read it to the present time
when you try and aim the robot at it.

At this point, your robot goes straight for a while, then stops to look for the
maximum intensity again and correct its route.

The variation in which the robot has a fixed head is not too difterent, just
change the search procedure to turn the robot in place instead of its head. You
first turn the robot left for a few seconds, then you turn it right for a few seconds
more while monitoring the readings as in the previous case. The NQC code
that follows is very similar to the previous example, but uses the drive motors—
connected to output ports A and C—to make the robot turn. In this case the
ROTATION_TIME constant should correspond to the time the robot requires
to turn in place at the desired angle:

#define ROTATION_TIME 200

maxlight=0;

OnFwd (OUT_A) ;
OnRev (OUT_C) ;
Wait (ROTATION TIME / 2);
OnRev (OUT_A) ;
OnFwd (OUT_C) ;
ClearTimer (1) ;
while (Timer (1)<ROTATION_TIME)
{

1ight=SENSOR_1;

if (light>maxlight)

{

maxlight=1light;

}
Of f (OUT_A+OUT_C) ;

When you have determined the maximum reading, rotate the robot until it
reads approximately the same value again.

Acting on the ROTATION_TIME constant, you can make your robot
explore all directions 360° around it, or limit its search to a narrower sector.
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Larger angles make your robot more tolerant and flexible, but they will slow
down the search process.

In the mobile head version, you can even program your robot to scan the
environment while it moves. In this case, we suggest you adopt a different strategy:
read three values, one at the right (e.g., about 30°), one at the corresponding
angle to the left, and one for the center. If the central value is the highest one,
continue straight on; otherwise, slightly correct the angle of the route so the
robot continues in the direction of the strongest reading. With this technique, the
robot makes frequent small corrections instead of stopping to find the new route.

Variations on the Construction

Our R2-D2-style robot can be programmed for different tasks. For example, if
you want to equip it for line following you simply have to put a light sensor (that
taces down) just behind the pivoting wheel.

Adding bumpers, on the contrary, is not an easy job if you don’t want to alter
the esthetics of the model: R2-D2 is not very suitable for cumbersome bumpers.
By using rotation sensors, you can perform indirect obstacle detection (see
Chapter 4), an approach more proper for this droid than conventional bumpers.
Proximity detection is a good alternative, if you own a custom IRPD sensor.

Having extra pieces can make your R2-D2 more alike to the original. For
example, with some plates and hinges you can shape an octagonal body (Figure
18.10), a better approximation to its cylindrical body.

Figure 18.10 A Section of a Possible Octagonal Body

359

WwWw.syngress.com



360 Chapter 18 * Replicating Renowned Droids

You can even remove the pivoting wheel and make R2-D2 capable of standing
on two legs by simply placing two aligned wheels into each leg (Figure 18.11).This
way, the robot is no longer a difterential drive and becomes a skid-steer drive. To
use this architecture, it’s very important you keep the COG (center of gravity) as
close as possible to the ground. Its vertical right should be in the middle of the sup-
port base, delimited by the four touching points of the wheels in order to reduce
the tendency of the robot to overturn when starting or stopping. A high reduction
ratio between the motors and the wheels helps, too.

Figure 18.11 A Double-Wheeled Leg

LYY LY

Www.syngress.com



Replicating Renowned Droids * Chapter 18 361

Building a Johnny Five-Style Droid

Johnny Five (or Number Five) has a much less compact structure than R2-D2. Its
body is slim and articulated at many points, and the whole is supported by two
large tracks. Replicating this in LEGO is quite a challenging task, especially because
the RCX and the motors are rather large compared to the size of the tracks avail-
able in the MINDSTORMS kit. Things get better if you scale the model up, but
you would need many extra parts and, above all, some larger tracks.

Since we can’t have everything, we decided to be satisfied with just repro-
ducing some of the main features of Johnny Five: the triangular tracks, the rear
pivoting wheel, a rotating head and two (decorative only) hands (Figure 18.12).

Figure 18.12 Our Johnny Five-Style Droid
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The body of Johnny Five has been built around a chassis with a triangular
section. Looking at the robot from its side, you’ll notice that three beams form a
perfect right triangle with sides of length 6, 8, and 10 (Figure 18.13). The vertical
1 x 16 beam also serves as a support for the upper wheel of the tracks and the head
mechanism. Since the MINDSTORMS kit includes only four track wheels, we
made two more from a pair of pulleys with a bushing in the middle. The pivoting
wheel is not actually necessary to support the robot, but it enhances its look.

Figure 18.13 Johnny Five Side View

The gearing of the drive motors is rather simple: an 8t gear on the motor
shaft engages a 24t gear connected to the drive axles. (Remember that you also
need a 16t gear inside the track wheel to joint it to the axle.)

The third motor lies on a second layer above the first two, and it’s braced by a
diagonal beam with a quite unconventional slope: this triangle has a base of 2
studs, a height of 7 1/3 bricks that corresponds to 8.8 studs, and a diagonal of 9
studs. The match 1s not perfect, but the error is less than three parts in a thousand

and gives a solid bracing to the motors without disturbing the pivoting wheel
(Figure 18.14).
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Figure 18.14 Johnny Five Rear View

Figure 18.15 shows the bottom of the robot.You’ll notice that we joined the
front axles together to make them more solid, relying on the fact that the track
wheels are free to rotate on them. On the other side, the rear track wheels have
16t gears inside. As explained in the MINDSTORMS Constructopedia, this is
the way to securely join them to their axle.
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Figure 18.15 Johnny Five Bottom View

The head mechanism is nearly identical to the one we designed for R2-D2:
A pulley-belt system rotates a worm gear, which engages a 24t. A cam closes a
touch sensor when the head is centered (Figure 18.16).

We got sentimental and rebuilt for Johnny Five the same head we designed
together in 1998 for one of our first MINDSTORMS projects, called S3 (see
Figure 18.17).

e, N

“Norte

- Refer to the earlier section on programming the R2-D2-style droid when
. programming the Johnny Five robot—the two models can be driven by

% the same software.
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Figure 18.16 The Johnny Five Head Mechanism
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Variations on the Construction

In introducing this robot, we explained that if you want to make your version
more similar to the one from the movie, you have to increase its scale. You will
need some extra parts, but those are easy to find. The greatest problem comes
from the tracks:You can’t use the ones from the MINDSTORMS kit for a larger
Johnny Five, because theyre too small and will make it look ridiculous. Staying
with LEGO components you have two alternatives: the Cybermaster tracks and
the modular chain link tracks (see Chapter 9), both of which are a bit hard to
find. The latter represents a very flexible solution that allows you to adjust the
length of the track precisely to your needs, and it’s what we used for Cinque, the
larger Johnny Five-styled robot described on our site (Figure 18.18).

Figure 18.18 Cinque, Our Replica of Johnny Five
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If you’re open to nonoriginal components, you can search toy shops for
cheap toy tanks: some of them feature tracks that may be adapted to LEGO and
might fit your needs very well. Usually, you cannot use the standard LEGO track
wheels. Instead, you have to build suitable ones combining wheels in pairs with a
half or whole bushing in the middle (Figure 18.19).

Figure 18.19 Nonoriginal Tracks

coupled whaels
with balf bushing

Bricks & Chips...

Guiding Infrared Light

Cinque was not our first dual-RCX robot—we had already succeeded in
co-coordinating two RCX units through IR messages. However, after fin-
ishing Cinque, we realized that the two RCXs couldn’t communicate
because their IR devices didn’t “see” each other.

Facing the horrible scenario of starting everything over from
scratch, we began looking for a solution to guide the IR light between
the RCXs. IR light, though not visible to the human eye, behaves just like
visible light, so what worked with visible light would have worked with
the IR, too. Our first idea involved LEGO optic-fibres, the ones usually

employed together with the FOS unit. We tried to position them in front

Continued
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of the RCX bricks, but that didn’t work. Then we experimented with a
mirror, placing the robot in front of it—and found the IR messages could
indeed successfully reach both the units. We were close to the solution;
we simply needed a small mirror mounted on the robot. But did it really
have to be a mirror, we wondered, or would something easier work?

Breathing sighs of relief, we finally discovered that a simple white
reflecting surface was enough to assure a reliable communication. You
can see our reflector in Figure 18.18: two white tiles close to the top of
the left track.

Summary

If you decide to reproduce one of the famous robots that populate sci-fi movies,
you will face difficulties similar to what we described in Chapter 17 about
making robotic animals: matching the form to the function.

The process can be made a bit easier by choosing the proper scale for the
model. Generally speaking, the bigger the size, the better the result, because the
size of your elements become less relevant when compared to the size of the
model, allowing you to make finer details. Unfortunately, sizing up is not always
an option, because you must take into account your own part availability, and the
size of some special components, like wheels and tracks, that limit the maximum
dimension you can aspire to.

On the technical side, both the droids gave you the chance to see some of the
theoretical concepts of Part I put into practice. For example, the vertical shape of
R2-D2 requires the thoughtful application of the ideas expressed in Chapter 5
about balancing the robot to oppose the eftects of inertia. The Johnny Five model
is the first robot of Part II to use the triangular structures described in Chapter 1.
It is also the first one that uses tracks instead of wheels, implementing the skid-
steer drive scheme described in Chapter 8.To make its tracks outline a triangular
shape, we had to build a third pair of track-wheels; this is a good example of the
powerful modularity of the LEGO system, which allows you to replicate the
functionality of one part by using other basic elements.

This chapter also introduced you to a programming challenge we haven’t
discussed yet: light following. It has significant differences from line following,
because you cannot rely on the constant readings that come from a black and
white pad. Instead, you have to scan the environment looking for the strongest
light source, and then follow that direction. For line following, we suggested a
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calibration procedure be executed before running the robot along the line in
order to evaluate the maximum and minimum values the robot should expect. In
the case of light following, this kind of procedure is performed every time the
robot wants to decide in which direction it should go.

We invite you to visit some of the Web sites listed in Appendix A. Most of
them will be of great inspiration when it comes to making your own droids.
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Introduction

Humankind has always been fascinated by labyrinths, and mythology is crowded
with heroes busy finding their way out of mysterious buildings. It was not
unusual for large European 18th- and 19th-century villas to have a hedge
labyrinth in their garden. Indeed, mazes of difterent varieties are still common in
the amusement parks and games of our era.

The ability to find your way through a maze is considered a good test of
intelligence and has been used with mice and other animals to measure their
capacities. Now the time has come to test your robots, too!

Before building robots capable of solving a maze, you must understand what
“solving a maze” means. In other words, we must understand what knowledge
and skills are necessary to find the way out. If you ask anybody to solve a simple
maze drawn on a sheet of paper, he or she will probably do it very quickly. But if
you ask someone to describe the procedure they used, you will likely receive some
very generic explanations. This happens because human beings tend to ignore the
details of what they do: They employ the knowledge and experience accumulated
throughout their life—especially during their childhood—without realizing that
such a simple action actually hides a multitude of operations. If somebody were
to stop you on the street to ask for directions, would you explain to them what
“turn” and “left” means? Surely not. However, in regards to robotics, there’s no
background knowledge you can take for granted. We explained in Chapter 14
that even an apparently easy task like moving around the inside of a room, or
detecting obstacles, requires a thoughtful analysis of the environment and of its
interactions with your robot.

This is also the kind of analysis necessary to implement maze solving: you need
a strategy, and it has to be detailed enough to be translated into program instruc-
tions for your robot. For this reason, we will begin exploring some theories about
maze solving, which will lay the foundations for the projects that follow.

On the hardware side, the robots that you will come across in this chapter
don’t require many more parts than what you find in your MINDSTORMS box.
We built the Maze Runner robot entirely from MINDSTORMS parts, while the
Maze Solver robot used some additional elements unnecessary for the success of
the first project. As well as teaching some concepts about maze solving, this
chapter will also strengthen your skills about working with touch and light sen-
sors, consolidating ideas that appeared in Chapter 4.
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Finding the Way Out

Even a simple maze, the kind you can solve in a few seconds with a pencil if you
see it printed on a sheet of paper, assumes a completely different perspective
when you are inside it. If you don’t have any external reference point, and are not
allowed to take note of your moves, well, be prepared to spend a few hours!

How can external references or note-taking help you in finding your way out
of the maze? Because they help you understand where you are. To introduce this
concept, we invite you to perform an experiment:You need a friend who will play
the role of the robot inside the maze, while you simulate the sensors that return
information about the environment around him.Your friend must find the exit
from the maze of Figure 19.1 without actually seeing the picture, only by using
your verbal feedback. He can only use four commands inside the maze to direct
himself: forward, back, right, and left. You track his position in the maze with a
pencil, and if his command is acceptable—that is, if the desired direction doesn’t
come up against a wall—you move the pencil to the specified adjacent square,
answering “OK?”; otherwise, you keep the pencil stationary and answer “wall.”

Figure 19.1 The Test Maze
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Will your friend be able to exit the maze under these conditions? Probably
yes, but only after a long time, and with an eftort that seems enormous when
compared to the simplicity of the maze. In the second phase of the experiment,
provide your friend with a squared sheet and a pencil, so he is able to log his
movements. When you answer “OK.,” he will move his pencil to the adjacent
square, too, and when you answer “wall” he will remain in the same square, but
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will mark the specified side of his square with a line which represents the wall.
Now things will go much more smoothly for your friend: Looking at his map, he
can avoid visiting the same location more than once, sparing himself many colli-
sions and exploring all possible routes until he finds the way out.

Some of you may have noticed that the aids mentioned pertain to the two
basic categories described in Chapter 13 regarding knowing your position: abso-
lute and relative positioning. In fact, the use of external reference points represent
an application of absolute positioning—you use landmarks to locate yourselt—
while note-taking has many similarities with relative positioning: You deduce
your new location knowing the direction and the distance you covered from the
previous location.

Finding one’s way in a labyrinth is, in fact, a special case of navigation and
requires similar abilities, with the addition of some memory to remember which
branches have already been visited. In our previous experiment, the memory was
symbolized by the sheet of paper where your friend logged his moves.

Thus, generally speaking, to solve a labyrinth, your robot should be equipped
with a navigation system and a map in its memory. There are some notable excep-
tions, like labyrinths that simply require slavish application of a rule to lead you to
the exit, which could be handled by robots with less demanding equipment.

The strategies we are going explain work with flat mazes—mnot just the ones
you can draw on a piece of paper, but any labyrinths that can be represented on a
piece of paper. For example, hedge and crystal labyrinths usually belong to this
category, provided that they don’t contain any bridges or tunnels.

Using the Left Side—Right Side Strategy

This technique solves an incredibly large class of mazes, its rule being quite
simple to remember and apply. It states that, when applicable, if you follow the
left wall and turn left whenever possible, you will find the exit. Easy, isn’t it?
You're not guaranteed to cover the shortest distance, but you’re guaranteed to
find the way out. Actually you can just as easily keep to the right side, the two
methods being complementary and leading to the exit along different paths. We
invite you to test the rule on the simple maze of Figure 19.1. Imagine physically
entering the maze and then trying to follow the left wall—eventually, you arrive
at the exit. Now try again, this time following the right wall. Again you reach the
exit, but from a different route (Figure 19.2).

To be more precise, if you follow the right wall, you use the same route you
would if you followed the left wall from the exit to the entrance.
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Figure 19.2 Following the Right and Left Walls
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This strategy has a great advantage in that you need not know anything about
your position and orientation. The only abilities required are that your robot can
follow a wall and that it can recognize the exit when it’s there.

At this point, the crucial question 1s: When can you apply this rule? There are
essentially two cases in which you can do this:

1. When the maze is flat, and has both the entrance and exit placed along
its perimeter (as in Figure 19.2).

2. When the maze is flat, and the entrance and exit are points arbitrarily
chosen anywhere in the maze, where the latter doesn’t contain any
loops. That is, it doesn’t contain multiple paths that connect any two
points (Figure 19.3).

The rule covers many practical cases. It doesn’t work when the entrance and
exit are not along the perimeter and the maze contains loops, as in Figure 19.4.
Notice that the route covered following the left wall brings you back to the
entrance without reaching the exit point.
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Figure 19.3 The Exit Is Inside a Maze with No Loops
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Figure 19.4 The Exit Is Inside a Maze with Loops
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Applying Other Strategies
When you cannot apply the rule previously stated, you rely on two strategies:

1. Executing random turns

2. Tracking your route

The first one says that whenever you find yourself at an intersection, you
decide which way to go at random. Though this method is guaranteed to find
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the solution sooner or later, that “later” can be a very, very long time if the maze
includes more than a handful of intersections!

The second approach solves the more general case of mazes with more than a
few intersections, but requires two valuable ingredients: a position control system
and a memory. You must be able to recognize each intersection and mark the
branches already explored so as not to explore them again. The right side rule
can still be useful as a basic rule, but when you find yourself in a place you've
already been, you must be able to backtrack to the first intersection with unvis-
ited branches and take one of those.

We imagine you already see the difficulties in this: You must provide your
robot with an affordable navigational aid and with an inner map to represent the
maze so you can mark the visited corridors. Don’t worry, this time we won't test
your patience with trigonometric functions and dead reckoning. If you read on,
you’ll see that we suggest a Maze Solver that doesn’t require anything but the
basic MINDSTORMS equipment and some programming skill.

But let’s start with something simpler. The first robot of this chapter, the
Maze Runner, has been designed to apply the left side rule inside a maze.

Building a Maze Runner

The first robot of this chapter applies the left-side rule and follows the left wall of
the maze toward the exit. It has no intelligence, only an ability to follow a wall.

Constructing the Maze Runner

To construct the Maze Runner, we used a differential drive configuration and a
couple of touch sensors. The whole robot may be replicated with parts solely
contained in the MINDSTORMS set (Figure 19.5).

It works on a very simple principle: one side sensor “feels” the wall, so the
robot can always remain in touch with it, turning left when necessary. This covers
the case of straight walls and of left turns, but the robot will also have to face sit-
uations where it hits a wall in front of it and must turn right. For this reason, we
equipped it with a second sensor, that detects front collisions. In Figure 19.6, you
see the robot without the RCX, and can distinguish the two touch sensors, both
kept closed by the pressure of a rubber band.

The left side bumper, the one with the horizontal wheel at its end, is
designed to touch the wall, while the other detects the closed corners that
require a right turn.
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Figure 19.5 The Maze Runner

Figure 19.6 Top View (RCX Removed)
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For the difterential drive, we used one of the simplest configurations shown
in this book: A single stage geartrain made out of a 40t attached to the wheel and
an 8t connected to the motor shaft (Figure 19.7).

Figure 19.7 Left Side View (Drive Wheel Removed)
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Our robot is very low to the ground because we placed the motors below the
beams that support the wheels, but in this kind of task we don’t need a lot of
ground clearance and this solution keeps the assembly nicely compact (Figure 19.8).

Figure 19.8 Rear View

379

WwWw.syngress.com



380 Chapter 19 ¢ Solving a Maze

The front wheel is a simple caster identical to the one we used for the R2-D2
droid in Chapter 18 (Figure 19.9).

Figure 19.9 Bottom View

Programming the Runner

“Playing robot” is always a great exercise for devising or testing the strategy you
are going to implement in your program. Even before actually writing any code,
imagine running the program in your head, and try to explore the test maze of
Figure 19.1 following the instructions step by step.

You will discover that this robot is particularly easy to program. After having
initialized the sensors for the proper type, all you have to do is go straight while
both sensors are closed. If the left sensor opens, turn left until it closes again. If
the front sensor opens, turn right.

In our version of the code, we gave priority to the front sensor, that is, the
robot ignores the side sensor until everything is all right with the front one. We
also introduced some timing to improve the performances: We added a quarter of
a second before turning left, because this gives the rear driving wheels time to
reach the optimal point to turn around a corner. A quarter of a second is also the
length of the right turn before starting left-side checking again.
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Creating the Maze

Now that you have a maze runner, you presumably would like a maze, too!
Unless you want to show oft your robot at some sort of public exhibit, it’s not
necessary to build a lovely structure made from wood or other materials. You can
test your creature against a makeshift labyrinth made with small pieces of furni-
ture, piles of books, large boxes, cardboard and everything else your imagination
will suggest.

The only thing to make sure of is that all the “walls” have a smooth surface at
the height corresponding to the sensors, so they don’t block them during the
robot’s run.

Variations on the Maze Runner

With our maze runner finished and successfully tested, we wondered whether it
was possible to build a simpler version of the maze runner, a purely mechanical
wall follower, that didn’t need any programmable unit to be run. We found one.

Figure 19.10 shows what we came up with. The machine is a steering drive,
employing a single motor. We powered it from a battery box, to emphasize the
fact that it needs no intelligence, but you can run your version from an output
port of the RCX. The trick to this robot is that the large horizontal bumper
wheel is used to control the steering wheels. The bumper wheel, itself, is powered
by a second motor.

Figure 19.10 A Purely Mechanical Wall Follower
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The front wheel assembly is pulled left by a rubber band. When the robot
departs from the left wall, the rubber band pulls the steering assembly, and the
robot turns left until it is again parallel to the wall. When the robot runs into a
front wall, the front wheel rolls onto it pulling the steer right, and in a few sec-
onds the robot is aligned again to the wall.

The bottom of the robot shows its simplicity: a difterential drive for the drive
wheels, and two free wheels for the steer (Figure 19.11).

Figure 19.11 Bottom View
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This robot doesn’t work as well as the previous maze runner. In most cases it
behaves adequately, but cannot manage all situations. For example, it has problems
turning left 180° around a thin wall, or in making two close 90° right turns.
Nevertheless, it shows an important principle, that there are many solutions to the
same problem, and that sometimes you can work a bit more on the mechanical
side to make your software simpler.

Building a Maze Solver

To overcome the limitations of the Maze Runner and its “left side rule” tactic,
and to solve the more general case of a labyrinth with an entrance and exit at
two arbitrary points, we designed this Maze Solver.
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Constructing the Maze Solver

Even from the first picture of our Maze Solver (Figure 19.12) you can see that we
radically changed the approach: The robot is no longer inside the maze. On the
contrary, it stays entirely outside and uses a light sensor to analyze and solve it. This
makes the robot similar to a human who looks at a maze on a sheet of paper.

Figure 19.12 The Maze Solver

Obviously, the maze in this case is just a flat maze. We used LEGO tiles to
draw one on a large baseplate, but you can just as easily draw one on a sheet of
paper. Except for the tiles and the baseplate, you will find all the other parts in
your MINDSTORMS set.

The idea that forms the basis of this robot is a reading head that moves in
two perpendicular directions. We can define this as a Cartesian system, because,
like in a Cartesian plane, each position is defined by a pair of coordinates, tradi-
tionally identified with the letters x and y. For example, the point A in the
Cartesian plane of Figure 19.13 has coordinates x = 2 and y = 3.

In the Maze Solver, the reading head moves over two rails, which correspond
to the x and y axis of the graph. This is how the robot tracks its position, a
system which has the significant advantage of applying very simple math.

Besides controlling the coordinates of the reading head, the robot monitors a
third quantity. The readings that come from the light sensor, which reflect the
state of the underlying cell of the labyrinth.
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Figure 19.13 The Cartesian Plane
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The test maze we used to try out our robot can also be solved with the left

side rule (Figure 19.14), but this robot, when properly programmed, is able to
solve any kind of flat maze.

Figure 19.14 The Baseplate, the Rails, and the Maze

In the same picture, note the two rails the robot moves upon. The inner
beams are mounted studs-down to provide a smooth surface the robot can run
on. On the right side, the beam features a row of pegs that triggers the y-axis
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touch sensor and allow position control. You can think of the pegs as marks along
the axis, placed at a distance of one unit each; the robot detects these marks with
a touch sensor and can stop precisely at any of them.

Looking at the rear side of the robot, you notice the y-motor and the corre-
sponding touch sensor at the very bottom (Figure 19.15). The left and right rear
wheels are connected with a long joined axle.

Figure 19.15 Rear View

The front side shows the light sensor attached to a 1 x 16 beam covered with
racks (Figure 19.16).This is the x-axis, and on the left of the picture note the
motor that controls this direction of motion.

Most of the trolley has been built studs-down, mainly to provide a smooth
surface which the rack can slide over (Figure 19.17). The rack mounts a second
series of pegs to control the x coordinate through a touch sensor with the same
mechanism adopted for the y-axis. We used the long cables to wire the motors
and the short ones in pairs to connect the touch sensors.

The bottom view reveals the last details (Figure 19.18), the touch sensor and
the long plate that gives rigidity to the structure.
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Figure 19.16 Front View
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Figure 19.18 Bottom View

Programming the Solver

Our robot can move on a grid of twelve by seven possible positions, thus it’s able
to explore a labyrinth with 84 cells. We chose to represent the maze with LEGO
tiles and, for this reason, we have two kinds of cells: open (white locations), which
correspond to the path, and closed (black ones), which represent the walls.
Different representations are possible: Using a maze drawn on a piece of
paper, you can make cells all white with black lines, designating the walls
between them. We used a similar depiction for our maze in Figure 19.1.
-

“NotEe

- If you draw your maze on a piece of paper, make its cells exactly one
stud wide, as this is the standard step of the robot (the pegs that
. activate the touch sensor are spaced one stud apart).

The way you draw your maze affects its representation in memory. The more
obvious choice is an array of variables that correspond to the cells of the maze. In
our case, you can use a very simple approach where each cell has only one of
three possible states: white, black, and unknown. More complex representations
are possible; for example, one where each cell contains information about its
neighbors, typically using one bit for any of the four sides of the cell.
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Bricks & Chips...

Struggling with Limited Memory

If you're using NQC or other environments based upon the standard
firmware, you're probably thinking that you don’t have 84 variables to
use. Luckily, you don’t need that many of them, because there are much
more compact ways to store the information you need.

Thinking in terms of bits, two of them are enough for a cell (you
need three states and they provide four: 00, 01, 10, 11), thus you can
store a whole row of the labyrinth in 14 bits. This means that a row fits
in your 16 bit variables with no problem, and the entire labyrinth
doesn’t require more than 12 variables.

The technique of addressing single bits of a variable require you
have a bit of confidence with programming, and with bit masks and
bitwise binary operations in particular. Any good programming text will
help you understand how this mechanism works.

When you have implemented the storing and retrieval system, youre ready to
design your exploration strategy. Here, you have two groups of approaches that
are radically difterent:

m  Scan the entire maze, store it in memory, solve it, and show the solution.

m  Explore the maze as if the robot were inside it.

In both cases, you must tell the robot which cell is the goal, usually storing its
coordinates in the program so the robot knows when it has found it and stops.

If you prefer the first technique, you have to program your Maze Solver to
address each cell of the maze, row by row and column by column, reading the
state of the cell and storing it in the internal map. Then, you can use a well-
known algorithm, like the Bellman Algorithm, that finds the shortest path from
the start to the goal; this is a purely computational process that happens inside the
R CX. Finally, you can show the result of the process using the robot again,
moving its head at the starting point and making it follow the optimal route to
the exit. Though interesting from a computational point of view, in our opinion
this is a bit like cheating, as if you were allowed to look at the plan of a labyrinth
SO you can prepare a map before actually entering it.

WwWw.syngress.com



Solving a Maze * Chapter 19

In the second approach, you proceed cell by cell, building the map while you
explore the maze, as if you were inside it. Recall the note-taking technique we
described in the Finding The Way Out section; this is exactly what you need.
While you proceed in the maze, you update the map with the information that
comes from the light sensor.You can base your strategy on some basic rule, like
going straight whenever possible, or following the left wall, managing as excep-
tions the cases where you find yourself blocked or on an already visited path. In
such cases, you should backtrack to the first cell with unexplored neighbors and
restart from there. Use your stored map so you don’t visit any cell more than once.

Summary

If you want to test your skills in maze solving, the first step you have to take is to
understand the details involved in the process of finding the way out. We
encourage you to draw a simple maze on a sheet of paper and to “play robot”
with it: Take a pencil which represents the position of the robot in the maze and
move it according to the “program” you execute in your head. This preliminary
study will provide you with the necessary knowledge to successfully build and
program your robot.

The robots of this chapter prove that maze solving is in the range of MIND-
STORMS robotics, though here we purposefully escaped some major difticulties.
In discussing the theory, we explained that maze solving requires a robot with
both an accurate navigation system and a memory to store a map of the
labyrinth. The navigation system is the more demanding of the two requirements
(recall Chapter 13 and the problems involved in finding the robot’s location).
Both robots described in the chapter avoid this ugly necessity by employing dif-
ferent strategies.

The most important message you should get from the chapter is that some-
times you can look at your problem from a different perspective to find an easier
solution. In fact, we discovered in this chapter that maze solving is no more com-
plex than wall following. This means your robot needs only minimal intelli-
gence—a trait reflected in our Maze Runner robot. Going a step further, you can
transfer part of the control to mechanics, making the brain of your robot even
less important.

The second robot, the Maze Solver, was aimed at solving flat labyrinths of
greater complexity, including those which cannot be worked out using the wall-
following approach.
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This time, our robot did need a navigation system, but looking at the
problem from a different angle again, we discovered a trick to avoid some of the
mechanics—moving the context from a subjective perspective, that of a robot
that runs along the corridors of a labyrinth, to a more controlled space where a
reading head moves inside a Cartesian plane. The rails equipped with pegs pro-
vided the robot with an easy method of knowing exactly where the light sensor
was inside the maze, excluding the complications of odometry and calculations.
Thus the “know where you are and where you are going to” problem was
reduced to counting pegs with a touch sensor.
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Board Games

Solutions in this chapter:

m Playing Tic-Tac-Toe
m  Playing Chess
= Playing _Qtr-\er Board Games
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Introduction

Board games are among the most challenging projects you can take on with your
MINDSTORMS kit. The RCX does have the power to run software that plays
Tic-Tac-Toe, Checkers, and even Chess (at some level), but this doesn’t mean that
such a program is easy to write and test.

We believe that the hardest but most important part of the job is the creation
of the interface between your robot and the physical world. Though running a
Chess program on the RCX is quite a challenging task in itself, having a robot
physically interpret and interact with the data is another giant step.

The method you choose to represent the board and make your robot actually
move the pieces determines in large part the technical difticulties you will have
to solve. In this chapter, we are going to describe some of the possible
approaches, from the easiest to the trickiest.

Playing Tic-Tac-Toe

As we described in our introduction to the book, in October 1999 we attended
the first Mindfest gathering at the Massachusetts Institute of Technology (MIT) at
the Media Lab facility.

The Mindfest event featured many activities: lectures, workshops, a construc-
tion zone... There was also a large exhibition area were the participants could
show oft their MINDSTORMS creations.

A couple of months before the event, we had already booked the plane and
the hotel, and asked for a table in the exhibition area, but hadn’t yet prepared our
robot. Showing brilliant intuition, Marco Beri, the third member of our small
group, came up with the idea of building a Tic-Tac-Toe machine, a robot able to
play a board version of the well-known game. We immediately felt it was the
right idea: Board games have been historically considered a good test for machine
intelligence, so even if Tic-Tac-Toe can’t compare to Chess in complexity we
thought it was the right project to present in the “temple” of Al at MIT.

Marco wrote the software, we built the hardware, and just a few days before
leaving, we met and refined our prodigy. Our robot, named TTT, worked per-
tectly and aroused much interest.

Though we made an effort to keep the requirements minimal, our machine
used many extra LEGO parts. For this reason, we decided to build a new, simpli-
tied version for use in this book. The description of our original version is still
online, however; you can find the link to it in Appendix A.
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Building the Hardware

To keep the project replicable using only parts from the MINDSTORMS kit, we
gave up the idea of making our robot physically mark its moves with a pen or
with pieces. Thus this robot just indicates its move and requires your assistance in
recording it on the paper.

If you look at Figure 20.1, you will probably recognize the structure: It’s the
Maze Solver of Chapter 19, with just some minor modifications. (We won’t
describe the whole robot again, just the changes we made, referring you to
Chapter 19 for the remaining details.)

Figure 20.1 The Tic-Tac-Toe Player

The main difference concerns the number of pegs used to mark the position
along the X andY axis. In this project, you need just three stops in each direc-
tion, and a fourth for the resting position of the robot. We also removed the base-
plate and linked the two longitudinal rails with some plates.

The board is represented by a white sheet of paper, the ideal surface when
looking for the highest contrast in light readings. On the sheet, we traced the
Tic-Tac-Toe scheme. The centers of its squares align with the stop pegs placed
along the rails (Figure 20.2).
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Figure 20.2 The Tic-Tac-Toe Board

This robot is designed to read the light value in the center of the squares. You
can either mark the moves placing thin LEGO pieces to represent Xs and Os, or
drawing large dots with colored markers. In both cases, be sure that the light
sensor 1s very close to the surface, otherwise its readings will be badly affected by
the ambient light.

We tested our robot using the 2 x 2 plates included in MINDSTORMS as
markers: The gray ones for one team and the blue ones for the other. (You can
use green plates with the blue, since they read as almost the same value under the
light sensor.)

Writing the Program

Our robot need not know that a game is made of many moves. Every run of the
program is a single move, made of the following steps:

1. The robot scans the board, storing a copy of it in a memory array.
2. It evaluates the situation and decides what move to make.

3. It performs the move.
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When the user presses the Run button, the robot moves from its resting posi-
tion and goes to the first row and first column of the board (second peg on the Y
axis, first peg on the X axis). It stops there and reads the value of the light sensor.
We suggest you use raw values, because, as explained in Chapter 4, they provide
finer granularity. In our version, there’s a clear-cut division among the readings of
the white sheet, the gray plate, and the blue plate, definitely enough to distin-
guish the three cases with no ambiguity. It’s crucial you place the plates directly
below the reading positions of the sensor; you can make the placement more
exact by marking the squares on the sheet with a thin black line.

Having scanned and stored the first square, the robot will move to the second
one, then to the third and so on until the whole board has been scanned. Our
TTT software, written in NQC, assigned each square to a variable, but it’s pos-
sible to use a much more compact representation using individual bits, as demon-
strated by Antonio Ianiero’s YATTT (Yet Another Tic-Tac-Toe) that employs only
two variables for the entire board (see Appendix A).

As for the strategy, when properly played, Tic-Tac-Toe ends in a tied game in
which nobody wins. The following list enumerates, in order of priority, the steps
to play a perfect defensive game:

1. Check if there’s any move that makes you win, a square that completes a
row, a column or a diagonal of three.

2. Block the opponent if there’s any row, column, or diagonal with two of
his pieces and one empty square.

3. In the case where you have a piece in the center and the opponent has
two pieces at the ends of a diagonal, choose one of the four central
squares of the external rows and columns to force him to block you.

4. 1If the central square is free, play there.
If one corner is free, play there.

6. Play in any free square.

Once the robot has figured out its move, it goes to that particular square and
beeps to show it wants to play there, then returns to its resting position.

Practicing with the described strategy is a good idea; take a sheet of paper
and play a few games against a friend, or by yourself, following the suggested
steps as if you were the robot. This will make you familiar with the possible board
situations and the moves required to oppose the attacks.
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Don't forget to add a melody to your program that plays when the robot
wins; a tune for defeat shouldn’t be necessary because it never loses (unless the
human player cheats!).

Improving Your Game

The hardware of the robot offers many possibilities for variations and improve-
ments. If you have enough racks, you can cover the side rails with them and use
gears in place of wheels, the latter having an unpleasant tendency to slip.

Using a third motor, you can equip your robot with pliers to carry and drop
its own pieces, as in our original version. The Mindfest TTT still needed the help
of a human assistant to load the piece in a special platform where the robot
caught it, but it’s possible to devise an automatic dispenser that contains a stack of
pieces and drops one on demand.

On the software side, the strategy we described will never let your robot lose,
but it’s not particularly aggressive either.You can improve it in this area so your
robot tries to confuse its opponent whenever possible.

If you have a solid background in programming (and in Al in particular), you
can develop a learning version of this robot. It would start with no knowledge,
playing purely at random in the beginning, but learning from its own mistakes
and becoming better and better as the number of played games increases. In our
opinion, this is quite a difficult but very impressive and instructive improvement,
that makes the robot much more attractive to see in action.

Playing Chess

It’s a big step from Tic-Tac-Toe to Chess, but people have succeeded in writing
a version for the RCX, proving that the goal is definitely achievable (see
Appendix A).

We didn’t test the robots in this chapter with the proper Chess-playing soft-
ware but instead used a reduced set of moves to check the mechanics. We did,
however, make an effort to present ideas about interfacing a Chess software with
the real world. As always, too, these robots offer tips and suggestions applicable to
other areas.

For example, the visual interface employs the Fiber-Optic System (FOS) as an
input/output device, using it to emulate a rotation sensor (see Chapter 4) and at
the same time give a visual indication of the moves. This demonstrates that the
unit, usually considered solely decorative, has greater potential: You can use its eight
tibers anytime you want to show the user of your robot a value between 1 and 8.
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The robotic arm of Broad Blue, our mechanical Chess interface, is a good
example of a system which addresses the points of a plane using an alternative to
the Cartesian scheme. In fact, while our Tic-Tac-Toe machine reaches the squares
on the board using a combination of two linear movements, Broad Blue uses a
combination of two angles. This scheme 1s very suitable for robotic cranes and
grabbing arms designed for various applications, including those aimed at emu-
lating a human arm, whose structure is based on the same principle.

Building a Visual Interface

Comparing Chess to Tic-Tac-Toe, the first thought that comes to mind is that
the scan-the-board approach is very complex, if not impossible, to implement.
How could a robot tell one piece from another? Even if, with specially coded
pieces, you succeeded in the task, the time required for the robot to scan 64
squares would make the game quite boring.

This means you must use a difterent technique. The most obvious solution i1s
that your robot keeps a copy of the board situation in its memory, updating it
with the moves of the players. It knows its own moves, thus all it needs is an
input about those of its human opponent. With this approach, the robot no
longer needs to scan the board and differentiate the chess pieces, because it uses
the copy of the board contained in its memory.

The standard convention to describe board situations in Chess is based on a
simple coordinate system where rows are numbered 1 to 8 and columns A to H.
Thus all you need is a way to choose a starting column-row pair, that points to
the piece the human player wants to move, and a second column-row pair that
outlines its destination.

Our first Chess interface works exactly like that. We used the Fiber-Optic
System (FOS) to display the selected coordinates beside a small all-LEGO board
(Figure 20.3).

An FOS unit contains a rotor which has a tiny red light. Wiring the unit to a
power source, like the output port of an RCX, turns the light on. The casing of
the FOS device has an axle-hole in its center, through which you can rotate the
inner rotor. This rotation aligns the light with one of eight possible holes, from
which you can drive the beam of light into the LEGO optic fibers.

In our setup, the FOS units connect to two input ports of the RCX, which are
configured as light sensors. The electrical current the units receive from the RCX,
aimed at power activated sensors, is enough to make their LED turn on. At the
same time, the fact that they are attached to input ports allow you to read their
state. In fact, the FOS unit returns two different values, the first when the rotating
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light is aligned with one of the eight holes, and the second when the light is
hidden between two holes. This is the property that makes them good candidates to
emulate rotation sensors: You can implement an internal counter which is incre-
mented every time you detect a transition from one value to the other (see
Chapter 4). The FOS can't tell you the direction, but if you couple it with a motor,
like we did, you know in which direction you are making it turn. In our robot,
each FOS unit is powered by its independent motor through a 1:5 reduction stage.

Figure 20.3 The Chess Visual Interface
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Controlling the FOS from the program is quite straightforward. The first thing
you have to do is display the readings returned by the FOS; you will discover they
assume only two very different values, one corresponding to the eight output holes
and another to the intermediate positions. Use the average of the two as the
threshold of the two states. In our case, using raw values, we defined a constant
THRSH equal to 775.The following NQC subroutine moves the FOS one step:
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#define THRSH 775

int pos;

void FOS_step ()

{

OnFwd (OUT_A) ;

while (SENSOR_1 < THRSH) ;

while (SENSOR_1 > THRSH) ;

Off (OUT_A) ;

pos++;

if

(pos > 8)

pos=1;

Every time you call this subroutine, the light will move one step, and the
inner variable pos will keep track of its position (provided that it started from a

known point).

To input the user’s moves to the RCX, we used an interface as simple as a

single touch sensor. This is how the “dialog” between the players unfolds:

1.

The user clicks to choose the column of the piece to move. For every
click, the FOS increments one position. When okay, the user double-
clicks.

Now the touch sensor controls the row position, and in a similar way
the user selects the row of the piece to move.

Then he inputs the destination column and the destination row of the
chosen piece.

The program records the required move and checks if it’s valid, con-
firming the result with an appropriate sound. If the move is rejected, the
procedure starts again from Step 1.

The RCX evaluates its own move, and shows the coordinates of the
starting square using the FOS lights. It then waits for a confirmation
click from the user.

Now it shows the destination square, and waits for another confirmation

click.
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You can speed up the input process making the program show only the valid
rows and columns where the user has pieces for Steps 1 and 2, and the valid des-
tinations for the chosen piece during Steps 3 and 4.

It’s possible to improve the communication protocol, too; for example,
allowing decrements of position when the sensor gets pressed for a “long” time
instead of receiving a fast click.

Building a Mechanical Interface

Suppose you’re not satistied by the previous simple visual interface, and want
your Chess robot to really move its pieces. What difficulties can you expect?

Your system needs at least three degrees of freedom, two to get to all the
squares of the board, and a third for the vertical movement necessary to lift and put
down the pieces. Moreover, it needs some grabbing ability to handle the pieces.

The size of the board and the shape of the pieces greatly affect the design of
your machine. We challenged ourselves by building a robot able to play on a reg-
ular wooden Chess set, and this led to an extra-large robot (Figure 20.4).

Figure 20.4 The Chess Mechanical Interface
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The first thing you notice is that this time we didn’t use a Cartesian system to
address the square. Our robotic arm emulates the kind of movement a human
arm uses, with two articulations that correspond to the shoulder and the elbow.
Even the size is not too far from that of a human arm!

As we made wide use of blue parts, we decided to name this machine Broad
Blue. (It’s a play on words, considering “Deep Blue” was the name of the famous
IBM computer that was the first defeat Chess world champion Garry Kasparov!)
This system is able to address any point on the Chessboard, as shown in Figures
20.5 and 20.6.

Figure 20.5 Broad Blue Plays in H1

The pliers at the end of the arm must be capable of a long vertical range,
since the pieces must be lifted high enough so they don’t touch the other pieces
on the board while the arm moves. Their jaws have to open enough to capture
the pieces, but not so much that they involuntarily shift the adjacent ones. At the
same time, the pliers must be able to grab all the difterent pieces, from the Pawn
to the King.
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Figure 20.6 Broad Blue Plays in A8

We used a rack and pinion assembly for the lifting mechanism, and a small
pneumatic cylinder for the pliers (Figure 20.7).

On the other side of the lifting mechanism you see a touch sensor that gets
closed by two cams at the extreme positions of the rack (Figure 20.8).

The motor that operates the lifting system lies at the opposite end of the sec-
ondary arm, behind the turntable (Figure 20.9), and uses a worm gear-to-16t
reduction stage.

The advantage of this configuration is that the weight of the motor acts as a
counterweight to the mass of the lifting mechanism. To this same purpose, we
also added a weighed brick side to the motor. It’s very important that the sec-
ondary arm is well-balanced, otherwise it will introduce a strong torsion
(twisting) on the primary one, and torsion is much more difficult than weight to
oppose and compensate for. In the same picture, note also that the secondary
turntable gets turned by an 8t gear. This is connected through a pair of bevel
gears to the long joined axle that reaches the motor at the opposite side of the
primary arm.
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Figure 20.7 The Lifting Mechanism
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Figure 20.9 The Lifting Motor at the End of the Secondary Arm

The primary arm has a more solid structure, designed to bear its own weight
plus the whole secondary arm. At its opposite end you find the motor that rotates
the secondary arm, connected also to the rotation sensor that monitors that

movement (Figure 20.10). The reduction geartrain is made by an 8:24 stage and a
8:40 one, for a total ratio of 1:15.

Figure 20.10 The Motors at the End of the Primary Arm
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On the lower deck of the arm is the motor that operates the valve switch for
the pliers. As for the secondary arm, both the motors and a couple of weight
bricks serve to keep the primary arm well-balanced. If you don’t do this and
consequently induce a strong asymmetric load on the turntable, it may fall apart.

The base of the robot has to be very solid. It contains two RCXs, the motor
that moves the primary arm and its rotation sensor, a compressor for the pliers
and a pressure switch. All this weight helps in making Broad Blue very stable
(Figure 20.11).

Figure 20.11 The Base

The geartrain of the primary turntable has the same configuration as the sec-
ondary one.

To provide the necessary supply of air, we used the double-acting compressor
(because we had it ready), but the robot really needs a small quantity of air and
any compressor should work.
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It’s important that you make all the wires emerge from a point close to the
center of the primary turntable so they don’t affect its rotation. In large robots like
this, clean and well-organized wiring helps a lot in keeping things under control.

For the input of the human moves, we replaced the single touch sensor with a
slightly more sophisticated unit also made from a rotation sensor. This speeds up the
choice of the coordinates, changed according to rotations, displayed on the master
RCX, and confirmed by a click on the touch sensor (Figure 20.12).

Figure 20.12 The Input Unit

Connecting and Programming Broad Blue

This is the only project in the book that requires two RCXs. As in most dual-
R CX projects, it uses a master-slave configuration: The master decides what to
do while the slave merely performs the required actions. Table 20.1 summarizes

the wirings and resource allocations of Broad Blue; RCX1 is the master, and
R CX2 the slave.

Table 20.1 Broad Blue Resource Allocations

Resource Function

RCX1 IN 1 Rotation sensor of the input unit; sets user’s move.

RCX1 IN 2 Touch sensor of the input unit; confirms user’s move.

RCX1 OUT B Motor that operates the pneumatic valve switch for the
pliers.

Continued
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Table 20.1 Continued

Resource Function

RCX1 OUT C Always ON, only used to supply power to compressor
(via the pressure switch).

RCX1 Display Shows the input square in the form Column.Row.

RCX1 Loudspeaker  Confirms or invalidates user’s moves with an appro-
priate sound.

RCX2 IN 1 Rotation sensor of the primary arm; controls its position.

RCX2 IN 2 Rotation sensor of the secondary arm.

RCX2 IN 3 Touch sensor of the lifting system, closes at all up or
down positions.

RCX2 OUT A Motor of the primary arm.

RCX2 OUT B Motor of the secondary arm.

RCX2 OUT C Motor of the lifting system.

RCX1 receives the user’s move with a protocol similar to that described for
the Chess Visual Interface: starting square column, click, starting square row, click,
destination square column, click, destination square row, click. At this point, it
evaluates its own move, then performs it with the assistance of the slave RCX.

The communication protocol between the two programmable units is rather
simple: You need 64 values corresponding to the squares, plus two more for the
pliers-up and pliers-down commands. Include a “done” return value that the slave

RCX uses to inform the master when it has finished the required action.
.

NoTE

If you want to compute the address of each square in terms of rotation
sensor positions, you need some trigonometry. The nice thing is that in
this case you can compute them just once on your PC, then store them
in an 8 by 8 array in the program, so the RCX doesn’t have to actually
perform any calculation, just read the coordinates from a table.

Each turntable is like a 56t gear, and the 8t pinion acting on them results in a
1:7 ratio. The rotation sensor is placed after the first 1:3 stage, thus each complete
turn of the arm corresponds to 21 turns of the sensor. The latter features 16 ticks
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per turn, meaning that each turn increments a count of 336 units, corresponding
to 1.07 degrees per tick.

The actual size of your chessboard, and consequently of the arms of your
robot, is very critical. The longer the arms, the higher the angular resolution
needed to control their movements. The arms of Broad Blue are both 22cm long
from the center of their supporting turntable; this means that the end of the sec-
ondary arm covers a circle of about 138cm (22x2x7). Each degree corresponds to
a sector with a circumference of 0.38cm. When the arms are aligned and aiming
at the farthest squares of the board, each degree of rotation of the primary
turntable acts on a circle 44cm in radius and corresponds to movement of
0.77cm at the pliers. We said that our resolution is 1.07 degrees per tick, and this
results in 0.82cm in that area of the board. This is a bit critical: You might prefer
to connect the rotation sensor before the first 1:5 reduction stage to increase pre-
cision by a factor of five.

The slack between gears drastically decreases the accuracy of the movements. To
reduce the problem to a minimum, Broad Blue always approaches the squares from
the same side of the board, going a bit farther and coming back when necessary.

Variations on the Construction

Nothing prevents you from building a Chess robot with a large XY system like
the one we described for Tic-Tac-Toe. This way you can avoid the rotation sen-
sors entirely and use the good old touch sensors and pegs technique to address all
the squares.

A smaller board will result in a smaller robot, meaning less parts, less weight
to support, and consequently a simpler structure. Similarly, smaller pieces will
need a shorter range for the lifting mechanism.

Is it possible to build a mechanical interface similar to ours, but use only one
RCX? We believe so. If you are able to use pneumatics for the lifting system out-
side that used for the pliers, you can coordinate their movement in a predefined
sequence (starts with pliers up and opened):

Go down.

Close pliers (grabs the piece).

Go up (now the robot moves to the destination square).
Go down.

Open pliers (drops the piece).

A A T e

Go up.
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What you need is a control system that operates the valve switches in the
proper sequence, a rotational or linear mechanism activated by a single motor.
Can you devise one?

Applying a completely difterent technique, you can copy the system used in
some commercial chessboards that employ an electromagnet to move magnetic
pieces from the bottom. Did you ever see them in action? They drag the pieces,
sliding them along the borderlines of the square, so they don’t interfere with the
other pieces on the board. The advantages of this technique include the fact that
you don’t need any lifting/grabbing system anymore, thus a single RCX can do
all the work; in the way of disadvantages consider that you need many non-
LEGO parts, including magnetic chess pieces, a special board, and an electromag-
netic coil. LEGO doesn’t produce electric coils for the RCX, but they aren’t
difficult to make. Be aware that they absorb much more current than motors.

Now that we think of it, you can use the sliding technique even from the
top. Imagine a robot similar to ours, that instead of grabbing and lifting the piece,
simply surrounds it with a sort of cage lowered from above and then pushes it
along the proper path. This will save one output port, but will make the software
a bit more complex because the arms cannot go straight to the destination square
but rather must follow an optimal path to avoid the other pieces.

Playing Other Board Games

The techniques we described in this chapter apply to many other board games,
each one having its own peculiarities and requiring some adaptations.

Checkers shares with Chess similar difficulties about moves, with the differ-
ence being that you must find a way to crown the pieces when required. Moving
crowned pieces without letting them come apart might be not so easy. On the
other hand, Checkers needs much simpler software than Chess.

Go, in its slightly diverse variants, is the world’s most popular board game.
Even though it’s not played much in the West, it’s widespread throughout all
Asian countries. Because the pieces, called stones, get dropped on the board but
never moved, it seems ideal for a robot equipped with an automatic dispenser.
The fact that the stones are black and white also suggests the possibility of using
a scanning technique similar to the one we incorporated into the Tic-Tac-Toe
robot, though it would likely prove impractical on the official 19 by 19 board and
even on the 13 by 13 reduced one. We recommend you limit your robot to the 5
by 5 training board. It will require more than enough eftort in the way of pro-
gramming. Go, in fact, is considered the most difticult game for computers to
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learn how to play well—a sort of frontier for Artificial Intelligence. While the
strongest Chess program defeated the human world champion, the strongest Go
program cannot even beat a good amateur. A tough challenge for your RCX!

Summary

Whether or not you have an interest in board games, this chapter describes some
interesting tricks that may prove useful in other situations, too.You have seen that
you can input data into your system using the combined knowledge of a position
and a value read from the light sensor, as we showed in the Tic-Tac-Toe robot.

The simple Chess Visual Interface taught you that even the FOS units, usually
designed for decorative purposes only, may work as output devices. It also showed
you that you can build a complete input interface around a single touch sensor.

Broad Blue is the most complex robot of the book. It employs some of the
concepts illustrated in Chapters 10 and 11 about pneumatics, object grabbing,
degrees of freedom, and others. More importantly, it demonstrates that the
bounds of what can be done with the MINDSTORMS system are very far
reaching.
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Introduction

Chapter 6 describes the sound system of the RCX and the way you can program
it to produce music. Here we are going to explore a more indirect way of per-
forming music, one where your robot actually plays an instrument.

The main difference between the two creatures described in this chapter lies
in their instruments. The first, a drummer, plays a custom LEGO-made drum-set
specifically designed for the task, while the second, a pianist, performs on a real
piano. This diversity, as you'll see, reflects heavily on their architecture; the chess
machine of Chapter 20 taught you that interfacing LEGO with real-world
objects, no matter how common they are, is usually difticult and requires a great
deal of effort (and many parts!).

Creating a Drummer

The part you need to base your drummer design on, not surprisingly, is the drum
set. From what we know, LEGO doesn’t make any part that acts as a drum, so
you need to be imaginative and come up with an alternative. When we
attempted this, small cans first came to mind as an option, but then we felt a
more LEGO-like solution might be appropriate, so we started rummaging
through our drawers searching for a part that might provide the right inspiration.

That’s when we came upon the wheel hubs. They seemed perfectly suited for
our goal, their shape closely resembling that of a real drum. The only missing part
was the “skin,” the diaphragm that covers drums and that produces the sound
when hit. A visit to the kitchen solved this problem, too: ordinary plastic wrap
provided us with an answer. We stretched two tight layers of it on one side of the
hub, secured it with a rubber band, trimmed the excess wrap, and our drum was
ready to use.

The second problem we faced regarded the sticks and, more importantly, the
percussion mechanism. Playing a drum is more a matter of speed than strength:
the stick must hit the drum very quickly and promptly withdraw, helped in this
by the bounce. We tinkered with some difterent mechanisms in order to emulate
a human drummer’s swinging movement—with little success. Have you ever
banged your head against the wall searching for a complex solution, only to find
an answer that’s not only incredibly simple? Better late than never, we discovered
that an axle perpendicularly attached to the motor does the trick. Keeping the
motor powered for a very short time and then switching it into float mode
causes it to pass on enough speed to the “stick” that it bounces back with no
resistance.
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Building the Drummer

With the basic design and material problems solved, the rest of the robot came
together quite easily (Figure 21.1). It is, indeed, one of the simplest robots in the
book, made only from MINDSTORMS parts with a third (optional) motor
added 1n.

Figure 21.1 The Drummer

The drum set contains a bass drum, a tom-tom, and a cymbal, though the
latter sounds rather dull, since it’s a piece of plastic rather than a true cymbal!

(Figure 21.2).
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Figure 21.2 Drummer Top View

Both the sticks and the pedal feature a slack belt that helps them return to
their neutral position (Figure 21.3).

Figure 21.3 Drummer Left Side View
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The entire drum set is attached to a base beam, which 1s connected to the
feet of the drummer so as to form a single, solid assembly (Figure 21.4).

Figure 21.4 Drummer Front View

Two 16 long beams run vertically across the back of the robot, supporting the
motors and the RCX (Figure 21.5).
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Figure 21.5 Drummer Rear View

Programming the Drummer

This is one of those cases where the simplicity of the structure corresponds to the
simplicity of the software. As we explained earlier, all you have to do to use the
sticks is to run the motor for a very short time before switching it into float mode.
In our test version, we kept the motor on for just two hundredths of a second.
Create three routines (or macros) that correspond to the left and right sticks
as well as the pedal. Each one will have a structure similar to the following NQC

example:

void right_stick()
{

On (OUT_C) ;

Wait (2);

Float (OUT_C) ;
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We recommend you also write some subroutines for the combined action of
two motors (or all three), so that when you want multiple strokes made, they
occur together, in synch. When youre done with this, you are ready to code your
first drum pattern, which is composed of a series of strokes and pauses.

Variations

You have probably noticed that this robot has no sensors. It doesn’t need them to
play, but they could add interesting functionalities. Used as input devices, the
touch sensors can be programmed to increase or decrease the tempo of the exe-
cution, or to trigger a change of pattern or a fill-in.

The addition of a light sensor offers you the opportunity to conduct the per-
formance with a flashlight. For example, the robot could read the time between
two passages of the light beam on the sensor, and use that interval as a value for
the duration of a beat.

Creating a Pianist

As announced in the introduction, the Pianist has been designed with the ambi-
tious goal of playing on a real piano. It follows the scheme we implemented in
the S16 robot that we published on our site. This time we made it even more dif-
ficult, aiming at an acoustic piano rather than at an electronic keyboard, requiring
a stronger and faster striking of the key to produce the note.

Building the Pianist

This robot requires a lot of extra parts, mainly beams and plates used to make the
structure solid enough to withstand the forces involved in the performance. What
seems a gentle touch to a human hand, is a strong eftort for the small LEGO
motors. Consider also that you cannot gear them down too much, because an
acoustic piano needs a minimum speed on its keys for the hammers to beat the
strings.

Figure 21.6 shows the Pianist in action.You see that its feet go under the
keyboard, a simple but effective way to oppose the resistance of the keys and keep
the fingers in their place.

It’s amazing how well the distance between the keys matches three LEGO
units (Figure 21.7). This makes our pianist have its six fingers precisely positioned
in the center of each key. As the robot has no mobility (keeping it from reaching
the rest of the keyboard), it’s only able to play six adjacent white keys.
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Figure 21.6 The Pianist

Figure 21.7 Top View of the Pianist at the Keyboard
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As we said, though conceptually simple, this robot requires a lot of strength-
ening. We braced the entire system that operates the fingers between two strong
compound beams protruding off the sides of the robot (Figure 21.8).

Figure 21.8 Pianist Front View
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The head of the robot, with its funky glasses, as you may have guessed, is
purely decorative.

The robot uses three motors, each one controlling two fingers. When one
finger goes down, its mate goes up. Figure 21.9 shows the mechanism of a pair of
fingers with the components slightly taken apart so you can better understand
how it works.
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Figure 21.9 Pianist Finger Mechanism

Our pianist contains three finger groups like that one, placed side by side. To
show them more clearly, we removed the RCX and the strong traversal beam
that keeps the fingers together (Figure 21.10). There’s no need for rubber bands
or other systems to center the fingers since the keys themselves provide the push
that lifts them back up.

The sides of the robot are easily adjustable in height, so you can adapt the
structure to different keyboards (Figure 21.11).

At the bottom of the structure is a row of parallel longitudinal beams sup-
porting the motors (Figure 21.12).
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Figure 21.10 Pianist Top View (with RCX and Beams Removed)

P

Figure 21.11 Pianist Side View
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Figure 21.12 Pianist Rear-Bottom View

Programming the Pianist

The technique required to program this robot is indeed very similar to the
Drummer. In this case, keep the motors on a bit longer: Our version works with
a timing of eight hundredths of a second.

Worite a short routine for the activation of each finger, naming them after
the corresponding notes. In Figure 21.7, you see the Pianist positioned on six
notes that go from B to G, while our code, in fact, contains six routines B(), C(),
DJ()... G().

We wrote the code to play chords, too. The Pianist actually supports a limited
polyphony and can perform two or three note chords, provided they don’t
include two notes controlled by the same motor. Staying again with our example,
C+E is a valid combination, while D+E is not.

Similar to what you did for the Drummer, construct your melody using a
sequence of calls to the note routines interleaved with pauses. Build your delay
values starting from the shortest note your melody contains. Let’s say youre going
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to use eighth, quarter, and half notes, the eighth will be the base of your construc-
tion. You must also take into consideration the interval used to operate the motors.

An example:You set the tempo of your melody that results in each eighth
note lasting 25 hundredths of a second. The fingers already use 8 hundredths to
move, so your delay will be 25 — 8 = 17, or 17 hundredths. Consequently, the
quarter—one beat—should last 50 hundredths, resulting in a delay of 42, while a
half note (100 hundredths) should have a corresponding delay of 92.

What to Play

Six notes seem so few to play anything. They are, but at the same time
you'll be surprised how many known melodies will fit in that range. If
you lack inspiration, look at some music scores aimed at beginning
pianists: They usually contain many short and simple songs developed
around five adjacent notes so the pupil doesn’t need to move his or her
right hand.

Changes and Improvements

The Pianist, like the Drummer, doesn’t feature any input sensor. It is actually fit for
the same kind of applications used for touch and light sensors: tempo changes and
performance variations. With a sound sensor capable of decoding pitch, like the one
described in Chapter 9, you can make your Pianist “learn” and reproduce what you
play on a separate section of the same keyboard or on another instrument.

In case you have a second RCX, you can make it control the Pianist via IR
messages. For example, you can build a robot that reads a special format score,
decodes the notes and converts them into instructions for the Pianist.

If you want your own Pianist to play an organ rather than a piano (or, generally
speaking, a keyboard that emulates an instrument that requires long notes), you
must figure out a system to keep the keys down without damaging the motors. A
simple solution requires that you replace the 24t gears on the motors with clutch
gears, so you can keep the motor running without danger of damaging them.You’ll
probably discover that running them continuously is unnecessary, since you can
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brake the motors when the key is down, possibly turning them on once in a while
if the note has to hold for a very long time.

Other Suggestions

The instruments we assigned to the robots of this chapter are not the result of a
random choice: They are the easiest to build!

Percussive instruments in general, from triangle to vibraphone, are a feasible
option. Keyboard instruments are, too, if you make minor adaptations to our
design whenever necessary.

Strings instruments are a tough challenge: Playing a real guitar seems difticult
enough, never mind playing a violin.You can probably make a very simplified
LEGO version of a “guitar” where your robot controls the tension or length of a
single string with a motor, while plucking it at the opposite end with a second
motor.

Wind instruments appear out of range at the present time considering the
quantity of air they require (even a recorder is too demanding for a LEGO com-
pressor). But we’d love to be proven wrong on this topic!

Summary

The robots of this chapter are a bit low on the android evolutionary scale:
Having no sensors they cannot interact with the environment. The Drummer is
so simple it doesn’t even have gears! However, they show some techniques useful
for situations where you need a “fast touch,” and the Pianist itself describes a
practical application of the principle where a motor can control two mechanisms,
each one needing only one direction. You have also discovered that sometimes
you can resort to non-LEGO materials to complete your projects: The common
plastic wrap is what made our robotic Drummer possible.

Well, if you were expecting LEGO robots capable of reproducing your favorite
pop song, or to perform some classic Beethoven piano sonata, we probably disap-
pointed you. Just the same, we hope our players surprised and amused you, and
that they have provided some inspiration for your own musical creatures.
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Introduction

Today video gaming is so much a part of our lives today that we forget there was
a period when they literally didn’t exist. In those days, the amusement arcades
were instead filled with amazing electromechanical devices like pinball and
sports-based games with balls and targets, buttons and levers, and lights and
buzzers. Many of the readers of this book are probably too young even to know
that such a period existed.

Even here we can find uses for robotics. Actually, we hesitate to call the
machines of this chapter “robots.” In many aspects, they aren’t. Nonetheless, we
decided to include them in the book because they show yet another creative
application of your MINDSTORMS system—and because they are such fun!

Creating a Pinball Machine

The pinball machine is probably the only survivor in the gaming arcade’s evolu-
tion to electronics. Not that it enjoys good health exactly, in fact it lingers on the
edge of extinction, but it has not yet entirely disappeared. Though many software
versions of pinball exist today, anybody who played the real thing ages ago can tell
you they don’t come close to what the actual machines were like, or the feeling
you got from playing them.

Our LEGO Pinball Machine, though extremely simplified, should be consid-
ered a member of full standing in that category of mechanical marvel.

Building the Pinball Machine

Here it is, the Pinball Machine (Figure 22.1). We used an incredible amount
of parts to build it, but there is some good news:

m Most of the parts are plain 2 x n bricks.

m  Even for the special parts required, what you have in the
MINDSTORMS box should be enough.

®m  You can easily adapt the project to your own inventory.

The surface of the pinball is built with bricks turned on their side (studs
toward the RCX). This technique allows us to achieve a smooth surface without
using tiles, and makes it easy to insert sensors, axle pegs, and anything else that
needs a vertical mount over the surface.
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Figure 22.1 The Pinball Machine

Describing the Pinball Machine from top to bottom of the figure, you’ll
notice the RCX, which displays the score and the count of the remaining balls.
Below it there’s a dual light brick, connected to an out port. The RCX can light
it, for example, to mean that a special feature 1s active and something will happen
when you score a point, like getting a bonus ball, extra points, or something else.

The cross on the left and the wheel on the right are both targets, respectively
connected to a rotation and to a touch sensor, that will add points to your score
when you hit them.

There’s a Fiber-Optic System (FOS) unit under the surface connected to the
row of eight gray pegs that shows below the sensors (FOS was described in
Chapter 20). We used it mainly to enrich the Pinball Machine with more lights.

WwWw.syngress.com



428 Chapter 22 ¢ Electronic Games

Right in the middle is a static obstacle, a 2 x 2 round brick surrounded by
short rubber bands. At the left and right sides are two triangles similarly com-
posed of rubber bands.

Finally, near the bottom of the picture you see the levers to hit the ball and
the long slide that leads the missed balls to the throwing system on the right.
During this path, the ball passes over a light sensor that detects it and makes the
RCX decrease the count of the remaining balls.

We had planned to use the LEGO ball contained in the Soccer sets, but it is
so lightweight that it flies oft the playing field, so we had to fall back on a small
steel marble. Small glass marbles will work as well.

The base of the Pinball Machine reveals its secrets (Figure 22.2).You see the
four large and solid supports, the sensors incorporated in the structure, the FOS
unit with its motor, and the mechanism that converts pressure on the side buttons
to movements of the levers.

Figure 22.2 Bottom View
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We connected the fibers to the FOS unit with an alternating scheme, so the
lights appear to go back and forth even if the motor always turns in the same
direction. This is the sequence, the first number of each pair being the number
stamped on the unit and the second the position of the fiber in the beam: 1-1,
2-3,3-5,4-7,5-8, 6-6, 7-4, 8-2.The flipper mechanism is clearly visible in the
close-up of Figure 22.3.

Figure 22.3 Detail of the Push-Button Mechanism (Bottom View)

Figure 22.4 shows a detail of the launching system. Notice the light sensor on
the left. The steel of the ball reflects the light very well, thus its passage over the
sensor triggers high readings easily intercepted by the RCX.

Looking again under the surface, you discover that the launching system, like
many other parts of the Pinball Machine, relies on rubber bands (Figure 22.5).

The touch sensor attached to the wheel stays closed with the help of yet
another rubber band (Figure 22.6), and opens briefly when the ball hits the
wheel from one of two possible directions (going up or down).
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Figure 22.4 Detail of the Ball-Launching Mechanism

Figure 22.5 Detail of the Launching Mechanism (Bottom View)
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Figure 22.6 The Touch Sensor

Programming the Pinball Machine

The Pinball is not very complicated to program. When the game starts, reset the
score to zero and the ball count to the initial number (e.g., five balls). Then start a
loop that monitors the following events:

m  [f the ball passes over the light sensor, it decrements the count by one
unit. When it goes down to zero, the game ends.

m  [f the ball hits the sensors, some points will be added to the score. If
some special condition is on, the player may receive a bonus ball or
some additional points.

m At random times, the special conditions and their lights (light brick, FOS)
should turn on and off.

Our version uses three digits of the display to show the score, and the fourth
one to indicate the ball count.

Don't forget to add plenty of sound eftects; they add a lot to the game. Use
the techniques described in Chapter 6 to include background music as well as
different sounds to highlight individual events while the game’ in play (for
example, a ball is lost, a bonus is gained, points are scored, and so on).
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Improvements on the Construction

In creating your own Pinball Machine, employ a boundless imagination. Make
the machine larger or smaller, add lights, obstacles, sensors, rotating devices, etc.

This is a good place to apply some of the tricks described in Chapter 4 about
connecting more sensors at the same port.You can add as many touch sensors as
you want to a single input port (all of them will score the same points when
touched), or combine a light sensor with one or more touch sensors.

FOS units can work at the same time as rotation sensors and output devices,
as described in Chapter 20.

Output ports can drive not only lights but motors, too. We didn’t use them,
but it’s easy to devise spinning mechanisms that throw the ball off course. With
the appropriate gearing, a single motor could rotate many of them.

There are so many possible variations and so few constraints that the only
limit is your imagination.

Creating a Simon-Says Game

The electronic game we are going to describe is inspired by Milton Bradley’s
commercial product Simon, which has had great success among families. It’s not
an arcade game, but it’s still very challenging and devised so players can compete
against themselves or others.

The game features lights of different colors coupled to push-buttons; there
were four in the original, in our version there are three. Every time a light turns
on or the corresponding button gets pressed, the machine also produces a sound,
one that’s always the same for each color.

The purpose of the game is to copy the sequence performed by the machine. It
starts with just one light, then the sequence of lights becomes longer and longer as
the game proceeds. Every time the user successfully reproduces the series, the
machine plays it again, adding one more light to the end of the sequence.

Building a Simon-Says Game

Our Simon-Says uses three touch sensors, three light bricks, and no motors. Its
hardware is so simple that it barely deserves a description, being just a flat surface
with sensors incorporated into it and four legs as supports (Figure 22.7).

Each light brick-touch sensor pair forms a unit that connects to both an
output and input port. Figure 22.8 shows such a unit in detail. The lamps face
transparent 1 x 2 bricks of difterent colors. We used Red, Green, and Blue.
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Figure 22.7 The Simon-Says Game

Figure 22.8 The Particulars of a Light-Button Unit

The bottom of the machine has little to show, just six cables that connect to
the RCX (Figure 22.9).
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Figure 22.9 Bottom View

Programming the Simon-Says Game

The software required by this game is a bit trickier than the one for the Pinball
Machine. Our version uses an array to store the sequence, generated only once at
the beginning of the game, when the user pushes the Run button. Each cell of
the array contains a value that tells it which lamp to turn on.

In the main task of the program, you put a loop that repeats the
play_sequence and check_sequence subroutines for series that each time
become longer by one unit. The following NQC code describes the core sections
of our implementation:

generate_sequence () ;

n=1;

error=0;

while (n<MAX && error==0)

{
play_sequence (n) ;

check_sequence (n, error) ;
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Wait (100) ;

n++;

The variable error goes to 1 when check_sequence detects a mistake in the
user’s input, thus forcing the termination of the program, while n represents the
length of the sequence. MAX is a constant corresponding to the dimension of
the array, representing the maximum length of the sequence.

The generate sequence routine fills the array with random values in the range
0 to 2. In our example, we associated values of 0, 1, or 2 to the colors green, blue,
and red, respectively.
void generate_ sequence ()

{
int 1;
for (i=0;i<MAX;i++)
{
seg[il=Random(2) ;

The play_sequence subroutine needs little explanation. It plays the first n
values of the array, spaced by a short delay:

#define DELAY 30

void play_sequence (int n)
{
int v,1i;
while (i<n)
{
v=seql[i];
play (v);
Wait (DELAY) ;

i++;
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The play function mentioned in the code turns on the light and sound corre-
sponding to the value of its parameter. Our program keeps both the light and
sound on for 20 hundredths of a second and leaves a delay between them of
another 30 hundredths. The note we chose to combine with the lights corre-
sponds to the frequencies 262 (C), 392 (G), and 523 (C), which we assigned to
constants.

#define S_GREEN 262
#define S_BLUE 392
#define S_RED 523

#define ON_TIME 20

void play(int v)
{
switch (v)
{
case 0:
On (OUT_A) ;
PlayTone (S_GREEN,ON_TIME) ;
break;
case 1:
On (OUT_B) ;
PlayTone (S_BLUE, ON_TIME) ;
break;
case 2:
On (OUT_C) ;
PlayTone (S_RED,ON_TIME) ;
break;
}
Wait (ON_TIME) ;

Off (OUT_A+OUT_B+OUT_C) ;

Notice that we are defining constants for all the parameters of the program.
This is a very good practice which makes the tuning of your program much sim-
pler. If you group all the #define statements at the beginning of your code, you
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have a sort of control panel where you can change the parameters of the applica-
tion without having to look for constants scattered along the program.

The check_sequence routine represents the most difficult part of the job. It
must check that the inputs follow the proper sequence, and that not too much
time elapses between them. This is a possible outline of it:

#define LIMIT 20

void check sequence(int n, int & error)
{
int answer,i,err;
i=1;
while (i<=n && error==0)
{
answer=-1;
ClearTimer (0) ;
while (Timer (0) <LIMIT && answer<0)
{
if (SENSOR_1==1) answer=0;
else if (SENSOR_2==1) answer=1l;
else if (SENSOR_3==1) answer=2;
}
if (answer>=0)
play (answer) ;
if (answer!=seql[i])
{

error=1;

i++

You notice there’s an outer loop that executes until the whole sequence has
been replicated or until the user makes a mistake. Inside this, an inner loop waits
for the pressure of a sensor or for the expiring of the time limit.
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The game ends when the user makes a wrong choice. His score corresponds
to the length of the longest sequence he successfully replicated, and you can
show it on the display at the end of the game.

Variations

If you don’t have the light bricks, you can make your own custom version using
common and cheap LEDs. Some of the sites mentioned in Appendix A explain
how to do this. LEDs have the advantage that you can buy them in different
colors so you don’t need the transparent bricks as well. Since they have a polarity,
they will turn on only when supplied power in the proper way.You can take
advantage of this fact to control two of them from a single port, allowing your
Simon-Says to have up to six lights (but this means you’ll need a multiplexer for
the input sensors).

On the software side, this simple platform supports a few variations to the
base game. The easiest version, suitable for very young children, requires that they
simply press the proper button, as if the sequence were always just one light long.

A different game uses random sequences of fixed length that change every
time. The score corresponds to the time the user takes to replicate a given
number of them.

Other Electronic Game Suggestions

During the early 70s, arcades were filled with incredible games, all technologi-
cally similar to that of the pinball machine. Each had lights, motors, relays, elec-
tromagnets, but few, if any, electronics.

The following are a few ideas we hope might inspire you in creating your
own games:

®m  Sink the Ship A ship goes back and forth in front of you, and you
must try and sink it with a torpedo. Both the ship and the torpedo are
powered by motors (using rack and pinions, for example). If the ship is
in the same spot where the torpedo ends its run, you score a point.

®  Ping-Pong An XY system like the one we built for the Maze Solver
can make a ball bounce inside a rectangle. The ball is a small light
directed upward and is visible through a panel of translucent material.
(For example, large LEGO transparent plates, if you have them.) Add
ratchets and shot detection and you’re done.
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m  Shoot the Tank (or Bear, or whatever else strikes your fancy)
This one’s as simple as making a robot that randomly runs around your
room featuring a light sensor that you have to hit with a laser pointer.
(Don’t forget that laser light is dangerous if directed at the eyes.)

Summary

These machines are games rather than robots, but they suggest some creative uses
for your MINDSTORMS parts. In the Pinball Machine, we presented some new
solutions aimed at detecting a ball. (A process that will prove useful in other
applications.) For example, with the help of a rubber band we made a touch
sensor sensitive to collisions coming from two directions. You could employ this
technique to build bumpers that detect both a “push” and “pull” action. We
showed also that a light sensor can detect the passage of a ball; the principle
behind this is that the ball affects the amount of light reflected into the sensor,
and you monitor this change from your program.

The Simon-Says game is a good example of a MINDSTORMS machine
with no mechanical parts: It demonstrates that sensors and lamps can be com-
bined into an effective interface, and that lights can be driven from output ports
just as easily as motors. It also applies some of the concepts of Chapter 7
regarding using sounds to communicate with the user.

In our opinion, however, the most attractive feature of these games is that
they are so much fun to imagine, build, program, and use. Your inventions will be
a big hit with your friends and kids. Our versions have been played a lot—just
for testing, of course!
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Introduction

Can a MINDSTORMS robot be made to draw or write? Sure. Believe it or not,
that’s not even a very difficult thing to implement. In the following pages, we
will show you two projects, the first mainly meant for drawing and the second
for writing. Both of them require some additional parts, but both have wide mar-
gins for modifications and allow for less demanding variants.

Creating a Logo Turtle

Many of you may already know that Logo is a programming language specifically
targeted to education. Born in the late 60s at the Massachusetts Institute of
Technology (MIT), Logo is derived from Lisp (with a lot fewer parentheses!) and
features interactivity, modularity, and extensibility. More than a programming lan-
guage, Logo is a learning tool which has gone through a number of changes and
improvements over the years.

The most known characteristic creation of Logo is the Turtle, a symbolic
turtle that moves across the computer screen according to the instruction it
receives. With simple instructions like forward 10 the turtle moves straight ten
units, and with right 90 it turns clockwise 90 degrees. The statements penup and
pendown specify whether the turtle leaves a track behind it, thus producing
drawings or rather just moving to a different location. Obviously the language
includes many other commands, but these are enough to understand the princi-
ples of the Turtle Graphics that made Logo so famous.

What many people don’t know is that 1in its first version, the Logo program
controlled a small robot that actually drew lines on the floor. In subsequent
releases, the turtle became just a virtual animal on the screen. Our interest here,
however, is in replicating its first robotic version.

-

NoTE

Dr. Seymour Papert was one of the early promoters of Logo, and
designed the original Turtle. Under his guidance, the Epistemology and
Learning Group at MIT devised the first programmable brick, whose con-
cepts led to the development of the LEGO MINDSTORMS line.

&
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Building the Turtle

The idea is quite simple: Build a small robotic platform that’s able to go forward
and backward, turn in place, and lower and raise a pen. Despite this apparent sim-
plicity, if you want a turtle that works as expected, the task has many stringent
requirements that must be adhered to. For instance:

The robot must go absolutely straight.

2. The pen must be exactly in the pivoting point of the robot, because it
must stay in the same place on the floor while the robot turns (other-
wise it would trace a curve).

3. You need a tracking system to measure both traveled distances and
angles.

If you remember the driving architectures described in Chapter 8, you
already know the solution to the first point: Use a dual differential drive. The
simple differential drive is suitable for this project only if you apply an active
control to the wheels to be sure they travel exactly the same distance, while the
synchro drive would work as well but at the price of greater complexity and not
so evident change in orientation during action. Another advantage of the dual
differential drive is that it requires a single encoder to comply with point 3: when
the robot goes straight it measures the covered distance, when turning it measures
the angle.

OK, so we have requirements 1 and 3 covered, but there’s still the matter of
the pen being the center of rotation, which is at the midpoint of the imaginary
line that connects the wheels. Conceptually it sounds easy, but you have to build
your robot with this point in mind.

The original turtle—a differential drive—featured a transparent plastic dome
to cover the gears. We provided our turtle with a triangular shape (Figure 23.1),
because we wanted to mimic the screen turtle of some widespread Logo systems.
Anyway, those V-shaped beams are definitely not necessary and you can shape
your own turtle according to your wishes.

Our difterential drive does not use a caster wheel, because they tend to affect
the direction of the robot slightly when resuming straight motion after a turn.
With casters, the straight lines would have a short wiggly segment, so we pre-
terred to use a simple tile as the third supporting point. To keep the friction on
the floor to a minimum, we placed the RCX suspended behind the drive wheels,
like a sort of counterweight, bringing the COG of the robot very close to the
drive axles and thus most of the weight upon the drive wheels.

443
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Figure 23.1 The Logo Turtle

There’s another advantage to having the RCX pointing upwards: This maxi-
mizes the possibilities of communications between the tower and the robot, using
the ceiling of the room as a mirror for the infrared (IR) rays (see the sidebar,
“What’s Infrared Communication?”).

Let’s start exploring the dual differential drive chassis that drives the robot
(Figure 23.2). The gearing is more compact than those shown in Chapter 8, but it
works exactly the same way: One motor makes the differential gears and the
wheels rotate in sync, while the other rotates them in the opposite direction.You
can notice the rotation sensor coupled to the right wheel. The dark gray 16t gear
right in the middle of the photo is an idler gear which connects the other two
16t gears; its center hole is not cross-shaped and thus it doesn’t couple with the
long joined axle that crosses the base of the robot.
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Figure 23.2 The Turtle Dual Differential Drive Platform (Top View)

Bricks & Chips...

What's Infrared Communication?

Infrared (IR) light is of the same nature as visible light, but its frequency
is below that perceivable by the human eye. Provided the intensity is
high enough, we usually feel IR radiation as heat.

For most properties, IR light is really identical to visible light: It gets
reflected, refracted, diffused, or shielded by different kinds of bodies.
When you want your robot to stay in communication with the tower,
they must “see” each other all the time. This is not always easy when the
robot moves and changes orientation, but for indoor situations, you can
take advantage of the ceiling, as described, to reflect the IR beams
downward. In most cases, placing the RCX with the tower facing
upwards works very well and solves the problem.
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Looking at the bottom, you can see the front skid plate. (Figure 23.3).

Figure 23.3 The Turtle Dual Differential Drive Platform (Bottom View)
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Using a technique described in Chapter 11, we placed a rubber band to make
the mechanism bi-stable, so that when the pen is down it tends to stay down, and
vice versa (Figure 23.4).

The pen 1s a non-LEGO part, a common marker with its body wrapped in
adhesive tape so as to make it fit tightly into the 2 x 2 studs squared hole
reserved for the purpose. It stays there with nothing but friction.

The pen control mechanism is a swinging assembly operated by a third motor
(Figure 23.5).

Now the turtle is ready. Place a large piece of paper on the floor, uncap the
pen and adjust its height so it touches the paper gently when in it is in the down
position (Figure 23.6). We strongly discourage you from writing directly on the
floor. We'’re sure somebody won't like it!
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Figure 23.4 Side View of the Turtle Pen Mechanism
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Figure 23.6 Side View of the Turtle Ready for Operation

Programming the Turtle

The first task in programming the Turtle is to create the primitives that control
the basic actions. Let’s start with the easiest ones: the penup and pendown com-
mands. A short impulse to the pen motor does the trick—nothing more is
required. If you want to avoid lowering the pen again when it’s already down, in
case of repeated pendown commands, you can monitor the status with a vari-
able. In the NQC example that follows, we defined two constants UP and
DOWN to make the code clearer; in fact, the instruction pen=DOWN is much
more self-explanatory than its equivalent pen=0.

#define DOWN 0
#define UP 1
#define PEN_TIME 15

int pen;
sub pendown ()

{
if (pen==UP)
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OnFwd (OUT_B) ;
Wait (PEN_TIME) ;
Off (OUT_B) ;

pen=DOWN;

The constant PEN_TIME will be typically something like 15 or 20 hun-
dredths of a second. The penup routine is obviously identical except for the
direction of the motor and the values the pen variable is tested and assigned.

The forward and back commands, meanwhile, are not very difticult to
implement, but require that you dig into the physical properties of your robot.
You must discover what distance it covers for any increment of the rotation
sensor. The model is the same as that explained in Chapter 13 when we discussed
dead reckoning, but here it is simplified by the fact that the wheels always travel
at the same speed. The equation was:

F=(Dxmn)/(GxR)

where D is the diameter of the wheel, R the resolution of the rotation sensor,
and G the gear ratio between the sensor and the wheel. We used a wheel with a
nominal diameter of 5 cm. The resolution of the rotation sensor is 16 counts per
turn, and is geared 1:3 with the wheel—thus our formula becomes:

F=5x3.1416/(3 x 16) = 0.327 cm

This means that every time the sensor counts one unit, the wheel covers
about 0.327 cm. What actually interests you is how many ticks you should count
to cover a required distance, so the formula becomes:

Count = Distance/ F

If you have to manage the calculation with whole numbers, be sure to express
the formula in your code in order to keep maximum precision. Dividing for 0.327
1s like multiplying by 3.06, from which the following code:

count = (dist * 306) / 100;
This is the theory. The actual robot will probably require some in-the-field

tuning, because the distance covered by the wheels is affected by other factors:
The weight compresses the tires and reduces their diameter. There might be some
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slippage, too. We suggest you proceed by experimentation, making your turtle
draw a line, measuring it and then correcting the factor until you’re happy with
the result. All this process is meaningful only if you care about having your turtle
use units that correspond to some common length unit. If you don’t care, simply
use the rotation sensor counts as units.

With the required count determined, your subroutine will simply reset the
rotation sensor and start the motion motor until that count is reached. The NQC
example that follows assumes that the rotation sensor is attached to input port 3,
and that the motor that drives the turtle straight and forward 1s powered by
output port C:

void forward(int dist)

{
int count;
ClearSensor (SENSOR_3) ;
count=(dist*306)/100;
OnFwd (OUT_C) ;
while (SENSOR_3<count) ;
Off (OUT_C) ;

The back subroutine will be symmetrical to this one, with the motor
reversed and the sensor counting negative numbers until a negative limit is
reached.

Now the last part: the turning primitives right and left. If you glance again at
Chapter 13, you find that the change in orientation AOy (in radians) depends on
the distance covered by the wheels (T, —T}) and the distance between the
wheels (B). When the dual differential drive turns in place, both the wheels travel
the same distance (T) in opposed directions, so we can express the equation in
simplified terms:

AOp = 2xT/B

This relationship is shown in graphical form in Figure 23.7. Don’t worry if
you are not familiar with measuring angles in radians. We are going to convert
radians into degrees in a few steps.
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Figure 23.7 Computing Changes in Orientation

pen

Actually you know the AOy_you want to get, it corresponds to the desired
turning angle of the turtle, and it’s the input to your subroutine. What you’re
looking for 1s the Count of the rotation sensor that produces that AOp.The first
step is to obtain T from the previous equation:

T=AOxxB/2

As Count corresponds to T / F you get:
Count = (AOy x B/ 2)/F = AOg x B/ 2F

Here is where you convert radians to degrees, using the following formula:
AOg = AOp x /180

Applying the conversion to the previous equation for Count, the new expres-
sion becomes:

Count = (AOp x7t/ 180) x B/ 2F = AOp xt x B/ (360 x F)

In our turtle B is 18 studs, that is 14.4 cm. (It’s important you express both F
and B in the same unit, whatever you choose.) Computing the expression T x B /
(360 x F) into a single constant, we get the value 0.384. Multiplying by 0.384 1s
like dividing by 2.6, so you could write your code as:

count = angle/2.6;

Where angle is the desired turning angle, and count the number of ticks of
the rotation sensor that correspond to that angle. But there is no floating point
math on the RCX, so you cannot divide by 2.6 and you need to scale your
numbers up to express this ratio using integers (see Chapter 12). Here is the
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complete NQC implementation of the right routine (the turning motor con-
nected to output port A):

void right (int angle)

{
int count;
ClearSensor (SENSOR_3) ;
count=(angle*10)/26;
OnFwd (OUT_A) ;
while (SENSOR_3<count) ;

Off (OUT_A) ;

As for the motion routines, this one will need some adjustment too.Your
turtle is not likely to draw proper angles on the first try. We suggest you make it
draw a simple polygon, like a square or an equilateral triangle, and check if it
closes the path properly. For example, the sequence of four forward(20) right(90)
should draw a square; if the last segment intersects the first one but not at its
starting point, the count is too high, and you have to increase the divider (e.g., 27
instead of 26), and vice versa: If the square doesn’t close at all, you should
decrease the divider (Figure 23.8).

Figure 23.8 Tune Calculations by Testing Your Turtle in Drawing a Square

. f/____‘i

a = count too high
b - codint too baw

Instead of working on the software, you can often change the geometry of
the robot. Altering the distance between the wheels by moving them in or out
along the axles is a very effective way to tune the robot. Make small adjustments
until your square comes out perfect.
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Looking at the problem another way, you can force a specific result from the
expression T x B / (360 x F), for example 1/3:

nxB/(360xF) =1/3
B =((360xF)/(3n) =12.49 cm

We suggested 1/3 because this would lead to the code count=angle/3. That’s
very simple, but more importantly, it doesn’t sufter from rounding errors on many
common multiple of 3 angles like 30°, 60°, 90°, 120°, 180°, etc.

Work patiently on your turtle and its code. The result will astound you!
Figure 23.9 shows our turtle drawing an almost perfect five-pointed star and a
square.

Figure 23.9 The Logo Turtle in action

Choosing the Proper Language

As a general principle, in this book we don’t suggest any specific language for
you to program your RCX. We provided examples in NQC just to find a
common background with the readers to discuss programming issues; however,
most of the projects in this book can be translated into any language of your
choice. In this chapter, we make an exception—we are going to recommend a
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particular language, because we feel that the Logo Turtle project would benefit
from a lot of interactivity.

A product specifically designed to marry LEGO to Logo does exist, it’s the
DACTA Control Lab Learning Environment. But it’s been designed to interface
with the Control Lab, not the RCX, and is a very expensive product. Staying in
the range of free software, in our opinion the best choice for this project is
pbForth, whose interactivity corresponds to the original Logo philosophy.
PbForth uses the Reverse Polish Notation, so your statements will become
reversed in respect to the Logo ones: FORWARD 10 will become 10 FOR-
WARD, but is this a serious problem? With pbForth you can sit at your PC, type
some commands on the console and watch the turtle execute them. Like in
Logo, you can easily define new words to draw complex shapes, all this without
being subjected to a compile-upload cycle.

If you don’t want to approach pbForth, but still would like to make your
turtle interactive, you have other options. One is sending commands through IR
messages. You have 8 bits for each message, and can use three of them to code the
main commands (forward, back, right, left, penup, pendown) and the
remaining five for the command parameter. Five bits correspond to 32 different
values, enough to code the angles, for example, in increments of 15°.
Alternatively, you can design a two-byte messaging system, where the first byte
corresponds to the command and the second byte to its parameter.

Another option could be to write an interface for your PC that performs all
the computations and sends direct bytecodes to control the robot, while at the
same time polling its sensors.

Variations

Let’s examine what you can do in case you need some of the parts we used for
this project, starting with the second differential gear. Using only one differential,
you can make it subtract the motion of one wheel from the other, so that the
differential case remains stationary when the robot goes straight (see Chapter 8).
In this setup, you connect the rotation sensor to the body of the differential and
ensure that during straight motion it doesn’t rotate, slowing down the faster
motor of the two when necessary. You have to rely on temporization to control
the distance to cover during straight motion, but for turns, which are more difti-
cult to control, you can still use the rotation sensor exactly as in the case we
described.
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If you have two rotation sensors, you can build your turtle on a simple differ-
ential drive, and concentrate your efforts on the software that would have to keep
the wheels in phase both during straight motion and turns.

On the other hand, if you have no rotation sensor, you should dig back into
Chapter 4 to see how you can make a fake one using other kinds of sensors.

Provided that the paper sheet provides a good color contrast against the floor,
you can place a downward-looking light sensor to prevent your Turtle from acci-
dentally writing oft the edge of the sheet.

Tape Writer

The second project of this chapter uses an approach somewhat opposite to that
of the Logo Turtle: Here it’s the paper that moves, while the robot stays still. The
principle is similar to the one used in ink-jet printers: A mechanism feeds the
paper under a writing head, which by itself moves perpendicularly to the direc-
tion in which the sheet advances. From what you learned in the previous chap-
ters, you can tell that such a system has two degrees of freedom, controlled
respectively by a paper feeding motor and by the writing head motor (actually,
our robot implements a third DOEF, needed to move the pen up or down over
the paper). This Tape Writer is also a Cartesian system, because the movements of
the mechanisms are linear and perpendicular to one another.

This robot requires some extra parts: a motor, some plates and beams, and
many tiles; however, if you don’t have the needed parts, there are many things
you can do to downsize the project to keep within your inventory (we’ll describe
some of them).

Building the Writer

What we have in mind is a robot that writes on one of those common paper
tapes made for printing calculators or cash registers. One motor moves the paper
strip forward and backward, while a second moves the pen in a perpendicular
(side-to-side) direction. The third motor controls the up/down pen movements.

Starting from the end, here’s our finished robot that writes the traditional
“Hello world!” welcome sentence (Figure 23.10).
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Figure 23.10 The Writer Composes Its First Sentence

Analyzing the Tape Writer in detail, you can see that it’s made of a body and
three subsystems, all of them with one degree of a freedom.

®m  The body provides the main structures and hosts the paper transport
system.

m  There’s a movable carriage over the body, which transports the pen in a
direction perpendicular to the tape.

m  Over the carriage, the pen assembly moves up and down.

m At the bottom of the body, there’s the writing surface, a smooth surface
that presses the paper against the wheels.

Looking inside the main body, you catch a glimpse of the transport wheels
and the pen assembly (Figure 23.11).

The wheels are operated by a motor through a worm gear and three con-
nected 24t gears (Figure 23.12). This latter geartrain is necessary to keep the two
groups of dragging wheels turning in the same direction. You need the paper to
go back to shape some letters, and this is the reason why there are wheels both
before and after the pen.
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Figure 23.11 Writer Side View

Figure 23.12 Writer Rear View
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Removing the pen carriage, you see the wheels and the paper tape down
below (Figure 23.13).The carriage is translated using a rack and pinion assembly,
powered by a second motor on the body. We used two touch sensors to detect
the carriage limits, but you could just as well employ a single sensor with two
closing pegs, as we did for many other projects in this book.

Figure 23.13 Writer Top View, Pen Carriage Removed

A second rack and pinion system, operated by the third motor, controls the
vertical movement of the pen (Figure 23.14).

We tried different ways to attach the pen, until we discovered that many
common and cheap pen refills have a diameter close to that of the LEGO flex
tubing. This simplified our lives a lot (Figure 23.15). Make sure you don’t damage
the refill, otherwise you’ll end up washing a few LEGO parts!

The top is completely covered with tiles (Figure 23.16). The irregular surface
covered with studs wouldn’t work. In case you don’t have tiles, or not enough of
them, cover the plates with a smooth, thin support, like a glossy cardboard, an
aluminum or plastic sheet or anything else similar that comes to mind. You can
also build a top out of standard LEGO bricks laid on their side, which should
provide an even more regular surface than tiles.

The writing surface is an independent part linked to the main body through
short rubber bands (Figure 23.17). Those bands pull the surface up against the
pen and against the wheels of the feeding mechanism.
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Figure 23.14 The Writer’'s Pen Assembly
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Figure 23.15 Close-Up of the Pen

24

I

Figure 23.16 The Writer's Writing Top Taken Apart
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Figure 23.17 Writer Front View

Bricks & Chips...

Washing LEGO Parts

LEGO bricks are, generally speaking, not very difficult to clean. You can

remove small ink spots using a cotton ball soaked in some alcohol. For

large-scale cleaning, hand-wash your bricks in a tub of warm water with

some dish detergent. Machine washing in a clothes washer on a warm

setting is possible too, provided that you put your parts in a canvas bag.
Some warnings apply:

®m Do not use any solvent, unless you're sure of what you are
doing. Test it on a brick you don’t care about.

m Transparent and printed bricks should not be cleaned with
alcohol or any other solvent. They should only be washed by
hand.

m Never use hot water, and never put your bricks in a dish-
washer because the settings will be too hot and will warp
the parts.
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Programming the Writer

This robot is not very difficult to program, provided you choose a simple font,
composed mainly of straight horizontal and vertical lines. Our own version con-
tains few general use subroutines that draw standard length lines: Full length ver-
tical lines get drawn using the two touch sensors as a reference, while half length
vertical positioning is based on timing (always starting from the bottom). All the
horizontal movements are based on time, but we have seen that for this applica-
tion this isn’t necessarily a critical limitation, especially if you optimize the path
the pen follows when drawing the characters. Four more subroutines control the
pen-up/pen-down positions, as well as the spacing between letters and between
words.

Using those subroutines, you can now code all the characters you want to
print in terms of pen movements. A tedious task, but not difficult. Study the path
that minimizes the number of moves, and keep the pen up when you have to
pass over an already traced line: It’s almost impossible to get the pen to cover the
same line exactly a second time, and a double line only makes things look worse.

Now you have all the elements to start writing. Simply call the proper char-
acter subroutines in sequence and you can write what you want. The two main
options are: Coding some predefined or random behavior in the program to
make it write some text, or use a communication protocol to interact with the
system. As we said for the Logo Turtle, pbForth is probably your best choice for
an interactive system, but this particular case is appropriate for the simple standard
messaging scheme, too, being that you can send any single-bit ASCII character in
a message.

What to Write

We had the idea of making this robot an Automatic Haiku Writer, but the truth
1s that you can make it write whatever you want. In the last part of the chapter,
we will give you some hints about other possible uses of this robot: a label-
writing machine, a graphing system, and more.

Now, what’s a haiku? It’s an ancient Japanese poem with a formal structure.
Though not everybody agrees on all the rules involved, the most accepted form
1s a three-line verse where each line is composed respectively of five, seven, and
five syllables. It usually contains a reference (even indirectly) to time, and is
broken into two parts, like an introduction and a theme, or an action and its con-
sequence. Here’s our own example of a haiku contemplating the theme of this
book (we ask your forgiveness in advance!):
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The robot is on
Feel a bit worried, about
The things it could do

You can program your robot to produce a written haiku on request, gener-
ating it randomly from a database of predefined sentences. Or, using a more
sophisticated approach, pluck random words from a (small) inner dictionary, com-
bining them according to simple predefined grammatical structures (see Appendix
A for some links to useful Internet resources in this regard).

Variations

On the technical side, you can make your robot more accurate by adding a rota-
tion sensor to control the feed of the paper. Meanwhile, the two touch sensors
for the carriage, as explained before, could become one.

It’s possible to make a version of the writer fully independent from the PC,
but still interactive. A sort of old fashioned label-writing machine where you
choose a single letter at the time then print it. Add a rotation sensor with a wheel
to make the user alternate the possible characters, and a touch sensor to confirm
printing. You should show the characters on the display while the user rotates the
wheel, but this is possible only if you installed an alternative firmware that allows
tull control of the display, including some alphanumeric capabilities (e.g., legOS).
With the standard firmware, you should stick with numbers and show a code for
each character.

A more radical variation on this project is the making of a graphing machine,
like those that produce electrocardiograms or electroencephalograms, or monitor
weather parameters like temperature or humidity. In this case, things get more
simple on the mechanical side, because you don’t need the pen mechanism any-
more (the pen will be always down) and a single paper feeding direction is
enough (the paper always goes forward). What you should add is a rotation sensor
to make your software capable of converting the input value into a precise posi-
tion. In typical applications, the paper will advance and the chart will update only
once in a while, the length of this interval being related to the rate of change of
the parameter you’re monitoring.

What should you graph with such a system? Whatever variable your sensor can
measure: temperature and light, for example. Using some simple assemblies or a few
custom sensors, you can measure sound intensity, voltage, distance, force, weight,
wind speed, or whatever else you can convert into a signal for an input port.
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Further Suggestions

The writing and drawing theme offers many other ideas. The following sugges-
tions are far from being exhaustive. Consider them starting points for your own
creations.

Copying

This has become an almost classic project, but it’s still interesting, instructive, and
challenging. You need a feeding mechanism similar to those of our Tape Writer,
but duplicated for two pieces of paper. It must be able to drag two sheets of
paper: the one being copied and the blank one. Obviously, the whole machine
will be much larger than the Tape Writer if you plan to use standard letter or A4
sheets.

The copying system is made of a translating assembly that moves a light sensor
back and forth across the original sheet, and a pen in the corresponding position
over the copy sheet. With the paper feeding motor stopped, the software scans a
row with the light sensor, and depending on what intensity it detects, it puts the
pen up or down. After each row, the paper will feed a bit for the next scan.

The requirements for this project are not very high: three motors, one light
sensor, and one or two touch sensors for the carriage movements; but we suspect
that in creating a standard sheet copier, you will likely need many additional
beams and plates, because the structure will be rather large.

Emulating Handwriting

Using a completely different technique, you can build a robotic arm that writes
with movements similar to those of a human arm.You need an arm with two
degrees of freedom, similar to the one described in Chapter 20 when we discussed
moving chess pieces: Two levers move on a horizontal plane, the first attached to
the body of the robot and the second to the end of the first. At the end of the
second lever, there’s the pen with its lifting mechanism. We suggest you keep it
very lightweight, using either pneumatics, the flex system, or a micromotor. Every
lever will be rotated by a motor and controlled with a rotation sensor.

The software to control this beast is not very simple. Converting the angles of
the arm into Cartesian coordinates on the sheet requires some trigonometry, and
all that that implies (see Chapter 13)!
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Learning by Example

To make the previous project even more interesting, and at the same time get rid
of all the trig (yeah!), you can design your robot to learn from your movements.
In this case, your robot will have a training phase, where you guide its arm to
write or draw what you want, and a production phase where it replicates your
movements.

Make the motors easy to decouple, so you don’t have to move them while
driving the arm during the training phase. The program will save the sensor read-
ings at small intervals in order to reproduce those positions later in the production
phase.

For the pen up/down movements, you can keep the motor connected and
controlled by a touch sensor that you press when you want to flip from one state
to the other.

The most challenging part of this project is the storing of the data collected
during the learning process. You have basically two options: using a language that
allows large memory structures like arrays (legOS, leJOS, pbForth), or doing the
dirty work on the PC, leaving all the “intelligence” and data there and using the
RCX as merely an executor.

Summary

In this chapter, we explored some techniques described in Part I that had not yet
been applied to robots in this book. The Logo Turtle offers a good opportunity to
find a use for the sophisticated dual differential drive of Chapter 8, which is
capable of turning in place like a simple differential drive, but also of going per-
fectly straight. In fact, at the price of some mechanical complexity, it provides a
way to separate straightforward motion and turning capabilities using two inde-
pendent motors. Its advantages include the fact that you can monitor both kinds
of movement with a single rotation sensor attached to one of the wheels. Using
the dead reckoning math of Chapter 13, you can precisely control your Turtle. We
went through those equations again, providing a concrete example of how to
implement them in a NQC program.

You can program your Turtle robot with any language of your choice; how-
ever, we discussed the advantages that this particular project could derive from an
interactive programming environment like pbForth.

Though conceptually simpler, even the Tape Writer showed some construc-
tion tips. It is a Cartesian system not too different from those used in the robots
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of previous chapters (the Maze Solver and the Tic-Tac-Toe machine), but it does
demonstrate once more that by reevaluating the terms of a problem, you can find
an easier solution. For example, a Tape Writer built with a technique similar to
the Maze Solver would have required very long rails; so, moving the paper instead
of the robot, your construction results in a more compact design that is also
capable of writing texts of unlimited length.

In the suggestions we provided at the end of the chapter, we described the
possibility of emulating handwriting using an arm similar to the one used in the
Broad Blue robot described in Chapter 20—not necessarily the same size, but
based on the same principle. This includes a glimpse at how robots can learn by
example, too; a feature used in many real life robots, including industrial robots.
In a case where you want your robot to perform handwriting, you can guide the
movements of the robotic arm to copy the shape of any written character; the
robot “remembers” your movements, and then is able to replicate them and write
by itself.
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Simulating Flight

Solutions in this chapter:

Building _tHe Hardware

Introducing the Forces Involved in Flight

Designing the Simulator Project

Programming the Simulator
Operating the Simulator
Downsizing the Project

Upsizing the Project
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Introduction

LEGO robots cannot fly. This 1s a fact you have to accept—there’s no way to build
any kind of pure-LEGO self-powered flying machine. The project described in
this chapter is a rather ambitious variation: We want to simulate flight.

What we’re going to describe here is not technically a robot; we use the pro-
cessing power of the RCX to simulate the simplified behavior of an aircraft. Even
if youre not knowledgeable about flight or flight simulation, this project deserves
some attention for its intensive use of the resources provided by the RCX: the in
and out ports, the display, and the loudspeaker.

The simulator, as we conceived it, requires a lot of additional parts: three rota-
tion sensors, four motors, some long cables, two polarity switches, and some extra
beams and plates. Don’t worry if you don’t have all those parts, we also suggest
some ways to reduce the requirements of the project.

Introducing the Forces Involved in Flight

Imagine an airplane in flight. The line that passes through the fuselage is called
the longitudinal axis. When the plane rotates around this axis, one wing goes down
and the other up. This movement is called bank, or roll, and in a real plane is con-
trolled by the ailerons. The pilot operates the ailerons through the control yoke
(see Figure 24.1). A movement of the yoke to the right banks the plane right
(right wing down), and vice versa.

The same yoke also controls the elevators, the moving parts of the horizontal
stabilizer (the “rear wings” of the plane). The elevators control the rotation of the
plane around its lateral axis, a line parallel to the wings, and this affects the pitch of
the plane (Figure 24.2). When you pull the yoke backward, the nose of the plane
goes up, while pushing it forward points the nose down.

The vertical axis is perpendicular to the first two, and is essentially a vertical
line that passes through the center of gravity (COG) of the plane. To rotate the
plane around this axis, the pilot uses the rudder pedals. They control the rudder
which is located on the wvertical stabilizer of the plane. This rotation is called yaw
(Figure 24.3).
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Figure 24.1 The Ailerons Control Bank
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Figure 24.3 The Rudder Controls Yaw
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The fourth and last of the basic controls in a plane is the throttle, used to
apply power. The engine of the plane converts this power into thrust, part of
which aftects the speed of the plane through the air, while another part gets trans-
formed into lift by the wings. Lift is the force that opposes the weight of the
plane and allows it to overcome the force of gravity. Another force, drag, caused
by the friction of the air, increases rapidly with the increase in speed, thus lim-
iting the maximum speed that the plane can reach (Figure 24.4).

There are other important controls in a plane, like the flaps, movable surfaces
on the wings used to increase lift (and drag), or the elevator trim, but we’re going
to ignore them in our simplified simulator.

The behavior of a plane results from a complex interaction of its controls and
the forces that come into play. We already explained that the thrust produced by
the engine aftects the speed of the plane and its vertical velocity. The pitch of the
plane has an influence on this, too: Starting from straight and level flight, if you
pull the yoke back, the nose will go up, causing an increase in lift and drag; the
plane will reduce its air speed. and increase its climb rate. Eventually the plane
will stall and fall out of the sky like a rock.
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Figure 24.4 Drag Balances Thrust, while Lift Balances Weight
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Turns are managed through bank and yaw. In normal turning, they must be
coordinated. In a right turn, for example, the pilot applies the ailerons and rudder
to make the plane bank right and turn right. The bank is necessary to compen-
sate the centrifugal force introduced by turning, and the pilot banks the wings to
make the lift oppose the resulting gravitational and centrifugal forces. In real
planes, this coordination is very important for safety. This is why high-speed race
tracks have banked turns. The resulting forces on the car and driver are directed
downwards, which helps keep the car on the track and away from the wall.

Piloting an aircraft is very different from driving a car. Turning a car, for
example, you keep the steering wheel turned throughout the length of the curve.
In a plane, by contrast, you apply some yoke and rudder only until you get a new
attitude and the plane starts turning, then center them again, similar to keeping a
boat on course. The plane will continue in its turn until you operate the yoke
and rudder again, in the opposite direction, to resume straight flight.

Designing the Simulator Project

Our flight simulator is made of two components: a mobile platform and a remote
control. The idea is that from your remote control, a sort of portable cockpit, you
manage three inputs of the system—pitch, bank, and throttle—and read indicators
of speed, altitude, and possibly other parameters. We didn’t succeed in having a
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further control for the rudder, but this doesn’t affect the simulation too much
since we assumed that bank and yaw are always coordinated.

The mobile platform features a symbolic airplane that represents the one you’re
flying. This plane actually rolls and pitches, giving you a visual indication of its atti-
tude. Meanwhile, the platform moves and turns according to its speed and direc-
tion. As the remote control is connected with cables to the platform, you’ll have to
walk behind it while it moves. It’s more or less like driving a remote-controlled car,
the difference being that the vehicle here responds like an aircraft.

Let’s explore the design details. Two motors on the platform control pitch and
bank; these are not driven by the RCX, but rather by you through the yoke on
the remote. The yoke works with two polarity switches. What the RCX reads are
the values of pitch and bank that come from two rotation sensors connected to
those motors. The third input, throttle, arrives from a third rotation sensor placed
on the remote.

From these inputs, the RCX computes the outputs: thrust, lift, drag, accelera-
tion, speed, heading, and altitude of the plane. The speed is reflected in the
motion of the platform, and the same applies to the heading: When the simulated
plane turns, the platform turns, too. The RCX drives the platform, a simple dif-
terential drive, with two of its output ports. The altitude appears on the display,
and you can program the simulator to show other values, too. In our version, alti-
tude and speed appear at the same time using two digits each. The loudspeaker
outputs the noise of the engine, and the stall alarm. (Stall is when, because of too
low a speed or too high a pitch, the airflow detaches from the wings causing a
sudden drop in lift.) Functions and connections are summarized in Table 24.1.

Table 24.1 RCX Resources and Functions

RCX Resource Function

IN 1 Reads Pitch.

IN 2 Reads Bank.

IN 3 Reads Throttle.

OUT A Controls the left motor of the differential drive platform.

OouT B Controls the right motor of the differential drive platform.
Outs A & B together reflect velocity and direction of the
plane.

OUT C Always ON; used just to supply power to the polarity

switches that control pitch and bank motors.

Continued
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Table 24.1 Continued

RCX Resource Function

Display Shows altitude, speed, and possibly other flight status
variables.

Loudspeaker Reproduces the simulated noise of the engine and

outputs the stall alarm.

Building the Hardware

Figure 24.5 shows a view of the whole mobile platform. It’s organized into three
sections:

m At the bottom, a differential drive.
®m  In the middle, the assembly that controls pitch and bank.

m At the top, the small plane that is your visual reference for flight.

Figure 24.5 The Mobile Platform
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Let’s dissect the platform and analyze its components. This particular differential
drive (Figure 24.6) is really nothing unusual. We used a high reduction ratio (1:9)
to keep the simulator slow. This design is actually very similar to that of chapter 14,
with the only relevant difterence being that the motors are placed behind the main
wheels to keep the COG between them and the pivoting wheel.

Figure 24.6 The Differential Drive that Controls Motion

The most notable part of the pitch and bank control assembly is the small
chassis at the top, the one that supports the plane (Figure 24.7).This is able to
move with two degrees of freedom (DOFs) in two orthogonal, or perpendicular,
directions that correspond to the lateral and longitudinal axis of the plane. In other
words, this mechanism controls the pitch and bank of the plane independently.

Figure 24.7 The Pitch and Bank Chassis
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Under the 2 x 4 plate in the middle are two 1 x 2 beams with axle holes,
intersected by the axle that controls bank. The other two 1 x 2 bricks hold gray
pins that represent the pivoting points of the lateral axis, the one that controls
pitch (Figure 24.8). The center of this assembly is the virtual COG of the plane.

Figure 24.8 The COG of the Plane

This jointed chassis connects to two arms that operate the pitch and bank
movements. The front one adjusts pitch, while the rear one changes bank
(Figure 24.9).

Figure 24.9 Side View
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Those long arms are linked to liftarms, each one mounted on an axle that
goes right in the middle of the assembly and ends on a 24t gear (Figures 24.10
and 24.11). The two diagonal beams that lock the assembly are not a perfect
match: They form a triangle with sides 4 and 8, which correspond to a
hypotenuse of about 8.94 instead of the 9 we used. This small difterence—Iess
then seven parts per thousand—is close enough for a solid connection.

Figure 24.10 Front View
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Going inside the assembly, you’ll notice it’s perfectly symmetrical. The two
24t gears are moved through worm gears. The axles that carry the worms also
carry pulleys to receive motion from the motors, and pass through the rotation
sensors that measure pitch and bank (Figure 24.12).

The mechanism is easier to see in the cross-section of Figure 24.13, which
shows just one side of the assembly that controls pitch and bank. The motor
shafts mount half bushings used as pulleys to get the highest reduction ratio
against the medium pulley.
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Figure 24.11 Rear View
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Figure 24.13 Cross-Section of the Pitch/Bank Mechanism

The model of the plane itself is representational (see Figure 24.14). Build any
plane of your choice with the parts you have available, just don’t make it too
heavy because this design is not suitable to support large loads. If you want to use
a larger model, put your plane’s real COG as close as possible to the two DOF
joint. (It’s much better below it than above it.)

Figure 24.14 The Plane

Our remote control contains the RCX, the yoke, and the throttle (Figures
24.15 and 24.16). The yoke is made with two polarity switches: The central one
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(bank) is mounted over two 1 x 2 bricks with axle holes, whose axle goes into
the second switch (pitch) on the left of the picture. The throttle is a simple wheel
and axle assembly that passes through a rotation sensor.

Figure 24.15 The Remote Control

Figure 24.16 The Yoke and Throttle Controls
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There are six long wires that run from the remote to the platform: two from
output ports A and B to the motors of the differential drive, two from input ports
1 and 2 to the rotation sensors for pitch and bank, and two from the polarity
switches to the pitch and bank motors. The throttle rotation sensor connects
directly to input port 3, and you need two more short cables to bring power
from output port C to the polarity switches.

Programming the Simulator

This is the hardest part of the job. There’s an impressive quantity of material in
literature and on the internet about the physical equations that explain flight, but:

m  They are not easy to understand if you don’t have a solid background in
physics and math.

m  They are not easy to implement on your RCX unless you use some
alternative programming environment that allows high precision math
and trigonometry functions.

m  Making a good simulator, realistic enough but enjoyable at the same
time, is something that goes beyond the understanding of the principles
behind flight. The process requires some experience and a lot of patience
in testing all the details.

We developed a simple model that, though largely simplified, has the advan-
tage of requiring very simple math and working with the limited 16-bit precision
allowed by the standard firmware. Our NQC version works quite well and makes
the simulator fun and instructive to use with less than 200 lines of code. Using
legOS, 1eJOS, or pbForth, you can get even more from your simulator. (We’ll give
you some hints about this later in the Upsizing the Project section.)

The program starts by configuring the sensors and resetting the variables.
Afterward, the main cycle begins:

while (true)

{
ReadInputs () ;
ComputeOutputs () ;
UpdateDisplay () ;
Wait (INTERVAL) ;
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You see the structure is quite simple. The program reads the inputs, the three
rotation sensors, then computes the variables that represent the output of the
system (altitude, speed, and direction), and finally updates the display of the
RCX.The conversion of speed and direction into motion of the platform is per-
formed by a separate task, but we’ll discuss this later.

INTERVAL is a constant that reflects the simulation step. We modeled our
equation on an interval of 1 second, meaning that the model is realistic (as much as
it can be) when the status is updated once a second. As all the computations require
some time, INTERVAL will be something less than 1s in order to make the cycle
last almost exactly one second. We placed a sound click in the loop and trimmed
the value until we found one that made the RCX click exactly 60 times a minute.
In our case, it was 85 hundredths—which implies that the processor inside the
RCX was actually only doing work for 15 hundredths of a second!

The ReadInputs subroutine polls the sensors and converts the readings into
proper values for pitch, bank, and throttle. Pitch and bank are expressed in
degrees, O represents level flight, while positive values mean nose up for pitch and
right wing down for bank. The bank control is built with a 24t driven by a worm
gear, the latter attached to the rotation sensor. This means that the 24t makes a
tull turn, 360°, every 24 turns of the worm. As the rotation sensor ticks 16 times
every turn, it will count 24 x 16 = 384, so the bank angle will be the sensor
reading multiplied by 360/384 (reduced, this becomes 15/16). We are now ready
to compute the bank variable:

bank= (SENSOR_BANK*15) /16;

Notice the use of parentheses: When you are not sure how your compiler
optimizes expressions, use parentheses to be sure the computation follows a spe-
cific sequence (see Chapter 12). Notice also that we called the sensor
SENSOR_BANK instead of, for example, SENSOR_2.This is not only possible, but
very helpful in making your code self-explanatory. You simply need to define a
new constant whose value is the name of the sensor port you want to map with
a new name:

#define SENSOR_BANK SENSOR_2

The pitch control assembly is slightly difterent: It doesn’t actually rotate the
lateral axis but rather acts on a lever. To convert this movement into an angle, you
should use trig functions. But relying on the fact that useful pitches won’t go
over +/-16°, and that in that range the behavior of our assembly is almost linear,
we introduce a small simplification and use a linear conversion for this case, too.
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The important thing to remember is that the arm of the lever at the top is
double the length of that at the bottom, meaning that in respect to the bank
sensor, you need double the ticks from the rotation to cover the same angle. This
leads to the formula:

pitch=(SENSOR_PITCH*15) /32;

We chose for the throttle a scale of ten values from 0 to 9.To make the rotary
control a bit less sensitive, we counted an increment in throttle every four ticks of
the sensors, and added some code to ensure its value stays in the right range.

temp_thr=throttle+ (SENSOR_THROTTLE-o0ld_sensor_throttle) /4;
0ld_sensor_throttle=SENSOR_THROTTLE;
if (temp_thr<0)
throttle=0;
else if (temp_thr>9)
throttle=9;
else

throttle=temp_thr;

Now we have all the elements to determine the new flight status variable,
which derives from the previous status combined with the effect of the input
controls.

=

NoTE
We use the metric system for all the variables in the Flight Simulator,
thus altitude is expressed in meters, speed in m/s, and acceleration in
. m/s?. Nothing prevents you from converting the final output values to

feet and knots, however. 1m corresponds to 3.28 feet, and 1m/s to 1.94
knots.

Let’s start with acceleration, which is essentially the variation in speed. It
comes out of three components: applied power (throttle), drag, and pitch. We
used a simple linear relation for throttle:

acceleration, = throttle / 2

Drag is the force that contrasts the applied power, and it increases with the
square of the speed. Therefore, our formula is:
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acceleration, = speed?/ 1250

Pitch also affects speed: the higher the nose of the plane, the greater the por-
tion of power that is transformed into lift instead of speed:

acceleration; = pitch /5

The final equation is:
acceleration = throttle / 2 — speed?/ 1250 — pitch / 5

The maximum speed that our plane can reach during level flight (pitch = 0)
is 75m/s, or about 145 knots, a typical value for a small propeller aircraft. At that
speed, drag equals the thrust produced by the engine at maximum throttle.

Let’s create an example using real numbers. Suppose you are applying a
throttle of 8, and that your airplane is flying at 65m/s with a positive pitch of 3
degrees. Acceleration then becomes:

acceleration =8/2-70x70/1250-3/5 =4-3.92-0.6 = -0.52

If you want to simulate what happens inside your RCX, remember that you
are limited to whole integers, thus you should calculate the expression truncating
the results of every division to an integer number:

acceleration =8/2-70x70/1250-3/5=4-3-0=1

The difference between this (wrong) result and the previous (correct) one is
quite significant: What should have been a negative acceleration—the plane slows
down—becomes a positive one—the plane speeds up! To keep this problem to a
minimum, recall some of the suggestions given in Chapter 12, and rearrange the
expression to get as small a loss in precision as possible. For example, you can
group the numbers so you have only one final division:

acceleration = (throttle x 625 — speed? — pitch x 250) / 1250

Using the numbers of our example, and truncating the result of the division,
this expression becomes:

acceleration = (8 x 625 -70x 70 -3 x 250) /1250 = -650/1250 =0

The new result, 0, is better then the previous one, that is, it’s closer to being
correct. A further improvement comes from the rounding of the last digit
(rounding 5 into 10).This is actually the solution we adopted in our NQC code:

speed2=speed*speed;
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acceleration=throttle*625; // thrust

acceleration-=speed2; // minus drag
acceleration-=pitch*250; // minus vertical component
acceleration/=125; // scale appropriately

if (acceleration>0) // round +/- 0.5

acceleration+=5;
else
acceleration-=5;

acceleration/=10;

How does this trick work? Let’s again use the numbers of our example.
Dividing by 125 instead of 1250, the result is:

-650/125 =-5.2

As acceleration is negative. The code performs the rounding by subtracting 5,
then dividing by 10 again:

acceleration = (-5.2-5)/10 = -1

This is the best approximation you can get. The sign of the acceleration is the
correct one, and its magnitude is rounded to the nearest integer.

Now we’ll figure out the constants for lift, the force produced by the flow of
air over the wings. Lift is somewhat similar to drag: They increase together at a
similar rate. The pitch of the airplane affects the lift, too: the higher the pitch, the
greater the lift. This is the equation we introduced in the model:

lift = speed® x (1 /422 + pitch / 3500)

Pitch is not the main way to control lift, and cannot be increased to arbitrary
values for at least two reasons. The first is that an increase in pitch reduces speed,
thus limiting the generated lift. The maximum climb speed in our simulator results
with maximum throttle and a pitch of 10°, though temporary higher values are
possible when increasing pitch, until the speed drops down at a stable level.

The second reason is that there’s a physical limit to the pitch the plane can
tolerate before stalling: When the pitch passes a critical value, the airflow detaches
from the wings and the aircraft experiences a sudden drop in lift that goes to
zero. Stall can occur for another reason: too low a speed. For our model, we
chose a maximum pitch of 16° and a stall speed of 27m/s (52 knots).

There’s another negative component to be considered when computing lift:
bank. We use bank as an absolute value since any bank other than zero reduces
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the climb rate of the airplane because part of the force is used to compensate the
centrifugal force. Our final equations becomes:

lift = speed? x (1 /422 + pitch / 3500 — |bank]| / 35000)

You see that bank has a negative effect on lift equal to one tenth of pitch.
Thus one degree in pitch compensates the loss in lift produced by ten degrees in
bank. The following code includes the test for the stall condition. The computa-
tion has been again rearranged to maximize the precision:

if (pitch>16 || speed<27) // stall!
{
1ift=0;
stall=1;
}
else
{
lift=speed2 / 422; // effect of speed
lift+=((speed2 / 10) * pitch) / 350; // effect of elevators

lift-=((speed2 / 10) * abs(bank)) / 3500; // effect of bank
stall=0;

flying=1;

The flying flag, set to O at the beginning of the simulation, makes the simu-
lator remember that the lift value became positive at some time, in order to acti-
vate the stall alarm if the lift becomes zero again after the takeoft.

There’s just one thing missing in the model: the effect of bank. We used a
very simple relation to obtain the change in heading (angular velocity in degrees
per second) from bank and speed:

turn= (bank * speed) / 453;

Now that you have all the elements that affect your flight attitude in the pre-
vious time interval or step in the simulation, you can proceed to update the cor-
responding status variables. Notice that altitude cannot be less then zero. We
didn’t include any landing or crash test. We leave this exercise to you.

altitude+=lift-g;
if (altitude<0)

altitude=0;
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speed+=acceleration;

heading+=turn;

if (heading>360)
heading-=360;

else if (heading<0)

heading+=360;

The constant g introduces the eftect of gravity. The real value should be
9.8m/s’, but in our world of whole integers it becomes 10m/s>. Remember to
declare it somewhere in your code:

#define g 10

You are ready to display some of the calculated values. If you're using the stan-
dard firmware, remember that you need version 3.28 or later to control the display
@it’s free at the LEGO site and perfectly compatible with RCX 1.0 and 1.5).

For our version, we chose to split the display into two groups of two digits,
the first for altitude, in tens of meters, and the second for speed, in m/s:

tmp_display=(altitude/10) *100+speed;

display=tmp_display;

Two digits are perfect for speed expressed in meters per second—always in
the range 0 to 99 during our simulation. If you want to use knots as in real
planes, you have to multiply speed in m/s by 194 and divide by 100, or by 1000
to show tenths of knots and remain in the two digits range.

The same goes for altitude. Our simulator shows tens of meters, but you can
easily convert them to feet to adopt the units used by real aircraft. Multiply
meters by 328, then divide by 100 to get feet, or by 1000 to get tens of feet (see
the Upsizing the Project section later in the chapter for a more sophisticated
usage of the display).

Into the same routine, we also placed the instructions that control the loud-
speaker:

if (stall==1 && flying==1)
PlayTone (1760,30) ; // stall alarm
else

PlayTone (80+throttle*12,105); // engine noise

In case of stall, the routine plays a high tone. (In normal operation, it plays a
low sound whose frequency is proportional to the throttle.)
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At this point, there’s one last thing you have to code: the motion of the plat-
form. We used a simple system to control speed: In a given period, the motors stay
on for a time proportional to speed. These instructions are in a separate task that
loops with a tighter interval than the main one so motion results more smoothly
than it would in a loop of 1 second. Our program cycles every 20 hundredths.
#define PERIOD 20
while (true)

{
if (speed==0)
{
Off (OUT_A+OUT_B) ;

else

on_left=(speed*PERIOD)/100;
on_right=on_left-turn*3;
on_left+=turn*3;
OnFwd (OUT_A+OUT_B) ;
if (on_left==on_right)
{
Wait (on_left);
Float (OUT_A+OUT_B) ;
Wait (PERIOD-on_left) ;
}
else if (on_left>on_right)
{
Wait (on_right) ;
Float (OUT_B) ;
Wait (on_left-on_right);
Float (OUT_A) ;

Wait (PERIOD-on_left);
else

Wait (on_left) ;
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Float (OUT_A) ;
Wait (on_right-on_left);
Float (OUT_B) ;

Wait (PERIOD-on_right) ;

The two variables on_left and on_right contain the time each motor must stay
on. This time is proportional to speed, and affected by the turning of the plane:
for each degree in angular velocity we transfer 3 hundredths of a second from
one motor to the other (quite an experimental parameter).

The code starts the motor, and if they are expected to run for the same time,
stops them simultaneously. In case the aircraft is turning, one motor will stop
before the other.

Operating the Simulator

Be sure that the small plane on the platform is perfectly level. Place it on the
runway (that is, on an open space on the floor) and start the program. Apply full
throttle and look at the speed on the display. When it reaches about 45m/s (87
knots) pull gently on the yoke for a while to raise the nose about 10°. You're
taking oft! Your altitude should start increasing every second.

When you reach the altitude of your choice, level the aircraft, pushing the
yoke for a while until pitch goes to about 0. In this attitude, with maximum
throttle, the plane continues to climb: reduce throttle a bit to obtain straight and
level flight.

Now you can experiment with turns. Push the yoke right or left for a while
until the plane banks about 30°, then center the yoke again. The platform starts
turning slowly. You should notice that during turns you lose some altitude, but you
can apply the elevators a bit to compensate for this. To exit the turn, push the yoke
to the other side until the plane levels again. Remember to reset the pitch.

You can experiment with nose-ups and dives, also. Remember that the max-
imum positive pitch your aircraft can bear is 16°, with higher values it will stall.
On the other hand, there’s no limit, other than the physical structure of the simu-
lator, to do a negative pitch.
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Downsizing the Project

Let’s explore what you can do to reduce the requirements of the project. In the
tollowing paragraphs, we suggest some options that can be used alone or com-
bined together.

You can make a static version of the simulator—something that stays on your
table instead of navigating the room—that only turns when the plane does. In
this case, you substitute the differential drive platform with a static support.
Figure 24.17 shows a possible rotary platform that combines with the pitch and
bank assembly of Figure 24.7 to create the static simulator of Figure 24.18.

Figure 24.17 A Static Base for the Simulator

The complete simulator of Figure 24.18 can be built using only MIND-
STORMS parts plus the turntable, a motor, and the rotation sensors. Be sure to
pass all the cables inside the hole of the turntable for maximum turning capability.

If you don’t have the turntable, you can build a rotating support using a 40t
gear as shown in Figure 24.19.

In this static simulator, you only need three motors, thus you can connect them
directly to the RCX out ports and avoid the polarity switches, using either the
LEGO remote or some software on your PC to drive them via the IR interface.

You could even remove the pitch and bank motors and replace them with
mechanical couplings. Just one motor needed in this case!
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Figure 24.18 The Static Simulator Assembled
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If you want to maintain the movable platform but use only three motors, you
can replace the differential drive with a steering drive, using one motor to drive
the main wheels and connecting the bank system to the steering wheel so that
when you bank the aircraft right, the platform steers right, too.

In regards to sensors, you can replace them with light sensors that look at a
white-black gradated surface that moves according to the inclination in pitch or
bank. Experiment with readings and create a function that converts them to a
reasonable approximation of the angle.

Even touch sensors can be used in place of one rotation. For example, you
can insert two of them to read pitch with a simple scheme like: front switch
pressed means pitch —10°, rear switch pressed means pitch +10°, none of them
pressed means pitch 0°. This works, but requires two input ports.

The throttle rotation sensor can be replaced by IR messages sent by the
LEGO remote (or the PC)—for example, message 1 to increase throttle and 2 to
decrease it.

Upsizing the Project

There are many things you can do to make the flight simulator more sophisti-
cated and complete. Starting on the software side, you can program it with one of
the alternative languages that allow better control of the display and, more impor-
tantly, the push buttons.

The display has a single digit on the right (program slot) that can be used, for
example, to show the throttle value. The small arrows that in the standard
firmware show the status of in and out ports can effectively be employed as pitch
and bank indicators, so you can more easily level the plane.

A whole new world of possibilities comes from the push buttons: The View
button, for example, has its natural designation in allowing the display to exhibit
different data: altitude, speed, heading, and any other value you would like to keep
under control. The Prgm button, on the other hand, can be used to apply flap for
takeoft and landing. With all digits available for view, you can use the basic display
for tens of meters, then hit the View button for more accurate readings.

Or you could assign two buttons to throttle, one to increase it and the other
to decrease it, so as to free one input port and use it for the rudder control, or
just to save a rotation sensor.

With a language that allows variables with higher precision and trigonometric
functions, you can redesign the mathematical model to make it more accurate

491

WwWw.syngress.com



492

Chapter 24 + Simulating Flight

and realistic. We deliberately ignored many parameters that influence flight, like
the air density and mass of the aircraft, just to name a few.

Moving all the software on the PC is another possible radical approach.You
could place the RCX on the platform and control it via IR, piloting the plane
from a virtual cockpit on the screen of your PC. The software then informs the
RCX only about the expected actions the platform must perform.

And why not put a small video camera in place of the plane in order to view
on screen what you’d see if you were a LEGO figure inside the plane?

There are so many possibilities. Now it’s your turn!

Summary

Tough subject, 1sn’t it? Why might you approach a difficult project like this? For
the opportunity to learn something about flight, or for the challenge to succeed
in making such a complex machine work? In our case, both reasons were impor-
tant, but we must confess that the biggest reason was because we thought it
would be fun.

The enjoyment of piloting a plane in your living room using furniture as
obstacles 1s not just for kids. You can imagine the side of the couch as one wall of
the Grand Canyon or the coffee table to be the Golden Gate Bridge. The reas-
suring noise of the engine coming out of your RCX, one eye to the instruments
and the other to the landscape slowly flowing below you, can make you feel like
the next Charles Lindbergh.

Apart from being a lot of fun, the Flight Simulator project contains some
lessons for you. The conversion of our mathematical model into actual NQC
code provides many good examples of the techniques described in Chapter 12
about minimizing the loss of precision during calculation with integer numbers.
You noticed how much care we put into translating any single equation into pro-
gram instructions: If you don’t attentively consider the domain of the numbers
you enter in your formulas, you take the risk of running into unexpected results.

This project also teaches you that you can use your MINDSTORMS kit to
emulate complex machines that you cannot actually build. In fact, in the intro-
duction to the chapter, we explained that though it’s not possible to build a flying
LEGO airplane, you can simulate one. Similarly, you can build a simulator for a
submarine, or a spaceship, and learn a great deal about the principles that control
their navigation.
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Introduction

Sooner or later you will be asked the fatal question: “Couldn’t you build some-
thing really useful?” The right answer is rather obvious: “All of my robots are
useful to me. They provide me with a creative outlet and help broaden my
thinking.” However, be prepared to face the fact that this answer probably won’t
satisfy most people—after all, if they have to ask in the first place, they’re not

going to get it. If you really want to stop them from pestering you by building
something truly useful, you’ll find some suggestions in this chapter.

The projects we’ll describe here only need a few parts not contained in your
basic MINDSTORMS kit. The Floor Sweeper, for instance, requires some foam
and tissue paper, the Milk Guard employs a temperature sensor, and the Plant
Sprinkler needs a small pneumatic pump, a short piece of pipe, and a plastic
bottle like those water and soft drinks come in.

Though these robots may be simple, they have their merits in applying some
of the concepts discussed in Part I and in introducing some new ideas. For
example, the Floor Sweeper covers room navigation, suggesting approaches that
refer to the absolute positioning methods of Chapter 13. The Milk Guard
describes a possible application for the temperature sensor, while the Plant
Sprinkler explores the possibility of using LEGO elements to pump water. We’ll
explain the simple physics involved in the indirect method it uses.

Building a Floor Sweeper

This robot is based on the principle that a vehicle moving randomly about a
room will eventually touch every point of the floor. You might point out that this
random (stochastic) approach is not very efticient, but it’s a good navigation exer-
cise—plus, the request was just for useful stuft, remember!

Constructing the Sweeper

For the proposed sweeper technique to work, you need a hard, smooth floor. It
definitely won’t work on any kind of carpeting.

Our robot is simply a differential drive that in place of supporting casters
mounts a relatively large wiper, wrapped in a piece of tissue paper (Figure 25.1).

You can see that there’s really nothing different here than anything else we’ve
featured in the book, except for the two very large bumpers designed to detect
most common objects that occupy a room. Each bumper has its own touch
sensor (Figure 25.2).
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Figure 25.1 The Stochastic Floor Sweeper

Figure 25.2 Top View of the Floor Sweeper (RCX Removed)

*IENEREREAVED
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The motors drive the wheels through a direct 1:5 (8:40) gearing (see
Figure 25.3).

Figure 25.3 Left Side View of the Floor Sweeper (Wheel Removed)

We made the wiper from three layers of different materials: LEGO plates (on
top), a thin sheet of foam rubber, and tissue paper. The foam rubber is attached to
the plates with a small piece of double-sided adhesive tape. The tissue paper, easily
replaceable, covers the foam rubber and then folds over the top of the plates to
be pinned between them and four 2 x 2 plates (see Figure 25.4).

Figure 25.4 The Wiper Component
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The wiper is jointed to the body of the robot in order to make sure the
entire surface is in contact with the floor (Figure 25.5).

Figure 25.5 Close-Up of the Floor Sweeper Bumpers and the Wiper

Programming the Sweeper

Our Floor Sweeper is stochastic, that is, it moves in a random pattern, so just pro-
gram your robot to go in whatever direction and turn at whatever angle you
want it to when it runs into an obstacle. For the sake of simplicity, let’s say your
robot will go straight until something happens, maneuvering to change direction
only when one of the bumpers is closed.

The length of the turns can be purely random, or they can be controlled by a
random factor combined with some form of “intelligence.” For example, when
the robot detects several hits in a short period, it is probably stuck in a blind alley.
A wider turn can help it find a clear path.

Improvements on the Floor Sweeper

This robot is so limited in intelligence that almost any change can improve it!
Start with the bumpers. They could probably use some adjustments to better
detect the kind of furniture that occupies your own room. A very nice improve-
ment is the adoption of one (or better yet, two) rotation sensor(s) to implement
indirect collision detection as described in Chapter 4.
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The rotation sensors open the way to dead reckoning and thus to position
control. This is a big improvement, but be aware that rough navigation won'’t help
you much, especially if it accumulates errors. Either your robot knows where it is
and where it goes with controllable precision, or you'd better stick with random
navigation, which, all things considered, isn’t such a bad option.

If your floor has obvious grooves or markings (like the grout lines between
floor tiles), you have the opportunity to utilize them as natural landmarks, using
the absolute positioning methods described in Chapter 13 for navigating a grid.
The best equipment to help the robot find its way on this grid are two light sen-
sors. Place them on the front of the robot, one centered and the other at the
extreme left (or right). This way your robot can follow a longitudinal line with its
side sensor, while the other helps detect perpendicular grooves. When a collision
occurs, it should turn 180 degrees and start following the next line or the other
side of the previous one, alternating the two rules.

This, of course, is easier said than done, but brings great satisfaction when it
actually works. If you succeed in reliable tile navigation, the next step is to imple-
ment a map (where each tile represents a unit) so that your robot can circumvent
obstacles and find the proper row of tiles again.

Building a Milk Guard

Milk has wonderful physical properties that are no less surprising than its nutri-
tional ones. Did you ever try to warm up a pan of milk on your stove? If you
stand there watching it, the temperature of the milk seems to rise incredibly
slowly, about one degree per hour (or at least it feels that way), then as soon as
you look away or get distracted by something, the milk instantly boils over and
makes a mess on your stove! Seriously, when heating fresh milk, it should never
be allowed to boil because this destroys many of its nutrients. The Milk Guard
robot that we’ll build in this chapter lets you quietly watch your favorite TV
show, or build your latest robotic creature without worry, sounding an alarm
when your milk reaches the desired temperature.

This robot is actually something more than a temperature sensor for milk,
since it features a self-protection mechanism which prevents possible damages. In
case you don’t hear the alarm or don’t get there in time to avoid the catastrophe,
when the programmed temperature is reached, the robot pulls the sensor out of
the milk and retreats a few inches, just in case!
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Making the Milk Guard

This is the only project in the book where we employ a temperature sensor. It’s
also the only part of this robot that’s not included in the MINDSTORMS kit.

Our Milk Guard is so simple, only a short description is necessary. Essentially,
it is this: a wheeled chassis carries the RCX and a vertical support that ends in a
lifting arm. At the end of the arm the temperature sensor hangs down, its metallic
cylinder touching the surface of the milk (Figure 25.6).

Figure 25.6 The Milk Guard

The chassis has no turning ability at all, as this robot doesn’t need it (Figure
25.7). The gear ratio is 1:9, obtained from two 1:3 stages. Together with the small
wheel diameter, this ratio makes the robot very slow. There’s no particular reason
for such a geared down configuration, except that the robot is not in a hurry, and
that there are all those nice gears in the MINDSTORMS box that would be a
pity to leave unused!

The second motor operates the lifting arm through a worm gear—24t
gearing and a pair of small pulleys. The upper 16t gear serves as a knob to manu-
ally lower the sensor into the milk when starting the operation (Figure 25.8).

There’s a touch sensor that detects the uppermost position of the arm, thus
allowing the robot to stop the lifting operation (Figure 25.9). Just activating the
motor for a fixed time period wouldn’t work, as the starting position of the arm
may change from time to time.
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Figure 25.7 Top View (RCX Removed)

Figure 25.8 Side View
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Figure 25.9 Detail of the Lifting Mechanism

Programming and Using the Milk Guard

When in action, the Milk Guard does nothing but wait for the temperature to
reach a programmed value. As soon as this happens, it starts a task that sounds a
short tone every second. Then it lifts its probe from the hot liquid and, when the
arm 1s fully vertical, moves away from the site of the impending boil-up. The
alarm stops only when the user stops the program.

The setup of the system is similarly simple. Be sure the metallic head of the
sensor 1s well cleaned, then turn the knob to lower it into the milk. Keep the
RCX switched off during this phase, so the motor offers less resistance (it’s in
float mode instead of braked).

\WARNING

Despite being one of the simplest robots in the book, the Milk Guard has
a long list of warnings:

m  Hot milk and stoves can cause burns. To avoid injury, children
should be supervised by adults when experimenting with this

robot.
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m Do not use this robot with a gas stove. The Milk Guard is
designed for electric stoves. Gas stoves generate a flow of hot
air that rises around the container, and this will damage (melt)
your LEGO parts.

m Do not put the robot, or any LEGO part, into a traditional oven
or microwave.

m  The LEGO temperature sensor ranges up to 70°C (158°F), enough
for the purpose of this robot. Do not expose the sensor to
higher temperatures.

m Do not submerge the sensor into the milk. It could get dam-
aged. Test the robot under safer conditions—for example, with a
programmed temperature just above the ambient temperature,
so you can simply warm the sensor with your hands and see
what happens.

m  Be sure that everything that comes in contact with the milk is
perfectly clean so as not to contaminate it.

Improvements on the Milk Guard

Our version of the Milk Guard has the target temperature coded into the pro-
gram. To make your own robot more versatile, you can add some input mecha-
nisms so the user can set the desired temperature without having to modify and
reload the program. A rotation sensor is perfect for this: make the RCX display
the current target value and increment/decrement it according to the movements
of the sensor. The touch sensor that controls the arm can also be used to confirm
the value and start the monitoring process.

Instead of the rotation, you can use a plain touch sensor with some simple
communication protocol of your choice—for example, a short touch to increase
temperature, a long touch to decrease it, and a double-click to confirm.

The physical structure of the robot may require some changes to make it fit
your own situation; typically its distance from the stove and the height of the
support might need some minor adjustments.

Building a Plant Sprinkler

You are about to leave for a long-awaited vacation, but are worried about the fate
of your endearing house plants: Will they survive your vacation if not watered?
Fear not. The robotic Plant Sprinkler is the answer to your problem.
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Making the Sprinkler

What’s interesting about this robot is that it introduces the idea of pumping fluids
with LEGO components. Is the pneumatic system suitable to be used with water
instead of air? Yes, it is, but we strongly discourage you from trying this technique
because it will spoil your precious pneumatic pumps and cylinders. They have not
been designed with water in mind, and the guys that experimented with water
then had to open the cylinders, clean their insides, and lubricate them again.

This stated, you need some other way to pump water indirectly. For our part,
we adopted a solution that aspires to Michael Brandl’s Adam der Girtner robot,
with minor modifications. There are other possible ways to do this, too, things
we’ll later explore in the Improvements on the Plant Sprinkler section.

Let’s use the following principle: If you create pressure in a sealed container
filled with water, and provide an outlet for the water to exit, it will flow out until
the inner pressure balances against the atmospheric pressure. To state it in simpler
terms, the incoming air pushes the water out.

As often happens, this is more complicated to describe than to see in action.
Figure 25.10 shows our Plant Sprinkler; note that the core component of our
system is a plastic bottle typically used for soft drinks or water.

Figure 25.10 The Plant Sprinkler

Any bottle or container will work, provided you can make an air-tight seal. Drill
two holes in the cap to insert two LEGO tubes, the shortest being the air inlet and
the longest the water outlet. The water pipe must reach the bottom of the bottle.
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In our case, the pipes fit the holes well, friction keeping them airtight. We
didn’t need any additional sealant (Figure 25.11), but you can use silicone to seal
possible slits if you suspect air is escaping.

Figure 25.11 Detail of the Modified Cap

We used a double-acting compressor, but any one will work (Figure 25.12).
Efficiency is not a concern in this project.

Our robot features the Scout programmable unit, but nothing prevents you
from substituting it with the RCX.

Programming and Using the Sprinkler

All that this robot requires to work is that you switch on the compressor when
you want to pump water. You can program your RCX to work as a timer that
starts sprinkling at a given hour.

Because plants should not be watered during the hottest hours of the day
(when the sun is high in the sky), the light sensor can be used to trigger sprin-
kling when light dips below a certain level. You can even combine time and light
to make your system more reliable.
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Figure 25.12 The Double-Acting Compressor

To decide how long your compressor must stay switched on, measure the

average quantity of water expelled in a given period. Be aware that the water will
drip for a while after you’ve stopped the compressor, at least until the pressure
inside the bottle equals the pressure outside it.

Improvements on the Plant Sprinkler

This robot needs many improvements to really be usable. The first and most
serious of its limitations is the power supply. If you leave your RCX turned on, it
will drain its batteries flat in a few hours. The RCX included in the first version
of MINDSTORMS included a socket for external adapters (a very nice feature
that has unfortunately been removed from more recent versions). If you own the
first version, just find a proper adapter and the problem is solved. If, on the other
hand, your RCX is a later design, a possible workaround can be found in the
sidebar, “Supplying Your RCX with an External Power Source.”

The second problem that affects our robot comes from the limited reserve of
water. You can apply the principle we used to a larger container, but when the
volume of air inside it becomes big, the compressor will take a long time to reach
the pressure required to pump the water out. In this case, you better adopt a dif-
terent solution—for example, gravity.
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Bricks & Chips...

Supplying Your RCX with an External Power Source

Supplying a later RCX version with an external source is actually possible,
but we discourage you from attempting it unless you have a good deal
of electrical experience. Wrong voltages or polarities may permanently
damage your RCX.

1. Make two fake batteries using two small wood cylinders of
appropriate length and diameter (other insulating materials
will do the trick as well).

2. Mount a small screw on one end of each cylinder, and attach
a wire to it either soldering or tightening it between the
head of the screw and the wood.

3. Open your RCX, and leaving the six batteries inside, identify
with a tester the contacts where the first and last batteries
supply a full nine volts (Figure 25.13). Replace those batteries
with your fake ones and remove all the others as well.

Figure 25.13 Opening Your RCX

positive (+)
contact

negative (-)
contact

4. Route the wires outside the RCX—there’s a notch in the body
that seems designed for this purpose—and close the cover.

Continued

WwWw.syngress.com



Constructing Useful Stuff « Chapter 25 507

5. Connect the wires, respecting polarity, to a 9V DC, 1.5A regu-
lated adapter.

6. Supply power to the RCX and turn it on to check if it works.
7. Reload the firmware.

To use gravity you don’t even need the compressor: Simply put your water
tank high enough so the water flows naturally down the pipes. A pneumatic valve
switch can work as a tap, so all you need is to drive it with a motor as described
in Chapter 10. Connect the central hole of the valve to the hose coming from
the water tank, one of the side holes to the sprinkler, and the other side hole to a
short closed piece of pipe (Figure 25.14).

Figure 25.14 The Water Tap

-.,‘_‘
water tank
"'--.._“-I
sprinkier

The pressure depends on the difference between the height of the tank and
the sprinkler, each meter producing theoretically one tenth of an atmosphere,
which is strongly reduced by the friction of the fluid in the pipes.

WARNING

Do not connect your valve system to the tap or connect it in any way to
the water network of your house. The pressure would be too high. If for
any reason a pipe junction breaks, you'd come back from your vacation

to find your house converted into an aquarium.
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There’s one last indirect pumping technique we would like to show. If you
press a wheel down on a soft rubber pipe until you close it, then move the wheel
forward along the pipe, any fluid inside will be pushed forward, too.You apply
this principle every day when you squeeze toothpaste out of a tube, and it’s also
used in medical procedures for regulating bloodflow. Figure 25.15 shows a pos-
sible setup that requires a larger diameter and much softer pipes than those sup-
plied with LEGO pneumatics. The pipe remains fixed in place, while the wheels
roll over it. Make your actual version more solid than this prototype, whose raison
d’etre 1s to explain the principle.

Figure 25.15 A Possible Setup for an Indirect Pumping Technique

The obvious solution when faced with watering more than a one plant is to
make a network of pipes that reaches every pot. A less practical but more impres-
sive way would be to use a mobile robot. It could travel along a black line that
borders all the pots, reading special marks that tell it where to stop and activate
sprinkling. Or it could run on train tracks, again reading stops from some
external reference.

Designing Other Useful Robots

If you still haven’t found what you consider a “useful” robot, the following tips
might provide you with the proper inspiration.

m  Alarm clock The RCX, as is, can be used as alarm clock in many dif-

terent configurations.

m  Baby entertainer This is something to hang over your baby’s cradle,
like a mobile to which you could attach some puppets or your child’s
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favorite toys. The RCX can slowly turn the mobile, while at the same
time playing a suitable melody. Lots of warnings apply here: Make sure
everything is solid so there’s no risk of it falling into the cradle; use long
wires to keep the RCX (the heaviest part) far from the cradle; keep
everything out of the reach of the baby; small LEGO parts represent a
choking hazard; always use batteries instead of power supplies.

m  Pet feeder If your favorite pet is fed with some kind of dry food, you
could devise an automatic feeder that supplies its bowl at predefined
times. Please don’t rely on this system for the survival of your pet during
vacations!

®  Dog trainer Most dogs love to return a ball. You can make a robot that
throws the ball anytime your dog drops it in a specific receiver. Be pre-
pared to clean your LEGO parts of a certain amount of drool.

Summary

Despite their limitations, which actually make them rather charming, the robots
of this chapter demonstrate that your MINDSTORMS kit can be turned into
many “useful” devices. Making robots interface with the real world involves many
difficult tasks, which can lead to either funky but not-so-effective machines, or to
very practical but uninteresting projects. But, hey, did you really buy a $200 kit to
build a kitchen alarm clock?

The projects we devised for this chapter, the Floor Sweeper, Milk Guard, and
the Plant Sprinkler, do provide a starting point for talking about some offbeat
capabilities, like pumping water. In fact, the Plant Sprinkler shows an unusual
application of the LEGO pneumatic system. Since the LEGO pumps and cylin-
ders are not suitable for direct use with water, we went around the problem, and
used an approach whereby the power of compressed air pushes the water.

The Floor Sweeper explores more problems involved in exploring a room and
navigating the obstacles therein. This robot is conceptually very similar to the dif-
terential drive described in Chapter 14, and faces the same difficulties—however,
this time we looked into using tiled floors, the ideal situation to experiment with
the absolute positioning methods illustrated in Chapter 13.The grooves between
the tiles turn your floor into a grid your robot can navigate using light sensors.

Before someone at home gets too enthusiastic about the stochastic Floor
Sweeper, please tell him/her the truth about the time it takes to clean even a
small room, and how many batteries a week are consumed in the process!
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Introduction

This chapter opens the third section of the book, where we explore the world of
MINDSTORMS robotics contests and challenges. The three chapters that make
up this section are mainly based on our direct experience, accumulated while
attending competitions organized by the Italian LEGO Users Group (ItLUG). We
won’t be discussing the specific details of the contests we participated in, instead
we’ll be providing you with a good starting point for more general considerations.

The first section of this chapter is about robotic contests in general. We will
explain what robotics contests are all about, from the definition of the rules up to
the course of competition. For those of you interested in participating in LEGO
robotics contests, we’ll give you some hints about how to find a LEGO Users
Group not far from where you live.

In the later sections of the chapter, we will introduce contests related to pure
speed, as well as those demanding great amounts of mechanical and programming
acumen. There are many different kinds of contests and challenges. Because of
this, we grouped them into three categories: contests based on speed, contests
based on strength, and contests based on ability. These categories are not absolute,
because most of the competitions require a mix of these capabilities. For
example, a line following contest is mainly about speed, but each robot is also
required to run without departing too much from the line. Nevertheless, we tried
to sort a few typical contests into the categories previously mentioned because in
our opinion this helps in focusing on their key points.

Hosting and Participating in Contests

A contest offers many opportunities to learn new concepts and build some expe-
rience. We can identify at least four main phases of participating in a contest, each
one requiring extensive usage of your know-how while contributing to your
knowledge base. They are:

1. Defining the rules Participating in this phase depends on whether you
are the one who organizes the contest, or part of a group that does.
Unless you're deciding on your own, this will prove a very creative
moment, where the group develops a list of rules, adjusting them until it
teels they are meaningful and consistent. A set of rules always has a spe-
cific purpose (whether declared or not), which has been chosen to test
the ability of the competitors on a specific field. The “legislator” should
take care to close any possible loopholes that might allow a contestant to
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escape the main difficulties of the contest, which requires that he/she
imagine all the possible approaches to the problem.

2. Studying the rules and deciding on a strategy From this moment
on, you are in the competitive arena, and must find a strategy to beat
your competitors. Don’t limit your choices to what the organizing com-
mittee expects you to do. In our experience, most contests have been
won by people who found a very original way to interpret the rules
without violating them.

3. Building the robot This phase will very likely present some surprises
to you. Implementing your desired strategy, you’ll discover new con-
straints and opportunities you hadn’t thought of while imagining your
robot. As for programming, we strongly suggest you stay with simple but
solid strategies. Only when you'’re sure the basic behaviors work as
expected, should you add in the more sophisticated components, making
sure not to introduce bugs in the previous code.You can’t imagine how
many matches you can win by simply not getting too fancy!

4. Attending the contest This is the most exciting moment—on the
field, testing your ability against your competitors’! It’s also the moment
to learn: study the other robots and their strategies; observe the course of
the matches. Don’t be frightened to ask for explanations and details,
most of the builders are usually more than happy to describe their crea-
tures. All that you learn will be useful for other contests, whether run on
the same set of rules or not. One last suggestion: never throw in the
towel before the end, anything can happen during the event. The
strongest competitors aren’t always crowned winners.

We imagine some of you are thinking right now: okay, very interesting, but
where do I find a contest that isn’t light years from home? Remember, the
Robotics Invention System is a tremendous success. With a bit of luck you may
find an already organized LEGO Users Group in your area. Many exist in the
U.S., Canada and Europe, covering most regions and major metropolitan areas.

Use the Internet to search for other MINDSTORMS fans. The best resource
is the LEGO Users Group Network (LUGNET), which lists dozens of local
groups. Many of them also have their own Web site, which shouldn’t be difticult
to find using any search engine. Once you’ve found a group, or some individual
users, there’s no certainty that anyone’s going to leap up and organize a robotics
contest from time to time. But you, yes you, can be the one to get the ball rolling

(or robots rather).
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Last but not least, try to attend some remote challenges, contests that don’t
require your presence in person. Usually all you send are some pictures of your
robot, a copy of the software, and a short description of how it works. In code-
only contests, this concept 1s pushed to the extreme limit: the organizing com-
mittee distributes the plan of a standard robot, and all the competitors send their
own code via e-mail. The design of the robot is usually simple and doesn’t
require any special or rare parts, so that a large number of competitors can repli-
cate the robot at home to debug and test the code.

LUGNET is the best place to find information about contests of all sorts, as
most local groups advertise the contests they organize there. Usually they refer
you to a Web site where you can find all the details about the time, place, and
rules of the contest. Some user groups require a small admission fee for each
robot, which funds the prize for the winner. Events are characterized by a very
friendly atmosphere, and you’ll be welcomed even if you just go to watch.

Optimizing Speed

The first challenge we’ll describe here concerns pure speed. Don’t make the mis-
take of thinking speed is purely trivial and poses few challenges in terms of
robotics. We’ve been proven wrong on this score ourselves. Even a straight-out
speed race promises surprises.

Drag Racing

A starting line, a finish line, the fastest robot to cover the distance wins. Described
in these terms, the race sounds a bore. But stay tuned, and take a closer look at
the implications of this definition.

The speed of a vehicle is affected by a number of factors: motor power, gear
ratio, mass, friction. Using electric motors, the maximum power you can apply to
your racecar depends on the kind and number of motors, and the current you
supply them. There’s only one kind of motor in MINDSTORMS, which forces
upon us a simple rule: use as many motors as allowed.

As for their supply of energy, the rules should outline some restriction, like
the adoption of the same kind of batteries for all the competitors (e.g., standard
commercial alkaline batteries). Should this not be carefully stated, someone could
take advantage of a custom battery setup—which is exactly what happened
during our dragster race!
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A Very Special Battery Combination

Marco Berti won the first ItLUG robotic competition using eight NiMH
batteries fitted inside the RCX. He needed eight because NiMH cells are
rated 1.2V instead of 1.5V like the standard AA batteries. With eight
cells he got 9.6V, a voltage just a bit higher than those supplied by fresh
alkaline batteries, but tolerated by the RCX and the motors. What's
unusual about rechargeable NiMH batteries is that they supply more cur-
rent than alkaline ones. Electric power is proportional to voltage multi-
plied by current, so he definitely got more push for his motors. To fit
eight cells in six slots, he used four standard AA size, and two 2/3 of AA
combined with two 1/3 of AA. Those smaller batteries supply the same
voltage and current as their bigger brothers, only for a shorter time.

Be very cautious in experimenting with custom battery setups: volt-
ages higher than what the RCX is rated for can permanently damage
your unit.

As for the gear ratio and mass, which have a strong influence on the accelera-
tion rate of your vehicle, here is a short list of tips:

m  The shorter the gear, the shorter the time it takes to reach the maximum
speed. The problem is that a short gear also has low top speed.You have
to balance the two effects, and the optimal choice depends also on the
length of the race: favor acceleration on short tracks, and maximum top
speed on longer ones.

®m  Build your robot in a way that allows easy replacement of the gears, so
you can experiment with different ratios in a time-efticient manner.

m  Keep the gearing pared down to the essentials—remember that each
stage adds some friction. There’s no need for a differential gear, since the
dragster travels on a straight run.

®m  The diameter of the wheels has its role in the conversion of power to
speed. If you substitute the wheels of your car with ones half the diam-
eter in size, you get the same effect as if you had reduced the gear ratio
by a factor of two.
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m  Acceleration is also influenced negatively by the mass you have to move:
under the same power, the higher the mass, the lower the acceleration.
This is due to inertia (see Chapter 5), which explains why it’s harder to
get a car rolling than it is to push a child in a stroller. So a very impor-
tant thing to do is to keep the mass at a minimum. Build a lightweight
structure.

Up to this point, the challenge is essentially electro-mechanical. No need for
an RCX, a vehicle supplied by a battery box would perform the same, or even
better (recall that the RCX has an inner current-limiting device, the battery box
doesn’t). To create the necessity of at least a few lines of code, in our dragster race
we introduced the rule that the dragsters had to stop a very short distance after
the finish line. As a result, we had three lines: start, finish, and braking limit. In
our particular case, the run was 5m (about 5.5 yards) with a braking distance of
20cm (less than 8 inches).

The robots had been equipped with a face-down light sensor to detect the
finish line, and a portion of code, the same for all the robots, to time the run and
register it in the datalog.

Every competitor quickly discovered that braking inside the limit was not so
easy. The fastest dragsters covered the distance in about 3 seconds, at a speed of 6
km/h (3.6 mph). We initially tried to switch the motor off at the finish line, but
this wasn’t enough. Then we reversed the motor to increase the braking effect,
but it still wasn’t enough braking power. Nobody wanted to reduce the speed of
their dragster just to keep up with the braking limit. Surprisingly, most competi-
tors developed the same solution: start braking before the finish line. Timing the
performance of our dragsters without any braking, we registered the time they
needed to cover the distance. Then we wrote some code to reverse the motors a
few moments before reaching the finish line, trimming this advance until the
robot stopped exactly at the extreme limit.

Combining Speed with Precision

When you move from races based on pure speed to those that require additional
skills, your projects become more complex. All the considerations listed in the pre-
vious section still apply—batteries, motors, gear ratio, mass—but you must also take
new variables into account. Speed will actually become what makes your task more
difficult: when you design a robot for yourself, you usually feel satistied when it
works; but when you have to build and program it to be as fast as possible, some
techniques that worked at a slower pace prove unsuccessful at higher speeds.
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Sometimes you reach a point where you cannot increase speed without com-
promising the reliability of your robot. This is the time when a further improve-
ment can come only from a paradigm shift, a change from one way of thinking to
another. A good example of this was described in Chapter 14.You probably
remember we initially approached line following using the same differential drive
platform we used to navigate a room. It worked, but when we tried to achieve
better performance, we had to move to a difterent architecture: a steering drive.

This principle can be summarized in a few words: don’t set your heart on a
particular solution, try to look at the problem from different angles and keep
your mind open to any idea—even those which initially seem strange or unprac-
tical may lead to a winning configuration.

Line Following

Don’t worry, we won'’t start discussing line following again! Jump back to
Chapter 14 if you feel compelled to revise some of those concepts. We just
couldn’t ignore line following in a chapter that talks about races against time,
since it presents many interesting discussion points.

If you are the one who decides the rules, don’t underestimate the importance
of the details. State the number and kind of the allowed parts, motors, and sensors
in particular. More importantly, be very precise regarding the nature of the path,
informing competitors about the width of the line and the minimum radius of
the turns—the latter having a strong influence on the structure of the robots.
Very tight curves will favor differential drives, while a less winding run is surely
the ideal terrain for steering drives.

Line following contests are usually judged only by speed. Evaluating accuracy;,
though theoretically possible, is not a very practical option. However, if you want
to try this option, you can use a paper pad and attach a pen to each robot so they
draw a line as they move. At the end of each run, you measure the maximum dis-
tance between the course of the robot and the main line, and apply greater
penalties to greater distances.

Line following allows for many interesting variations, including:

®  Round trip When the line ends, the robots must return to the starting
point.

®m  Short interruptions in the line, specified by number and length
For the robots, it’s like hanging in mid-air for a while!
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®m  Small obstacles to overcome The robots should detect these with
bumpers, suspend line following, pass the obstacle, and resume line fol-
lowing again.

m  Obstacle removal Similar to the previous variation except that objects
of a specific size and shape must be removed instead of climbed over.

m  Specific robotic architecture Specifying that a particular type of
architecture be incorporated into the robot design. For example, all the
robots must use legs instead of wheels.

Wall Following

Conceptually similar to line following, in this challenge, the competing robots
must follow a wall instead of a line. The software is actually very similar to what
works for line following, with only a few adjustments to reflect the difference in
Sensors.

If you decide to organize a wall following competition, remember that the
walls used need not be real walls. You can create temporary walls with wood,
cardboard, or any other material of your choice. Wall following can be as simple
to set up as having the robot find its way around the perimeter of a large card-
board box. For example, you can state in your rules that the robots must run
around the MINDSTORMS kit box; the fastest robot being the winner. Most of
the participants will likely own the box, which will help them in setting up and
testing their robots. As we’ve said before about line following, it’s important you
put a lot of care in specifying the details, including:

®m  The height of the walls, their color, and the material they are made of.

m  Whether the robots are required to remain in constant contact with the
wall, or if they can move apart from it for a while.

m  The shape of the course, or at least what kind of angles the robots
should expect.

m  Whether or not the robots are allowed to “hook” the upper edge of
the walls.

Moving to the point of view of the participant, the hardware configuration
required to follow walls can be very similar to that shown in Chapter 19 with
regard to maze solving (maze solving actually being a sophisticated variant of wall
following). However, this is one of those cases where an increase in speed brings
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new difticulties. Similar to what happens in high-speed line following, the critical
factor here is the reaction time of the robot. In fact, any time it loses contact with
the wall and needs to undertake a corrective action, that longer reaction time
entails a stronger correction.

As we mentioned in Chapter 14 when discussing how to optimize line fol-
lowing, this is easier said than done. To recapitulate, the elements you have to
consider include:

®  The mechanical configuration of your robot Type of drive,
number of motors, position of the sensors, gear ratio, and backlash
within gears.

m  The firmware you installed on your RCX We explained that some
alternative firmware offers faster code execution.

m  The algorithms used in the software Strategies adopted to keep the
robot on course as much as possible.

The mechanical configuration of your robot is something you have to exper-
iment with.You can use the Maze Runner of Chapter 19 as a starting point, but
the optimal solution also depends on the set of rules you’ll use to race with. As
for the firmware options, this is an opportunity to study a new language and
install a new system, though not everyone will want to do that just to attend a
contest.

As for the strategies, some of you may recall that in Chapter 12 we intro-
duced hysteresis as a technique aimed at improving the efficiency of a system,
because it reduces the number of corrections it has to make. It was definitely an
interesting option for line following, but is it applicable to wall following, too?
The answer depends on the configuration of your robot. If it relies on a touch
sensor to “feel” the wall—like the Maze Runner of Chapter 19—hysteresis will
be of no help, because all you can determine from the robot is whether it’s
touching the wall or not. To take advantage of hysteresis, you need finer informa-
tion—you need to know the distance from the wall, so you can make your robot
decide when and how much to correct the route. This implies that you have to
replace the touch sensor with some more sophisticated device. For example, you
could arrange a bumper, or antenna, connected to a rotation sensor in such a way
that the count of the sensor is proportional to the distance. Or, if the rules allow
for custom sensors, you could successfully use one of the distance sensors
described in Chapter 9.
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Other Races

There are many other type of contests that require your robot to perform some
action as quickly as possible. As we explained in the introduction, most of them

require some additional ability rather then just speed. In Chapter 28, we will

describe contests where speed is important, but this is usually in the background

when compared to other factors, like the efficiency in finding and gathering

objects. In the following list, we suggest a few ideas for competitions in which

speed is the most important component:

Car racing Car racing is similar to drag racing, but the robotic cars run
on a circuit that is more complex than just a straight track. The circuit
may be delimited with colored tape on the floor, or with side walls.
Avoid reducing the contest to line or wall following; instead, design the
circuit so that a robot that follows one of the sides takes a longer route
than those that run inside the track. If the circuit is delimited with real
walls, encourage the competitors to use sophisticated detection tech-
niques, like proximity sensing, by applying a penalty for every collision
with a wall.

Fast painting Each robot is equipped with a felt-tip pen and is asked
to paint a given area on a sheet of paper. The robot that covers the sur-
face fastest wins. Consider basing the results of each competitor on a
combination of the elapsed time with the comprehensiveness of the cov-
erage. The panel could be provided with a robot designed to scan the
sheet and evaluate the result!

Wall climbing Prepare a climbing wall equipped with special holds
that a robot can seize (this could be as simple as a grid of horizontal
bars); the fastest robot to reach the top wins.You can keep the competi-
tion open to ideas, allowing any kind of technique to reach the top,
including lifting mechanisms and the launching of ropes.

Monkey bars The Toronto Users Group (rtlToronto) is very active in
organizing robotic contests. Their recent proposals include a monkey bar
race. The competing robots are required to traverse a horizontal ladder,
racing against another robot. The first one to reach the end, or the one
who goes the furthest, wins (see Appendix A for a link to the rtlToronto
Web site).
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Summary

This chapter introduced you to the world of contests that represent a great
opportunity to expand your knowledge, stimulate your creativity, and compare
your ideas with others’.

Even races that seem the least “robotic” of all the possible types of competi-
tions can spur you to find new solutions or improve old ones. During contests,
the details are very important. Your robot should not only work, but work better
than its competitors. For this reason, an apparently simple task like going straight
and fast requires thoughtful planning of your project: batteries, motors, gear
trains, wheels, weight of the vehicle... these elements are all crucial to success.

The simple addition of a limited braking space can make drag racing much
more interesting, forcing the competitors to devise efficient braking solutions.
Similarly, when you move to contests that involve highly specialized abilities, like
navigation, the problems become much more complex. Tasks as simple as line fol-
lowing and wall following require a tremendous effort when your purpose is to
design, build, and program a robot tuned for optimal performance. This is a pro-
cess which proceeds by trial and error, and which will test your skills, your expe-
rience, your creativity and, most of all, your patience!

We encourage you to participate in contests. They can really be a great expe-
rience. Be humble enough to learn from your mistakes, or from more eftective
techniques rather than completely different approaches adopted by other robots.
Take everything very seriously during preparation: Try different solutions, perfect
the details, test your program thoroughly until you feel satistied. But don’t take
the final rankings too seriously—remember, it’s all in fun!
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Introduction

The contests described in Chapter 26 are the kind where each competitor has its
turn, and the results compare the individual performances. In this chapter, we’ll
talk about competitions where the rival robots fight face to face in a more spec-
tacular way.

In our experience, Sumo is one of the most suitable kinds of competition for
small robots, offering the opportunity to test an incredible range of techniques
that may prove useful in all your projects, not just during contests. We will take a
look at variations on some familiar solutions—like bumpers and proximity detec-
tion—and will introduce some new ones. For example, we will explain how to
alternate the use of a single light sensor to look down to detect the edge of the
playing field and to look ahead to search for the opponent, and we will illustrate
a transmission which behaves like a sort of automatic gear switch.

Although the technical aspects of building a successful Sumo robot are
important, the design requires much more than simply putting together a few
mechanical solutions: it requires a strategy. Will your robot be very aggressive, or
do you prefer a defensive approach? It could be robust and slow, or lightweight
and fast. It could be designed to actively search out its opponent, or to react
when it’s under attack.You cannot work at the mechanical configuration and
decide how the robot should behave after it’s finished. On the contrary, you have
to pick up a strategy and design both the mechanics and the program according
to it. This principle applies to any robot, but it is particularly important for Sumo
robots, and it is the key to understanding this chapter: We want you to devote the
proper attention to the connections between the planned behavior of your robot
and the solutions you can adopt to effectively implement it.

Building a Robotic Sumo

We explained in the Introduction that when you start building a robot for a
Sumo contest, you must have a strategy in mind. The process starts before
building your robot. It begins by examining the rules carefully, understanding
what you can and cannot do, and deciding your line of action.You must try to
imagine what the opponents’ strategy can be, and plan your robot to be able to
resist their attacks and take advantage of their weak points. Obviously you cannot
really know how the other competitors will strategize and behave, but this exer-
cise helps you to focus on a well-defined strategy. Remember that any strategy is
better than no strategy at all!
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This section starts by describing a typical set of rules, which will help you in
framing what a Sumo contest is, and provide a starting point in case you want to
organize your own. Then we’ll describe how you can tune your robot to produce
maximum force, which is undoubtedly a very important component in a Sumo
competition. We will also explain how to configure your robot to take advantage
of some important oftensive and defensive behavioral strategies.

Setting the Rules

During our Italian LEGO Users Group (ItLUG) meetings we organized robotic
Sumo tournaments based on two separate sets of rules. The first set of rules states
that the robots can be made out of any original LEGO piece, in any desired
quantity, but that they must be within a maximum size of 32 x 32 studs and a
maximum weight of 1.5kg (3lbs). In the alternative set of rules, which we called
Mini Sumo, each robot may be built using only parts from a single MIND-
STORMS set; there is therefore no need for size and weight constraints.

For most other aspects the two sets of rules are almost the same:

m  The field is a circular or square pad with a contrasting external strip of
20cm (8 inches). Usually the pad is white and the strip black, or vice

versa.

®  Only two robots can fight on the field at a time. Should one robot for
any reason find itself outside the field boundaries, that is, any portion of
it touches a point beyond the external strip, the robot loses the round. If
neither robot is eliminated within a chosen time limit (e.g., 3 minutes),
the match ends in a draw.

®m A robot may also be eliminated if it is overturned by its opponent or it
finds itself in a situation where it can no longer maneuver.

m  No “violent” behaviors are allowed. A robot can only push or lift its
opponent. It is in no way allowed to damage its opponent’s structure or
parts.

®m A robot cannot drop any part or subsystem in the field either deliber-
ately or involuntarily. Any part found loose on the field will be removed
by a member of the panel.

®  The robots must be fully autonomous; any kind of remote control is

forbidden.
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m  Every robot must comply with the limits in size and weight at the
beginning of a match, but once the match starts, it can modify its own
structure, perhaps extending parts so itself so its dimensions become
larger than the initial specified size limits.

There are many other less important rules covering items like batteries, com-
position of the panel, pre-match test time, and more. Some Sumo competitions
require that your robot pass an admission test: It should be able to push a block
of wood out of the fighting ring. If it can’t beat a block of wood, it has little
chance against another robot, and this rule is meant to screen out robots too
weak to enter the contest. We never enforced this rule during our Italian Sumo
contests, and have to admit that it’s quite possible a block of wood might have
been able to win a few matches!

Maximizing Strength and Traction

The making of a strong Sumo robot requires much more than just brute force,
but we cannot deny that maximizing the generated push will increase your
chance of winning some matches and maybe the tournament.

When optimizing the pushing power of your robot, the first thing you need
1s an objective way to measure it. Without measuring the force, the improvements
you make are subjective and as a result are very inaccurate. During the prepara-
tion for the first tLUG robotic Sumo contest, our friend and robot builder
Sergio Lorenzetti suggested a simple trick based on a very common object: scales,
like those used in many kitchens to weigh flour, sugar, or other ingredients.

You have to place the scale on its side on the table or the floor, possibly
removing the upper tray, and hold it firmly while your robot pushes against it.
You're not interested in the absolute value that the scales indicate, but rather in
comparing the push produced by different setups.

There are many factors that affect this force; you can imagine a sort of path
of power that goes from the batteries to the wheels, passing through the motors
and the gearing, decreasing in accordance with the variables that affect each part
along the path (see Figure 27.1).

We already talked about batteries in Chapter 26; the rules will hopefully
specify that all competitors use the same kind of commercial batteries. Between
the batteries and the motors, there’s the RCX. It’s worth reminding you once
again, that the RCX incorporates a current-limiting device to protect the motors
connected to its output ports. If the rules allow the use of extra parts and you
have them, you can consider the option to connect the main motors to a battery
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box and a polarity switch, thus implementing the indirect control described in
Chapter 3.

Figure 27.1 Limitations on Force

Batteries RCX

Numb ] — : > i
Motor(s) Ofl:IIlT:)T::S Geurlng Friction Wheels anl (oG ReFS:rIang

The number of motors influences the generated power. Simply use the max-
imum allowed by the rules and by your own inventory. As for the mobility con-
figuration, the differential drive allows for the highest combination of
maneuverability and simplicity. The fact that it doesn’t go perfectly straight is not
relevant to Sumo fighting, and the dual differential drive has no advantages in this
case. On the contrary, the ability to use one motor to turn and the other to move
reduces the maximum generated force.

The optimal gearing is, as always, easier to determine by experiments than by
calculations. Generally speaking, the higher the reduction ratio, the higher the
push, but this doesn’t mean you should gear down too much. Speed has its
importance (we’ll explain why later in the chapter), and very high reduction
ratios introduce too much friction, which uses up precious power.

Now we come to the part where you have to convert the produced torque
into actual push. The wheels are a critical component: if they don’t grip the pad
well, the rest of your efforts will prove fruitless. This is when the scales we men-
tioned earlier prove an enormous benefit. By testing difterent kinds of LEGO
wheels, you’ll discover that there are significant variations in grip. The ones from
the 8462 Tow Truck work particularly well, as well as the large spoke wheels con-
tained in the MINDSTORMS kit. On no account should you use tracks. They
offer extremely low grip, and almost no grip at all in the direction perpendicular
to its motion. You'd have little hope at all if your opponent broadsided you—an
eventuality more probable than a head-on collision.

If possible, try to test your robot on a surface similar to the contest’s official
pad. Difterent materials require different wheels. For example, the wheel having
the best grip on a smooth tabletop is not necessarily the one with the best grip
on a rough plywood surface.
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The position of the center of gravity is also very important when it comes
to friction and your wheels. Keep the COG as close as possible to the main
drive axles.

Designing & Planning...

When Air Is Power

Our first robotic Sumo tournament confirmed the success of the brute
force approach. Antonio laniero and Mario spent the night before the
contest building Eolo, a monster based on the pneumatic engine of
Chapter 10, supplied by the compressed air of seven air tanks manually
loaded before the match. Barely a robot, Eolo was not able to turn, nor
stop before the end of the pad should it miss its opponent on the first
try. To reduce the possibilities of such a disaster, Eolo featured an extra
large front shovel that stayed vertical until the beginning of the match
(to comply with the 32 x 32 studs size limit). Thus all the RCX had to do
was lower the shovel and open the valve switch. Easily the shortest pro-
gram ever written for a contest!

Built mainly as a joke, Eolo won the tournament. At that time our
rules stated that the robots had to start facing each other, and this is
what made such a stupid machine able to overcome most of its oppo-
nents. From then on, our rules introduced a side-by-side start, with
random orientation drawn by the panel.

Attack Strategies

We anticipated that force wouldn’t always make the difference in a robotic Sumo
contest. There are many different strategies that can aftect the result and cause a
robot to win out against a more powerful competitor. These include finding the
enemy first, using speed as a force, using a gear switch for maximum speed and
push, and other offensive tricks.

Finding the Enemy

A very important rule is: find your enemy before he finds you. This basic military
principle applies to Sumo robots as well, for the simple fact that the first one to
engage the other has a good chance of attacking it on a weak side. Sumo robots are
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generally designed to push forward, and ofter much less resistance when attacked
from the side or rear. In fact, they often don’t even realize they’re under attack,
because oftentimes they’re not designed to detect the enemy from behind or from
the side. In such cases, you can say that three sides out of four are generally weak.
The problem is that finding the opponent is more easily said than done.
Unless your rules allow custom sensors, what you have in your toolbox isn’t
much. Proximity detection is a good option (see Chapter 4), but remember that
you also need the light sensor to detect the outer strip so as not to commit “sui-
cide” by going outside the circle. When a single light sensor 1s allowed, you
should alternate it face down and face front, depending on the situation. Guido
Truffelli successfully implemented this trick in his robot in order to win our first
Mini Sumo tournament, using only two motors as required by the rules. Figures
27.2 and 27.3 show a small assembly that explains how this works: one of the
motors of the differential drive is connected to a differential gear instead of
directly to the wheel. When the robot goes forward, the differential gear rotates
the light sensor downward until it gets stopped. From that moment on, the sensor
cannot rotate anymore, and all the power goes to the wheel. Reversing the direc-
tion of the motor—for example, to turn in place—the sensor ofters less resistance
than the wheel and comes up until blocked again. Guido’s robot thus had two
chief states: a search phase, when it turned in place with proximity detection
active, and a motion phase, when it advanced with the sensor facing down.

Figure 27.2 Flipping Light Sensor Assembly (Top View)
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F
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Figure 27.3 Flipping Light Sensor Assembly (Side View, Left Wheel Removed)

A simpler, but just as eftective technique employs contact sensors, either in
the form of bumpers or antennas. Bumpers don’t require any particular trick. You
simply program your robot to turn toward the obstacle instead of avoiding it.
Design compact and smooth bumpers devoid of any unnecessary protrusion, to
reduce the chances of getting caught on an enemy robot and dragged oft the
playing surface. With antennas you can use either touch or rotation sensors, the
latter being able to tell you more about the direction of the opponent.

Using Speed

Speed is an extremely important factor in the search for the enemy. Imagine two
robots running freely on the Sumo field, simply going straight until they find the
border and change direction randomly. Supposing that they have different speeds,
the faster of the two has a much greater chance of intercepting the other. For this
reason, it’s important not to have too a slow robot. Find a compromise between
pushing ability and speed.

Carrying this to the extreme, Roberto Francia made speed the main weapon
of his robot Lancillotto (Lancelot). Crashing into the opponent at high speed, the
robot used its momentum instead of its strength. The energy released in the
impact made the opposing robot lose contact with the ground, pushing it back a
short distance. One assault after the other, Lancillotto charged repeatedly, like a
ram, until its poor victim was pushed oft the field. (Incidentally, Roberto’s robot
was fast, but not so fast as to be considered illegal in terms of the rule against
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destroying the opponent!) Ranking second at his first contest, Roberto’s robot
demonstrates that even beginners may teach the “experts” something.

-

NotEe

Momentum is a physical quantity defined as the product of mass times
velocity. You can understand what it means through an example: You

- face a person of your same weight and build that's trying to knock you
down. If you're both stationary, you have a good chance to resist. If, on
the other hand, you are stationary and the other is running towards you,
you will very likely go down.

Using a Transmission

Other robots use a transmission to get the best of both worlds: fast speed during
the search phase, and maximum push after the engagement. Our robot Golia II
used a transmission very similar to that described in Chapter 14, based on the
special transmission ring. But Sergio Lorenzetti demonstrated during a contest
that it’s possible to make a sort of automatic gear shift even inside the strict rules
of Mini Sumo. Look at the assembly in Figure 27.4, it’s not very solid, but
explains the principle: The wheel on the right in the picture is geared with a
shorter ratio than the main one, and during normal motion it slips a bit because
the robot is moving faster than the speed of the idler wheel. When the robot
slows down for any reason, the faster wheel slips, and at that point, the slowest
one grips. Since it’s mounted on a short independent beam with a free end, part
of the torque pushes the wheel down and consequently lifts the robot.
Remember to add a part to stop that short beam when almost vertical. (We
didn’t include it in the picture because we wanted to keep it clearer.)

Other Sumo Tricks

There are many other tricks that prove useful during a Sumo contest. The ones
most often used are meant to lift the opponent, thus getting two positive eftects:
reducing or canceling the grip of its wheel and transferring part of its weight on
your robot. This class of method includes at least two large families, one based on
inclined planes and the other on counter-rotating wheels.
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Figure 27.4 An Automatic Gear Switch Assembly
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An inclined plane works like a wedge that slips under the enemy robot. It can
have the shape of some small slopes placed at the front side of the robot, or of a
large inclined surface that covers the whole robot. In this latter case, a LEGO
baseplate is the better choice: mount it studs-down and you’ll have a very smooth
top surface to wedge under your opponent.

Counter-rotating wheels are very effective, too, but require an additional
motor to operate them. Be sure they don’t touch the ground though, otherwise
they’ll counteract the forward motion of your own robot! The combined eftects
of the front wheels with the push of the robot may even overturn the opponent,
a spectacular but rare event.

Getting Defensive

So far we have discussed attack strategies, but protecting the weak sides of your
robots 1s important as well.

Every active defense system relies on the fact that you know what’s happening
around you, and require some sensor to detect a possible attack. Depending on the
rules of the tournament, you might find yourself dealing with a limited number of
input ports, requiring that you carefully plan out how to allocate them in regards
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to your navigation, attack, or defense subsystems. The simplest detecting system is a
sort of large bumper that covers a whole side of the robot. If you have enough
touch sensors, you can connect them in parallel so as to monitor three sides with a
single port. In this case, you’ll know you’re under attack but won’t be able to tell
what side it’s on.

When you detect you've been tackled, you have the option of either escaping
or facing your enemy. The first choice is best when fighting a slow, strong oppo-
nent, while the second works well when it’s your robot that has a strong push
(though it’s not always easy to turn in place when being pushed). Some rules
allow the competitors to use more than one program. Take advantage of this
opportunity by preparing difterent versions to implement different strategies, then
select the one most suitable when you know which robot you’ll be facing in a
given match.

Also consider passive defense systems, the kind that doesn’t require any sensor
or port. The more obvious defense mechanisms revolve about the shape and size
of the robot itself. A smaller robot offers less surface area to an opponent than a
larger one, and though a triangular shape is more difticult to build, it’s also more
difficult to catch. Make the perimeter somehow convex if you can, so as not to
offer any holds that will help your opponent. Clearance from the ground is
important for the same reason: it reduces your enemy’s chances of wedging itself
under your robot.

More sophisticated passive defenses include protruding beams or axles meant
to keep the enemy away from your robot’s vital organs, freewheeling vertical
wheels on the sides to neutralize lifting wheels, and free horizontal wheels to
allow your robot to slip away when engaged on one side.

Testing Your Sumo

This phase is crucial to a good result. Start testing your robot on a pad similar to
the tournament’s to make sure it doesn’t do stupid things in the most common
situations. It should detect the edge of the field when reaching it from any angle:
You can’t imagine how many robots won a match because their opponents killed
themselves!

When everything works well, you can start more advanced testing. You really
need a sparring partner, but it need not be a second robot. Many reasons suggest
you use a fake robot as a sparring partner, something you can move by hand to
create any situation you want. (Using a real robot, you'd end up testing both
instead, plus you risk not being able to control specific scenarios.) A simple box
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does the trick, or a heavy book. Start by leaving the fake robot still in the middle
of the field, and see what happens. Your robot should find it, sooner or later, and
push it off the pad. When this works, move the fake robot yourself to test the
defensive strategy of your robot, and its behavior at the edge of the pad, the most
dangerous area.

Remember that the perfect robot doesn’t exist. For any winner of a contest,
it’s possible to design an “antidote” robot capable of beating it. You just have to
accept some compromises in your project and make some assumptions about
your opponents, hoping they won’t prove too far from reality.

Summary

If you have no previous experience in robotic Sumo, you may think of it as a
competition based solely on brute force. We must confess that we also had many
preconceptions our first time out at a competition of this kind, but had to change
our mind. Force 1s indeed important, but it typically proves useless when up
against a good deal of intelligence.

These competitions have nothing in common with the kind of events that
teature radio-controlled machines, called “robots,” that try to destroy each other.
These are not robots, simply because they totally lack a distinctive robot property:
autonomy.

The first important lesson that this chapter teaches is that you must design
your robot with a strategy in mind, choosing the configuration that best suits
your goal. Start examining the rules, then make a hypothesis about your oppo-
nents and devise a strategy to beat them.Your opponents may be very difterent
from how you imagined them, but this is not important—what’s important is that
you build and program your robot to be consistent with the strategy you chose. A
perfect robot doesn’t exist; in fact, situations in which robot A beats robot B,
which then beats C, which in turn actually beats robot A, are very common in
contests. And they’re what make contests so interesting and instructive.

We hope you also understand the second important message of this chapter:
When building and programming your robot, make reliability your first priority.
If you can beat a block of wood in a Sumo match, you're halfway to success!
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Introduction

This third and last chapter of Part III is dedicated to contests based on some spe-
cific ability. Occasionally, speed is important, too, but not as much as in the com-
petitions described in Chapter 26, and while two or more robots may perform at
the same time on the same field, physical contact is not the main goal as was the
case in the competitions of Chapter 27.

These abilities include what in Part I we described as the most challenging
tasks for MINDSTORMS robots: finding and grabbing objects (Chapter 11), and
knowing precise positioning (Chapter 13). The need to use them in a contest
makes your mission even more demanding: You must consider the interference
that comes from sharing the playing field with other robots, that may voluntarily
or involuntarily disturb the action of your robot. The recipe for success is the
same as proposed in the previous two chapters. This applies to any kind of con-
test: study the rules, define a strategy, make a few assumptions about the oppo-
nents, build a prototype, experiment with it, test the software carefully ... and
rebuild everything from scratch until you are satisfied. In other words, you need
some ideas, some skills, and lots of patience!

The last challenge described in the chapter—Soccer—shows an interesting
variation on the theme of object finding: It is the object itself—the ball—that
guides the robot to its position, through the emission of IR light. You will dis-
cover that this change in the nature of the problem is enough to simplify the
robot’s requirements considerably, to the point where its software isn’t so difterent
from that used to implement the simple light following algorithm of Chapter 18.

Precise Positioning

The challenge of precise positioning requires that your robot go, or return, to a
specific point. The robot whose degree of error is smallest, wins. You can define
many implementations of that simple statement, each one with its own peculiari-
ties. As always, even a small change in the rules can have radical effects on the dif-
ficulty of the challenge. A very simple version is: Starting from a predefined
point, the robots must move forward until they hit an obstacle, then turn in place
180° and return to the spot where they began. The obstacle will be the same, at
the same distance from the start for all the robots, and the contest may require
many runs with different distances. It’s important that the rules specify that the
robots must turn 180° before returning to the starting point, otherwise most of
them will simply go in reverse!
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If you're the one who decides the rules, calibrate the difficulty of the contest by
setting the limit on the number of parts admitted. For example, a dual difterential
drive like our LOGO Turtle can be very precise, but requires two difterential gears
and a rotation sensor. Limiting the equipment to just the MINDSTORMS set will
make the contest fair to a larger number of participants, but more difticult.

Have you any initial ideas about how you would make a precise run-and-
tetch robot with only MINDSTORMS parts? At this point in the book you
should have many ideas, however, let’s do this exercise together. Starting from the
mobility configuration, you can proceed by a process of elimination: steer, tri-
cycle, and synchro drives don’t turn in place; skid-steer does but introduces track
slippage, which is very bad for precise positioning; dual differential drive won’t
work because of the lack of a second difterential gear, thus you end up with the
tried-and-true differential drive, with its handicap in going straight.

The first approach that comes to our mind requires you emulate two rotation
sensors with the touch sensors, and monitor the turns of the right and left wheels
so as to keep them synchronized. (You still have the light sensor for the bumper!)
Getting ideas from Chapter 8, you can also use a differential gear to monitor the
difference in speed between the two wheels (Figure 8.2). The light sensor could
face a sort of black and white disc connected to the difterential, so you will drive
the robot more or less like a line follower, slowing one of the motors when it
reads too black and the other when it reads too white.

With either one solution or the other, you may manage to go straight, but
you still have to turn precisely 180°. This is the most critical point, because even
a small error in the angle will leave your robot very far from the starting point.
Do you remember what we said about tuning the turning ability of the Logo
Turtle in Chapter 23? Use the distance between the wheels to adjust the turning
angle so the U-Turn is equal to a whole number of counts of your sensor.
Thorough testing is, as always, your ticket to success.

A challenge based on positioning may be made significantly more complex
by simply adding more segments and checkpoints to the route. For example,
instead of a round trip you can prepare a triangular path—ask the robots to stop
in any vertex and measure the deviation between their actual position and the
expected one. Each robot should have an easily identifiable part to use as a refer-
ence point for measuring the starting and ending points of the journey—for
example, a vertical axle with one end very close to the ground.

539
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Finding and Collecting Things

In 1999, Joel Shafer proposed a tough challenge unlike any that had been pre-
sented in the LEGO community previously. In it, a robot had to navigate the
room, pick up three empty soda cans, and return to the starting point. Active nav-
igational aids, like beacons, were not allowed. Joel’s was a remote challenge, that
1s, there wasn’t any specific place or time for the event, rather the participants had
to send pictures and documentations of their robot and its program.

Joel’s challenge was new and tough; it created a lot of traffic in the
lugnet.robotics newsgroup, the place where MINDSTORMS fans virtually meet
to discuss ideas and techniques. The challenge was at the same time engaging and
daunting because of the involved difticulties, and originated many interesting dis-
cussions about navigation and search techniques.

A few months later, Richard Sutherland was declared the winner. The chal-
lenge aside, Richard proved that managing those kinds of difticulties were not
beyond the range of MINDSTORMS robotics, which opened the way to similar
competitions of a very demanding nature. We’ll explore some variations on these
types of competitions in the following sections, and describe some of the naviga-
tion and search techniques you could employ.

Maxwell’s Demons

David Schilling devised a very interesting robot competition he called “Maxwell’s
Demons,” paying homage to James Clerk Maxwell’s famous physics scenario in
which a demon separates hot molecules from cold ones in a room, supposedly
contradicting the second law of thermodynamics. In David’s challenge, each robot
must distinguish black LEGO cubes from white ones, and push as many white
cubes as possible to its side of the playing field while at the same time pushing as
many black cubes as possible to its opponent’s side.
This is a very complex challenge that requires your robot be able to:

®m  Navigate the playing field.
m  Find the cubes.
m  Recognize their color.

m  Capture them.

®m  Push them into the proper territory.
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Though a very attractive challenge, we at ItLUG decided to start with a
slightly simplified version where the colors of the cubes don’t matter, just their
numbers.

Stealing the Cube

During a given time period (three minutes) each robot must try and accumulate
as many cubes as possible on its side of the playing field, taking them either from
the central border line where they are placed at the beginning or from the oppo-
nent’s field. The robot can use only one RCX and one light sensor, but there is
no limit to the number of other original LEGO parts and sensors that can be
used; non-LEGO custom devices are not allowed.

As in David’s original rules, the cubes are made of six 2 x 4 bricks arranged
in three interlaced layers of two bricks. The cubes are topped with tiles so as to
make them perfectly smooth and cubic.

Our field has a white side, a black side, and a gray border. We decided on a
very restrictive size limit for the robots: They must fit into a space 20 x 20 studs
square. Other rules state that the robots must push or hold just one cube at a
time; they can push more than one if this happens by chance, but cannot be
explicitly designed to do this. Each match starts with seven cubes placed along
the borderline and the robots situated on their respective sides.

This challenged immediately proved very difticult. The first obstacle we had
to face was navigating a three-color playing field. As we explained in Chapter 4,
the LEGO light sensors reads the average reflection of a small area, thus making it
impossible to tell a black-white borderline region from a gray one. How would
you have done it? The simplest answer required that the competitors increase the
complexity of the code a bit and test two or more closed readings of the sensor,
accepting the value only when they were stable. Theory is one thing, practice
another: keeping the robots inside the field was not easy, but almost everybody
succeeded in the task.

The next difficulty came from the cubes. Chapter 11 describes how to use
proximity detection to search for objects, but this technique is not applicable to
two robots at the same time, because their IR emissions interfere with each other
and alter the reliability of the readings. Add to this the fact that only one light
sensor was allowed, which was necessary to navigate the field, and this definitely
excludes proximity detection. Everyone decided to use touch sensors to monitor
collisions with the cubes—in other words, the robot would navigate the pad until
they ran into a cube. Unfortunately, the objects couldn’t be detected with a
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simple front bumper, because they were too lightweight and slippery to exert any
pressure on the touch sensor. We saw many different techniques oftered as solu-
tions to this: Our robot, the one shown in Chapter 11 (Figure 11.12), used a top
bumper activated by the height of the cube. Other competitors adopted different
harvesting systems—for example, a sort of gate that closed when a cube was
inside, or a lever that blocked the cube against one side of the robot.

Most of the robots based their search for the cubes on a purely random navi-
gation, while the more sophisticated ones used a limited knowledge of their posi-
tion in regard to the borderlines of the field, applying the dead-reckoning
techniques described in Chapter 13.The idea of using relative positioning
methods was good, and the colors of the different areas of the field provided some
external references to reset the errors that internal odometry would inevitably
accumulate. If a robot knows its position, it can more efficiently scan the field,
passing precisely once—and only once—through any point. Unfortunately, the
approach didn’t end up working very well, and proved no better than random
navigation. The problem came from collisions: each time a robot was hit by the
opponent, it got its position and orientation slightly changed, and this was enough
to make the internal position information totally unreliable.

An Amazing Strategy

For the Stealing The Cube competition, Guido Truffelli once again
devised a winning strategy nobody else had thought of. His robot went
straight in order to find the borderline between the fields where the
cubes had been set up, then turned 90 degrees and followed the line at
the same time, kicking the cubes into its field. After a few seconds, most
of the cubes were inside its territory, and the opponent had to fight a
hard battle.

Not satisfied with this initial advantage, Guido’s robot continued
relentlessly combing the opponent’s field with lethal precision, promptly
carrying any captured cube to its side. It proved by far to be the
strongest competitor.

This once again proves how different sets of rules affect a competi-
tion: If the starting position of the cubes had been random, or if launching
the cubes had been forbidden, Guido couldn’t have used his trick.
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Variations on Collecting

The theme of finding and collecting objects admits infinite variations. The size
and shape of the objects have a strong influence on the architecture of the robots.
Marbles, for example, are quite different from empty soda cans or LEGO cubes,
because they tend to roll away at the slightest touch, thus requiring a very cau-
tious approach.

Also, instead of placing two robots in the playing field at the same time, you
can organize the challenge so just one robot runs at a time, evaluating its perfor-
mances against time. For example, counting the number of objects collected during
a prearranged interval, or measuring the time it needs to harvest all of them.

Playing Soccer

Soccer, in an extremely simplified form, is a rather suitable game for small robots.
By “simplified” we mean that the robots don’t actually kick the ball but instead
push it toward the goals. Other simplifications include the absence of fouls, throw-
ins, and all other rules except for the one that says each goal scores a point.

The required abilities would be similar to those explained earlier about
finding and collecting objects, with the difference being that there’s only one
object, the ball, for two teams who must take it and score a goal. However, with
the adoption of a special field and a special ball, you can trim down the essential
skills to a level where even an inexperienced child, with some tips, can program a
basic robot to play the game.

In 1999, during the first Mindfest at MIT, we saw a very entertaining version
implemented by Henrik Hautop Lund and Luigi Pagliarini from the LEGO Lab
at the University of Aarhus. The field was covered with a simple linear gradient,
black at one end and white at the other, and there were raised edges all around,
with gaps to represent the nets. The players featured a single RCX with five sen-
sors: three light and two touch (the light and touch sensors were combined in
pairs on the same port as described in Chapter 4). One light sensor, facing down,
allowed simple navigation on the field, while the other two, facing forward, were
aimed at finding the ball. The touch sensors were connected to bumpers in order
to detect collisions with the edges or with other players.

The ball was a special, active ball: two to three inches in diameter, made of
clear plastic, it was filled with rechargeable batteries and IR LEDs so to be easily
detected by light sensors. The reasons that Lund and Pagliarini used two front
light sensors is that they were able to program a simple method of finding the
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ball. With two sensors, they could make the robot turn in place until both the
sensors read a very high value, and that was the direction of the ball. The standard
chassis of the robot and simple commands allowed young children to program
their soccer players with difterent strategies without having to worry too much
about the details.

We replicated this setup with Marco Berti a few months later, scheduled to
be shown during an exhibition in Italy. Like the originals, the robots were difter-
ential drive, but with two light sensors instead of three. The front of the robots
was shaped so as to push the ball while going forward.

Building your own soccer player is not a difticult task—you’ll find the greater
challenge is in the construction of the ball. We used one of those clear plastic
balls found in toy vending machines for children, the kind that usually have a
little prize inside. The making of the inner electronics requires some experience
in soldering and in assembling small parts. Fit the inside with as many IR LEDs
as possible, and with rechargeable batteries of your choice. Drill small holes in the
surface of the ball to include a female connector and a small switch so you can
turn it on and off and recharge the batteries without opening it. This is the most
difficult part of the job, because you must keep the surface smooth and the COG
as close as possible to the center of the ball so it rolls smoothly (Figure 28.1).

Figure 28.1 Marco Berti's IR Ball
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The field may be improved using the two attractors gradient described in
Chapter 13.This geometric pattern has the property that, if you follow the
darkest path from any of its points, you arrive at the black attractor, while if you
choose the clearest path, it drives you to the white one. Using such a pattern, it’s
very easy for the robots to reach the goals that correspond to the attractors by
employing a very simple navigation algorithm.

The program is not too difticult to write. Make your robot turn in place
searching for the ball until it finds it (the algorithm is actually very similar to the
one we described in Chapter 18 to implement light following). If it doesn’t, make
it move a bit in any random direction and look around again. When it finds the
ball, it moves forward to catch it and then starts going toward the opponent’s net.

Summary

The competitions we talked about in this chapter require some abilities that, in
Part I of the book, we described as the most challenging to implement: finding
objects and knowing where you are.

If these activities demonstrated here prove difticult to implement when you
build a robot for yourself, situating them in the context of a competition makes
your mission even more difficult. This happens because you must push the per-
formance of your robot to its maximum.You have to consider all the details,
optimize the software, and reach the highest possible level of reliability. However,
most of the hitches derive from the fact that your robot is not alone in the field,
and the interference with its opponent will disturb its behavior. For example, IR
proximity detection can’t be used by two robots at the same time, and dead reck-
oning calculations to estimate the position of the robot may be frustrated by col-
lisions against the opponent.

The Soccer competition we described 1in this chapter is a good example of
how a few changes can radically affect the solution to a problem. It also shows
the practical application of two techniques described in Chapter 13 regarding
absolute positioning: the use of an IR beacon, and a pad with a special pattern
that eases navigation. In fact, the IR ball guides the robot to it, and after the
robot gets the ball, it can find the way to the goal following the gradient on the
pad. This simplification is so effective, that the software of the robot becomes
similar to a simple algorithm we covered earlier in the book: light following.

In this kind of competition, the contest sponsor can also suggest, or impose, a
standard chassis built with just MINDSTORMS parts. This would move the chal-
lenge of the contest completely to the software side.
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Cube collecting or soccer playing requires a complex behavior made of many
different actions that need to be coordinated together well. If you decide to take
up the challenge, we suggest you think both your hardware and software in terms
of subsystems. This way they will be easier to test, debug, and maintain. Write
your program with a top level supervisor that manages small subroutines corre-
sponding to the basic actions the robot has to perform: navigation, object detec-
tion, and object collection. Mastering this kind of challenge won'’t be easy, but as
with most difticult things in life, your satistaction will be directly proportional to
the effort you expend!
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Introduction

There’s quite a large amount of reference material to be found regarding MIND-
STORMS inventions, including some very good books, and hundreds of Internet
sites that cover specific topics and show interesting models. In this appendix,
you’ll find a section about books, another one about links of general utility, and a
section specific to each chapter of this book (many of the quoted sites pertain to
more than a single chapter topic, so browse through them all). We apologize in
advance for the significant number of interesting sites that we surely (and unin-
tentionally) omitted from the list.

Every link of this appendix has been checked, but as you know, the Internet
is a dynamic animal and we cannot guarantee they will be still valid at the time
you read the book. If you find any broken links, use the descriptive information
we provided beside each site address to hunt for it using your favorite search
engine.

A few of the links point to commercial sites, or to sites that, besides providing
information about the making of some custom part, also sell a kit or the finished
product. We have no direct or indirect interest, nor any connection with them;
we included the links simply to help the reader.

Bibliography

The Unofficial Guide to LEGO MINDSTORMS Robots, by Jonathan B.
Knudsen; O’Reilly & Associates, 1999.The first to appear on the market,
Jonathan’s book is still a very good resource for introducing readers to
the MINDSTORMS world. It covers many topics, from construction
techniques to programming with different languages.

Dave Baum’s Definitive Guide to LEGO MINDSTORMS, by Dave Baum
and Rodd Zurcher (Illustrator); Apress, 1999. Dave is the creator of
NQC, the most successful alternative programming environment for the
RCX. In this book, he not only explains how to use NQC, but also
explores many building and programming techniques.

Extreme MINDSTORMS: An Advanced Guide to LEGO
MINDSTORMS, by Dave Baum, Michael Gasperi, Ralph Hempel, Luis
Villa; Apress, 2000. Four gurus of the independent MINDSTORMS
community introduce you to the secrets of NQC, legOS, pbForth, and
to the making of custom sensors.
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Creative Projects with LEGO MINDSTORMS, by Benjamin Erwin;
Addison-Wesley, 2001. Ben invites the reader to be creative, to explore
different approaches, and even use different materials. He also covers
topics like ROBOLAB, not covered in any other book.

Joe Nagata’s LEGO MINDSTORMS Idea Book, by Joe Nagata; No
Starch Press, 2001. Joe is without a doubt a great designer. In his book,
he steers you step by step through the building of some instructive and
efficient models.

LEGO MINDSTORMS: The Master’s Technique, by Jin Sato; No Starch
Press, 2001. This is a great book, containing both general building sug-
gestions and programming tips. It also includes step-by-step instructions
on how to replicate MIBO, his famous robotic dog.

General Interest Sites

LEGO MINDSTORMS (http://mindstorms.lego.com)

The first site to mention is, of course, the LEGO MINDSTORMS
official site. It contains tons of stuft: technical tips, a gallery of
inventions, events, contests, answers to frequently asked questions
(FAQ), and more. The ofticial LEGO MINDSTORMS FAQ site is:
http://mindstorms.lego.com/products/whatis/faq.asp.

LUGNET (www.lugnet.com)

The LEGO Users Group Network (LUGNET) is the most comprehen-
sive Internet resource for LEGO, and it’s difficult to describe in a few
words. It features a database containing all the LEGO sets ever released,
as well as a reference list citing all the single LEGO parts. But, more
importantly, its newsgroups are the meeting point of LEGO fans of any
age and from any part of the world, and it’s one of the friendliest places
on the Internet. Don’t miss the LUGNET robotics newsgroup
(http://news.lugnet.com/robotics), the place where you can ask any
number of questions and be answered with completeness, competence,
and patience.

LEGO Parts Reference (http://guide.lugnet.com/partsref/)
Created by Steve Bliss and hosted on LUGNET, this database contains
information, images, and links for many LEGO bricks and other elements.
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NoTE

The official Web site for this book is at www.syngress.com/solutions.
Check it out for additional MINDSTORMS-related features, resources, and

downloads, including more NQC code, MIDI conversion files, positioning

grids, film clips, and lots of new photographs. You can also post ques-
tions to the authors and editors, see the front page of this book for
details about the site.

Brickshelf (www.brickshelf.com)
Brickshelf is a site that offers everybody the extraordinary opportunity
of having free space to show oft his or her own LEGO models.

Fred Martin’s Unofficial Questions and Answers about MIT
Programmable Bricks and LEGO MINDSTORMS
(http://fredm.www.media.mit.edu/people/fredm/
mindstorms/index.html)

Fred Martin tells the story of the Programmable Brick and provides
some other useful information about the RCX.

LEGO MINDSTORMS Internals (www.crynwr.com/
lego-robotics/)

Russell Nelson maintains a page that contains many technical details
about the MINDSTORMS system as well as many useful links.

Artificial Intelligence and Machine Learning
(www.bvandam.net)

Bert van Dam’s site is a mine of information about artificial intelligence
in general. If you find the subtle link to Miscellaneous | General
Information, you will discover a whole world of LEGO projects!

Andy Bower’s LEGO Robotics Wiki (www.object-arts.com/
wiki/html/Lego-Robotics/FrontPage.htm)

Andy Bower’s dynamic site is where anybody can look for answers or
add his own contribution. Quoting Andy, “The important thing to
remember is that this Wiki site is a growing body of knowledge and you
are responsible for how useful it becomes.”
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Chapter 1 Understanding LEGO Geometry

LEGO On My Mind (http://homepages.svc.fcj.hvu.nl/brok/
legomind)

Don’t miss Eric Brok’s site, filled with explanations and suggestions.
LEGO geometry is just one of the many topics covered.

Length of Diagonal Spreadsheet (http://news.lugnet.com/org/
us/smart/?n=37)

Gustav Jansson created a spreadsheet that shows the length of the diago-
nals in terms of LEGO units.

The Brick Bakery (http://web2.airmail.net/sjbaker1/lego)
Steve Baker’s site contains two useful pages about LEGO dimensions and
gear spacings.

Chapter 2 Playing with Gears

Fred Martin’s The Art of LEGO Design
(ftp://cherupakha.media.mit.edu/pub/people/fredm/
artoflego.pdf)

A very good primer about LEGO geometry in general and gearings in
particular. It also contains many useful design ideas.

Sergei Egorov’s LEGO Geartrains
(www.malgil.com/esl/lego/geartrains.html)

Sergei Egorov has prepared a useful table showing possible combinations
of gear wheels, with resulting ratios and working distances.

Mike Fusion’s TECHNIC and MINDSTORMS Page
(http://odin.prohosting.com/mrplanet)

In Mike’s site, you will find a differential made with ordinary gears, an
adder-subtractor and a solution for a small planetary gear.

Chapter 3 Controlling Motors

Motor Mis-Match (http://news.lugnet.com/robotics/?n=13927)
Steve Baker’s report about his test on a group of TECHNIC motors.

WwWw.syngress.com


http://homepages.svc.fcj.hvu.nl/brok/
http://news.lugnet.com/org/
http://web2.airmail.net/sjbaker1/lego
ftp://cherupakha.media.mit.edu/pub/people/fredm/
http://odin.prohosting.com/mrplanet
http://news.lugnet.com/robotics/?n=13927

552

Appendix A ¢ Resources

LEGO Dacta eLAB (www.lego.com/dacta/elab/default.htm)
Contains the technical specifications of the new TECHNIC motor
(follow the link to Technical Specs and then to Motors).

LEGO Motors (www.enteract.com/~dbaum/lego/motors.html)
Dave Baum’s page about LEGO motors and their features.

Chapter 4 Reading Sensors

MindStorms RCX Sensor Input Page (www.plazaearth.com/
usr/gasperi/lego.htm)

Michael Gasperi’s super-site about MINDSTORMS sensors—the
starting point for any investigation about this component. It also contains
Brian Stormont’s suggestion to combine a touch sensor and a light
sensor on the same port, and Tom Schumm’s trick to connect touch sen-
sors in the AND configuration.

MINDSTORMS Light Sensor Trick
(www.hempeldesigngroup.com/lego/lightsensor/index.html)
Here, Ralph Hempel explains a way to improve the reading range of the
LEGO light sensor.

LEGO Robotics (www.mop.no/~simen/lego.htm)

The LEGO section of Simen Svale Skogsrud’s site is definitely worth a
visit. It contains details about using the FOS unit as a rotation sensor,
discusses proximity detection employing the light sensor, and outlines
some interesting projects.

Rotational Sensor & Gearing Down
(http://news.lugnet.com/robotics/?n=14074)
Steve Baker’s original post reporting his test about rotation sensors.

Chapter 5 Building Strategies

LEGO Engineering (http://british.nerp.net/lego/index.html)
This helpful site includes a Building Tips section, too.

Reinard’s LEGO Building Tips (http://british.nerp.net/
lego/index.html)
Reinard van Loo’s page contains building tips and tricks.
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Ldraw.org (www.ldraw.org)

LDraw is a freeware program that can create LEGO models in 3D on
your computer screen. Did you ever dream of working with an unlim-
ited supply of any LEGO part in any color?

MLCad (http://mlcad.ldraw.org)

Michael Lachmann’s MLCad is a great (and free) CAD program for cre-
ating LEGO-like building instructions of your own models. The MLCad
site has been recently incorporated into the Ldraw.org domain.

Chapter 6 Programming the RCX

RCX Internals (http://graphics.stanford.edu/~kekoa/rcx)
Kekoa Proudfoot documents all the internals of the LEGO firmware
and ROM routines. He made the development of firmware like legOS
and pbForth possible. In his LEGO MINDSTORMS Internals page
(www.crynwr.com/lego-robotics), Russell Nelson properly lists him
under the heading Heroes!

NQC - Not Quite C (www.enteract.com/~dbaum/nqc/
index.html)
Dave Baum’s NQC site contains the compiler and the documentation.

legOS (http://legos.sourceforge.net)
The legOS homepage.

pbForth (www.hempeldesigngroup.com/lego/pbFORTH/
index.html)

Ralph Hempel’s programmable brick FORTH (pbFORTH) for
MINDSTORMS page.

Gordon’s Brick Programmer (www.umbra.demon.co.uk/
gbp.html)

With its graphic-textual interface GBP is a sort of bridge between RCX
Code and the pure textual programming environments.

Bot-Kit (www.object-arts.com/Bower/Bot-Kit/Bot-Kit.htm)
An interface to programming the RCX in Smalltalk (based upon
Dolphin Smalltalk).
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QC (http://digilander.iol.it/ferrarafrancesco/lego/qc/
index.html)

Francesco Ferrara’s QC, a mini OS (no multitasking) meant as an inter-
face between C code and the ROM routines of the RCX.

Brick Command (www.geocities.com/Area51/Nebula/8488/
lego.html)

A simple textual programming language that incorporates a complete
IDE.

ADA for MINDSTORMS (www.usafa.af.mil/dfcs/
adamindstorms.htm)

An ADA pre-processor to NQC. Also consult some of the documenta-
tion at www.faginfamily.net/barry/Papers/AdaLetters.htm.

LEGO Robot Pages (www.cs.uu.nl/people/markov/lego)
The site of the original RCX Command Center, a very good IDE for
NQC originally developed by Mark Overmars but not updated to the

current version (see Bricx Command Center).

Bricx Command Center (http://hometown.aol.com/
johnbinder/bricxcc.htm)

Formerly known as the RCX Command Center, and based on Mark
Overmars’ original source code, John Hansen’s BricxCC supports all the
LEGO Programmable Bricks and introduces many new and interesting
teatures. If you use NQC on a PC platform, this is a “must have.”

VisualNQC (http://home.hetnet.nl/~myweb1/VisualNQC.htm)
Ronald Strijbosch’s Visual NQC has its roots in the RCX Command
Center, but 1s completely rewritten in Visual Basic. A very functional and
complete IDE to NQC.

NQCEdit (http://hem.passagen.se/mickee/nqcedit)

Another front-end IDE for NQC, written by Mikael Eriksson.
Currently less sophisticated than the RCX Command Center and Visual
NQC, its indeed an eftective and solid alternative.

NQC API Programmer’s Guide (www.cybercomm.net/
~rajcok/nqc)

Mark Rajcok’s guide to NQC API lists all NQC functions, their syntax,
their supported programmable bricks and a few examples.
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MindScope (http://baserv.uci.kun.nl/~smientki/Lego_Knex/
Lego_electronica/Mindscope.htm)

Stef Mientki’s graphing utility is able to continuously monitor the sen-
sors and produce a chart from the sampled values.

Programming the LEGO Microscout
(http://eaton.dhs.org/lego)
Doug Eaton explains how to program the Microscout through bar codes.

General Paranoyaxc RCX Tools (www.rainer-keuchel.de/rcx/
rcx.html)

A package that contains a port of the NQC compiler, a simple editor,
and a remote control program to access your RCX from WinCE
platforms.

EmulegOS (http://sourceforge.net/projects/emulegos)

A LegOS emulator, which lets you run and debug your LegOS pro-
grams on your Win/Linux PC. Started by Mario Ferrari and Marco
Beri, emulegOS is currently an Open Source project managed by
Mark Falco.

LegoSim (www.informatik.hu-berlin.de/~mueller/legosim)
LegoSim is a Unix-based Simulator for LegOS with an Applet-GUI,
written by Frank Mueller, Thomas R6blitz, and Oliver Biihn.

WinVLL (www.research.co.jp/MindStorms/winvll/
index-e.html)

A simple tool by Shigeru Makino to control and program the
MicroScout from a PC.

TCL - RCX (www.linux.org/docs/ldp/howto/mini/Lego/
tcl.html)

Laurent Demailly and Peter Pletcher’s TCL RCX can either compile a
TCL script into RCX bytecode, or it can remotely control the robot via
either a script or an interactive TCL shell.

Reactive Languages and LEGO MINDSTORMS
(www.emn.fr/richard/lego)

Martin Richard’s Web site about using synchronous languages (Esterel,
Lustre, Grafcet) to play with the LEGO MINDSTORMS kit.
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Chapter 7 Playing Sounds and Music

Guy’s LEGO page (www.aga.it/~guy/lego.htm)
Guido Truftelli’s page contains his MIDI2ZR CX and WAV2R CX utili-
ties, as well as their new graphics interface RCX Music Studio.

Music-Robots (www.daimi.au.dk/~ocaprani/SmallCar.dir/
Main.html)

A car that makes musical sounds through a speaker connected to the
output port of an RCX.

Note Names, MIDI Numbers and Frequencies
(www.phys.unsw.edu.au/~jw/notes.html)

A table that gives the frequency of any standard keyboard note and its
midi number.

Chapter 8 Becoming Mobile

Robo-Rats Locomotion Page (www.cs.dartmouth.edu/
~robotlab/robotlab/courses/cs54-2001s/locomotion.html)

This complete excursus about robotic architectures describes the pros
and cons of each platform and also covers a few types not discussed in
this book (e.g., the pivot drive, the articulated drive).

The Straight and Narrow (www.oreillynet.com/pub/a/
network/2000/05/22/LegoMindstorms.html)
Jonathan Knudsen’s article about using a difterential drive to go straight.

Doug’s LEGO Robotics Page (www.visi.com/~dc/index.htm)
Many special mobility configurations appear in Doug’s site: a tri-star
wheel drive, a Killough’s platform, and a couple of synchro drives.

LEO & LEGO (http://carol.wins.uva.nl/~leo/lego.html)
Leo Dorst’s LEGO page contains many useful tricks and explains how to
build a Killough’s mobile robot platform.

Synchro Drive (www.restena.lu/convict/Jeunes/
SynchroDrive.htm)

Part of the Boulette’s Robotics site (see heading later in this appendix),
this page describes the steps in building a LEGO Synchro Drive.
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S18 Details (www.geocities.com/mario.ferrari/s18/s18.html)
From our site: Our second synchro drive features a rotating bumper.

Macs Robotics Page (http://homepages.tbmev.de/bm957542/
Robotics/index.html)
Step by step instructions to build a nice and compact Killough’s platform.

Ackerman (http://users.ids.net/~bdfelice/ackerman.html)
Here you can find the history of Mr. Ackerman and the explanation of
his steering system.

Chapter 9 Expanding Your Options
with Kits and Creative Solutions

Technica (http://w3.one.net/~hughesj/technica/technica.html)
Jim Hughes’s site features both a brief TECHNIC history and the very
useful Element Register, a pictorial and annotated list of most
TECHNIC parts.

LEGO Set Inventories (http://peeron.com/inv/)
Jennifer & Dan Boger maintain this very useful site where you can
search for which sets contain a specific part.

MINDSTORMS Add-Ons (www-control.eng.cam.ac.uk/
sc10003/addon.html)

Stuart Crawshaw’s attempt to describe all the possible add-on sets for
LEGO MINDSTORMS.

LEGO Shop At Home (http://shop.lego.com/)
The official LEGO online shop.

Brickbay (www.brickbay.com/)

The Unofticial LEGO Shopping Mall. The most important independent
resource to buy individual LEGO parts not supplied by the ofticial
LEGO online shop. Counts almost 300 shops that you can search with a
powerful engine.

PITSCO-DACTA (www.pitsco-legodacta.com/)
A source of LEGO DACTA sets and service packs in the USA.

Spectrum Educational Supplies (www.spectrumed.com/)
A source of LEGO DACTA sets and service packs in Canada.
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All-LEGO Stepper Motor (http://home.earthlink.net/~mrob/
pub/lego/stepper.html)
The original Robert Munafo page for his stepper motor.

HiTechnic (www.hitechnicstuff.com/)
John Barnes’ company manufactures a range of sensors, controllers, and
mechanical accessories compatible with the LEGO MINDSTORMS

products.

Techno-Stuff Robotics (www.techno-stuff.com/)

Pete Sevcik produces and sells a broad range of MINDSTORMS
compatible sensors, but on his site he also shares some general
construction tips.

Robotics Projects (www.verinet.com/~dlc/projects/
botproj.htm)

Dennis Clark describes many projects for custom sensors, including
compass interfaces and proximity detection circuits.

LEGO Switch Multiplexer (http://baserv.uci.kun.nl/~smientki/
Lego_Knex/Lego_electronica/Switch_multiplexer.htm)
Stet Mientki explains his design for a very sophisticated multiplexer.

JCX Home Page (http://jcx.systronix.com/)

JCX is a substitute for the RCX and represents the most radical step
toward the expansion of your system. Based on the JStamp Real-time
Native Java Module, the JCX design includes eight input ports, four
output ports and much, much more.

Mindsensors (wWww.geocities.com/mindsensors/)
Nitin and Aparna are two robotics fans that sell some of their custom
electronic devices, multiplexers in particular.

Using R/C Servos with the RCX
(www.hempeldesigngroup.com/lego/servos/index.html)

Ralph Hempel’s page about interfacing R/C Servos to the RCX, with
schematics and detailed instructions.

InchLab Page (www.inchlab.com/index_noframes.htm)

In this site by Andreas Peter, you can find many hardware projects,
including an interface to R/C Servos, an electromagnetic actuator, a
laser brick, and more.
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TFM’s Home Page (www.akasa.bc.ca/tfm/lego_ms2.html)
This site details Dean Husby’s custom sensors and multiplexers. His
Motor/Sensor Expander can drive up to six full-featured outputs or
connect six input sensors, allowing some mixed configurations.

Chapter 10 Getting Pumped: Pneumatics

C.S. SOH’S LEGO Pneumatics Page
(www.geocities.com/cssoh1/)

C. S. Soh’s site is subtitled ““...where air is power.” This is the most
important reference for LEGO pneumatics on the Web.

Technic Double-Acting Compressor
(www.hempeldesigngroup.com/lego/compressor/index.html)
Home page of Ralph Hempel’s famous double-acting compressor. The
same site also contains his Pressure Switch (www.hempeldesigngroup
.com/lego/pressureswitch/index.html).

Sergei Egorov’s LEGO Pneumatics Page (www.malgil.com/
esl/lego/pneumatics.html)

Nice page with detailed plans for a double-acting compressor and
pneumatic switch.

LEGO Construction Site — Ideas
(www.telepresence.strath.ac.uk/jen/lego/ideas.htm)

It’s difficult to find a place in this appendix for Jennifer Clark’s won-
derful site, because it covers so many aspects of robotics. Her page of
ideas contains many useful suggestions about pneumatics, but don’t miss
the other tips, and her models as well!

LEGO Compatible Pneumatic Solenoid Valve
(www.jps.net/henrik/danweb/solenoid/solenoid3.html)

Daniel Delcollo developed a custom pneumatic valve that can be con-
trolled directly from the RCX.

Chapter 11 Finding and Grabbing Objects

LEGO Robotics (http://british.nerp.net/lego/robot/)
An interesting study for an anthropomorphic LEGO android. Sketches
for hands, arms, shoulders, legs, hips, and so on.
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Mark’s LEGO Grabber Arm (www.mastincrosbie.com/
mark/lego/grabber.html)

This site has instructions on how to build a grabber arm that operates
from a fixed base point; similar but more sophisticated than that shown
in the MINDSTORMS site.

LEGO FetchBot (http://unite.com.au/~u11235a/
lego/fetchbot/)

Ben Williamson explains how his FetchBot works: a robot that can find
an object, pick it up, and drop it somewhere else.

Chapter 12 Doing the Math

Numerical Methods (http://tonic.physics.sunysb.edu/
docs/num_meth.html)

A Web site that covers all aspects of Numerical Analysis, though finding
what you’re looking for may require some time.

Numerical Analysis (www.math.niu.edu/~rusin/known-math/
index/65-XX.html)

The Mathematical Atlas contains this introduction to the topic and links
to many other resources.

Introduction to Time Series Analysis (www.itl.nist.gov/
div898/handbook/pmc/section4/pmc4.htm)

An index page from the NIST/SEMATECH Engineering Statistics
Internet Handbook about the methods used to analyze time series. It
includes moving averages and exponential smoothing.

What’s Hysteresis? (www.lassp.cornell.edu/sethna/hysteresis/
WhatlIsHysteresis.html)

Jim Sethna explains hysteresis in laymen’s terms and provides some
examples.

Chapter 13 Knowing Where You Are

Where Am I (www-personal.engin.umich.edu/~johannb/
position.htm)

The site where you can download the not-to-be-missed “Where am I?
— Systems and Methods for Mobile Robot Positioning” by ]J.
Borenstein, H. R. Everett, and L. Feng.
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Using PID-Based Technique for Competitive Odometry and
Dead Reckoning (www.seattlerobotics.org/encoder/200108/
using_a_pid.html)

An excellent article, written by G.W. Lucas, about using the
Proportional, Integral, and Derivative (PID) approach in odometry.

Robot Navigation (www.doc.ic.ac.uk/~nd/surprise_97/
journal/voll/oh/)

Oliver Henlich’s “Where am I going and how do I get there,” an
overview of local/personal robot navigation techniques.

JP Brown’s Serious LEGO (http://jpbrown.i8.com/)

Here, Jonathan Brown describes the Laser Target we mentioned in
Chapter 13. Don’t miss his wonderful creations; especially his world-
famous Rubik’s Cube solver.

Robotics Introduction (www.restena.lu/convict/Jeunes/
RoboticsIntro.htm)

Boulette’s Robotics Page is one of those sites difficult to classify since it
contains useful tips and interesting projects in many different areas. We
chose to place it here for its discussion on positioning and for its
description of highly specialized sensors used for the task: laser emitters
and decoders, compasses, and infrared-ultrasonic beacons.

Chapter 14 Classic Projects

Ben Jackson’s MINDSTORMS Creations
(www.ben.com/LEGQO/rcx/)

Ben’s site describes his robots and includes the description of his search
for a fast line follower.

Doug Wilcox’s LEGO MINDSTORMS Site
(www.wordsmithdigital.com/mindstorms/)

In the Projects section of his site, Doug describes the story of his rack-
and-pinion steering designs (designed with Carl Jagt).

Huw (www.brickset.com/huwhomepage/)

Huw Millington’s home page contains the link to his four-wheel car, a
rack and pinion vehicle equipped for both obstacle detection and line
following. Don’t miss Huw’s other creations: the Brick Sorter and the
Pneumatic Arm.
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Rack and Pinion (http://occs.cs.oberlin.edu/~cmaron/
LEGO/journal7.html)
Chad Maron shows a very compact rack-and-pinion design.

Chapter 15 Building Robots That Walk

Technic Puppy Journal (www.geocities.com/technicpuppy/)
Miguel Agullo’s site contains detailed instructions for his Hammerhead
ankle-bending walker. Don’t miss the Lego Biped Links page, the best
organized collection of links to MINDSTORMS bipeds.

Joe’s MINDSTORMS Gallery (http://member.nifty.ne.jp/
mindstorms/)
Tons of wonderful robots pack Joe’s gallery. Walkers and much more...

S6 Details (www.geocities.com/mario.ferrari/s6/s6.html)
Our first biped COG-shifting robot, S6.

Chapter 16 Unconventional Vehicles

SHRIMP (http://dmtwww.epfl.ch/isr/asl/systems/shrimp.html)
The original SHRIMP by the Autonomous Systems Lab of Lausanne,
Switzerland.

SHRIMP Details (www.geocities.com/mario.ferrari/shrimp/
shrimp.html)
Our first version of SHRIMP.

MINDSTORMS Projects Info (www.borg.com/~pinkmice/)
John Barnes’ Sewer Rat is able to run through 8" pipes!

Rob Stehlik’s Home Page (www.ecf.utoronto.ca/~stehlik/
index.html)

Among Rob’s wonderful robotic creatures, you’ll find his amazing
Window Walker which actually climbs windows!

Duna Rossa Details (www.geocities.com/mario.ferrari/
dunarossa/dunarossa.html)
Duna Rossa, our own robotic sailing tricycle.

The LEGO Train Depot (www.ngltc.org/train_depot/)
This site dedicated to LEGO Trains has a Hints & Tips section that
includes MINDSTORMS controlled trains.
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Zhengrong Zang’s RCX Controlled LEGO Train Projects
(http://legochina.virtualave.net/)

Zhengrong dedicated his entire site to solutions and schemes about con-
trolling trains with the RCX.

Pacific NW LEGO Train Club (www.pnltc.org/)
PNLTC Web site has articles about using LEGO MINDSTORMS to

control trains.

TFM’s Home Page (www.akasa.bc.ca/tfm/index.html)
This site covers controlling LEGO locomotives and crossings with the
RCX.

Where No Man Has Gone Before (www.hq.nasa.gov/
office/pao/History/SP-4214/ch13-3.html)

A description (no images) of the Lunar Rover used in the Apollo
missions.

Exploring The Planets — Rovers (www.nasm.edu/
ceps/etp/tools/tools_rover.html)
A gallery of rovers used in planet exploration.

Chapter 17 Robotic Animals

MINDSTORMS Info Center (Wwww.mi-ra-i.com/JinSato/
MindStorms/index-e.html)
The English index of Jin Sato’s site, home of the famous MIBO robotic

dog and many other amazing creations.

Creating a Spider Robot Using LEGO MINDSTORMS
(http://schalburg.homepage.dk/Spider/Spider.html)

René Schalburg describes, with many interesting details, the process of
building a robotic spider.

S17 Details (www.geocities.com/mario.ferrari/s14/s14.html)
Our leash-driven Cyberdog.

Chapter 18 Replicating Renowned Droids

R2-D2 Builders Club (www.robotbuilders.net/r2/)
The R2 Builders Club is a forum about building a personal version of

WwWw.syngress.com


http://legochina.virtualave.net/
http://schalburg.homepage.dk/Spider/Spider.html

564 Appendix A * Resources

the renowned droid. It’s not about LEGO, but you can find applicable
tips and inspiring images.

Johnny-Five.com (www.johnny-five.com)
A fan-made Web site devoted to Johnny Five.

Clint Rutkas’ Skunk Works (http://members.nbci.com/
_XMCM/rutkas/index.html)

Clint Rutkas’s site contains, among many other interesting things, two
large MINDSTORMS robots emulating R2-D2 and Johnny Five.

Otto Details (www.geocities.com/mario.ferrari/otto/otto.html)
Our large octagonal R2-D2 clone.

Cinque Details (www.geocities.com/mario.ferrari/cinque/
cinque.html)
Our large scale replica of Johnny Five.

Chapter 19 Solving a Maze

MINDSTORMS MazeWalker (www.hempeldesigngroup.com/
lego/mazewalker/index.html)

Another link to Ralph Hempel’s site—this time to point to his maze
solver, an application demonstrated during the 1999 Mindfest at MIT.

Maze Solving Algorithm (www.lboro.ac.uk/departments/el/
robotics/Maze_Solver.html)
A description of the Bellman flooding algorithm.

Micromouse: Maze Solving (www.cannock.ac.uk/~peteh/
micromouse/maze_solving.htm)

This site is dedicated to Micromouse Maze solving competitions. The
page we mention is specifically about Maze Solving algorithms.

Chapter 20 Board Games

TTT: A LEGO MINDSTORMS Tic-Tac-Toe Player
(www.geocities.com/mario.ferrari/ttt.html)

The page of the TTT robots we showed at the Mindfest. You can also
find Antonio laniero’s compact YATTT NQC source code there.
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Andy’s LEGO MINDSTORMS Ideas (www.artilect.co.uk/lego/)
Andy created a robot that plays Four-in-a-row and started a Chess
project based on Francesco Ferrara’s QC programming system.

Chapter 21 Playing Musical Instruments

S15 & S16 Details (www.geocities.com/mario.ferrari/
s15/515.html)
Our piano player and conductor team.

Chapter 22 Electronic Games

Rolighed’s LEGO MINDSTORMS Site
(http://home1l4.inet.tele.dk/rolighed/)

Soren Rolighed made a working LEGO slot machine! Don’t miss his
MINDSTORMS Typewriter, too.

Chapter 23 Drawing and Writing

LOGO Turtle (www.ecf.utoronto.ca/~stehlik/turtpics.html)
Rob Stehlik shows you step by step how to replicate his Logo Turtle.

Logo Foundation (http://el.www.media.mit.edu/groups/
logo-foundation/index.html)

The Logo Foundation Web site: A place to find information and
resources useful in learning and teaching Logo.

ECG Sensor (http://baserv.uci.kun.nl/~smientki/Lego_Knex/
Lego_electronica/BioSensors/ECG_sensor.htm)

This custom MINDSTORMS ECG sensor can turn your Tape Writer
into an ECG machine!

Inaki, Xabin eta Koldoren orria (www.euskalnet.net/
kolaskoaga/)
A sophisticated plotter, able to change pens, too (this site is in Spanish).

Haiku Program (http://severed.tentacle.net/rpeake/archives/
programming/haiku.html)
C source for an automatic Haiku writer.

WwWw.syngress.com


http://home14.inet.tele.dk/rolighed/
http://el.www.media.mit.edu/groups/
http://baserv.uci.kun.nl/~smientki/Lego_Knex/
http://severed.tentacle.net/rpeake/archives/

566 Appendix A * Resources

Web-Ku: Haiku for the WWW (www.obs-us.com/people/
sunny/haiku/web_ku.htm)
A list of links to random haiku generators.

Chapter 24 Simulating Flight

LEGO MINDSTORMS Inventions
(http://mindstorms.lego.com/inventions/default.asp)

The oftficial MINDSTORMS site includes some flight simulators. Even
if all of them simulate just the attitude of the plane and not its eftects,
Wouter Kooijman’s site provided us with interesting starting points.

FlightGear Flight Simulator (www.menet.umn.edu/~curt/fgfs/)
For those who want to explore the details of a much more complete
simulation, FlightGear is a free, open source, multi-platform cooperative
flight simulator.

Chapter 25 Building Useful Stuft

Mike’s LEGO MINDSTORMS Page in Wien
(http://insel.heim.at/mainau/330001/lego.htm)

Michael Brandl shows his gallery of robots, which include “Adam der
Girtner” the robot that inspired our own “Plant Sprinkler.” Don’t miss
his other imaginative and technically clever robots: a free climber, a
robotic fish, and much more.

Chapter 26 Racing Against Time

LUGMAP (www.lugnet.com/map/)
An interactive map of LEGO user groups from around the world.

FIRST LEGO League (www.firstlegoleague.org/)

The ofticial site of the FIRST LEGO League, a partnership between the
LEGO Group and an organization called For Inspiration and
Recognition of Science and Technology (FIRST). FLL organizes LEGO
Robotics Competitions for 9 to 14 year old children.

rtlToronto (http://peach.mie.utoronto.ca/events/lego/)

A very active LEGO users group with a strong focus on MINDSTORMS
competitions. The site contains pages about the various events and their
rules.
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BrickBots (www.brickbots.com/)
Richard Sutherland’s repository of building contests and best solutions. A
nice site where you can attend “remote” challenges.

Robot Arena (www.azimuthmedia.com/RobotArena/
mainframe.html)

A site dedicated to autonomous robotic combat using LEGO
MINDSTORMS.

ItLUG (www.itlug.org)
The Italian LEGO Users Group is very active in organising robotic
contests. Follow the link to the Events page.

Chapter 27 Hand-to-Hand Combat

Atlanta Hobby Robot Club Web Site
(www.botlanta.org/index.html)

AHRC runs robotic sumo contests (including but not restricted to
LEGO robots). Their site includes a page with detailed rules.

LEGO MINDSTORMS (www.geocities.com/mario.ferrari/
lego_mindstorm.html)

Our LEGO robotics pages contain many of our Sumo and Mini-Sumo
contenders.

Chapter 28 Searching for Precision

Maxwell’s Demons — Official rules (http://news.lugnet.com/
org/us/smart/?n=22)

David Schilling’s original post about the rules concerning his Maxwell’s
Demons competition.

RoboCup Junior 1999 (www.daimi.au.dk/~hhl/RoboCup]r/
RoboCup]r_report.html)

Henrik Hautop Lund’s page about the first RoboCup Junior event—
teaturing MINDSTORMS Soccer.

Mindfest (www.daimi.au.dk/~hhl/MindFest/)
Coverage of the LEGO MINDSTORMS Robot Soccer for Children at
Mindfest.
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LEGO Robots: Challenge (www.cs.uu.nl/~markov/lego/
challenge/index.html)

The account of a soda can retrieval challenge at the Department of
Computer Science at Utrecht University (in the Netherlands).
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Legend:

m  Each cell of the table contains three data: the distance in LEGO units
(studs), the quality of the matching, and the resulting angle in degrees.

m  Distances are measured excluding the starting point. (For example, if one
peg 1s in the first hole of a beam and another is in the tenth, the distance

is nine units.)

m  The quality of the matching is expressed with a symbol that reflects the
difference between the actual distance and the closest perfect match,
expressed in LEGO units, according to the following scheme:

Symbol

Meaning

Maximum Tolerance

P

oz <

Perfect match
Very good
Good

Not so good
Bad

0.00 studs
0.02 studs
0.04 studs
0.06 studs
0.08 studs
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LLS

Height
in
Bricks
and
Plates

Base in Studs

10

11

9B 8

10B7°

11B6°

12N 6°

13 N5°

14N 5°

15N 5°

16 N 4°

17 N 4°

18G4°

19G4° [20G3°

113

16 B 6°

17 B5°

18 B 5°

19B5° [20B5°

123 2 P90°

21/3

3G70°

22/3

6B 33°

7V31°

31/3 4P90°

5P 53°

8B 30°

9N 27°

323

6 N 48°

10V 26°

11 B24°

7 B44°

12V 24°

13B22°

41/3

6V 60°

8B 41°

13 B 23°

14V 22°

15 B 20°

42/3

6N 70°

9G3%

15 B 22°

16V 20°

17 N19°

5 6 P 90°

10P37°

18 G 19°

19G18°

20B18°

513

7 B 65°

11 N 35°

20N 19° |21V 18°

52/3

9B 49°

13 B 32°

10 N 46°

14V 31°

61/3

11 G 44

15N 30°

16 B 28°

62/3 8 P90°

8B83°

9N 63°

10 P 53°

12 N 42°

17 P 28°

11 B 50°

13 N 40°

18 B 28°

19 G 26°

7173

9G77°

20 G 26°

21B25°

Continued



¢LS

Height
in
Bricks
and
Plates

Base in Studs

10

11

13

19 20

723

10 G 67°

11V 57°

16 B 35°

22V 25°

10 N 73°

17 G 34°

81/3 10 P 90°

10 N 84°

18 G 34°

82/3

12V 60°

20B31°

11V 80°

14 N 50°

21V 31°

91/3

15V 48°

18 B 39°

22N 31° |23 B29°

92/3

12V 75°

13 N 63°

16V 47°

19 G 38°

10 12 P 90°

12 N 85°

13 P67°

15 P 53°

17 G 45°

20 P 37°

101/3

13 G 72°

16 B 51°

18 G 44°

21 N 36°

10 2/3

13 N 81°

19 G 42°

15N 62°

16 G 56°

20V 41°

24 G 33°

111/3

14B78°

21V 40°

112/3 14 P 90°

14 G 86°

22 G39°

15 N 74°

16V 64°

17 v 58°

23 N 39°

121/3

15B 82°

16 G 68°

19 N 51°

21 B 45°

122/3

16V 72°

20V 49°

22B44°

18 V 60°

21 G 48°

23 B 43°

131/3 16 P 90°

16 G 86°

20 P 53°

22 B47°

132/3

21B52°

17 B 80°

19N 62°

Continued



€LS

Height
in
Bricks
and
Plates

Base in Studs

10

11

12

20

141/3

19 G 65°

21 G 55°

14 2/3

18 N 77°

19 N 68°

15 18 P 90°

18 G 87°

19 G 72°

151/3

19B75°

20B67°

21 N61°

22 G57°

25N 47°

152/3

19 G 81°

20B70°

24 N 51°

26 G 46°

25V 50°

27 V 45°

16 1/3

20V 78°

22V 63°

23V 59°

26 N 49°

28 V 44°

16 2/3 20 P 90°]

20 G 87°

22 B 66°

25 P 53°

21V 76°

26 B 52°

17.1/3

21V 82°

22N 71°

23 B 64°

24V 60°

25 B 56°

17 2/3

22G 74

23 G 67°

26 G 55°

22 G 80°

23G70°

181/3 | 22 P 90°|

22 G 87°

25N 61°

26 B 58°

29 B 49°

182/3

23 N 77°

25 N 64°

27 N 56°

30 G 48°

23V 83°

29 N 52°

191/3

24 G75°

30V51°

192/3

24 B 80°

26 G 65°

27N 61°

28 G 58°

31B50°

20 24 P 90°|

24 G 88°

25P74°

26 P67°

30 P53°




Note Frequencies

Appendix C

575



945

The following table contains note frequencies rounded to the nearest whole number.

Octave C C# D D# E F F# G G# A A# B

1 33 35 37 39 41 44 46 49 52 55 58 62

2 65 69 73 78 82 87 92 98 104 110 117 123
3 131 139 147 156 165 175 185 196 208 220 233 247
4 262 277 294 311 330 349 370 392 415 440 466 494
5 523 554 587 622 659 698 740 784 831 880 932 988
6 1047 1109 1175 1245 1319 1397 1480 1568 1661 1760 1865 1976
7 2093 2218 2349 2489 2637 2794 2960 3136 3322 3520 3729 3951
8 4180 4435 4699 4978 5274 5588 5920 6272 6645 7040 7459 7902
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Sensors

Raw values to percentage (light sensor):

percentage = 146 — raw value / 7

Raw values to temperatures, in C° (temperature sensor):
C° = (785 —raw value) / 8

Conversion of Celsius to Fahrenheit degrees:

FF=Cx9/5+ 32

Averages

Simple average:

A=WV +V,+...+V)/n

Weighted average:

A= N xW, +V,xW, + ... +V, xW,) / W, +W, + ...+ W)
Exponential smoothing:

An = (Vn X W1 + An_1 X Wz) / (W1 + Wz)

Interpolation

Linear interpolation: Find the value of the dependent variable Y for a given value
of the independent variable X, knowing that for X equal to X,,Y isY,, and for X
equal to X;,Y 1sYy,.

(Y=Y) 7/ (Yp—Ya) = (X=X))/ (X, = X)

Y = (X=X) x (Y= YJ) / (X, - X)) + Y,

Equation of the straight line which connects the points (X,,Y,) and (Xj,,Yy):

m = (Y, =Y, / (X, = X,)

b=Y,-mxX,

Y=mxX+b
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Gears, Wheels, and Navigation

Output angular velocity of the body of a difterential gear Oav, given the input
angular velocity of the two axles Iav; and lav,:

Oav = (lav, + lav,) / 2

Distance, Time, Speed:

distance = speed x time

speed = distance / time

Circumference C of a wheel, given the diameter D:

C=Dxm
3.1415926...

n

Increment in rotation sensor count I that corresponds to a turn of the wheel,
given R the resolution of the sensor and G the gear ratio between the wheel and
the sensor:

| =GxR

R = 16 (for Lego rotation sensors)

Conversion factor F which measures the traveled distance of a wheel for any
single increment in the count of a rotation sensor:

F=C/I=({Dxm/(GxR)
Actual traveled distance, given F and the count of the sensor:
T = CountxF

Traveled distance T of a differential drive robot’s centerpoint, given the traveled
distances T} and Ty of its left and right drive wheels:

TC:(TR+TL)/2

Change of orientation AOg, in radians, of a differential drive robot, given the
traveled distances Ty and T of its left and right drive wheels, and the distance B
between the wheels:

AOR = (TR_TL)/ B

579
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New orientation O; of a robot after a change in orientation AO from the
previous orientation O,_;:

Oi = Oi-1 + AO

New position of a robot (x;, y;) of a robot after having covered a distance T in
direction O; from position (X;_1, y;_1):

Xi = X1 + TC X COSs Oi
Yi = Yiq1 + Tcxsin O
Conversion of radians to degrees:

Degrees = Radians x 180 / =

Required increment in rotation sensor count for a given change of orientation
AOq in radians or AOy, in degrees:

Count =T/F = (AOgxB/2)/F=AOgxB/2F
Count = AOp x7t x B/ (360 x F)
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% symbol. See Not Quite C
3-4-5 triad, usage, 12, 15

A

Absolute errors, 216 de, 471, 481
Absolute positioning, 234, 236-243, 374 splay, 472
AC. See Alternating current losing, 488

Acceleration, 482. See also Negative Amb%ent IR radiation, 167
acceleration Ambient light, 164, 394

favoring, 517 change, 70
influence, 518

output, 472 reading, 65
Accessory sets, 161 Ambient radiation, 168

Accuracy, evaluation, 519 Ambient temperature, 229
Ackerman Anme;e, 4243
correction, 272 Amplitude, 230
steering, 142 AND configuration, 79

usage. See Smooth turns Android, study, 559
Web site, 557
Acrobot, 90
Action, bounded range, 25
Active sensors, 74, 170, 211
Actual traveled distance, 579
ADA, Web site, 554
Adam der Girtner robot, 503
Adder-subtractor, 551
Agullo, Miguel, 280, 305, 308, 56
AHRC. See Atlanta Hobby Ro
Al See Artificial Intelligence
Ailerons, 468
Air compressors, construction,
Air power, 530
Air pressure, 183
Air supply, 188, 193
Air tanks. See TECHNIC air ta
Airflow
control, 187—-190
detachment, 484

All-LEGO board, 397

site, 565

i - Aparna, 558
b Applied power, 482
Arachnids, 286
Armadillos, 345

Air-powered models, 181 Arliays N5,
Alarm clock, 508 elements,
usage, 220

Algorithms. See Bellman Algorlth o
Navigation
usage. See Software

Articulated drive, 150

-

All-LEGO Stepper Motor, Web site, 558
hanumeric capabilities, 463

interference, minimization, 298

~ Artificial Intelligence (AI), 392, 396

Index

Andy’s LEGO MINDSTORMS Ideas, Web

581




582 Index

frontiers, 410
Web site, 550
Artificial vision, 234
Asymmetrical caster, 335
Asymmetrical system, 23
Atlanta Hobby Robot Club (AHR C), Web
site, 567
Atmospheric pressure, 503
Attack, 534-535
strategies. See Robotic sumo
Automatic Haiku Writer, 462
Automation devices, 229
Autonomous Systems Lab, 312, 562
Average value. See Dark/bright
Averages, 214, 578. See also Simple averages;
Weighted averages
Averaging, 218. See also Data
Axis. See Lateral axis; Longitudinal axis;
Pivoting axis; Vertical axis
Axle-pegs, 85
Axles, 18, 155, 579. See also Driving axles;
Front wheels; Long joined axle;
Output ports; Perpendicular axle;
Pivoting axle; Steer axle; Traverse axle
Wheels
angle, increase, 271
assembly, 479
connecting. See Distant axles
connection, 136
force, 88
holding, 32
hole, 297, 397, 479
motion transfer, 19
studs, inclusion, 157
support. See Load-bearing axles
turning, 19, 23
turns, 71
usage, 67, 36

B

Baby entertainer, 508-509
back (command), 449, 454
back (subroutine), 450
Backlash, 29, 264

>

Backward motion, 175
Badham, John, 350
Baker, Steve, 73, 551, 552
Balloon tires, 139, 161
Balls, 428
Bank, 468, 471
angle, 481
change, 475
control, 473—476
coordination, 472
effect, 485
measurement, 476
movement, 475
values, 472
variable, computation, 482
Bar code, 236
Barnes, John, 166—168, 558, 562
Base beam, 415
Baseplate, 383, 534
Basic Input/Output System (BIOS), 99
Bass drum, 413
Batteries, 88—89, 528. See also NiIMH
batteries; Rechargeable batteries
AA batteries, 517
box, 51, 193, 518. See also External battery
box
combination, 517
draining, 45, 505
making. See Fake batteries
supply, 506
types, 516
Battery-powered pen laser pointers, 241
Baum, David, 102, 548, 552—-553
Beacons, 241. See also Infrared-ultrasonic
beacons
following. See Radio beacons
Beams, 6, 160-161. See also Flashlight beam;
Half-beam; Horizontal beams;
Infrared; Layered beams; Longitudinal
beam; One-hole beam; Parallel beams;
Perpendicular beam; Stacked beams;
Vertical beams
connecting, 10
deforming, 22
dimension, 312



hole, 570
importance. See Locking beams
mounting. See Inner beams
placement, 155
plates, combination, 9
support. See Inner beams; Outer beams
usage. See Stack construction; Standard
beams; Traverse beam
vertical position, 415
BEAT value, 121
Behavior, 515. See also Complex behavior;
Elastic behavior; Plane; Predefined
behavior; Random behavior; Robot;
Violent behavior
Bellman Algorithm, 388
Belts, 49
coupling, 51
elasticity, 33
pulleys, friction, 33
slippage, 49, 202
usage, 31-35
Ben Jackson’s MINDSTORMS Creations,
Web site, 561
Bend connector, 340
Berti, Marco, 237, 392, 517, 544
Beri, Marco, 555
Bevel gears, 29, 148, 342. See also Central
bevel gear; Double bevel gear
12t, 30
pair, 402
rotation, 38
Bibliography, 548-549
Bi-directional outputs, 176
BIOS. See Basic Input/Output System
Bipeds, 286, 299-309. See also Center of
gravity
robots, 284
turning ability, 309
Bi-stable mechanism, 203
Bi-stable system, 203
Black pegs, usage, 85, 176, 203
Black pins, usage, 85
Bliss, Steve, 549
Blocks, 12. See also Code; Multicolor
movable block
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Board games, 391
introduction, 392
playing, 409-410. See also Chess;
Tic-Tac-Toe
summary, 410
Boats, 329-330
Body structure, 343
Boger, Jennifer/Dan, 557
Bogie, 312. See also Left bogie; Right bogie
control, 320
Borderline, 68—69, 262
Borenstein, J., 560
Bot-Kit, Web site, 553
Boulette’s Robotics, Web site, 556, 561
Bower, Andy, 550
Bracing. See Diagonal bracing;Vertical
bracing
hinges, usage, 14-15
Brake effect, 54
Braking. See Effective braking
limit, 518
power, 518
Brandl, Michael, 503, 566
Brick Command, 105
Web site, 554
Brick Programmer. See Gordon’s Brick
Programmer
Brick Sorter, 561
Brickbay, Web site, 557
BrickBots, Web site, 567
Bricks, 4, 60, 101, 368. See also Light brick;
Programmable bricks; TECHNIC
brick; Transparent bricks
colors, 66
damage, 12
delicacy, 60
dimensions, 46, 131, 203, 256, 428. See also
TECHNIC brick
side. See Weighed brick side
orientation, 458
usage, 362, 432
Brickshelf, Web site, 550
Bricx Command, Web site, 554
BricxCC, 554
Brightness, 238
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Broad Blue, 401
arms, 408
connecting/programming, 406—408
robotic arm, 397
stability, 405
wirings/resource allocations, 406
Brok, Eric, 10, 551
Brown, Johnathan, 242, 561
Biihn, Oliver, 555
Bumper cars, 145
monitoring, 269
Bumpers, 59-60, 210, 252. See also Front
bumpers; Left side bumper; Rear
bumpers
addition, 359
closing, 79
design. See Contact bumpers; Smooth
bumpers
operation, 269
placement, 329
testing, 110
wheels, 381
Bushings. See Half bushings
Bytecode, 99
format, 100
interpretation, firmware (usage), 100
transferring, 100

C

C code, 554
Cable railways, 329
Cadmium sulfide (CdS) photo-resistor, 164
Calibrate (routine), 111
Calibration
process, 109
routine, 108
Calibration (routine), 119
Cars. See Front-wheel drive; Remote-
controlled car; Robotic car; Supercar
modeling, 265277
racing, 522
steering assembly, 354
Cartesian coordinates, 245, 464
Cartesian path, 228

Cartesian plane, 383
Cartesian scheme, 397
Cartesian system, 383, 401, 455
Casters, 380. See also Asymmetrical caster
usage. See Straight path
C/C++ code, 104
CdS. See Cadmium sulfide
Cells. See Closed cells; Open cells
Cellular phones, 123
Celsius degrees, 74-75
conversion, 578
Center of gravity (COG), 280, 443, 474. See
also Real COG; Static COG;Virtual
COG
COG-shifting biped, 302
movement, 281, 284, 286, 302—-303
placement, 360, 544
position, 283, 289, 308, 322
shifting, 299, 302-306. See also Walker
Center_steer (subroutine), 269, 270
Central bevel gear, 38
Centrifugal force, 471
Chain links, 35, 157
Chains, usage, 31-32, 35-36
Challenges, 514, 516
Changeover catch, 132. See also Transmission
pushing, 274
Chassis. See Jointed chassis; Swinging chassis;
Wheeled chassis
construction, 90
Chassis/modularity/load, combination,
90-94
Check_Bumper (subroutine), 108, 110, 112
Checkers, 392, 409
check_sequence (subroutine), 434, 435, 437
Chess, 392
construction, variations, 408—409
interface, 397

mechanical interface, construction,
400—408

playing, 396409

project, 565

software, interfacing, 396

visual interface, construction, 397—400



Cinque, 205
Cinque Details, Web site, 564
Circuits. See Closed circuit; Short circuit
bypassing. See Current-limiting circuit
cycling. See Control circuit
Circular pointer, 221, 222
Circumference, 33, 216, 579. See also Wheels
Clark, Dennis, 558
Clark, Jennifer, 559
Clicks, counting, 62—64
C-like syntax, 102
Clint Rutkas’ Skunk Works, Web site, 564
Closed cells, 387
Closed circuit, 53
Clutch. See Gears
Clutch gear, 187, 193
incorporation, 26
usage, 43. See also Strength
Code. See Bytecode; Not Quite C;
Programming; R ead-only memory;
Robotic Command eXplorer
blocks, 101
sequence, 102
count, 453
counting, 63
design, benefits. See Modular code design
execution, 521
instructions. See Machine code
instructions
organization, 106—113
routines, 422
structure, 112
usage. See LEGO RCX code
writing, 380, 518
COG. See Center of gravity
Collection abilities, 540-543
variations, 543
Collisions, 59
number, monitoring, 253
Colored markers, 394
Colors, 160. See also Bricks; Reading colors;
Sectors; Walls
choice. See Parts
differentiation. See Light sensors
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recognition, 65. See also Cubes
stripes, 238
Combat. See Hand-to-hand combat
Command-line tool, 103
Communication protocol, 407, 502
Compact bumpers, design, 532
Compasses, 154
sensors, 167
Competing robots, 520
Competitive odometry, Web site. See PID-
Based Technique for Competitive
Odometry and Dead Reckoning
Compiler. See Not Quite C
management. See Cross-compilers
Complex behavior, 350
Components, 210, 366. See also Non-
original components; Specialized
components
creation. See Custom components
Compressed air, source, 191
Compressors, 192-194, 424. See also Double
acting compressors; Double-acting
compressor
construction. See Air compressors
usage, 505
Contfiguration. See AND configuration; OR
configuration
Connection. See Diagonal connections;
Touch sensors
double-checking, 55
Connectors, 155, 161, 339. See also Bend
connector; Pin-axle connectors;
TECHNIC connectors
usage. See Angle connectors
Console mode, 66
Constants, 120
table, 121
Constant-velocity (CV) joint, 271
Construction
equipment, 150
kits, 165
Construction strategies, 83
introduction, 84
summary, 94-95
Constructopedia, 134, 363
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Contact sensors, usage, 532
Contests, 511
attending, 515
hosting, 514-516
introduction, 514
participation, 514-516
rules
defining, 514-515
studying, 515
strategy, 515
summary, 523
Control Center unit, 51
Control circuit, cycling, 74
Control Lab Learning Environment. See
DACTA
Control panel, 437
Control system
need, 409
Conversion factor, 244
Coordinate system, 397
Co-ordination, 342
Copying, 464
Corrections, number, 256
Corrective action, 521
Counter-rotating wheels, 533, 534
Coupling. See Belts; Mechanical couplings;
Motors
Crabs, 334, 346
Crankshaft, 305
Crawshaw, Stuart, 557
Creating a Spider Robot. See Spiders
Cross-compilers, management, 104
Crossed hole, 267, 323
Crown gear, 30
C.S. Soh’s LEGO Pneumatics, Web site, 559
Cubes, 5, 206, 210
color, recognition, 540
competition. See Stealing the Cube
competition
discovery, 540
stealing, 541-542
Cul-de-sac, 253
Current, 42
consumption, 45

Current-limiting circuit, bypassing, 51
Current-limiting device, 51, 55, 528. See also
Inner current-limiting device
Custom components, creation, 163—-172
Custom sensors, construction, 164—170
CV. See Constant-velocity
Cyberdog, 563
Cybermaster, 100, 103, 366
limitations, 101
set, 80
Cycles. See Low duty cycle
Cylinders, 181-187. See also Pneumatic
cylinder
Cymbal, 413

D

DACTA
boxes, 162
catalog, 163
Control Lab Learning Environment, 454
eLAB, Web site, 552
service, 162
Web site. See PITSCO-DACTA
Dark gray 16t gear, 444
Dark Side Developer Kit, 161
Dark/bright, average value, 256
Data
averaging, 218-226
logging, 103
Datalog, 119
DC. See Direct current
Dead reckoning, 235, 242, 377, 449
concepts, 255
rotation sensors, usage, 498
techniques, 542
Web site. See PID-Based Technique for
Competitive Odometry and Dead
Reckoning
Decorative parts, 302
Decorative tail, 300
Decouplers, 329
Deduced reckoning, 235
Deep Blue, 401
Defense subsystems, 535



Defense system. See Robotic sumo
#define statements, grouping, 436
Degree of freedom (DOF), 455, 464, 474
joint, 478
mechanism, 208
understanding, 200, 205-209
Delay values, 422
Delcollo, Daniel, 559
Delimited space, 209
Demons. See Maxwell’s Demons
Dependent variable, 227, 578
Destination
inputting, 399
square, 399, 407, 409
Detection
field, 166
techniques, 522
Detectors. See Hall-effect detector
Diagnostics, 103
Diagonal beams, usage, 10, 12
Diagonal bracing, 10-12
Diagonal connections, 10
Diagonal spreadsheet (length), Web site, 551
Diagonals. See Working diagonal
Differential drive, 111, 379, 443, 473—474
architecture, 128, 250
construction, 128—135. See also Dual
differential drive
edge detection, 265
favoring, 519
line-following program, 262
motors, 480
observation, 258
platform, 489
power, 140
robot, 128, 579
straight path, maintenance, 130-135
usage, 174, 256, 539. See also Dual
differential drive; LOGO turtle
variation, 138
Differential gear, 36, 189
body, 579
observation, 38
connection, 531
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lock motor, 133
motor, driving, 335
usage, 172-174, 454
Difterential light sensor, 164
Differentials, 136, 274. See also Limited slip
differential
driving, 260
rotation, 137
usage, 36-39, 189
Dinosaur-like appearance, 302
Dinosaurs, 345
Direct current (DC), 42
motors, 49
Direction, 481. See also Perpendicular
direction; Reverse direction; R otation
direction; Side-to-side direction
change, 258, 309. See also Robot
combination. See Speed
reversing. See Motors
Disconnection. See Robotic Control
eXplorer
Discovery abilities, 540-543
Discovery set. See Robotics
Distances, 10, 20, 579. See also Actual
traveled distance; Relative distance;
Traveled distance; Working distances
alteration, 452
covering, 37, 374, 580
highlighting, 47
increasing, 9
knowledge, 521
matching, 569-574
measuring, 6
ratio, 238
spacing, 13
tracking systems, 443
Distant axles, 49
connecting, 35
Dives, 488
Divide et impera (motto), 106
Dividend, 217
Division, 215-218, 228
Divisor, 217
DOE See Degree of freedom
Dog. See MIBO robotic dog
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Dog trainer, 509
Dolphin Smalltalk, 553
Done (return value), 407
Dorst, Leo, 201
Double acting compressors, 192
Double bevel gear, 30
Double-acting compressor, 405, 504, 559
Doug Wilcox’s LEGO MINDSTORMS,
Web site, 561
Doug’s LEGO Robotics, Web site, 556
DOWN constant, 448
Drag, 470, 482
output, 472
Drag racing, 516518
Draw bridges, 329
Drawing, 441. See also Mazes
introduction, 442
suggestions, 464—465
summary, 465—466
Drives. See Articulated drive; Four-wheel

drives; Front-wheel drive; Pivot drive;

Single-motor steering drive; Tri-star
wheel drive

configurations, 150-151

construction. See Differential drive; Dual
differential drive; Skid-steer drive;

Steering; Synchro drive; Tricycle drive

gearing, 259

shafts, 271

wheels, powering, 140
Driving axles, 90

blocking, 146
Driving light source, 356
Driving ring. See Transmission
Droid Developer Kit, 161
Droids, construction. See Johnny five-style

droid; R2-D2-style droid

Droids, replication, 349

introduction, 350

summary, 368-369
Drummer

construction, 413—416

creation, 412—417

programming, 416—417

variations, 417

Dual difterential drive
construction, 136—138
usage, 174, 245

Dual IRPD, 166

Dual RCX robot, 161, 367

Dual-RCX projects, 406

Duna Rossa, 330
Details, Web site, 562

Duty cycle. See Low duty cycle

Dynamic balance, 286
usage, 287

Dynamic forward motion, 143

Dynamic stability, 287

Dynamics, 286

E

Eaton, Doug, 555
ECG Sensor, Web site, 565
Echo, 166
Edges
detection, 253—255. See also Differential
drive
sensors, 254. See also Left-edge sensors;
Right-edge sensors
Editors, 103. See also Text editor
Eftective braking, 269
Efficiency, 22, 256
Egorov, Sergei, 551, 559
Eight-cylinder motor, 272
eLAB. See DACTA
Elastic behavior, 180
Elasticity, 181, 200
FElectric brake, 53, 132
Electric coils, usage, 409
Electric devices, 77
Electric motor, 42, 200
power, control, 52
Electric Piston, 201
Electric plates, 169
Electric system, 50
Electric valve, 187—188
Electrical energy, 42
Electrical signals, RCX conversion, 66
Electricity



conduction, 330
flow, 58
sources. See Non-LEGO electricity
sources
Electrocardiograms, 463
Electroencephalograms, 463
Electromagnetic coil, 409
Electromagnets, 438
Electronic components, 330
Electronic games, 425
introduction, 426
suggestions, 438—439
summary, 439
Electronic interface, 172
Element packs, 162
Element Register, 557
Elevators, 328
Elevators (airflight), 468
trim, 470
Ellipse, description, 288
Emitting ball. See Infrared
Emulators. See Terminal emulator; Unix
emulators
EmulegOS, Web site, 555
Encapsulation. See Not Quite C
Encoder, 243
resolution, 244
Enemy, discovery, 530-532
Energy. See Electrical energy; Mechanical
energy; Potential energy; Thermal
energy
conversion, 42
density, 181
storage, 186
Engineering
Statistics Internet Handbook, 560
Web site, 552
Engines, construction. See Pneumatic
engine
Environment, analysis, 372
Eolo, 530
Epistemology and Learning Group, 442
Equilateral triangle, 452
Eriksson, Mikael, 554
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Errors. See Absolute errors; Percentage
errors; Relative errors

Erwin, Benjamin, 549

Esterel, 555

Event-driven programs, 114

Event-driven scheme, 114

Everett, H.R.., 560

Expansion sets, 161

Exploration Mars Set, 161

Exploring the Planets, Web site, 563

Exponent, 217

Exponential smoothing, 223-226, 578

Expression, last step, 217

External battery box, 50

External guidance, choice, 234-235

External light sources, 77

External power source, supply. See Robotic
Command eXplorer

External reference points, usage, 374

External sources, effect, 70

Extra-large robot, 400

Extreme Creatures Set, 161

F

Face-down light sensor, 107,518
Fahrenheit degrees, 74-75
conversion, 578
Fake batteries, making, 506
Falco, Mark, 555
Fast painting, 522
Feeding mechanism, 458
Feet. See U-shaped feet
size, 303
Felt-tip pen, 522
Feng, L., 560
Ferrara, Francesco, 554, 565
Ferrari, Mario, 555
FetchBot, Web site. See LEGO
Fiber Optic System unit, 161
Fiber, position, 429
Fiber-Optic System (FOS)
control, 398
device, 78, 396, 398
increments, 399
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lights, 399, 431
unit, 397, 427-429
Field boundaries, 527
Fingers, 205, 206
activation, 422
control, 419
groups, 420
Firmware, 73, 99-103, 215
allowances, 223
installation. See Robotic Command
eXplorer
location, 101
NQC, support. See RCX2 firmware
opportunities, 103
options, 521
replacements, 105
upgrading, possibility, 101
usage, 218, 228, 264. See also Bytecode
variables, limitation, 243
FIRST. See For Inspiration and Recognition
of Science and Technology
Flaps, 470
Flashlight beam, 356
Flex system, 159, 464
Flex tubing, 458
Flight
attitude, 485
physical equations, 480
status variable, 482
visual reference, 473
Flight simulation, 467
introduction, 468
summary, 492
Flight simulator
physical structure, 488
static version, 489
Web site. See FlightGear Flight Simulator
FlightGear Flight Simulator, Web site, 566
Float mode, 54, 134, 501
switching, 416
Float state, 132
Floating point math, 451
Floating point support, 105
Floating-point numbers, 217-218

Floating-point variables, 217
Floor, 111
positioning, control, 328
Floor sweeper
construction, 494—498
improvements, 497-498
programming, 497
Flow detection, RCX usage, 58
Foam rubber, sheet, 496
Follow_Line (routine), 110, 113
for (control statement), 222
For Inspiration and Recognition of Science
and Technology (FIRST) LEGO
League, Web site, 566
Force, 20, 280, 482, 485. See also Centrifugal
force; Gravitational force; Push/pull
force
absorption. See Rubber bands
application, 186
FORTH, 104. See also Programmable brick
FORTH
forward (command), 449, 454
Forward motion, 276
FOS. See Fiber-Optic System
Four-in-a-row, 565
Four-legged animals, 286
Four-legged robot, 289—-292
Four-legged walker, 341
Four-wheel drives, 270-274
Four-wheel steering systems, 272
Francia, Roberto, 532-533
Frequency, 118, 486. See also Note
frequencies
Friction, 2223, 86—88, 138, 173. See also
Belts; Gears; Limited friction; Tracks
addition, 517
disappearance, 256
increase, 78, 85
minimization, 34
reduction, 327
usage, 504
Front assembly, 261
Front bumpers, 291
Front collisions, detection, 377
Front sensor, 380



Front wheels, 315-318, 380
assembly, 382
axles, 267
Front-wheel drive, 270-274
cars, 271
construction, 305
problem, solving, 274
Fulcrum, 288, 295
Funnels, 209
Fusion, Mike, 551

G

Galloping, 43—46, 287
Gasperi, Michael, 81, 164, 169, 170, 548,
552
Gear wheels, 296, 551
40t, 55
pulleys, advantages, 34-35
Gearboxes, 156, 161, 312, 320
Geared motor, 43, 45, 46
Gearing down, Web site, 552
Gearing ratio, choice, 22
Gearing system. See Pulley-belt worm-24t
gearing system
Gearing up/down, 20
Gearings, 172, 189, 203, 300. See also Drives
24t, 499
idling, 193
Gears, 18, 579-580. See also Bevel gears;
Crown gear; Differential gear; Double
bevel gear; Idler gears; Input; Unrolled
gear; Worm gears
8t, 21, 2628, 46
connection. See Motors
engaging, 275
mounting, 263
powering, 148
16t, 29, 35, 38, 263, 274. See also Dark
gray 16t gear; Upper 16t gear
with clutch, 132
connection, 176
engaging, 275
matching. See Worm gears
usage, 46, 131
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24t, 2328, 38, 46, 53, 295, 476
connection, 456
engaging, 275
matching. See Worm gear
meshing, 138
placement, 55, 266
rotation, 172
40t, 21, 26-28, 35, 323
attachment. See Single-stage geartrain
power, 189
rotation, 137
usage, 148, 489
fitting, 2631
friction, 200
holes, 287
introduction, 18
number, increase/decrease, 19-21
placement, 26-31
ratios, 517, 518
choice, 250
slack, 408
spacings, 551
summary, 39—40
switch. See Synchronized gear switch
usage, 276277
switching, 274-277
turning, 23
usage, 17, 517. See also Straight path;
Strength limitation
Geartrains, 21-22, 32. See also Internal
multistage reduction geartrain; Single-
stage geartrain; Turntable
purpose, 131
Web site, 551
General interest sites, 549-568
General Paranoyaxc RCX Tools, Web site,
555
General Purpose Analog Interface, 169
Generators, motors (usage), 55
Geometry, 551. See also Legs; Robot
introduction, 4
summary, 15
understanding, 3
Global functionality, 175
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Global Positioning System (GPS), 235, 239
Golia I1, 533
Gondolas, 329
Gordon’s Brick Programmer, 105
Web site, 553
Go_Straight (subroutine), 107, 111
GPS. See Global Positioning System
Grabbers
arms, Web site. See Mark’s LEGO Grabber
Arm
operating, 200-205
Grabbing mechanism. See Lifting/grabbing
mechanism
Gradient pad, construction, 238
Grafcet, 555
Granularity, 395
Graphical interface, 102
Graphing system, 462
Gravitational force, 471
Gravity, 280. See also Center of gravity
effect, 486
GRAY constant, 231
Gray pegs, design, 85
Grid. See Standard grid
Grippers, 200
Groove, 32
Ground clearance, 379
Guidance, choice. See External guidance;
Internal guidance
Guiding IR light, 367-368
Guy’s LEGO page, Web site, 556

H

H8300 (Hitachi), 99, 104
Haiku, 462—463. See also Automatic Haiku
Writer

generators, 56

Haiku Program, Web site, 565

Half bushings, 476

Half-beam, 85

Hall-effect detector, 169

Hands. See Three-finger pneumatic hand
operating, 200-205

Hand-to-hand combat, 525

introduction, 526
summary, 536
Handwriting, emulation, 464
Hansen, John, 554
Hardware, construction. See Tic-Tac-Toe
Harvesting systems, 542
Head mechanism, 364
Heading, output, 472
Hedgehogs, 346
Height, 4
Hemispherical head, 350
Hempel, Ralph, 104, 172, 192-193, 548,
552-553, 558-559, 564
Henlich, Oliver, 561
High-speed applications, 198
High-speed race tracks, 471
High-torque applications, 156
Hinges, usage. See Bracing
Hitachi. See H8300
HiTechnic, Web site, 558
Holes, 6, 18, 46, 131. See also Axles; Beams;
Crossed hole; Gears; Output
beams. See One-hole beam
counting, 10
interleaving, 13
Holonomy, 151
Horizontal beams, 67, 10, 84
Horizontal ladder, 522
Horizontal sizes, expressing, 12—14
Horizontal stabilizer, 468
Horizontal units, expressing, 12—14
Horizontal wheel, 377
Hubs, 36
Hughes, Jim, 557
Human assistant, 396
Humidity, 80
Husby, Dean, 559
Huw, Web site, 561
Hydraulics, 181
metaphor, 42
Hysteresis, 214, 215, 262
advantage, 521
understanding, 229-231
Web site, 560



Ianiero, Antonio, 395, 530, 564
IBM, 401
Idea Books, 284
Ideal Gas Law, 180
Idler gears, 28, 444
usage, 39
Idler wheel, 533
Impact force, 60. See also Sensors
Ifiaki Zabin eta Koldoren orria, Web site,
565
InchLab, Web site, 558
Independent beam, 533
Independent rear wheels, 143
Independent tasks, running, 113—-114
Independent variable, 227, 578
Indirect control, 51
Inertia, 518
concept, 89
definition, 87
effect, 352
Infrared (IR)
beam, 210, 211
communication, definition, 445
devices, 367
emissions, 541
emitting ball, 237
interface, 99—-100, 489
LED, 70, 543, 544

light, 58, 210, 367, 445. See also Guiding

IR light
emission, 538
proximity measurement system, 165
link, usage, 100
messages, 423, 491
radiation. See Ambient IR radiation
rays, 444
serial communication interface, 98
tower, 65, 99, 100
Infrared proximity detector (IRPD), 154,
165, 170. See also Dual IRPD
sensors, 166, 359
Infrared-ultrasonic beacons, 561
Initialization, 108

Index

Ink-jet printer, 208, 455
Inner beams

mounting, 384
Inner beams, support, 91
Inner current-limiting device, 518
Inner loop, 437
In-place steering, 139
Input, 136

angular velocity, 39, 579

devices, 417

gears, 176
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Input ports, 98, 101, 107, 161, 231. See also

Robotic Control eXplorer
dedicating. See Touch sensors
multiplexing, 171
number, 170
status, 105
touch sensors, addition, 432

Input/output device, 396

Insects, 286, 345

Insulating materials, 506

Insulators, 330

Integer numbers, 215

Integers. See Whole integers
usage, 451

Integrated development environments, 103

Intelligence, form, 497

Interest sites. See General interest sites
Internal counter, implementation, 398
Internal guidance, choice, 234-235
Internal map, 388

Internal multistage reduction geartrain, 45

Internal resistors, 80

Internals, Web site. See Robotic Command

eXplorer

International System of Units (SI), 20

Internet resources, 463

Interpolation, 214, 578. See also Linear
interpolation

usage, 226—229

INTERVAL constant, 481

In-the-field tuning, 449

Inverted round tiles, 135

IR. See Infrared
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IRPD. See Infrared proximity detector
Italian LEGO Users Group (ItLUG), 514,
527-528, 541
Web site, 567
ItLUG. See Italian LEGO Users Group

J
Jackson, Ben, 561
Jammed micromotors, releasing, 45—46
Jansson, Gustav, 551
Java

Module. See JStamp Real-time Native Java

Module

systems, 105
JCX, Web site, 558
Joe’s MINDSTORMS Gallery, Web site, 562
Johnny Five, Web site, 564
Johnny five-style droid

construction, 350, 361-368

variations, 366—367

programming, 364
Jointed chassis, 475
Joints. See Constant-velocity; Universal

joints

JP Brown’s Serious LEGO, Web site, 561
JStamp Real-time Native Java Module, 558

K

Kangaroos, 334, 345

Kasparov, Garry, 401

Killough platform, 151, 556
Killough, Stephen, 151
Knudsen, Jonathan B., 548, 556
Koalas, 346

Kooijman, Wouter, 566

Kotay, Keith, 150

L

Label-writing machine, 462, 463
Labyrinth, 382. See also Makeshift labyrinth
plan, 388
solution, 374
underlying cell, 383

Lachmann, Michael, 553
Lancillotto (Lancelot), 532—533
Landmarks, 236—243. See also Natural
landmarks
Languages. See NQC
usage. See Programming
Large-scale cleaning, 461
Laser light, 241
Laser pointers. See Battery-powered pen
laser pointers
Lateral axis, 468, 474
pivoting points, 475
Layered beams, 6
Layered structure, 160
Layers, locking, 8487
LDraw, Web site, 553
Learning by example, 465
LED, 65. See also Infrared; Sensors
illumination, 66
turning on, 397
usage, 438
Left bogie, 315
left (command), 454
Left drive wheels, 579
Left side bumper, 377
Left side rule tactic, 382
Left-edge sensors, 254
Left-side strategy, usage, 374-376
Legato effect, 120
Legged robots, 128
LEGO
board. See All-LEGO board
Compatible Pneumatic Solenoid Valve,
Web site, 559
Construction Site-Ideas, Web site, 559
devices. See Non-LEGO devices
Direct, 162
engineers, 8
FetchBot, Web site, 560
inventory, 320
Online Shop, 323
originals, 163
parts. See Non-LEGO parts
Parts Reference. See LUGNET



Web site, 549
Pneumatics, Web site, 559
Robots, Web site, 568
Set Inventories, Web site, 557
Shop At Home, Web site, 557
supplies, 243
Switch Multiplexer, Web site, 558
Train Depot, Web site, 562
tree, 346
Users Group, 514

Lego Biped Links, 562
LEGO Users Group Network (LUGNET),
315,515
LEGO Parts Reference, 85
Web site, 549
legOS, 52, 123, 218, 243, 463
emulator, 555
switching, 264
usage, 104, 264, 465, 480
Web site, 553
LegoSim, Web site, 555
Legs, 281, 305
assemblies, 196
attachment, 339
connection, 291
construction, 287-289. See also U-shaped
legs
geometries, 289
geometry, 295, 301. See also Turtle
interlacing, 299-302
movements, 308
opening/closing, 323
synchronization, 293
terminal point, 288
leJOS, 218, 243
switching, 264
usage, 105, 465, 480
Length, 4
LEO & LEGO, Web site, 556
Level crossings, 329
Lift, 470, 483484
output, 472
Liftarms, 85, 155, 160, 476
usage, 189, 203
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Lifting arm, operation, 499
Lifting mechanism, 402, 408, 464
Lifting/grabbing mechanism, 409
Light
emitting, 65
follower, 64
measuring. See Reflected light
reading. See Ambient light
sources. See Driving light source; External
light sources
value, 109, 262
variation, 344
Light brick, 431, 432
Light sensors, 64-70, 75, 170, 504. See also
Differential light sensor; Face-down
light sensor
addition, 417
allowance, 531
color, differentiation, 236
detection ability, 543
mounting, 256, 354
placement, 242
position, 264
raw values, 217, 228
readings, 383, 541
stacking, 256
trick, Web site, 552
usage, 241, 254, 431, 464
Light/dark areas, readings, 256
Light-driven robot, 64
Limit Switch, 171
Limited friction, 135
Limited slip differential, 144
Line following, 67-69, 236, 256-265,
519-520
competitions, 258
interruptions, 519
optimization, 264-265
program. see Difterential drive
Line variable, 109
Linear interpolation, 226, 578
Linear motion, 180
Links. See Chain links; Track links; Tread
links
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usage. See Infrared
Load, combination. See
Chassis/modularity/load
Load-bearing axles, 91
support, 89
Lobsters, 346
Lock motor. See Differential gear
Locking beams, importance, 86
Locking layers, 84
Locking scheme, 15
Locomotives, 328, 563
Logging. See Data
Logo Foundations, Web site, 565
LOGO systems, 443
LOGO turtle, 462, 539
construction, 443—448
creation, 442—455
differential drive, usage, 455
language, choice, 453—454
programming, 448—453
variations, 454—455
Web site, 565
Long joined axle, 402
Longitudinal axis, 468, 474
Longitudinal beam, 323. See also Parallel
longitudinal beams
Loopholes, 514
Looping. See Program
Loops. See Inner loop; Mazes
usage, 434
Loran system, 239
Lorenzetti, Sergio, 532
Low duty cycle, 52
Low-level subroutines, 107
Lucas, George, 350
Lucas, G.W., 561
LUGMAP, Web site, 566
LUGNET. See LEGO Users Group
Network
Luis Vitton Cup 2000, 330
Luna Rossa, 330
Lunar Rover, 563
Lund, Henrik Hautop, 543, 567
Lustre, 555

M

Machine code instructions, 100

Machine Learning, Web site, 550

Machinery, 18

Macros, 416

Macs Robotics, Web site, 557

Magnetic switches, 154

Magnetism, 229

Magnets, 169

Mainsail, 330

Makeshift labyrinth, 381

Makino, Shigeru, 555

Mantissa, 217

Marbles, 206

Mark’s LEGO Grabber Arm, Web site, 560

Maron, Chad, 562

Martin, Fred, 550, 551

Masetti, Paolo, 104, 264

Mass, 87

Massachusetts Institute of Technology

(MIT), 119, 237, 392, 442, 543

Programmable Bricks, 550

Master-slave configuration, 406

Masthead, 330

Matching. See Distances
quality, 570

Mathematical Atlas, 560

Mathematical functions, 015

Mathematics, 213
introduction, 214-215
summary, 232

Mathematics, cheat sheet, 577

MAX constant, 435

maxlight_left (variable), 357

maxlight_right (variable), 357

Maxwell, James Clerk, 540

Maxwell’s Demons, 540-542
Web site, 567

Maze Runner, 372
construction, 377-382
limitations, 382
programming, 380
variations, 381-382

Maze solutions, 371, 520



introduction, 372
summary, 389-390
Maze Solver, 372, 393
construction, 382—389
programming, 387-389
Maze Solving Algorithm, Web site, 564
Mazes
creation, 381
drawing, 387
exiting, 373377
strategies, 376—377. See also Left-side
strategy; Right-side strategy
exploration, 388
loops, 375
representation, memory usage, 387
scanning, 388
MazeWalker, Web site. See MINDSTORMS
MDOE See Multi-Degree-of-Freedom
Mechanical adding/subtracting device, 38
Mechanical configuration. See Robot
Mechanical couplings, 489
Mechanical device, 208
Mechanical energy, 42
Mechanical interface, construction, 408. See
also Chess
Mechanical resistance, 134
Mechanics, 154
Mechatronics, 98
Media Lab facility, 392
Melody, construction, 422
Memory
array, 394
limitations, 388
requirement, 377
usage. See Mazes
Messaging system. See Two-byte messaging
system
Metric system, 72, 482
MIBO robotic dog, 345, 563
Micromotors, 43, 46, 464
releasing. See Jammed micromotors
Micromouse Maze solving competitions,
564
MicroScout, 161-162
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Microscout (programming), Web site, 555
Micro-switches, 165
Microwave, 502
MIDI. See Musical Instruments Digital
Interface
Mientki, Stef, 555, 558
Mike’s LEGO MINDSTORMS Page in
Wien, Web site, 566
Milk Guard, 494
construction, 498—502
improvements, 502
programming, 501
usage, 501
warnings, 501-502
Millington, Huw, 561
Milton Bradley, 432
Mindfest
(1999), 119, 237, 392, 543, 564
TTT, 396
Web site, 567
MindScope, Web site, 555
Mindsensors, Web site, 558
MINDSTORMS
Add-Ons, Web site, 557
box, 13, 23, 302, 372, 426, 499
contents, 58
Test Panel, 66
CD-ROM, 99, 101
creations, 392
equipment, 140, 377
expansion sets, 155
Info Center, Web site, 563
Inventions, Web site, 566
MazeWalker, Web site, 564
programmers, 106
programming, 105
set, 383, 527, 539. See also Star Wars
MINDSTORMS sets
software, 100
system, 234, 287, 426
Web site, 549, 567
MINDSTORMS kit, 13, 30-33, 36, 158
contents, 45, 47, 50
documentation, 98
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limitations, 154
parts, 90
inclusion, 291, 312, 362, 494
noninclusion, 69, 71, 74, 77, 337, 499
recommendation, 162
tracks
availability, 361
usage, 366
trick, 266
usage, 206, 234, 250, 392-393
Mini Sumo, 527
rules, 533
tournament, 531
MIT. See Massachusetts Institute of
Technology
MLCad, Web site, 553
Mobile platform, 160
Mobile robots, 86, 130
Mobility, 127
introduction, 128
summary, 151
Modular code design, benefits, 112
Modular construction, 87
Modular robots, design, 84
Modularity
combination. See Chassis/modularity/load
maximization, 87—88
Modulo operator, 222
Moles, 334, 346
Momentum, 532
Monkey bars, 522
Monophonic device, 120
Monophonic sound, 123
Motion. See Backward motion; Linear
motion; Straight motion
control. See Synchro drive
random pattern, 497
receiving, 156
resistance, 54
reversal, 175
transferring, 29, 33, 35, 146
transmitting, 30
Motor Mis-Match, Web site, 551
Motor-driven valve switches, 200

Motors, 22, 49, 188, 206, 320. See also Direct
current; Electric motor; Geared
motor; Micromotors; Servo motors;
Steering; Stepper motor; TECHNIC
motor; Ungeared motor

addition, 413
attachment. See Robotic Control eXplorer
braking, 53-54
complexity, reduction, 315
connection. See Turning
control, 41
introduction, 42—43
summary, 56
coupling, 5556
decoupling, 45
direction, reversing, 531
expense, 48
location, 305
mounting, 46—49
operation, 423
power
control, 52-55
supply, 140
releasing. See Jammed micromotors
removal, 47
reversing, 518
saving, 320
shaft, 8t gear connection, 379
short-circuiting, 50
size, 361
stalling, 43
support, 420
testing, 50-51
usage, 315, 351. See also Generators
wiring, 49-52

Motor/Sensor Expander, 559

Mounting brackets, 46

Mounts. See Vertical mounts

Mouse

construction, improvement, 338-339
creation, 334—339

Movable plate, 158

Movable shaft, 275

Mozilla Public License, 104



Mueller, Frank, 555

Multicolor movable block, 69

Multi-Degree-of-Freedom (MDOF)
vehicles, 150

Multilegged walkers, 345

Multiplatforms, 103

Multiple sensors, connecting, 78—80

Multiplexer, 438

Multiplexing, 170. See also Input ports;
Output ports

Multiplication, 215-218, 228, 265

Multiprogram downloading, 105

Multistage reduction

geartrain. See Internal multistage reduction

geartrain

system, 21
Multitasking, 113
Munafo, Robert, 177, 558
Music

introduction, 118

playing, 117, 119-122

summary, 124-125

Musical Instruments Digital Interface
(MIDI)

files, conversion, 122—124
MIDI2RCX, 556
conversion utility, 122, 124
Web site, 556
Musical instruments, playing, 411
introduction, 412
suggestions, 424
summary, 424
Music-Robots, Web site, 556

N
Nagata, Joe, 280, 549
Native Java Module. See JStamp Real-time
Native Java Module
Natural landmarks, 498
Navigation, 535, 579-580. See also Playing
field; Room; Tiles
abilities, 166
algorithm, 545
allowance, 543

Index

capabilities, 236
control, 175
problems, 209
solving, 167
system, 374
Web site. See Robot
Ncm. See Newton-centimeter
Negative acceleration, 483, 484
Nelson, Russell, 550
Newton-centimeter (Ncm), 20, 25, 26
Newton-meter (Nm), 20
NiMH batteries, 517
NIST/SEMATECH, 560
Nitin, 558
Nm. See Newton-meter
No-contact switches, 169
Noga, Markus, 104
Non-LEGO custom devices, 154
Non-LEGO devices, 164
Non-LEGO electricity sources, 51
Non-LEGO parts, 163, 323, 446
Non-LEGO sensors, 81, 164
Nonlinear systems, 226
Nonoriginal components, 367
Nonoriginal parts, addition, 80
Nonpivoting wheels, 150
Nonsteering SHRIMP rover, 320
Nose-ups, 488
Not Quite C (NQC), 98, 215, 243
% symbol, 222
access, 114
API Programmer’s Guide, Web site, 554
code, 105, 122, 124, 358
fragment, 269
solution, adoption, 483
usage, 220-221, 231, 258, 434
compiler, 103
documents/tutorials, 103
encapsulation, 103
features, 106
implementation, 245, 452
installation, 103
instructions, 118
program, 465

599



600 Index

programming, 263

request, 108

subroutine, 398

support. See Robotic Command eXplorer
usage, 102-103, 106, 395

version, 104, 480

Web site, 553

Note frequencies, 575-576

Note Names, Web site, 556

Notepad, 103

Note-taking, 373374, 389

NQC. See Not Quite C
NQCEdit, Web site, 554

Numbers. See Floating-point numbers;
Integer numbers; Whole numbers
Numerical analysis, 215

Numerical Analysis, Web site, 560
Numerical Methods, Web site, 560

(0)

Objects, finding, 199, 209-212

introduction, 200

summary, 212

Objects, grabbing, 199

introduction, 200

summary, 212

Obstacles, 59, 70. See also Static obstacle

detection, 73, 148, 166, 250, 265, 372

interference, 254
variations, 255-256

hitting, 112

overcoming, 520

removal, 520

usage, 432

Odometry, 243

Web site. See PID-Based Technique for
Competitive Odometry and Dead
Reckoning

OHP. See Omnidirectional Holonomic

Platform

Omnidirectional Holonomic Platform

(OHP), 151

Omni-directional sensor

connection, 149

usage, 148
On state, 78, 79
One-hole beam, 69
on_left variable, 488
On/ off switches, 315
on_right variable, 488
Open cells, 387
Open Source project, 105, 555
Operating hands, 200-205
Operations, number, 220
Opposing rubber bands, 205
Optic fibers, 367, 397
Options, expansion, 153
introduction, 154
summary, 177-178
OR configuration, 78
Organizing committee, 515,516
Orientation, 375
change, 23, 443, 450, 579-580
losing, 235
Orthogonal direction, 30, 474
Oscillations, 230
Ostriches, 334, 345
Otto, 207, 208
Otto Details, Web site, 564
Outer beams, support, 91
Output. See Bi-directional outputs
angular velocity, 39, 579
axles, 172, 174
conversion, 167
direction, 28
holes, 398
Output ports, 98, 106, 175, 409. See also
Robotic Command eXplorer
exiting, 182
multiplexing, 171
number, 170
touch sensors, connection, 432
Output torque, 26
Overflows, 217,218
Opverloads, protection, 52
Overmars, Mark, 554
Opysters, 345



P

Pacific NW LEGO Train Club (PNLTC),
Web site, 563
Pacing, 43—46
Pagliarini, Luigi, 543
Painting. See Fast painting
Paper feeding motor, 464
Paper transport system, 456
Papert, Dr. Seymour, 442
Paradigm shift, 519
Parallel beams, 301
Parallel longitudinal beams, 420
Parallel wheels, 37
Parallelogram, 316
Parts, 22, 47, 143,271, 293, 299. See also
Non-LEGO parts
acquisition, 154-163
addition. See Non-original parts
colors, choice, 160-161
purchasing, 161-163
Reference. See LEGO Users Group
Network
Web site. See LEGO
ruining, 25
usage, 146, 151, 350, 372
washing, 461
Passive sensors, 74, 101, 161
Passive stations, usage, 242
Patil, Nitin, 170, 171
pbForth. See Programmable brick FORTH
Peak values, 218
Pegs, 169, 267. See also Axle-pegs
design. See Gray pegs
number, 393
rows, 384
technique, 408
usage, 387. See also Black pegs
Pen carriage, removal, 458
Pen motor, 448
Pen movements. See Up/down pen
movements
pendown (command), 448, 454
PEN_TIME constant, 449
penup (command), 448, 454

Index

Percentage errors, 215
Perimeter, 375
Perpendicular axle, 262
Perpendicular beam, 6,7
Perpendicular direction, 455, 474
Pet feeder, 509
Peter, Andreas, 558
Phillips, Chris, 169
Photoelectric cell, 69
Pianist
changes/improvements, 423424
construction, 417—422
creation, 417—424
programming, 422—-423
scores, suggestions, 423
strengthening, 419
Piano keys, resistance, 417
PID. See Proportional Integral and
Derivative
PID-Based Technique for Competitive
Odometry and Dead Reckoning,
Web site, 561
Pin, Francois, 151
Pin-axle connectors, 323
Pinball machine
construction, 426—431
improvements, 432
creation, 426—432
programming, 431
Ping-Poing, 438
Pins, usage. See Black pins
Pipe junction, 507
Pipe network, 508
Pistons. See Electric Piston
Pitch (angle), 468, 471, 482—483
adjustment, 475
compensation, 485
control, 473, 474, 476
increase, 484
measurement, 476
movement, 475
values, 472
Pitch (sound), 118
decoding, 423
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sensor, 166
PITSCO, 163
PITSCO-DACTA, Web site, 557
Pivot drive, 150
Pivoting axis, 143
Pivoting axle, 335
Pivoting point. See Lateral axis; Robot
Pivoting wheel, 91
Plane. See Vertical plane
behavior, 470
Planetary gear, 551
Plant sprinkler
construction, 502—508
improvements, 505-508
programming, 504-505
usage, 504-505
Plates, 5, 8, 47, 85. See also Baseplate;
Electric plates; Movable plate;
TECHNIC plates; Transparent plates
combination. See Beams
counting, 7
dimension, 302, 394, 496
layer, 84
placement, 155
usage, 161, 496
Platforms. See Difterential drive; Killough
platform
motion, 487
Playing field, navigation, 540
play_sequence (subroutine), 434—436
PlaySound (command), 118, 124
PlayTone (command), 119, 124
Pliers, 203
Pliers-down command, 407
Pliers-up command, 407
Pneumatic arm, 561
Pneumatic cylinder, 182, 202, 206, 503
operation, 190
Pneumatic devices, 159
Pneumatic engine, construction, 194-198
Pneumatic hand. See Three-finger
pneumatic hand
Pneumatic parts, 200
Pneumatic pumps, 503

Pneumatic system, 180, 186, 503
Pneumatic valve, 507
Pneumatics, 179, 508
interfaces. See RCX-to-pneumatics
interfaces
introduction, 180
summary, 198
usage, 464
Web site. See LEGO
PNLTC. See Pacific NW LEGO Train Club
Pointer. See Circular pointer
Polarity, 49, 438
reversing, 42
switch, 51, 187, 312, 320, 480
requirement, 315
rubber bands, usage, 316
usage, 78, 193—-194
Porcupines, 346
Ports. See Input ports; Output
conservation, 190
increase, solutions. See RCX
limitations, solutions, 170—172
number, limitation, 172
Position, 375. See also Resting position
control
allowing, 385
system, 377
marking, 393
Positioning, 24, 233, 245. See also Absolute
positioning; Relative positioning
accuracy, 26
introduction, 234
summary, 246
Postfix notation, 104
Potential energy, 24
Power, 43, 53, 531. See also Air power;
Applied power; Braking
control. See Electric motor; Motors
level, 53
trimming, 130
portion, 483
removal, 54
source, 26
supply. See Robotic Command eXplorer



supplies, 509
transferring, problem, 49
Power activated sensors, 397
Precise positioning, 538-539
Precision, 537
combination. See Speed
introduction, 538
summary, 545-546
Predefined behavior, 101
Pre-match test time, 528
Pressure, 180, 181, 505. See also Air pressure;
Atmospheric pressure
exertion. See Touch sensors
requirement, 505
switch, 405, 559
Primary arm, 405
Program
looping, 59
slots. See Robotic Command eXplorer
statements. See Robotic Control eXplorer
Programmability, limitation, 161
Programmable brick FORTH (pbForth),
462, 465
switching, 264
usage, 104-105, 480
Web site, 553
Programmable Bricks, 554. See also
Massachusetts Institute of Technology
Programmable bricks, 100-101, 103, 442
Programming. See LOGO turtle; Robot
code, 214
environment, 480
languages, 62
usage, 103—105
tools/environments, usage, 105
Projects, 249, 364
introduction, 250
summary, 277278
Web site. See Robotics
Proportional Integral and Derivative (PID)
approach, 561
Prototype. See Robot
construction, 538
Prototyping, 26
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Proudfoot, Kekoa, 103, 553
Proximity detection, 70, 211, 359
exclusion, 541
Proximity detectors. See Infrared proximity
detector; Ultrasonic proximity
detectors
Proximity sensing, 522
Pseudo-code, 62,93, 106
Pulley-belt setup, 202
Pulley-belt systems, 32, 262, 364
Pulley-belt worm-24t gearing system, 354
Pulleys, 49, 51
advantages. See Gear wheels
combination, 33
friction. See Belts
sizes, 264
slippage, 143
usage, 31-35
Pulling cables, 329
Pulse width modulation (PWM), 52
Pumping technique, 508
Pumps, 181-187, 191. See also Pneumatic
pumps
Push buttons, 98, 211
Push/pull force, 197
PWM. See Pulse width modulation
Pyroelectric sensor, 167
casing, 168
Pythagoras, 10
theorem, 11, 14, 15

Q

QC programming system, 565
QC, Web site, 554

R

R2-D2 Builders Club, Web site, 563-564
R2-D2 clone, 564
R2-D2-style droid, 364, 380
construction, 350-360
variations, 359-360
programming, 356-360
Races, 32-33, 522
Racing. See Cars; Drag racing
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Rack and pinion assembly. See Upside-
down rack and pinion assembly
usage, 402, 458
Rack and pinion scheme, 273
Rack and pinion steering
assembly, 157
mechanism, 142
Rack and Pinion, Web site, 562
Racks, 158. See also Switching rack
Radians
conversion, 451, 580
usage, 579
Radii, sum, 27
Radio beacons, following, 239-243
Radio frequency, 101
Radio-controlled models, 171-172
Radius turns, 142
Rails, 47, 91
Rajcok, Mark, 554
RAM. See Random Access Memory
Random Access Memory (RAM), 99-101,
103
Random behavior, 344
Random turns, execution, 376
Random values. See Turns
Raster graphics, 124
Ratchets, 172
beams, 189
Raw values, 227. See also Light sensors;
Sensors; Temperature
understanding, 66—67
usage, 170
R/C Servos. See Using R/C Servos with
the RCX
RCX. See Robotic Command eXplorer
R CX-to-pneumatics interfaces, 200
Reactive Languages, Web site, 555
Readability, 112
Reading colors, 67
Reading head, 383
R eadings, calibration, 60, 68
Read-only memory (ROM), 101
code, 99
Real COG, 478

R eal-life robots, 312
Real-world application, 34
Real-world objects, 412
Rear bumpers, 291
Rear wheels, 145, 315-318. See also
Independent rear wheels
Rechargeable batteries, 544
Rectangular sizes, 5
Recycling, 165
Reduction
geartrain, 404. See also Internal multistage
reduction geartrain
ratio, 24, 33, 45, 156, 474-476
stage, 21
system, 34. See Multistage reduction
Reed bulb, 169
Reed switch, 169
Reference points, usage. See External
reference points
Reflected light, measuring, 66—67
Reflection, 65, 541
Reflector, 243
Regulated adapter, 507
Relations, highlighting, 47
Relative distance, 65
Relative errors, 215
Relative positioning, 234, 243-246, 374
Remote control, 50, 93, 478
Remote-controlled car, 472
Remove_Obstacle (subroutine), 110, 113
Resistance, 53. See also Mechanical
resistance
Resources, 547
introduction, 548
Resting position, 395
Resultant, 280
R etractable tail, 344
Reusability, 112
Reverse direction, 291
Reverse Polish notation (RPN), 104, 454
Richard, Martin, 55
Right bogie, 315
right (command), 454
Right drive wheels, 579



right (routine), 452
Right-angled triangle, 10
Right-edge sensors, 254
Right-side strategy, usage, 374-376
RIS 1.5 equipment, 250
RIS parts, 289
Roblitz, Thomas, 555
RoboCup Junior 1999, Web site, 567
Robo-Rats Locomotion, Web site, 556
RoboSports Set, 161
Robot. See Bipeds; Competing robots;
Differential drive; Dual RCX robot;
Four-legged robot; Legged robots;
Light-driven robot; Mobile robots;
Six-legged robots; Six-legged steering
robots; Two-legged robots; Wheeled
robots
architecture, 243
assembly, 48
behavior, 107
blueprint, 98
body, 60
centerpoint, 244, 579
construction, 87, 260, 287, 515. See also
Useful robots; Walking robots
contact. See Walls
course correction, 68
design, 106, 508-509, 516. See also
Antidote robot; Modular robots;
Robust robots
direction, change, 148
dismantling, 47
fixed-head version, 351
generality, 256
geometry, 322
head, 419
home base, 243
manual triggering, 211
mechanical configuration, 521
motion, 140, 209
Navigation, Web site, 561
orientation, 579, 580
performance, 168, 264
physical architecture, 111
physical properties, 449
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physical structure, 112, 113
pivoting point, 443
position, 580
programming, 327, 359, 384
prototype, 22
rotation, 356
scale, 312
software. See Tic-Tac-Toe
speed, 264
stability, 94
turning, 295, 315
usage, 106
warnings, 501-502
Robot Arena, Web site, 567
Robot Pages, Web site, 554
Robotic animals, 333
introduction, 334
summary, 346
Robotic architecture, 520, 556
Robotic arm, 24. See also Broad Blue
Robotic car, 275
Robotic Command eXplorer (RCX), 52,
87, 164
addition, 346
calculation, performing, 407
Command Center, 554
computational process, 388
console, 50
control, 50
conversion. See Electrical signals
covering, 344
damage, 45, 328
decoding process, 170
definition, 98—101
detachability, 88
disconnection, 54
display, 502
updating, 481
external power source, supply, 506-507
firmware, installation, 521
free port, 320
function, understanding, 99
hosting, 252
implementation, 54
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input ports, 62, 78
installation, 303
instructions, 231
interception, 429
interface, 241
internals, Web site, 553
interpretation ability, 167
motors, attachment, 55
movement, 94
ordering, 60
output port, 51, 397
placement, 90-91, 93, 242, 443—445, 492
polling. See Sensors
port, 51, 206, 381
increase, solutions, 172—177
position, 89, 444
power, 102
processing power, 468
processor, 100
program
slots, 101
statements, 124
programming, 97, 453, 504
introduction, 98
summary, 114-115
projects. See Dual-R CX projects
protocol, 407
RCX2 firmware, NQC support, 103
removal, 289, 337
robot. See Dual RCX robot
score, display, 427
size, 361
sliding, 305
sound system, 412
tools, Web site. See General Paranoyaxc
R CX Tools
usage, 171, 186, 328, 541. See also Flow
detection; Valves
weight, 88
whole numbers, usage, 67

Robotic Command eXplorer (RCX) Code,

99-100, 215, 264
drawbacks, 102
hidden power, 102

suitability, 120
usage, 101-102, 108
Robotic cranes, 397
Robotic dog. See MIBO robotic dog
Robotic hand, opening/closing, 159
Robotic Invention System, 91
Robotic parking, 328
Robotic sumo. See Mini Sumo
attack strategies, 530-534
construction, 526—530
defense system, 534535
rules, setting, 527-528
speed, usage, 532-533
strength/traction, maximization, 528-530
testing, 535536
transmission, usage, 533
tricks, 533-534
Robotics, 43, 87, 114, 118, 540
benefit, 214
Discovery Set, 161, 334
experience, 172
Introduction, Web site, 561
Projects, Web site, 558
uses, 426
Web site, 552
Wiki, Web site, 550
Robots, Web site. See LEGO
Robust robots, design, 84
Rolighed, Soren, 565
Rolighed’s LEGO MINDSTORMS, Web
site, 565
Roll, 468
ROM. See R ead-only memory
ROM routines, 554
Room
exploration, 250-256, 372
navigation, 494
Rossa. See Duna Rossa; Luna Rossa
Rotating bumper, 557
Rotating devices, 432
Rotating support, 288, 489
Rotating wheel, angular velocity, 38
Rotation. See Bevel gear; Worm gear
counting, 72



degree. See Turntable
direction, 35
change, 42
Rotation sensors, 34, 58, 71-73, 243-244.
See also Throttle
addition, 463
connection, 330, 427, 450
count, 451
increment, 579, 580
emulation, 7578, 396, 539
function, explanation, 71
incorporation, 326
involvement, 276
measurements, 476
owning, 255
performance, 131
positions, 407
required increment, 580
resolution, 72, 449
ticking, 481
usage, 130, 161, 170, 406, 450. See also
Dead reckoning
Rotational sensors, Web site, 552
ROTATION_TIME constant, 357, 358
Round tiles. See Inverted round tiles
Round trips, 519
Route, tracking, 376
Routines, 416
RPN. See Reverse Polish notation
rtIToronto. See Toronto Users Group
Web site, 566
Rubber bands, 33, 149, 193. See also
Opposing rubber bands
force, 256
absorption, 60
linkage, 458
need, 420
placement, 446
usage, 177, 203. See also Polarity; Steering
Rubik’s Cube solver, 561
Rudder, 468, 471
control, 472
pedals, 468
Rutkas, Clint, 564
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S

S6 Details, Web site, 562
S15 Details, Web site, 565
S16 Details, Web site, 565
S17 Details, Web site, 563
S18 Details, Web site, 557
Sailing tricycle, 330
Sali, Fabio, 272
Sato, Jin, 280, 345, 549, 563
Scanning. See Mazes; Tic-Tac-Toe
technique, 409
Schalburg, René, 563
Schilling, David, 540, 567
Schumm, Tom, 79, 552
Science, refresher, 180—181
Scout, 103, 161. See also MicroScout
programmable unit, 504
programming, Web site. See Microscout
Search engine, 515
Secondary arm, 405
rotation, 404
Sectors, colors, 76
Self-calibration process, 256
Self-centering, 143
Self~-powered flying machine, 468
Self-protection mechanism, 498
Semaphores, 329
SENSOR_BANK, 481
SENSOR_PITCH, 482
Sensors. See Active sensors; Differential light
sensor; Face-down light sensor; Front
sensor; Light sensors; Non-LEGO
sensors; Passive sensors; Rotation
sensors; Temperature; Touch sensors
addition, 268
additional types, 80-81
connecting. See Multiple sensors
construction. See Custom sensors; Slope
sensor
count, 579
emulation, 58. See also Rotation sensors;
Touch sensors
exposure. See Temperature
impact force, 60
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initialization, 380
insertion, 426
introduction, 58
LED, 7
number, reduction, 25
raw values, 578
RCX polling, 71
reading, 57
conversion, 73
resolution, 579
summary, 81
tips/tricks, 75-80
usage. See Omni-directional sensor;
Straight path
SENSOR_THROTTLE, 482
Serial communication interface. See Infrared
Service packs, 161, 162
Servo motors, 171
power, 172
Set Inventories, Web site. See LEGO
Sethna, Jim, 560
SetSensor statements, 108
Sevcik, Pete, 165, 171, 558
Sewer Rat, 562
Shafer, Joel, 540
Shapes, 2627
Shock absorbers, 158
Shoot the Tank, 439
Short circuit, 53
Short Circuit, 350
SHRIMP Details, Web site, 562
SHRIMP rover. See Non-steering SHRIMP
rover
abilities, 313
construction, 320-321
creation, 312-321
power, 321
turning, 315
SHRIMP Web site, 562
SI. See International System of Units
Side lengths, 12
Side sensor, 380
Side-by-side start, 530
Side-to-side direction, 455

Simon-Says game
construction, 432—434
creation, 432—438
programming, 434-438
variations, 438
Simple averages, 218-223, 578
Single-motor steering drive, 338
Single-motor synchro drive, 175
Single-motor tricycle drives, 175
Single-stage geartrain, 40t gear attachment,
379
Sink the Ship, 438
Six-legged robots, 284
Six-legged steering robots, 293—-299
SIZE (constant), 221-223
Size constraints, 527
Sizes, 26—27
expressing, 4-5. See also Horizontal sizes
Skibot, 321
testing process, 327
Skidding, avoidance, 140
Skid-steer drive, 360
construction, 138—140
Skier, creation, 321-327
Skis. See V-shaped skis
design, 325
poles, 322, 326
Skogsrud, Simen Svale, 552
Skunk Works. See Clint Rutkas’ Skunk
Works
Slave configuration. See Master-slave
configuration
Slip differential. See Limited slip differential
Slippage, 35, 315. See also Belts; Pulleys
problem, 34
Slope sensor, construction, 277
Slow speed/high torque application, 46
Smalltalk, 553. See also Dolphin Smalltalk
Smooth bumpers, design, 532
Smooth surfaces, 140
Smooth turns, 91
Ackerman steering, usage, 142
Smoothing. See Exponential smoothing
Soccer, playing, 543-545



Software, 50, 61, 98. See also
MINDSTORMS; Tic-Tac-Toe
algorithms, usage, 521
generality, 256
reactivity, 264
simplicity, 416
usage, 75
Soh, C.S., 191, 192, 197, 559
Solorzano, Jose, 105
Sound effects, 431
Sound frequency decoders, 154
Sounds
introduction, 118
playing, 117
summary, 124-125
Source files, editing, 104
Space. See Three-dimensional space
Sparring partner, 535
Specialized components, 155-161
Spectrum Educational, 163

Spectrum Educational Supplies, Web site,
557

Speed, 19, 35, 470, 481-483, 579. See also
Robot
control, 53
difference, 39
direction, combinations, 129
doubling, 137
gaining, 264
high torque application. See Slow
speed/high torque application
optimization, 516518
precision, combination, 518-522
reduction, 24, 56
regulator. See Train speed regulator
usage. See Robotic sumo
Spiders, 345
Robot creation, Web site, 563
Spoke wheels, 529
Squaring, 6-10
Squirrels, 334, 345
Stability. See Dynamic stability
Stabilizer. See Horizontal stabilizer
Stack construction, beam usage, 7
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Stacked beams, 84
Stall situations, 52, 472
Standard beams, usage, 13
Standard grid, 10
Star Wars, 350
Star Wars MINDSTORMS sets, 161
Static COG, 286
Static obstacle, 428
Static simulator, 489
Statics, 280, 287
Station, expected heading, 242
Stationary wheel, 111
Status variables, 485
Stealing the Cube competition, 542
Steer axle, 316, 318
Steering. See Ackerman; In-place steering
angle, 145
arms, 157
replacement, 143
assembly, 261, 274. See also Cars
rubber bands, usage, 382
centering, 269
drive, 145, 150, 381. See also Single-motor
steering drive
architecture, 258
construction, 140—-144
variation, 335
mechanism, 140, 264. See also Rack and
pinion steering
space, 318
motor, 157, 262
connection, 274
switching, 269
position, 265
robots. See Six-legged steering robots
systems, 316. See also Four-wheel steering
systems
vehicles. See True-life steering vehicles
wheel
control, 262, 381
drive, transferring, 270
Steering-driven wheels, 175
Steer_left (subroutine), 269
Steer_right (subroutine), 269, 270



610 Index

Stehlik, Rob, 562, 565
Step-by-step flow, 114
Stepper motor, 177
Stones, 409
Stormont, Brian, 80, 552
Straight and Narrow, Web site, 556
Straight line, equation, 578
Straight motion, 269, 276, 454
resuming, 298
Straight path
casters, usage, 134-135
gears, usage, 131-134
maintenance. See Differential drive
sensors, usage, 130-131
Strength, 514
limitation, clutch gear usage, 24-26
maximization. See Robotic sumo
Strijbosch, Ronald, 554
String instruments, 424
Structures, loading, 88-90
Studs, 4, 6, 362, 451
dimensions, 46, 527
inclusion, 31. See also Axles
measurement, 30
position, 426
radius, 27
size limit, 530
Studs-down, 534
construction, 385
usage, 146, 325, 384
Studs-front, 143
Subroutines, 107. See also Low-level
subroutines
usage, 462
writing, 417
sum (variable), 222
Sumo. See Mini Sumo
construction. See Robotic sumo
contests, 528
Supercar, 272
Supporting base, 283, 352
Supporting point, 281, 342
Suspension, 272
Sutherland, Richard, 540

Swing bridges, 329
Swinging chassis, 297
Switches. See Limit Switch; Magnetic
switches; Micro-switches; Motor-
driven valve switches; No-contact
switches; On/oft switches; Polarity;
Pressure; Reed switch
Switching points, 329
Switching rack, 176
Symmetrical assembly, 476
Synchro drive, 245, 268, 270-271. See also
Single-motor synchro drive
construction, 146—149, 305
motion control, 174
Synchro Drive, Web site, 556
Synchronization, 305, 341. See also Legs
Synchronized gear switch, 276
System operations, 100

T

Tanks, 185-186
Tape writer, 455—463, 565
construction, 455—461
content, choice, 462—463
programming, 462
variations, 463
Target language, 123
Tasks, running. See Independent tasks
TCL-RCX, Web site, 555
TECHNIC air tanks, 329
TECHNIC brick, 6
dimensions, 352
TECHNIC connectors, 157
Technic Double-Acting Compressor, Web
site, 559
TECHNIC models, 8, 155, 272
TECHNIC motor, 45
TECHNIC parts, 91, 155
TECHNIC plates, 143, 157
Technic Puppy Journal, Web site, 562
TECHNIC sets, 154, 156, 158, 162
TECHNIC system, 19
Technica, Web site, 557
Teeth, 264



counting, 18-19
Temperature, 463. See also Ambient
temperature
programmed value, 500, 502
raw values, 578
sensors, 74—75, 227, 494
exposure, 502
Temporization, 454
Terminal emulator, 104
Test Panel. See MINDSTORMS
Testability, 112
Text editor, 103
TFM, Web site, 559
TFM’s Home Page, Web site, 563
Themed sets, 161
Thermal energy, 43
Thermodynamics, 180
Thermostat, 229
Three-dimensional space, 239
Three-finger pneumatic hand, 206
Throttle, 470-471, 478—479, 482
applying, 488
maximum, 483
rotation sensor, 491
THRSH constant, 398
Thrust, 470
output, 472
Ticks, number, 244
Tic-Tac-Toe (TTT), 392, 408
board, scanning, 394
game, improvement, 396
hardware, construction, 393—-394
playing, 392-396
program, writing, 394-396
robot, 392. See also Mindfest
software, 395
scheme, tracing, 393
Web site, 564
Tiles, 158, 383, 387. See also Inverted round
tiles
navigation, 498
usage, 458
Tilting, 10-12
Time, 579
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Time Series Analysis, Web site, 560
TinyVM Project, 105
Tissue paper, 496
T-junction, 185
Toggle(OUT_B) command, 270
Tolerance, 215, 358
Tom-tom, 413
Tones, communication, 118119
Toronto Users Group (rtlToronto), 522
Torque, 21, 29. See also Output torque
application. See Slow speed/high torque
application
definition, 20
increasing, 24
maximum, 26
measurement unit, 25
transferring, 35
Torque-limiting component, 193
Torque-limiting mechanism, 34
Touch sensors, 58—64, 161, 402.
See also Y-axis touch sensor
activation, 255
addition. See Input ports
attachment. See Wheels
closing, 268
connection, 107, 427. See also Output
ports
emulation, 75
input port, dedicating, 68
opening, 256
pressing, couting, 63
pressure, exertion, 542
pushing, 76
replacement, 521
technique, 408
usage, 171, 190, 254, 316, 328
Tow Truck, 529
Track links, 157
Tracks. See MINDSTORMS kit
friction, 140
gripping ability, 140
Traction, maximization. See Robotic sumo
Trains, 328-329
speed regulator, 50, 329
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Transformers, 155
Transmission, 157
changeover catch, 132, 274
driving ring, 132, 274
usage. See Robotic sumo
Transparent bricks, 438
Transparent material, 240
Transparent plates, 438
Traveled distance, 579. See also Actual
traveled distance
Traverse axle, 59, 316
Traverse beam, usage, 7
Tread links, 35
Tree. See LEGO
Triads, usage. See 3-4-5 triad
Triangles, 14, 476. See also Right-angled
triangle
Tricycle drive, 258. See also Single-motor
tricycle drives
construction, 144—145
Tricycles. See Sailing tricycle
Trigonometric functions, 245, 377
Trigonometry, 243, 245
usage, 407
Tri-star wheel drive, 150
Trotting, 43—46
True-life steering vehicles, 142
Trufelli, Guido, 122, 124, 531, 542, 556
Truncations, 218
TTT. See Tic-Tac-Toe
Tubes, 503
Tubing, 196
Turning
ability, 499
angle, 451
capabilities, 465
motor, connection, 452
Turns
Ackerman steering, usage. See Smooth
turns
control, 252
random values, 253
Turntable, 146, 147, 489
geartrain, 405

rotation, degree, 408
Turtle. See LOGO turtle
construction, improvements, 344—345
creation, 339-345
leg geometry, 334
Turtle Graphics, 442
Twelve-legged walker, 298
Two-byte messaging system, 454
Two-legged robots, 284
Two-word commands, 168

U

Ultimate Accessory Set, 50, 71, 161

Ultrasonic proximity detectors, 154

Ultrasonic sensors, 166

Ultrasonic signal, 166

Umeda, Kazuhiro, 280

Unconventional vehicles, 311
introduction, 312
summary, 331

Underflows, 217

Ungeared motor, 43, 45

Units, 32, 570. See also Vertical unit
expressing, 4-5. See also Horizontal units
ratio, 4

Universal joints, 271, 312, 320
location, 272

Unix emulators, 104

Unix-based simulator, 555

Unix-like machine, 104, 105

Unrolled gear, 142

UP constant, 448

Up/down pen movements, 455

Upper 16t gear, 499

Upside-down rack and pinion assembly, 305

Useful robots, construction, 493
introduction, 494
summary, 509

User interface, 103

Users Group. See LEGO

U-shaped feet, 299

U-shaped legs, construction, 284

Using R/C Servos with the RCX, Web

site, 558



Utrecht University, Department of
Computer Science, 568
U-Turn, 539

Vv

Valves, 185. See also Electric valve;
Pneumatic valve
movement, 194
opening/closing, RCX usage, 187
state, 190
switches, 530. See also Motor-driven valve
switches
opening, 409
Van Dam, Bert, 197
van Dam, Bert, 550
van Loo, Reinard, 552
Variables, 215, 243, 491. See also Dependent
variable; Floating-point variables;
Independent variable; Line variable;
Status variables
bits, addressing, 388
determination, 280
error, 435
limitation. See Firmware
reading, 108
square, assigning, 395
Vehicles. See Multi-Degree-of-Freedom
vehicles; True-life steering vehicles;
Unconventional vehicles
creation, 328—-330
rear view, 266
Velocity, 34. See also Angular velocity
reduction, 26
situations, 35
Vertical axis, 468
Vertical beams, 7-8, 84, 343
Vertical bracing, 610
Vertical mounts, 156
Vertical movement, 400
Vertical plane, 12
Vertical unit, 7
VHF Omni-directional Range (VOR)
system, 239
Villa, Luis, 104, 548
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Violent behavior, 527
Virtual animal, 442
Virtual COG, 474
Vision. See Artificial vision
Vision Command, 162
Visual interface, construction. See Chess
VisuaNQC, Web site, 554
Voice Recognition unit, 154, 168
Voltage, 42—43, 517
increase, 43
VOR. See VHF Omuni-directional Range
V-shaped beams, 443
V-shaped skis, 321

W

Wait statement, 120
Wait(200) statement, 113
WaitBumperPress (subroutine), 109
Walker. See Four-legged walker; Multilegged
walkers; Twelve-legged walker
COG, shifting, 306
Walking robots, construction, 279
introduction, 280
summary, 310
Walking theory, 280-287
Walls
climing, 522
color, 520
following, 389, 520-521
height, 520
material, 520
recognition, 374-376
robot contact, 520
Water
network, 507
outlet, 503
tank, 507
Watts, 43
WAV files, conversion, 124
WAV2R CX, 556
Weather conditions, surveying, 80
Web-Ku, Web site, 566
Weighed brick side, 402
Weight constraints, 527
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Weighted averages, 223-226, 578
Wheeled chassis, 499
Wheeled mobility configurations, 128
Wheeled robots, 128
Wheels, 579-580. See also Bumpers; Front
wheels; Gear wheels; Horizontal
wheel; Non-pivoting wheels; Parallel
wheels; Pivoting wheel; Rear wheels;
Spoke wheels; Stationary wheel;
Steering-driven wheels
angular velocity. See Rotating wheel
assembly, 479
axles, 313
circumference, 72, 579
locking, 132
skidding, 134
substitution, 517
touch sensors, attachment, 429
Where Am I, Web site, 560
Where No Man Has Gone Before, Web site,
563
while(true) statement, 108
White-black difference, 230
Whole integers, 486
Whole numbers, 215
usage. See Robotic Control eXplorer
Width, 4
Wiki, Web site. See Robotics
Wilcox, Doug, 561
Williamson, Ben, 560
WinCE platforms, 555
Window Walker, 562
WinVLL, Web site, 555
Wiring. See Motors
Workaround, 505

Working diagonal, 11
Working distances, 551
Worm gears, 2324, 156, 173, 308
16t, matching, 340, 343
24t, matching, 320
driving, 200
gear, meeting, 323
rotation, 201
system, 264
usage, 499
Writer. See Tape writer
Writing, 441
head, 455
introduction, 442
suggestions, 464-465
summary, 465—466

Y

YATTT. SeeYet Another Tic-Tac-Toe
Yaw, 468
coordination, 472
Y-axis touch sensor, 384385
Yet Another Tic-Tac-Toe (YATTT), 395,
564

Y-motor, 385
Yoke, 471, 478
pushing, 488

V4

Zang, Zhengrong, 563
Zhengrong Zang’s RCX Controlled LEGO
Train Projects, Web site, 563
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