

ffi rs.indd 11:9:3:AM 07/16/2014 Page ii

ffi rs.indd 11:9:3:AM 07/16/2014 Page i

Exploring LEGO®
MINDSTORMS® EV3

ffi rs.indd 11:9:3:AM 07/16/2014 Page ii

ffi rs.indd 11:9:3:AM 07/16/2014 Page iii

Eun Jung (EJ) Park

Exploring LEGO®

MINDSTORMS® EV3

Tools and Techniques for Building and
Programming Robots

ffi rs.indd 11:9:3:AM 07/16/2014 Page iv

Exploring LEGO® MINDSTORMS® EV3: Tools and Techniques for Building and Programming Robots

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright© 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-87974-0

ISBN: 978-1-118-87972-6 (ebk)

ISBN: 978-1-118-87995-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or

108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-

rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,

Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed

to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)

748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with

respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including

without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or

promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional

services. If professional assistance is required, the services of a competent professional person should be sought.

Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or

Web site is referred to in this work as a citation and/or a potential source of further information does not mean that

the author or the publisher endorses the information the organization or website may provide or recommendations

it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disap-

peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with

standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media

such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014937185

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or

its affi liates, in the United States and other countries, and may not be used without written permission. LEGO and

Mindstorms are registered trademarks of LEGO Juris A/S Corporation. All other trademarks are the property of

their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

ffi rs.indd 11:9:3:AM 07/16/2014 Page v

(This book is dedicated to my parents.)

ffi rs.indd 11:9:3:AM 07/16/2014 Page vi

vii

ffi rs.indd 11:9:3:AM 07/16/2014 Page vii

Eun Jung (EJ) Park has been developing LEGO robotics and curricula at RoboFun

since 2010. There she designs robots that are used in STEM (science, technol-

ogy, engineering, and math) programs for children and youths. She hopes that

her work provides students with opportunities to develop their creativity and

encourages scientifi c curiosity through robotics and coding. Her LEGO robotics

projects and building instructions are used in programs for children and youths

around New York City.

EJ was born in Seoul, South Korea, and studied various art disciplines for

more than 12 years, which formed the foundation for her passion in the interac-

tive arts. EJ traveled to the United States to earn her Masters degree from the

Interactive Telecommunications Program (ITP) at New York University (NYU).

In the United States, she enhanced her knowledge of physical computing, pro-

gramming, mechanical engineering, and a variety of other technologies. At

NYU she started building mechanical moving sculptures called “automatons”

and explored various mechanical elements such as gears, cams, and pulleys in

her creations.

With her work at ITP—and, of course her passion for LEGO—she became

the creative force behind Vision Education & Media/RoboFun’s LEGO robotics

curricula. At any given moment, she is probably building LEGO robots some-

where in New York City. You can see her work at www.ejpark.com.

About the Author

http://www.ejpark.com

ix

ffi rs.indd 11:9:3:AM 07/16/2014 Page ix

Dr. Damien Kee holds a PhD in robotics and a bachelor’s in electrical engi-

neering. He has been running technology-based workshops for students and

professional development for teachers since 2003, both in his home country of

Australia and abroad.

Damien has presented a variety of educational technology topics in places

such as QSITE (Australia), Google Apps for Education Summit (Australia),

RoboCupJunior (China), Jubilee Centre (Jordan), Tuffs University (USA), RoboFest

(Singapore), and ATLAB (United Arab Emirates and Qatar).

Since 2001, Damien has been heavily involved with the RoboCup Junior com-

petition, at a local, state, national, and international level. From 2009–2011, he

was chairman of RoboCup Junior Australia and technical chair of the RoboCup

Junior International Rescue Committee. He is the author of several teacher

resource books, contributor to theNXTstep.com, and a member of the LEGO

MINDSTORMS community program, a group of people around the world who

consult with LEGO to make the MINDSTORMS system a better product.

About the Technical Editor

xi

ffi rs.indd 11:9:3:AM 07/16/2014 Page xi

Acquisitions Editor
Mary James

Project Editor
Jennifer Lynn

Technical Editor
Damien Kee

Production Editor
Christine Mugnolo

Copy Editor
Keith Cline

Manager of Content Development
and Assembly
Mary Beth Wakefi eld

Director of Community Marketing
David Mayhew

Marketing Manager
Carrie Sherrill

Business Manager
Amy Knies

Vice President and Executive
Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

Proofreader
Nancy Carrasco

Indexer
John Sleeva

Cover Designer
Wiley

Cover Image
Courtesy of Eun Jung (EJ) Park

Credits

ffi rs.indd 11:9:3:AM 07/16/2014 Page xii

xiii

ffi rs.indd 11:9:3:AM 07/16/2014 Page xiii

From the day I started this book and until this moment, I wouldn’t have been

able to survive without support from the following people.

My editors from Wiley Publishing, Inc., Mary James and Jennifer Lynn, for encourag-

ing me to take on this process and for keeping me on track to meet my deadlines; and

also to the technical editor, Damien Kee, for providing valuable advice for the book.

Tom Igoe from NYU’s Interactive Telecommunications Program made this

book possible by bringing me and Wiley Publishing, Inc. together.

The RoboFun Crew, especially the CEO of the company, Laura Allen, for

giving me the chance to begin my career in technology curricula development

with LEGO robotics in the fi rst place. My appreciations extends, as well, to Lisa

Whitmer, as the Program Director at RoboFun, who always encourages me to

develop my ideas to their fullest.

My friends Brian Cohen and Maria Tranquilli, whose creative spirits and

positivity have brought me more confi dence as an artist.

My roommates, Aya Takemoto and Christine McCaleb, who would check

to make sure that I was okay when I was in my room writing and they hadn’t

heard from me for a number of hours.

My fi rst supporters and teachers, my parents, Sun Tae Park and Soon Gil Lee,

who always give me their support and only wish to make all of my dreams come

true; and also my sisters, Ji Hye Park and Hyun Jung Park, who always manage

to cheer me up, get me out of ruts, and believe that I can overcome any obstacle.

Lucian Reynolds who supported me through every single moment of this

process with endless patience, encouragement, advice, and humor; who never

stopped trusting in my ability to write this book, even when I doubted myself.

To anyone else who wasn’t mentioned already. To all the people who had to

get a rain check from me because I was too busy writing this book but who still

keep me in their lives. I thank you all.

Acknowledgments

xv

ffi rs.indd 11:9:3:AM 07/16/2014 Page xv

Foreword xxiii

Introduction xxv

Chapter 1 Introducing LEGO MINDSTORMS EV3 1

Chapter 2 Building the Auto-Driver: A Starter Vehicle 13

Chapter 3 Getting Started with Programming 39

Chapter 4 Exploring Action Blocks Part 1: Programming Motors 59

Chapter 5 Exploring Action Blocks Part 2: Using Display, Sound

and Brick Status Light Blocks 85

Chapter 6 Exploring Flow Blocks 113

Chapter 7 Building the Spy Rabbit: A Robot That Can React to Its

Surroundings 135

Chapter 8 Sensing the Environments: Using the Infrared, Touch,

and Color Sensors 161

Chapter 9 Using the Timer and the Rotation Sensor 199

Chapter 10 Building Mr. Turto: A Sea Turtle Robot 217

Chapter 11 Programming with Data Wires and Using My Blocks 249

Chapter 12 Using Data Operations Blocks 271

Chapter 13 Building the Big Belly Bot: A Robot That Eats and Poops 293

Chapter 14 Design Your Own Robot: How Did Guapo,

the Robotic Puppy, Come to Be? 321

Appendix Using Bluetooth and WiFi with the EV3 Brick 361

Index 367

Contents at a Glance

xvii

ftoc.indd 10:41:12:AM 07/15/2014 Page xvii

Foreword xxiii

Introduction xxv

Chapter 1 Introducing LEGO MINDSTORMS EV3 1

Understanding the EV3 Set: It Begins When You Open the Box 2
EV3 Electronic Parts 2

EV3 Software 5

TECHNIC Building Parts 7

The Building Instructions and the Test Board 10

Comparing EV3 and NXT 11
Summary 11

Chapter 2 Building the Auto-Driver: A Starter Vehicle 13

Getting Started with the Auto-Driver 13
What You Can Do with the Auto-Driver 13

Assembling the Auto-Driver 15

Understanding the EV3 Brick Interface 29
Using the Brick Buttons 29

Exploring Four Basic Screens 30

Operating the Auto-Driver 36

Summary 37

Chapter 3 Getting Started with Programming 39

What Is Programming? 39
Communicating with Robots 40

Understanding Programming Languages 40

Previewing the EV3 Software System 41

Launching the EV3 Software 41
What Do You See on the Screen? 42

Contents

xviii Contents

ftoc.indd 10:41:12:AM 07/15/2014 Page xviii

Understanding the Programming Interface

and Graphic Languages 47

Getting Used to the Interface 49

Downloading Programs to a Robot 51
Connecting the EV3 Brick to a Computer 52

Reading the EV3 Brick on the Software 54

Summary 57

Chapter 4 Exploring Action Blocks Part 1: Programming Motors 59

Understanding the Basics of Block Programming 59
Rule 1: Use the Start Block 59

Rule 2: Respect the Program Flow 61

Overview of the Programming Block’s Structure 62

Getting to Know the Input Values for the Motors 62
The Off, On, and On for Seconds Modes 63

The On for Degrees and On for Rotations Modes 64

Motor Power Input and the Direction of the Motor 67

Controlling Motors with the Large Motor Block and
the Medium Motor Block 68

Working with the Large Motor Block 68

Creating Programs with the Large Motor Block 68

Controlling Two Motors with the Move Steering Block 73
Working with the Move Steering Block 73

Creating Programs with the Move Steering Block 76

Using the Move Tank Block to Control
the Power Level of a Motor 82

Working with the Move Tank Block 82

Creating Programs with the Move Tank Block 83

Summary 84

Chapter 5 Exploring Action Blocks Part 2: Using Display, Sound

and Brick Status Light Blocks 85

The Display Block 85
Displaying Text: The Text-Pixels and Grid Modes 87

Drawing Shapes: The Line, Circle, Rectangle,

and Point Modes 94

Displaying Images: The Image Mode 97

Resetting the Display: The Reset Screen Mode 103

The Sound Block 103
Play File Mode 105

Play Tone Mode 107

Play Note Mode 108

Stop Mode 109

The Brick Status Light Block 110
The On Mode 110

The Off and Reset Modes 110

Summary 111

 Contents xix

ftoc.indd 10:41:12:AM 07/15/2014 Page xix

Chapter 6 Exploring Flow Blocks 113

The Start Block 114
Starting the Program 114

Demonstrating the Line of Code 114

The Wait Block 115
The Compare Mode in the Wait Block 116

The Change Mode in the Wait Block 117

The Time Mode 117

The Brick Buttons Mode 118

The Loop Block 121
The Unlimited, Count, and Time Modes 123

The Brick Button Mode 125

The Loop Interrupt Block 126
The Switch Block 127

The Compare Mode in the Switch Block 128

The Measure Mode in the Switch Block 130

Using a Value from a Data Wire 132

Summary 133

Chapter 7 Building the Spy Rabbit: A Robot That Can React to Its

Surroundings 135

Understanding the Spy Rabbit 135
The Spy Rabbit’s Personality 136

Assembling the Spy Rabbit 136

Testing the Moving Parts of the Spy Rabbit 158
Summary 159

Chapter 8 Sensing the Environments: Using the Infrared, Touch,

and Color Sensors 161

Understanding Sensors 161
Intro to the EV3 Sensors 162
Using the Infrared Sensor and Remote Infrared Beacon 163

Remote Infrared Beacon 163

Remote Mode 164

Beacon Mode 169

Proximity Mode 170

Reading Values from the Port View with the Infrared Sensor 172

Programming with the Infrared Sensor and Remote Infrared 175

Using the Touch Sensor 179
Adding the Touch Sensor to the Spy Rabbit 181

Reading Values from the Port View with the Touch Sensor 182

Programming with the Touch Sensor 183

Using the Color Sensor 187
Color Mode 187

Refl ected Light Intensity Mode 189

Ambient Light Intensity Mode 191

Adding the Color Sensor to the Spy Rabbit 192

xx Contents

ftoc.indd 10:41:12:AM 07/15/2014 Page xx

Reading Values from the Port View with the Color Sensor 195

Programming with the Color Sensor 195

Summary 197

Chapter 9 Using the Timer and the Rotation Sensor 199

Understanding the Timer 199
Working with the Timer in Programming Blocks 201

Programming with the Timer 204

Understanding the Motor Rotation Sensor 206
Using the Motor Rotation Sensor in Programming Blocks 207

Programming with the Motor Rotation Sensor 210

Summary 215

Chapter 10 Building Mr. Turto: A Sea Turtle Robot 217

Understanding Mr. Turto 217
The Structure of Mr. Turto’s Body 218

Assembling Mr. Turto 219

Testing Mr. Turto’s Movements 247
Summary 248

Chapter 11 Programming with Data Wires and Using My Blocks 249

What Is a Data Wire? 249
How Do Data Wires Work? 250

Getting Started with Data Wire Programming 250

Using Block Input and Output 253

Understanding Data Types and Data Wire Types 254

Sensor Blocks and Data Wires 257
Setting Up the Sensor Blocks 258

Exercise 1: Yay! I Found Something 259

Exercise 2: Can You Hear Me? 261

Exercise 3: Bright Light Makes Mr. Turto Awake 262

Introducing My Blocks 264
Using the My Block Builder 264

Exporting and Importing My Blocks 268

Summary 270

Chapter 12 Using Data Operations Blocks 271

The Variable Block 272
What Is a Variable? 272

Setting Up the Variable Block 273

The Constant Block 278
The Constant Block’s Many Modes 279

Constant Blocks in Action 279

The Array Operations Block 280
Append Mode 280

Read and Write at Index Modes 281

Length Mode 282

The Logic Operations Block 283
And Mode 283

Or Mode 284

 Contents xxi

ftoc.indd 10:41:12:AM 07/15/2014 Page xxi

XOR Mode 284

Not Mode 284

The Math and Round Blocks 286
The Math Block 286

The Round Block 288

The Compare, Range, and Random Blocks 289
The Compare Block 289

The Range Block 290

The Random Block 291

The Text Block 291
Summary 292

Chapter 13 Building the Big Belly Bot: A Robot That Eats and Poops 293

Understanding the Big Belly Bot 293
The Big Belly Bot’s Personality 294

The Mechanisms of the Big Belly Bot 295

Assembling the Big Belly Bot 297

Programming the Big Belly Bot 316
Action 1 – Standing Up Straight: Lean Backward to Improve

Posture 316

Action 2 – Eating: Check If His Belly Is Full When the

Food Comes In. When He Feels Full, Say “Uh-Oh” 317

Action 3 – Pooping: Bend Over, Open the Back End, Poop, and

Shake the Body 318

Action 4 – Close the Back End 319

Summary 319

Chapter 14 Design Your Own Robot: How Did Guapo,

the Robotic Puppy, Come to Be? 321

Build Guapo, the Robotic Puppy 321
Set a Goal: What Do You Want to Build? 350

Collecting Inspirations for the Goal 350

Defi ning Your Robot’s Actions: What Does It Do? 350

Decide on Moving Parts and Sensors 351
Planning by Sketching: The Way to Decide Which Parts

Will Move 351

Adding Sensors: Where Sensors Will Be Most Useful 353

Build and Modify: From Core Sections to Decorative Sections 356
Time to Program 358
Summary 360

Appendix Using Bluetooth and WiFi with the EV3 Brick 361

Using Bluetooth with the EV3 Brick 361
Connecting the EV3 Brick to a Computer 362

Using WiFi to Download a Program to the EV3 Brick 364
Using Apple iOS Devices with the EV3 Brick 365

Index 367

xxiii

fl ast.indd 10:51:31:AM 07/15/2014 Page xxiii

I have been in the fi eld of LEGO robotics for 25 years. Some of my earliest expe-

riences were working with Seymour Papert (MIT Media Lab) and colleagues

designing and using curriculum with children. Since then, I’ve had the extraor-

dinary opportunity to run my own company helping children and teachers use

technology creatively and effectively.

About three years ago, EJ Park was recommended to me by a colleague.

The moment EJ walked through the door, I knew there was something special

about her. I quickly asked her to work with me, and for the past few years she

has been my LEGO robotic project designer. EJ’s work is always excellent. She

doesn’t settle for less. Above all, she is thoughtful and focused on sharing her

incredible knowledge of the Mindstorms system. You are in for a treat with this

book; it has been carefully created and will provide you with ideas, examples,

and step-by-step instructions.

When you hear the term “Lego robotics,” do you think about invention,

innovation, and the vast possibilities that come with the EV3 platform and its

place in the STEAM (science, technology, engineering, art and mathematics)

and maker movement?

Or does “robotics” mean 600 pieces of a Lego Mindstorms set spread out

across your living room as you try to join in your child’s interest in robotics,

despite a lack of know-how?

No matter where you are in your robotics journey, it would be hard to fi nd

a better guide than Exploring LEGO Mindstorms EV3. EJ is a passionate creator

and maker with years of experience as an automata inventor and LEGO robotics

project designer. EJ has taught all levels of robotics, and so she knows what skills

can be tough for the beginner and what challenges can be exciting for the expert.

Exploring LEGO Mindstorms EV3 teaches robotics through clear and manage-

able step-by-step instructions. The book contains fi ve projects to teach a reader

Foreword

fl ast.indd 10:51:31:AM 07/15/2014 Page xxiv

how to build a robot, how to write code so your robot will work, and how to

have fun at the same time.

Robotics, however, isn’t only about following rigid steps to make moving

objects. As EJ writes—and as we teach at RoboFun in New York City—we want

the process and the product to be creative and infl uenced by its maker’s ideas

and passions.

Coding and making is a powerful learning combination. Many areas of thought

are involved; planning, calculating, estimating, using variables, gear ratios, and

much trial and error. Coding and building can allow students to develop skills

in self-directed learning, which is an essential intellectual and developmental

tool for children and one that is often left out of the school curriculum.

As you’ll learn through Exploring LEGO Mindstorms EV3, the fi nal result of

this multilayered learning process is the great excitement and pride students

feel when they roll out their invention and see a robotic creation— their robotic

creature—come to life.

 — LAURA ALLEN

Founder and President, RoboFun, NYC, NY

xxiv Foreword

xxv

fl ast.indd 10:51:31:AM 07/15/2014 Page xxv

 The newest LEGO MINDSTORMS set has arrived! With EV3, you can build

smarter, more powerful robots that are both autonomous and interactive. This

set comes with more than 500 LEGO TECHNIC pieces, but you will also get

upgraded components that enable you to robotize your LEGO creation. These

include the programmable brick (mini computer), which will be your robot’s

brain, the motors, which will be your robot’s muscles, and sensors, which make

your robot aware of the world around it. One feature that makes this kit even

cooler is the EV3 software, which acts as a bridge between you and your robot.

You can write innumerable programs with this software and download them

to the programmable brick to bring your robot to life.

I believe the EV3 set is one of the most user-friendly robotics kits available

anywhere. It’s amazing that building and programming with this set doesn’t

really require any previous experience; your passion for robots is all that you

need. However, exploring the world of robotics with EV3 will be more fulfi ll-

ing if you have a companion who can guide you along. This book will be your

companion as you explore.

This book starts by introducing the parts that you will see when you open

the EV3 box, and it ends with suggestions on how to begin your own robot. In

between, the book covers a wide range of programming from basic to advanced.

These lessons go along with projects that you can build with your own EV3 set.

There will be a total of fi ve robots that I hope will encourage you to challenge

yourself to become a better maker throughout your EV3 journey.

Introduction

xxvi Introduction

fl ast.indd 10:51:31:AM 07/15/2014 Page xxvi

Here’s how the book breaks down:

 ■ Chapter 1, “Introducing LEGO MINDSTORMS EV3,” introduces you to

the LEGO MINDSTORMS EV3 set.

 ■ The starter vehicle that you will build in Chapter 2, “Building the Auto-

Driver: A Starter Vehicle,” is called Auto-Driver, and it will act as the core

robot that you will use to begin coding in Chapters 3 through 6.

 ■ The Spy Rabbit, whom you will meet in Chapter 7, “Building the Spy

Rabbit: A Robot That Can React to Its Surroundings,” will accompany

you in Chapters 8 and 9 and will introduce you to sensor programming.

 ■ In Chapters 10, “Building Mr. Turto: A Sea Turtle Robot,” and 11,

“Programming with Data Wires and Using My Blocks,” you will build

and animate Mr. Turto, the sea turtle robot.

 ■ Advanced programming techniques are introduced in Chapter 12, “Using

Data Operations Blocks.”

 ■ In Chapter 13, “Building the Big Belly Bot: A Robot That Eats and Poops,”

you will make the human-like Big Belly Bot, who, as you can see from the

chapter title, eats and poops.

 ■ Finally, there’s Chapter 14, “Design Your Own Robot: How Did Guapo, the

Robotic Puppy, Come to Be?” Not only do I introduce you to Guapo, the

robotic puppy, but I also give you some tips for designing your own robot.

 ■ I’ve also included an appendix that will help you download programs to

your EV3 brick using Bluetooth and WiFi.

If you are a beginner, I recommend that you read through the book from start

to fi nish. You will walk away with more confi dence in your ability to build and

program robots with the EV3. If you are experienced in building robots with

LEGO MINDSTORMS, feel free to skip around the book as needed (but, don’t

miss out on the robots). This book will act as a reference for what you already

know as well as a useful tool for future building and programming.

Have you ever eaten a piece of hard candy that is fi lled with jelly? While writ-

ing this book, I hoped that the reader would approach learning how to use EV3

like eating a piece of that candy. You work hard to melt the exterior of the candy

to get to the chewy center. No matter how hard you have to work, this process

will always be rewarding, because eating candy can be sweet and satisfying.

Exploring EV3 to become a master robot builder may be a long journey, but I

hope as you fl ip through this book, page by page, it is like melting candy.

1

c01.indd 11:51:53:AM 07/22/2014 Page 1

Did you get a box that looks like the one shown in Figure 1-1?

Figure 1-1: The LEGO MINDSTORMS EV3 set, item number 31313

C H A P T E R

1

Introducing LEGO

MINDSTORMS EV3

2 Exploring LEGO MINDSTORMS EV3

c01.indd 11:51:53:AM 07/22/2014 Page 2

If you did, you are ready to use this book. Several versions of the LEGO

MINDSTORMS set are available, but throughout this book we use the

LEGO MINDSTORMS EV3 set, which has a LEGO item number of 31313. This

chapter provides a brief overview of the equipment in the set and what it does.

Understanding the EV3 Set: It Begins When
You Open the Box

The EV3 set consists of various components. You may have seen some of the

components in other LEGO sets, but even those familiar with the previous ver-

sion of LEGO MINDSTORMS will fi nd some parts that they have never seen.

Before you use your new set, it is important to know what you have. The key

components include the following:

 ■ The electronic components that come with the EV3 set

 ■ EV3 software

 ■ TECHNIC building parts

 ■ Building instructions

 ■ A test board

By understanding the various components, you will be able to design your

robot more effi ciently. Let’s take a look at these components in more detail.

EV3 Electronic Parts

One of the most important characteristics defi ning a robot is that it processes

commands and generates movements. The electronic components that come

with your EV3 set will enable you to build robots that process the commands

that you write and generate movements that are defi ned in those commands.

The EV3 Brick

The EV3 brick, shown in Figure 1-2, acts like the robot’s brain. Like the way

that our brain tells our body what to do, the EV3 brick instructs a robot how to

behave. The difference between our brain and the EV3 brick is that our brain

behaves on its own, whereas the EV3 brick only interprets the programs that

you write. Note that you will need six AA 1.5V batteries to run the EV3 brick.

Motors

You will program the EV3 motors, shown in Figure 1-3, to create the movements

of your robot. Saying that the EV3 brick is the brain of a robot, the motors are like

 Chapter 1 ■ Introducing LEGO MINDSTORMS EV3 3

c01.indd 11:51:53:AM 07/22/2014 Page 3

muscles. As our muscles generate all of our body movements, the motors will power

all the actions of your robot such as driving, walking, lifting, spinning, and so on.

Figure 1-2: The EV3 brick

Figure 1-3: The EV3 Motors: The large motors and the medium motor

As you can see in Figure 1-3, the large and medium motors have quite dif-

ferent appearances. The large motor is bigger than the medium motor, and

the body size represents the strength of the motor. Also, the two motors move

in different directions: The large motor’s movement is parallel with the body

of the motor whereas the medium motor’s movement is perpendicular with

the body of the motor, which allows you to effectively design a robot that can

achieve your goal.

4 Exploring LEGO MINDSTORMS EV3

c01.indd 11:51:53:AM 07/22/2014 Page 4

Sensors

Within the EV3 set, you will fi nd a touch sensor, a color sensor, and an infrared

sensor (see Figure 1-4). As you build the projects from this book, you will learn

to use these sensors to make your robots interactive. In other words, your robot

will be able to decide its action based on the inputs from its surroundings. For

example, let’s say you have a vehicle type robot. With an infrared sensor, it can

detect how far an object is in front of it. Based on the data from the sensor, the

robot can play a louder sound when it gets closer to the object.

Figure 1-4: The EV3 sensors

Remote Infrared Beacon

The remote infrared beacon, or the IR beacon, is one of the cool new features of

EV3 (see Figure 1-5). You can use it as a remote control for your robot, and you

can program various commands for each button or combinations of buttons.

In addition, you can set your robot to detect where the IR beacon is. Note that

you should not use this device with the infrared sensor.

Figure 1-5: The remote infrared beacon

 Chapter 1 ■ Introducing LEGO MINDSTORMS EV3 5

c01.indd 11:51:53:AM 07/22/2014 Page 5

Cables

This set contains two types of cables (see Figure 1-6): connector cables and a

USB 2.0 cable. Connector cables are for plugging the motors and sensors into

the EV3 brick. The USB cable is used to download a program to the EV3 brick

from your computer.

25cm/10in
Connector

Cable

35cm/14in
Connector Cable

50cm/20in
Connector Cable

2.0 USB Cable

Figure 1-6: The connector cables and the USB 2.0 cable

EV3 Software

To give your EV3 robot instructions, you must use the EV3 software specifi cally

designed for this set. If you are looking in the box for an installation disc, you

will be looking for a while. LEGO offers its free EV3 software only as a down-

load from www.LEGO.com/mindstorms. From the main page, click the Downloads

link to display the page shown in Figure 1-7. Then click the Download button.

Don’t worry if you don’t have the EV3 software available when you want to

test out your robot. There is an app that comes with the brick that allows you

to program your robot. The program that you can create with this app will be

simpler than with the EV3 software, but it is still very useful! You will see where

http://www.LEGO.com/mindstorms

6 Exploring LEGO MINDSTORMS EV3

c01.indd 11:51:53:AM 07/22/2014 Page 6

you can fi nd this app on the brick when we go over the EV3 brick interface in

“Building the Auto-Driver: A Starter Vehicle.”

CLICK

CLICK

Figure 1-7: Downloading the EV3 software

 Chapter 1 ■ Introducing LEGO MINDSTORMS EV3 7

c01.indd 11:51:53:AM 07/22/2014 Page 7

WHICH VERSION DO I DOWNLOAD?

The EV3 software is compatible with both PC and Mac. If you use a Windows operating

system, it should be one of the following versions: Windows XP (32-bit); Vista (32-/64-

bit), excluding Starter Edition; Windows 7 (32-/64-bit); and Windows 8 desktop mode,

excluding Starter Edition. If you use a Mac operation system, it should be one of the

following versions: Mac OS X 10.6, 10.7, or 10.8 (Intel only).

The download page contains options for choosing the operating system (Mac

OS X and Win32) and language. If you download the installation fi le for PC,

you will see a fi le with a .exe extension; for Mac, it will be a .dmg fi le. After the

fi le downloads to your computer, just double-click the fi le icon and follow the

instructions that pop up on your screen.

TECHNIC Building Parts

Other than the electronic parts, the box contains various parts for building

robots. Before jumping into building robots, let’s overview some of the main

building parts that you will use often and their important features.

Studless TECHNIC Beams

When building EV3 robots, you will use studless TECHNIC beams (see Figure 1-8).

The offi cial name is quite a mouthful, so from here on out we will just refer to the

part as a beam. These parts are crucial for building complex, moving robots that

would not be possible using standard LEGO bricks.

Figure 1-8: Various studless TECHNIC beams

8 Exploring LEGO MINDSTORMS EV3

c01.indd 11:51:53:AM 07/22/2014 Page 8

Connector Pegs

The set contains many small parts, but the majority of the pieces look like the

connector pegs shown in Figure 1-9. Note that they are also called connecter pins.

Figure 1-9: Different types of connector pegs

These components are called connector pegs because they allow multiple parts

to snap together. Connector pegs come in different sizes with different features,

but one of the important things that you need to know is how to distinguish

the following: The connector peg and the connector peg with “friction.” If you

look at the regular connector peg, its surface is smooth or “frictionless” (see

Figure 1-10), whereas the connector peg with friction has little bumps on the

surface.

Connector Peg
with Friction

Connector Peg

bumps

bumps

Figure 1-10: Connector peg with friction versus a frictionless connector peg

If you put a connector peg on a beam, you will notice that the beam can be

turned easily. However, if instead you use a connector peg with friction, it will

be more diffi cult to turn the beam because the little bumps on the peg create

more resistance.

 Chapter 1 ■ Introducing LEGO MINDSTORMS EV3 9

c01.indd 11:51:53:AM 07/22/2014 Page 9

Mechanical Pieces

When you design your robot’s movements, the mechanical pieces allow for a

more effi cient construction (see Figure 1-11). These pieces provide, but are not

limited to, mechanical advantages such as switching the direction of gear move-

ment, building a drive train, changing the speed of gear movements, and so on.

Figure 1-11: The EV3 mechanical pieces: spur gears, double bevel gears, worm gear, cam, and so on

MAKING AN EV3 ORGANIZER

The EV3 set comes with many diff erent pieces. Based on my experience, I prefer to

have all the parts organized separately as I design a robot. I can thus see what parts I

have left at a glance and not lose my thought process by spending time searching for

a piece. You can probably use plastic cups or small containers, but I highly recommend

that you take as your EV3 organizer an organizer that is normally used for spare parts

(see Figure 1-12). This way, you can keep parts organized by size or type and store

everything all together. You can fi nd these organizers at any well-stocked hardware

store or on the Internet.

Continues

10 Exploring LEGO MINDSTORMS EV3

c01.indd 11:51:53:AM 07/22/2014 Page 10

Figure 1-12: Organize your EV3 set.

The Building Instructions and the Test Board
In addition to parts, the EV3 box also contains a booklet with building instructions

for one robot and simple directions for using the EV3 brick (see Figure 1-13). To

augment the basic instructions in that booklet, this book provides in-depth cover-

age of the EV3 brick. Inside of the fi rst layer of the package, you’ll fi nd a test board

(see Figure 1-13). You use this board to test out your robot later on in this book.

The Building
Instruction Booklet

The Test Board

Figure 1-13: The building instructions booklet and the test board

continued

 Chapter 1 ■ Introducing LEGO MINDSTORMS EV3 11

c01.indd 11:51:53:AM 07/22/2014 Page 11

Comparing EV3 and NXT

NXT is the previous version of the LEGO MINDSTORMS set. If you use an NXT

and also have an EV3, you may wonder how these two versions are comparable.

In general, the EV3 equipment performs better than the NXT equipment. In

terms of the brick’s ability to process data, the accuracy of the included sensors,

and the improved design of the electronic parts, EV3 makes for a better robot.

NXT and EV3 motors are cross-compatible and work fi ne for either set. EV3

sensors, however, are not compatible with NXT, although EV3 can use sensors

from the NXT set. Just note that using the NXT light sensor with EV3 can be

quite unstable. EV3’s free software is very powerful control software available

for MINDSTORMS and will work with NXT (see Figure 1-14).

MOTORS

SENSORS

SOFTWARE

EV3 NXT

Figure 1-14: Compatibility chart for EV3 and NXT elements

Summary

In this chapter, you learned about the following:

 ■ The electronic components of EV3

 ■ The EV3 software download and installation process

 ■ Characteristics of the principal building parts

 ■ Compatibility between NXT and EV3 components

c01.indd 11:51:53:AM 07/22/2014 Page 12

13

c02.indd 11:54:36:AM 07/22/2014 Page 13

Now that you learned what kind of parts you have in the set, it is time to put

them together to make a robot. In this chapter, starting with some of these parts,

you build your fi rst robot: Auto-Driver. In addition, you will get an introduc-

tion to working with the EV3 brick interface and use the apps in the EV3 brick

to make the robot move.

Getting Started with the Auto-Driver

The Auto-Driver is a three-wheeled vehicle that can drive around (see Figure

2-1). This is one of the basic types of robot that you can have with two large

motors. While building the Auto-Driver, you will learn how to follow the building

instructions in this book and get a better sense of how the building system works.

What You Can Do with the Auto-Driver

The Auto-Driver will have a few of the same features that you will fi nd in an

automobile: It will be able to move forward and backward, turn right and left,

and accelerate or decelerate. In Chapter 3, “Getting Started with Programming,”

you’ll use the Auto-Driver to test out some motor-centric programs that focus

on making the robot move around.

C H A P T E R

2

Building the Auto-Driver:

A Starter Vehicle

14 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 14

Figure 2-1: The Auto-Driver

IDENTIFYING THE PARTS ON THE BUILDING INSTRUCTIONS

The EV3 set comes with a lot of parts that vary in size and function. It also has a built-

in measuring system that allows you to distinguish between diff erent-sized pieces.

Accurate sizing is crucial when you follow building instructions or create your own

blueprints for others to follow.

To follow the instructions in this book, you need to understand how to measure the

length of the beams and axles. As you can see in Figure 2-2, you can count the number

of holes to diff erentiate between the various beam lengths. To measure the size of the

axles, put the axle next to a beam, and then count the number of holes that the axle

covers (see Figure 2-3).

1 2 3 4 5 6 7 8 9 10 11

Figure 2-2: Counting the number of holes on the beam to find its length

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 15

c02.indd 11:54:36:AM 07/22/2014 Page 15

1 2 3 4 5

#5 axle

Figure 2-3: Measuring the size of an axle

I use the same template shown in Figure 2-4 for all the building instructions in this

book. At the top-right corner, you will see what step you are on, and the box at the

top-left corner shows you the parts you need for that step. The number next to the

beam represents its specifi c length, and the number next to the axle starting with #

refers to its relative length. Those numbers that end with x next to each piece mean

how many of that specifi c part you’ll need for that particular step.

13

1x

2x

1x

#5
Step #

STEP 2

Parts for this step

Parts after assembly

Figure 2-4: Template for building instructions

Assembling the Auto-Driver

Now that you know how to select the right parts when you read the building

instructions, you are ready to assemble the Auto-Driver. Before you begin build-

ing, fi nd all the parts that you will need (see Figure 2-5).

16 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 16

2x

2x

1x

1x
2x

2x

2x

11

9

5

3

2x
25cm / 10in

2x
1x

#6

#5

#4

#3

#2

1x

1x

1x

4x

3x

2x

2x

2x

2x

4x

6x

6x

25x

12x

2x

2x

2x

3x

1x

1x

1x

3x

Figure 2-5: Parts list for building the Auto-Driver

After you collect all the parts presented in Figure 2-5, follow the step-by-step

building instructions in Figures 2-6 to 2-25 to build the Auto-Driver.

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 17

c02.indd 11:54:36:AM 07/22/2014 Page 17

1x

1x

4x

STEP 1

Figure 2-6: Step 1: Starting the base of the Auto-Driver

1x

4x

2x

2x

5

STEP 2

Figure 2-7: Step 2: Adding the second large motor to the base

18 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 18

1x

1x

2x
#5

STEP 3

Figure 2-8: Step 3: Attaching the supporter to the base

2x

2x
2x

#4 STEP 4

Figure 2-9: Step 4: Adding the wheels on the large motors

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 19

c02.indd 11:54:36:AM 07/22/2014 Page 19

2x

2x

2x

#3

STEP 5

Figure 2-10: Step 5: Adding the side bars to the base

20 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 20

STEP 6

2x

2x

Figure 2-11: Step 6: Finishing up the base

1x

5

1x

STEP 7

Figure 2-12: Step 7: Finishing up the base

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 21

c02.indd 11:54:36:AM 07/22/2014 Page 21

1x

11

4x

STEP 8

Figure 2-13: Step 8: Finishing up the base

1x

2x 2x

2x

4x

4x

STEP 9

Figure 2-14: Step 9: Building the front part of the Auto-Driver

22 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 22

1x

1x

2x 2x

#2

STEP 10

Figure 2-15: Step 10: Attaching the EV3 brick to the front part

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 23

c02.indd 11:54:36:AM 07/22/2014 Page 23

STEP 11

Figure 2-16: Step 11: Combining the part from step 10 and the base

24 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 24

4x

1x 2x

STEP 12

Figure 2-17: Step 12: Finishing up the body of the Auto-Driver

1x

11

2x

2x

STEP 13

Figure 2-18: Step 13: Finishing up the body of the Auto-Driver

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 25

c02.indd 11:54:36:AM 07/22/2014 Page 25

1x

9

3x

STEP 14

Figure 2-19: Step 14:. Finishing up the body of the Auto-Driver

1x

1x
Flip over and add remaining parts

1x

1x

2x
5

2x

2x

#4

STEP 15

Figure 2-20: Step 15: Building the frame for the third wheel

26 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 26

1x

1x

3

5

2x

#2

STEP 16

Figure 2-21: Step 16: Building the frame for the third wheel

1x

1x

1x

2x

3x

#6

STEP 17

Figure 2-22: Step 17: Adding the third wheel to the frame

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 27

c02.indd 11:54:36:AM 07/22/2014 Page 27

STEP 18

Figure 2-23: Step 18: Attaching the third wheel to the body of the Auto-Driver

28 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 28

DONE

Figure 2-24: Done

Connecting Cables

Port C

Port B

P
ort B

P
or

t
C

Figure 2-25: Connecting connector cables

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 29

c02.indd 11:54:36:AM 07/22/2014 Page 29

Now that you have fi nished assembling your Auto-Driver, it is time to

wake it up.

Understanding the EV3 Brick Interface

As discussed in Chapter 1, “Introducing LEGO MINDSTORMS EV3,” the EV3

brick executes your commands to control the robot by working as its brain. The

EV3 brick also works like its heart, pumping electricity into the robot to move

all its electronic parts (Did you remember to fi ll that brick/heart with six AA

batteries?) In this section, you learn how to operate the EV3 brick and get to

know its built-in functions.

Using the Brick Buttons

As Figure 2-26 shows, the EV3 brick has six buttons. The center button (1 in

Figure 2-26) works like the Enter/Return key on your keyboard. In other words,

it is like saying the command “go” or “select.” The navigation buttons around the

center button (2 through 5 in Figure 2-26) are for navigating around the screen.

There is one additional button beside the other buttons (6 in Figure 2-26). This

button brings you to the previous screen. It is like saying “go back.”

Figure 2-26: 6 Buttons on the EV3 brick

30 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 30

Now, let’s turn on the brick. Press the center button (see Figure 2-27). The

LED lights around the brick buttons will light up, and the Starting screen will

display. It will take a few seconds for the brick to fi nish booting up, and once

this process is complete, the Starting screen will disappear and the Run Recent

screen, which you will look at in the next section, will appear.

Figure 2-27: Turning on the EV3 brick

Exploring Four Basic Screens

Once the brick is on, you can toggle back and forth between four icons by using

the left and right navigation buttons (see Figure 2-28). Each icon drops down a

different screen. These are the four basic entry screens, and each one contains

different functions or useful information about the brick. The EV3 brick can do

many things, and so that you can maximize its potential, this section explains

how it works and how to use it.

Figure 2-28: The four screen icons from left to right: Run Recent, File Navigation, Brick Apps,

and Settings

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 31

c02.indd 11:54:36:AM 07/22/2014 Page 31

Run Recent Screen

The fi rst screen that you see is the Run Recent screen. This screen shows the

list of recently run programs, working like the Open Recent function in other

computer software that you may be familiar with. If you have never run any

programs, nothing will appear on the screen (see Figure 2-29), but once you start

launching the programs, the screen will begin to list the recent programs run.

Figure 2-29: Run Recent screen

File Navigation Screen

From the Run Recent screen, press the right navigation button and you will get

the File Navigation screen (see Figure 2-30). This is where you can fi nd all the

items that you downloaded from your computer such as program fi les, sounds,

images, and so on. Also, this screen shows the contents of an SD card, should

you have one plugged into the EV3 brick. BrkProg_SAVE is the sample folder

that comes with the EV3 brick, and once you download your projects, you will

see them here.

Figure 2-30: File Navigation screen

32 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 32

Brick Apps Screen

Let’s move on to the next screen by clicking the right navigation button again

(see Figure 2-31). This screen shows four built-in apps: Port View, Motor Control,

IR Control, and Brick Program.

Figure 2-31: Brick Apps screen

 ■ Port View: The Port View tells you which ports are connected to electronic

parts such as motors or sensors. The top line of the boxes represents four

lettered ports, A through D, and the bottom line of the boxes has four

numbered ports, 1 to 4 (see Figure 2-32).

Ports A, B, C & D

Ports 1, 2, 3 & 4

Figure 2-32: The Port View

Each box shows you the reported values from motors or sensors. For

example, with the Auto-Driver, you have two motors connected into port

B and C, so the Port View will look like the fi rst image in Figure 2-33. Get

to the second box on the top line (port B) by using the navigation buttons,

and select it by pressing the center button. Then, try to turn the motor that

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 33

c02.indd 11:54:36:AM 07/22/2014 Page 33

is connected to port B with your hand. Do you see the number change

on the screen? That is the value that you are getting from port B, which

in this case is motor degrees. Even though you choose to view a different

port on the Port View screen, the value that you get will stay in the box

for port B (see Figure 2-33). If you click the center button, you will have an

option to change the reading value from motor degrees to motor rotations

(see Figure 2-34). We cover what those values mean later on in this book.

Reading Values
from Port B

1

3 4

2

Tu
rn

 th
e

w
he

el
 th

is
 w

ay

Figure 2-33: Getting the value from the motor in port B

 ■ Motor Control: Press the back button to go back to the main Brick Apps

screen and select the Motor Control. This is the app that allows you to

control your motors with the brick buttons.

Figure 2-35 shows two modes, and you can switch back and forth between

them by pressing the center button. The fi rst mode controls the motors

that are plugged into ports A and D with the navigation buttons. A motor

that is plugged into port A can be made to turn forward or backward by

34 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 34

using the up and down navigation buttons, and a motor in port D can

be turned by pressing the left and right navigation buttons. If you switch

modes, motors plugged into ports B and C are controlled in the same

way. Try it out.

MOTOR
DEGREES

MOTOR
ROTATIONS

Figure 2-34: You can get two types of data from the motor: motor degrees and motor rotations

Control the Motors in Port A & D Control the Motors in Port B & C

Figure 2-35: Two modes to control motors forward and backward

 ■ IR Control: Eventually, you will want to drive your friends and family

crazy by sending your Auto-Driver around the house, but that’s diffi cult

to do when you have to press the button on the EV3 brick the entire time.

You’ll probably want to use the IR Control feature to make the Auto-Driver

move around remotely. Although we do not discuss IR Control setup in

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 35

c02.indd 11:54:36:AM 07/22/2014 Page 35

this chapter, you can skip ahead to Chapter 8, “Sensing the Environments:

Using the Infrared, Touch, and Color Sensors,” to add a remote to this

project.

 ■ Brick Program: Go back to the main Brick Apps screen by pressing the

back button. The last item on the list is the Brick Program. The Brick

Program app can prove very useful when you don’t have your computer

around to program. Because it is similar to the actual EV3 software, I will

come back to this function in Chapter 8, after you learn how to program

with the computer.

Settings

If you haven’t already done so, keep pressing the back button until you see the

fi rst main screen. Use the navigation buttons to go to the icon furthest to

the right. You will see the Settings screen (see Figure 2-36).

Figure 2-36: The Settings screen

On this screen, you can raise or lower the EV3 brick’s speaker volume, set up

times for the sleep mode, and change the status of the Bluetooth and WiFi con-

nections. If you click the Brick Info, you will get the general information about

the EV3 brick such as its operating system, its ID number, memory, and so forth.

36 Exploring LEGO MINDSTORMS EV3

c02.indd 11:54:36:AM 07/22/2014 Page 36

TURNING OFF THE EV3 BRICK

As you’ve just learned, the EV3 brick has a sleep mode. The way sleep mode works is

that after a predefi ned amount of inactivity, the brick shuts itself down to save power.

Sleep mode is a useful feature, but it still is important to turn off the EV3 brick when

you are not using it. To shut down the brick, repeatedly press the back button until you

see a pop-up window like that shown on the left side of Figure 2-37. When you click the

check mark, the brick will say that it is shutting down. That means the device is power-

ing down, safely.

Figure 2-37: Shutting down the EV3 brick

Operating the Auto-Driver

Now that we have taken a look through the EV3 brick’s operating system, let’s

see it in action. Go to the File Navigation screen and select the BrkProg_SAVE

folder. If you click the folder by using the center button, you will fi nd a Demo

program. Get excited and click the center button (see Figure 2-38). Note that the

robot will best perform on a smooth surface. Thick carpets make it diffi cult for

little wheels to fi nd enough friction to show off what the Auto-Driver can do.

 Chapter 2 ■ Building the Auto-Driver: A Starter Vehicle 37

c02.indd 11:54:36:AM 07/22/2014 Page 37

1 2 3

Click

Click

Click

Figure 2-38: Running the Demo program for the Auto-Driver

The Auto-Driver should go forward for a second, turn around, come back to

you, and then turn around again. Congratulations!

Summary

In this chapter, you learned about the following:

 ■ How to identify different lengths of beams and axles

 ■ How to read building instructions for this book

 ■ How to build the Auto-Driver

 ■ The EV3 brick interface: the brick buttons and four basic screens

 ■ Using the demo program to run the Auto-Driver

c02.indd 11:54:36:AM 07/22/2014 Page 38

39

c03.indd 10:43:14:AM 07/15/2014 Page 39

Now that you have your Auto-Driver ready from Chapter 2, “Building the

Auto-Driver: A Starter Vehicle,” let’s make it perform more actions, such as mov-

ing forward and backward! In this chapter, you will learn about programming

your robot. We start with a basic overview of programming, get your software

up and running, and then delve into the essential elements of the EV3 software

that you will use to bring your EV3 robots to life.

What Is Programming?

You probably have programmed a couple of things in your life. Some of

you remember trying to program a VCR. Coffee pots around the world are

programmed to fi nish brewing so that we can get up in the morning. But what

is the type of programming that you hope to learn from this book? In this sec-

tion, you will gain a basic understanding of programming and fi nd out the

role of programming in creating movement for your robots. In addition to the

general ideas of programming, this section also covers how the EV3 program-

ming platform is designed.

 C H A P T E R

3

Getting Started with

Programming

40 Exploring LEGO MINDSTORMS EV3

c03.indd 10:43:14:AM 07/15/2014 Page 40

PROGRAMMING EXPERIENCE ISN’T NECESSARY!

Are you new to programming? Here is some good news: You do not need any pro-

gramming experience to program EV3 robots. This book covers everything that you

need to know to make your own robots move. With EV3’s graphical interface, coding

can be a fun and rewarding experience, and as you follow along, you will learn the

basic concepts of programming.

If you have already done some programming in the past, don’t worry; the EV3

system won’t disappoint you, and you shouldn’t get bored. Builders of any level can

appreciate EV3’s intuitive programming environment. You will be surprised at how far

you can take your ideas with this software.

Communicating with Robots

Why is programming necessary? A robot won’t do anything if it doesn’t receive

commands. You tell a robot what to do and describe how it must do it by creat-

ing a program for it. A program is a list of instructions that directs a robot’s

behavior, and programming is the action of writing a program. A robot follows

exactly what is written down in its program; it can’t read your mind, and it

doesn’t recognize your mistakes as mistakes. So if your creation is not perform-

ing the way that you envisioned, go back to your program—you might have to

alter it slightly.

Understanding Programming Languages

Then, how do we write a program? Can we write down a set of instructions in

English and have a robot read it? Unfortunately, most robots don’t speak English

or any languages that human beings use. To communicate with robots, we need

to speak their language. This is why writing a program is also known as writ-

ing “code.” A coder is another way of saying a programmer; so when people talk

about coding, they are really talking about writing a program.

Coders use various programming languages to talk to robots. You may have

heard about different types of programming languages such as C, C++, Java,

Processing, and so on. (Again, don’t worry if you have no idea what they are.) Some

programming languages are more “machine friendly” than “human friendly.”

For a computer, a program written in a machine-friendly language is a lot faster

to execute. However, these types of programming languages are not easy for

us to learn. To do so, we would need more time to study to understand how

machines work, and it would require a good amount of effort to get used to it.

In contrast, human-friendly languages are designed to allow people to use

them easily. A program written in a human-friendly language may take a

little bit more time for a machine to process, but will be easier for us to code.

news:You

 Chapter 3 ■ Getting Started with Programming 41

c03.indd 10:43:14:AM 07/15/2014 Page 41

Luckily, the EV3 programming language that we will be using for EV3 robots

is a very visual, human-friendly language that you can use either with your

Mac or PC.

Previewing the EV3 Software System

The LEGO MINDSTORMS EV3 set comes with its own software, which is

specifi cally designed for the EV3 brick. An installation CD isn’t in your set, but

you can download it from mindstorms.lego.com.

The EV3 software is an icon-based programming environment. Writing

instructions for the robot with the EV3 software is like designing a train. A

train is a vehicle that runs in one direction down the track. The train can be

long or short, depending on what it is carrying. On some trains, there are cars

that carry luggage, there are cars that carry people, and there are cars that carry

freight, such as food or fuel. Each car has a different function, and whether the

train pulls these cars is up to the conductor.

With EV3, you are the conductor. There are sets of blocks that already contain

certain commands, just like different cars on the train carry different cargo. Your

job is to connect these blocks, as if linking train cars together. You also have to

defi ne the commands for each block, the same as choosing which cargo goes

on what train car (see Figure 3-1).

Move
a motor

Activate
a color sensor

Display
texts

Make
a sound

Figure 3-1: Writing a program with the EV3 software is like designing a train.

The fi rst step is to create an EV3 program using this software on your com-

puter. Then, by connecting the EV3 brick to the computer, you can download

the program into the EV3 brick. As a brain of your robot, the brick controls the

robot by executing the program that you wrote.

Launching the EV3 Software

Now that you know the basics of what programming entails and understand

the core concepts of the EV3 software, it is time to launch the software. In this

section, you start exploring the software with the launch page, and then learn

42 Exploring LEGO MINDSTORMS EV3

c03.indd 10:43:14:AM 07/15/2014 Page 42

how to start a new program. This section also introduces you to the helpful

tools that you can use to manage all of your different programs.

What Do You See on the Screen?

When using any computer software, even playing computer games, it is very

important to understand what elements the software displays on the screen

and what they do so that you can utilize them as needed. Let’s go over the

pages that you will see when you use the EV3 software so that you can learn

the components of each page and their functions.

Exploring the Lobby

After launching the EV3 software on your computer, you will see a screen like

the one shown Figure 3-2. This page is called the Lobby, and it is the fi rst thing

that you will see when you start the software.

Figure 3-2: The EV3 software startup page: Lobby

N O T E In the center of the Lobby, you will see fi ve LEGO models. These are the fi ve

robot missions that come with the LEGO MINDSTORMS EV3 set. If you click a robot,

it shows you instructions on how to build and program that model. Feel free to

 Chapter 3 ■ Getting Started with Programming 43

c03.indd 10:43:14:AM 07/15/2014 Page 43

experiment with these robots outside of the lessons that you read in this book. They

are well designed and will provide extra practice.

At the very bottom of the Lobby screen, you will see three tabs: Quick Start,

News, and More Robots (see Figure 3-2).

 ■ The Quick Start tab contains short video tutorials for using the software;

if you click the arrow on the right edge, you will see a digital version of

the User Guide and the EV3 Help section. The EV3 Help section is like an

index for using the software. We will look into the various functions of

the software in this book, but if you have questions about the software,

visit the EV3 Help section.

 ■ The News tab brings you the latest happenings from the LEGO

MINDSTORMS world. It proves useful if you want to keep up with prod-

uct announcements and information about competitive events. The News

tab appears to mirror information from www.LEGO.com/mindstorms, so if

you visit that page regularly, you will have seen everything that is posted

on the page.

 ■ The More Robots tab is a door to the EV3 online community where

robot builders can share their experiences with others. There is also a

fun game that involves EV3 robots and instructions for building and

programming more robots apart from the fi ve main designs that stand

in the Lobby.

Let’s now take a look at the top of the window (see Figure 3-3). You can fi nd

the Lobby tab in the upper-left corner of any page. Clicking it brings you back

to the Lobby screen. The Add Project tab is a plus sign, and clicking it creates

a new project. The Open Recent tab lets you open existing programs, and it

displays a drop-down menu showing the projects that you recently opened.

Lobby tab

Add Project tab

Open Recent tab

Figure 3-3: Lobby tab, Add Project tab, and Open Recent tab

Creating a Project

Now you are ready to begin a new project. Click the Add Project tab. Make sure

that your screen looks like the one shown in Figure 3-4.

http://www.LEGO.com/mindstorms

44 Exploring LEGO MINDSTORMS EV3

c03.indd 10:43:14:AM 07/15/2014 Page 44

Figure 3-4: New project page

Close the Document Your Work window by clicking the Close Content Editor

button on the top-right corner. (We come back to that later.) The screen you see

now is the main work area when it comes time for you to write a program. Look

at the top-left corner of the window (see Figure 3-5). Did you notice that EV3

automatically created a Program tab for your new project?

Figure 3-5: A Program tab is automatically generated when you begin a new project.

Now that you are looking at the Project window, I want to take a little time

to explain the difference between a project and a program. Projects work like

a locker that you use in a school or a gym where you save and organize your

personal belongings. With your robot, the project is its assigned locker. And

this locker comes with a blank container named Program by default. You will

fi ll up the container with a set of instructions that the robot should follow. Just

as you can stack up multiple containers in your locker, your robot can have

 Chapter 3 ■ Getting Started with Programming 45

c03.indd 10:43:14:AM 07/15/2014 Page 45

multiple programs in its locker/project as well (see Figure 3-6). To create more

programs, you can simply click the button with the plus sign that is right next

to the Program tab.

His locker

Your robot

PROJECT

Program 2

Program 1

Figure 3-6: A project is like a locker, and a program is like a container in the locker.

So, do the containers in the locker hold just programs? No! The locker holds

other types of containers in addition to the container for a program. Do you

want to see how the locker is structured? Then let’s crack open the locker and

take a look inside.

Understanding Project Properties

Clicking the Project Properties button—which looks like a wrench (see

Figure 3-7)and is located to the left of the leftmost Program tab—brings you to

the inside of the locker. Do you see the window like the one shown in Figure 3-7?

c03.indd 10:43:14:AM 07/15/2014 Page 46

46 Exploring LEGO Mindstorms

Section A

Section B

Figure 3-7: Project Properties window

As mentioned earlier, there are more built-in containers apart from the program

container. You can see them in Section A in Figure 3-7. There are containers for a

project’s name, a photo, a project description, and a video of the robot in action.

Now take a look at Section B in Figure 3-7. This is where the program contain-

ers live. It shows you the list of programs that you created and automatically

generates the various lists of elements used in your programs, such as images,

sounds, and so on.

DON’T FORGET TO NAME AND SAVE YOUR PROJECT

It is very important to name your project properly and save it before you go any fur-

ther. What is the best way to label your locker? Label it with your name, right? If I name

my locker Human 1, how would other people know that it belongs to me? For the same

reason, I wouldn’t leave the project name as Project 1 either. I highly recommend that

you label the project with the name of the robot to which it belongs. If you click the

File tab on the menu at the top of the screen and then click Save Project, a Save dialog

opens in which you can name the project.

What about a program, then? Which is the best way to organize multiple contain-

ers? We can mark a container with something to remind you of what it contains. It can

be a colored tag or even a piece of masking tape with a list of its contents. I suggest

doing the same thing when you save your programs. Leaving the program names as

Program or Program 2 hardly distinguishes what each program does. Try to name your

program based on what instructions it has. For example, if the program directs the

robot though a zigzag maze, you can name this program zigzag. To change the name

of a program, select the program that you want to rename and double-click the cur-

rent name on a program tab. The current name will be highlighted, and you can just

type in the new name.

 Chapter 3 ■ Getting Started with Programming 47

c03.indd 10:43:14:AM 07/15/2014 Page 47

Understanding the Programming Interface and Graphic
Languages

Now that you’ve traveled though the fi rst page of the software to the program-

ming area, it is time to learn how to use it. If your Project Properties page is still

open, click the Program tab to come back to the programming area. We will go

over how the programming area is structured and how to use its components.

The screen shown in Figure 3-8 is the main programming area that you

always see when you create a program. Its interface is made up of several sec-

tions, as follows:

Programming Toolbar

Content Editor

Programming Canvas

Programming Palettes Hardware Page

Figure 3-8: The EV3 software interface

 ■ Programming canvas: The programming canvas is the work area where

you will assemble lines of your program. Whenever you create a new

program, you always see the block with a green Play button (Start Block)

on the canvas.

 ■ Programming toolbar: The programming toolbar has useful tools that can

help you control and adjust your program. Figure 3-9 shows what each

tool does. Note that you should choose the Select tool when you select

and move around the programming blocks.

48 Exploring LEGO MINDSTORMS EV3

c03.indd 10:43:14:AM 07/15/2014 Page 48

Program List
shows program lists

Pan Tool
for panning the canvas

Reset
Zoom

Select Tool
to select and drag the blocks

Save

Comment Undo

Redo

Zoom
out

Zoom
in

Figure 3-9: Programming toolbar

 ■ Content editor: The content editor helps you to document your work.

You can use it as a working journal for yourself or as presentation mate-

rial about your robot when talking to other people. When you click the

Edit Mode button (see Figure 3-10) in the top-right corner of the content

editor pane, the software presents you with an editing page, where you

can store photos, videos, descriptions, and instructions for your robot.

Edit Mode Button

Close Content Editor Button

Figure 3-10: Content editor: the Edit Mode button and Close Content Editor button

T I P To keep the programming canvas free of clutter, I recommend that you keep the

content editor pane closed when you are programming. (You can close this pane by

clicking the Close Content Editor button.) Don’t worry, though; when you close the

pane, it is really just minimized and out of view. So, when you reopen the content edi-

tor, all the contents that you have worked on are still there.

 Chapter 3 ■ Getting Started with Programming 49

c03.indd 10:43:14:AM 07/15/2014 Page 49

 ■ Programming palettes: As mentioned previously, the EV3 software comes

with sets of preprogrammed (but modifi able) blocks. Together, program-

ming palettes function as a library for all the programming blocks that

you can use in your project. The blocks are organized by color (green,

orange, yellow, red, blue, and emerald blue), which lets you know what

class of work that the block does. You will learn about most of the blocks

throughout the rest of the book.

 ■ Hardware page: If you don’t already have your EV3 brick connected to your

computer, you will see a graphic on the hardware page that indicates that

the EV3 brick is not connected. It looks like the hardware shown in Figure

3-10. When you connect your EV3 brick to your computer, which we will

try soon, the hardware page shows you how the computer is connected to

the EV3 brick and into which ports the sensors and motors are plugged.

Getting Used to the Interface

Now that you’re familiar with the software interface, let’s take it for a spin.

Clear any blocks that you may have sitting on the canvas by clicking them and

pressing the Delete key on your keyboard. Here, you will practice dragging and

dropping the blocks onto the canvas to create a simple line of the code for your

Auto-Driver. This is just to get used to the action of using programming blocks

so that you can write the example code by following the step-by-step instruc-

tions (Figure 3-11 through Figure 3-15). This code will make the Auto-Driver

move forward for 2 seconds and then backward for 2 seconds.

Save the project as “Auto-Driver”

Name the program “TEST-1”

Drag and drop

Click

1

2

3

4

Figure 3-11: Creating a simple program to make the Auto-Driver move forward and backward

(Step 1–4)

50 Exploring LEGO MINDSTORMS EV3

c03.indd 10:43:14:AM 07/15/2014 Page 50

Click5 Click and type in “2”7

Choose “On for Seconds”6

Figure 3-12: Creating a simple program to make the Auto-Driver move forward and backward

(Step 5–7)

Drag and drop

Click8

9

Figure 3-13: Creating a simple program to make the Auto-Driver move forward and backward

(Step 8–9)

 Chapter 3 ■ Getting Started with Programming 51

c03.indd 10:43:14:AM 07/15/2014 Page 51

Click10
Click and type in “2”12

Choose “On for Seconds”11

Figure 3-14: Creating a simple program to make the Auto-Driver move forward and backward

(Step 10–12)

Click and type in “−75”
or drag the bar down to “−75”

13

Finished!14

Figure 3-15: Creating a simple program to make the Auto-Driver move forward and backward

(Step 13–14)

Now that you have fi nished writing the code, it is time to test it out with your

Auto-Driver. You run the program in the following section. But before you move

on, don’t forget to save the project.

Downloading Programs to a Robot

Congratulations on having fi nished your fi rst program. You successfully used

the software to create a list of commands; to have the robot follow them, though,

you need to deliver them to the robot itself. To see the program that you wrote

in action, you must download it to the robot’s brain (the EV3 brick). In this sec-

tion, you learn about connecting your robot to the computer and downloading

programs to its brain.

52 Exploring LEGO MINDSTORMS EV3

c03.indd 10:43:14:AM 07/15/2014 Page 52

Connecting the EV3 Brick to a Computer

You can establish a connection between the EV3 brick and your computer in

a number of ways. You can do this via Bluetooth, WiFi, or the USB cable; but

in this section, you do so by using the cable. The Appendix, “Using Bluetooth

and Wi-Fi with EV3,” covers how to use Bluetooth and WiFi (in case you want

to fl ip ahead).

Before going on, make sure that you have prepared the EV3 software by

having the code ready on the screen and the Auto-Driver powered up. Plug the

smaller end of the USB cable into the EV3 brick port that is marked PC and the

larger end into the computer (see Figure 3-16).

To the EV3 brick To the computer

Figure 3-16: Connecting the Auto-Driver to the computer with the USB cable

Once the software recognizes the Auto-Driver, you will see your EV3 brick

on the hardware page (see Figure 3-17). Just note that you may have a different

version of fi rmware from Figure 3-17.

Figure 3-17: The hardware page showing the connected EV3 brick

The following section covers the kind of information that you will fi nd on the

hardware page and how to use it. Should you encounter a pop-up window about

updating the fi rmware, see the following sidebar before you do anything else.

 Chapter 3 ■ Getting Started with Programming 53

c03.indd 10:43:14:AM 07/15/2014 Page 53

UPDATING THE FIRMWARE

Firmware is a general term that refers to operating software that is embedded in a

small hardware device, such as the EV3 brick. LEGO will, from time to time, release a

new version of the fi rmware to improve the EV3 brick’s performance, and you’ll want

to update it with the newest version. If you get a pop-up window like the one in Figure

3-18, it’s time to update your current fi rmware. Note that to update your fi rmware,

your computer should be connected to the EV3 brick via the USB cable. You’ll want to

be connected to the Internet, too, so that you can actually download the new version

of the fi rmware.

Figure 3-18: Firmware updating warning window

To update the fi rmware, go to the Tools menu at the top of the screen and choose

Firmware Update (see Figure 3-19). The Firmware Update dialog box shown in Figure

3-19 will open.

Figure 3-19: Opening the Firmware Update dialog box

Continues

54 Exploring LEGO MINDSTORMS EV3

c03.indd 10:43:14:AM 07/15/2014 Page 54

You will see the newer version of the fi rmware in the Available Firmware Files box.

Select the fi le and click the Download button (see Figure 3-20).

Select1

Download2

Figure 3-20: Downloading the new version of the firmware

The progress bars indicate how far along you are in the fi rmware update process.

While the fi rmware is updating, the EV3 brick also shows (with a message on its

screen) that it is receiving information. When the process completes, a pop-up dialog

declares “Firmware update successful!”

Even if you don’t get a window that warns you of an available fi rmware update, it

doesn’t hurt to manually check whether there is the newer version. To do so, click the

Check button in the Firmware Update dialog box.

The EV3 software opens a new browser window that loads the LEGO MINDSTORMS

website, where you can fi nd the newest version of fi rmware. If you don’t see any ver-

sion newer than the one you have, your fi rmware is up-to-date. If there is the newer

version, download it to your computer, and then come back to the Firmware Update

dialog box and fi nd the fi le that you just downloaded. Click the Browse button to do

so if it doesn’t show up in the Available Firmware Files box.

Once you fi nd the fi le, it will show up in the Available Firmware Files box; then you

can click it and download it onto your EV3 brick.

Reading the EV3 Brick on the Software

Again, the place where you can see your EV3 brick is on the hardware page.

Three tabs appear on the left side of the page and carry different types of

information about the EV3 brick: the Brick Information tab, Port View tab, and

Available Bricks tab (see Figure 3-21).

continued

 Chapter 3 ■ Getting Started with Programming 55

c03.indd 10:43:14:AM 07/15/2014 Page 55

Brick Information Tab

Port View Tab

Available Bricks Tab

Figure 3-21: Three tabs of the hardware page

The Brick Information tab shows the connected brick’s confi guration. For

example, if you have the Auto-Driver connected, this tab tells you what version

of the fi rmware the EV3 brick has, its battery level, how it is connected to the

computer, and its memory usage (see Figure 3-22).

The Name of the EV3 Brick

Wireless Setup

Memory Bar

Battery Level

Memory Browser

Figure 3-22: The Brick Information tab on the hardware page

The Port View tab automatically shows which ports are communicating

with motors or sensors when you connect the EV3 brick to the computer. With

the Auto-Driver connected, the Port View tab will look like the one shown in

Figure 3-23.

Figure 3-23: The Port View tab on the hardware page with the Auto-Driver

The top four boxes represent the lettered ports (for the motors), and the bottom

four show the numbered ports (for the sensors). Similar to getting the reading

values (with motors, they are either motor degrees or motor rotations) on the

Port View app on the EV3 brick, you can get the live reading values here as well.

Even if the EV3 brick is not available, you can still set up the ports for the

motors or sensors. If you click one of the port boxes, it gives you the available

options (see Figure 3-24).

56 Exploring LEGO MINDSTORMS EV3

c03.indd 10:43:14:AM 07/15/2014 Page 56

Example 1 Example 2

Figure 3-24: Setting up the Port View

Like its name suggests, the Available Bricks tab lists all the bricks that your

computer can see one way or another. Because your computer can communicate

with a brick in multiple ways, you can have multiple bricks available (assuming

that your computer has USB, WiFi, or Bluetooth). You can check which brick is

currently connected and change the connection type (see Figure 3-25).

Refresh the list

Disconnect
the selected
EV3 brick

Figure 3-25: The Available Bricks tab on the hardware page

Three controller buttons appear on the right side of the hardware page. They

are all for downloading the program to the EV3 brick, but each one works slightly

differently. Refer to Figure 3-26 to see how each button functions.

Download the program to the EV3 brick.

Download the program to the EV3 brick
and run it right away.

Download the selected parts of the program
and run it right away—the brick will display
the downloaded program “___RunSelected”.

Figure 3-26: The hardware page controller buttons

You have been so patient! Now that you have the program ready to go and

the Auto-Driver is connected, it is time to download it to the EV3 brick. Click

the Download button on the hardware page and wait until the EV3 brick makes

 Chapter 3 ■ Getting Started with Programming 57

c03.indd 10:43:14:AM 07/15/2014 Page 57

a noise. You can then unplug the Auto-Driver from the computer and put it on

the ground. Go to the File Navigation screen on the EV3 brick and click the

Auto-Driver folder. Do you see the program called TEST-1? That is the one that

you’ve just downloaded. Click it and see what happens (see Figure 3-27).

Figure 3-27: Running the TEST-1 program on the Auto-Driver

Is your Auto-Driver moving forward and backward? You just saw the robot

execute your commands. This is a taste of the complex programming skills that

you will learn as you move through the lessons in this book. More fun ahead!

What else can we make the Auto-Driver do?

Summary

 In this chapter, you learned about the following:

 ■ The basic concepts of programming with EV3

 ■ The EV3 software and its user interface

 ■ How to update the fi rmware on the EV3 brick

 ■ How to connect the EV3 brick to the computer and download a program to it

 ■ How to run a program downloaded to the EV3 and make your robot move

59

c04.indd 11:56:16:AM 07/22/2014 Page 59

In Chapter 3, “Getting Started with Programming,” you learned how to get

started with the EV3 software and some basic concepts for programming. You

also explored the software’s user interface and made the Auto-Driver commu-

nicate with the computer. This chapter now introduces you to the key factors

of block programming and then moves on to programming the motors. In this

chapter, you learn how to program the motors to make the Auto-Driver move

around in different ways.

Understanding the Basics of Block Programming

As mentioned in the preceding chapter, EV3 block programming is a system

that allows you to complete a series of commands for the robot by linking visual

code blocks. Even though the system is fairly simple and user friendly, keep

in mind two basic rules when you put these blocks together. Before we jump

into learning the details of the programming with the EV3 system, let’s go over

these rules. After that, you’ll learn about the structure of the blocks themselves.

Rule 1: Use the Start Block

When you create the new program, you will always see the Start block, the

block that has a green Play button graphic, on the programming palette. Do you

 C H A P T E R

4

Exploring Action Blocks Part 1:

Programming Motors

60 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 60

remember dragging the programming block from the palette and connecting

it to the Start block when you made the fi rst program for the Auto-Driver in

Chapter 3? Herein lies the fi rst rule: The program will not “run” (be executable)

without having the Start block in the beginning of the code.

Think about it like this: In a relay race, the fi rst runner waits for the sound of

the starting gun before she can spring forward and pass the baton to the next

runner. The Start block is essentially the starting gun for your program. The

next blocks in line from the Start block will be waiting to run through their

instructions until the Start block begins the program. No one will run without

the sound of the starting gun, and so nothing will happen without the Start

block. Again, in a relay race, only the assigned runners on the track get to run,

not everyone else who is around the track. The programming blocks that are

connected to the Start block are like the assigned runners. You can have multiple

programming blocks on the canvas, but only the ones connected to the Start

block will perform (see Figure 4-1).

OFF

OFF

OFFOFF

ONONON

BANG!

Figure 4-1: The Start block works like a starting gun at the beginning of a relay race.

N O T E If, somehow, you lost the Start block on the canvas, you can fi nd it under the

orange tab in the programming palette. You may simply click the Start block from

there and drag it onto the canvas.

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 61

c04.indd 11:56:16:AM 07/22/2014 Page 61

As you may realize, you can have more than one Start block, which means

that you can have more than one sequence of code. All the tracks of code on

the programming canvas that have the Start blocks in the beginning will initi-

ate the code all at the same time when you run the program. This will prove

useful when you want your robot to carry out multiple tasks simultaneously

(see Figure 4-2).

TASK 1

TASK 2

Figure 4-2: You can have more than one line of code to have the robot accomplish multiple

actions.

T I P Avoid writing code that tells the robot to do incompatible actions at the same

time. This would be like trying to go to sleep early right after drinking four cups of

coff ee or telling your friend to study for a calculus exam at a heavy metal concert.

Neither of these situations will have a positive result. Telling your robot to go forward

and backward at the same time would be no diff erent.

Rule 2: Respect the Program Flow

The second rule to keep in mind is that the program will always run from left

to right—from the Start block to the last programming block. Going back to a

relay race, after the sound of the starting gun, the fi rst runner springs forward

and passes the baton to the next runner. The same action is repeated with the

next runners until the fi nal runner gets to the fi nish line. They all wait for their

turn and run in order. The program fl ow works just like that relay race.

As you build out your program, there will be a chain of programming blocks

that run from one to the next in a sequence. The order of that sequence always

starts on the very left of the chain at the Start block and then moves to the next

block on the right until the last block’s action is complete (see Figure 4-3).

62 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 62

1 2 3 4

1 2 3 4

TRACK

TRACK

BANG!

Figure 4-3: A chain of programming blocks will always run from the Start block at the left to the

last block on the right.

Overview of the Programming Block’s Structure

Programming blocks is more than just stringing them together in some particu-

lar order. Each block has settings that alter its function or mode. Many times,

the programmer can manually set how a block operates by assigning values to

different features such as motor power or duration time. Figure 4-4 shows the

basic structure of the block.

Block Type Port Selector

Mode Selector
Block Input Values

Figure 4-4: The structure of the programming block

Getting to Know the Input Values for the Motors

Now that you learned how the program fl ow works in the EV3 software system,

it is time to learn how to control the programming blocks. Let’s start with the

blocks for programming the motors that are under Action blocks (green tab) in

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 63

c04.indd 11:56:16:AM 07/22/2014 Page 63

the programming palette. As shown in Figure 4-5, four programming blocks

enable you to control the EV3 motors: the Medium Motor block, Large Motor

block, Move Steering block, and Move Tank block.

Medium Motor
Block

Move Steering
Block

Large Motor
Block

Move Tank
Block

Figure 4-5: Four programming blocks for the motors

Because the four blocks share the same purpose of controlling the motors, I’ll

group them all together as motor blocks. These blocks share a similar structure

and use the same types of input values for their settings. As shown in Figure 4-6,

fi ve modes defi ne the duration of the motor movement in all the motor blocks:

Off, On, On for Seconds, On for Degrees, and On for Rotations.

Click

5 modes of the motor blocks

Figure 4-6: The modes that control the motors

The Off , On, and On for Seconds Modes

The Off mode is to stop the motor. If you choose this mode, you will see the

block change, as shown in the left image of Figure 4-7. The block input that is

shown on the block is called Brake at End, and it is used to control the way the

motor stops. If you click the check mark, you will get a drop-down menu with

two options: Brake and Coast (as shown in the right image of Figure 4-7).

64 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 64

Off Mode
Brake

Coast

Figure 4-7: The Off mode with the Brake and Coast options

Choosing Brake (shown as Brake at End: True) will make the motor stop

immediately. Choosing Coast (shown as Brake at End: False) will cut power to

the motor and allow it to stop gradually on its own. You will have the Brake at

End input for all the other modes except for the On mode.

The On mode is used to turn on the motor. The motor will be running until

the next block occurs. The block with the On mode won’t work alone; it needs

another block to determine how long it should stay on (see Figure 4-8). For

example, the block with the On mode can be followed by the Wait block that we

will learn about in later chapters. The Wait block can say, “Wait until the touch

sensor is pressed;” then the motor will be on until the touch sensor is pressed.

On Mode

Should be
followed

by another
block

Figure 4-8: The On mode

T I P If there is no other block following the motor block set to On mode, you won’t

get any movement from the motor. This is a useful setting when you start including

sensors into your code. For example, using On mode, you can set the motor to run

until something presses a touch sensor, making it act as an “off ” switch.

The On for Seconds mode always brings up the Seconds input on the block, as

shown in Figure 4-9. You can simply click the number section below the clock symbol

and type in how many seconds that you want to have the assigned motor to be on.

The On for Degrees and On for Rotations Modes

The next mode is the On for Degrees mode. Here, the term degrees means the

number of degrees that the motor turns. If you select this mode, you will get

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 65

c04.indd 11:56:16:AM 07/22/2014 Page 65

the Degrees input in the block inputs section, and you can type in a number of

degrees that you want the motor to be on (see Figure 4-10).

On for Seconds
Mode

Seconds Input

Click and type in
a duration in seconds

Figure 4-9: The On for Seconds mode

On for Degrees
Mode

Degrees Input

Click and type in
a degree value

Figure 4-10: The On for Degrees mode

WORKING WITH DEGREES AND ANGLES

If you aren’t familiar with degrees and angles, here is a little primer. Degrees help us

understand how something travels in a circle. A clock is the classic example because

the minute, hour, and second hand all travel in the same direction, albeit at diff erent

speeds. The entire circle is represented by the number 360, which you’ll fi nd is easily

divisible by 3 and 4. Back to the clock: If the hour hand starts at the top of the clock at

12:00 a.m., we can say it is at 0 degrees or 0º. If the hour hand travels to 3 o’clock, it has

gone a quarter of the way around the clock. 360º / 4 = 90º, so that means 90º is a quar-

ter turn. 6 o’clock is halfway around the clock: 360º / 2 = 180º, a half turn to face the

opposite direction. If the hour hand makes a full revolution around the clock from its

starting point at 12:00 a.m. back to the top at 12:00 p.m., it has traveled the full 360º.

66 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 66

See the examples of the On for Degrees mode in Figure 4-11. The dark part

of the little circle on the degrees input shows approximately how far the motor

will turn.

68°

189°

−93° 360°

150°
+

Figure 4-11: The degrees inputs and the motor movement

 The On for Rotations mode works similarly to the On for Degrees mode

except that you can set up how many rotations you want the motor to turn (see

Figure 4-12).

On for Rotations
Mode

Rotations Input

Click and type in
a rotation value

Figure 4-12: On for Rotations mode

Here, a rotation means a full motor turn, which is a 360º turn. The Rotations

input doesn’t always need to be a whole number; it can also be a decimal point

number.

Whether you program the motor in degrees or rotations depends on your

preference. Experiment with using both ways to tell the computer how far you

want a wheel to turn.

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 67

c04.indd 11:56:16:AM 07/22/2014 Page 67

Motor Power Input and the Direction of the Motor

One of the block inputs that you will always have on the motor blocks is the

Power input, which looks like a gauge (see Figure 4-13). If you click the number

area, you will notice that you can either type in a number or can adjust the bar.

Power Input

Figure 4-13: The Power input on the motor

A higher number means more power, which brings faster speed to the motor.

But what do negative power numbers mean? As shown in Figure 4-14, the posi-

tive or the negative values with the Power input relates to the direction of the

motor movement.

The motor’s turning direction,
when the power value is a “positive number.”

The motor’s turning direction,
when the power value is a “negative number.”

Figure 4-14: The motor Power input and the directions of the motors

68 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 68

When you use the motors for a vehicle-type robot, like the Auto-Driver,

positive and negative values are not for having the robot to go forward and

backward. Depending on the position of the motor on your robot, you may

need a negative value to have the robot go forward and a positive value for

backward or vice versa.

Controlling Motors with the Large Motor Block and the
Medium Motor Block

You learned about the commonalities between motor blocks, now let’s look

around each block that controls the motors. We’ll start with the Large Motor

and Medium Motor blocks and learn about their features.

To begin, create a new program in the Auto-Driver project, and name it

 Large-Motor. Drag a Large Motor block onto the canvas and connect it to the

Start block.

Working with the Large Motor Block

In Figure 4-15, you’ll see what should now be painfully obvious; the Large Motor

block controls a single large motor. This is opposed to the Move Tank or Steering

blocks, which control two large motors. Right now we are just concentrating on

controlling one solitary motor.

Figure 4-15: The Large Motor block on the canvas

Depending on what mode you choose, you will be able to control the motor’s

movement by seconds, degrees, and rotations, as well as by its power. In the

following section, we use the Large Motor block to program the Auto-Driver,

but we will save the Medium Motor block until you use the medium motor in

Chapter 7, “Building the Spy Rabbit: A Robot That Can React to Its Surroundings.”

The Medium Motor block is designed exactly the same way as the Large Motor

block, but it is for controlling the medium motor.

Creating Programs with the Large Motor Block

The Auto-Driver has two large motors in ports B and C, but we will try to

program only one of them for now. Let’s select port B in the port selector

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 69

c04.indd 11:56:16:AM 07/22/2014 Page 69

(see Figure 4-16). According to this block, the motor that is plugged into port B

will make one rotation and then stop.

Click here and
choose port B

Figure 4-16: Program the motor in port B to make one rotation.

Download the code to the robot, and before you run the program, place the

Auto-Driver as shown in Figure 4-17. Let’s call the motor in port B the left motor

and the one in port C the right motor.

Left Motor Right Motor

Figure 4-17: The left motor and right motor on the Auto-Driver

Run the code and see happens to the Auto-Driver. Did it make an almost 90º

turn to its right side? You can get the same result by controlling the left motor

with the On for Seconds mode or the On for Degrees mode.

70 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 70

TRY IT: MAKE A FULL TURN, AUTO DRIVER!

Try programming the Auto-Driver to make a 360º turn and come back to where it was.

You will need only one Large Motor block, and you can try all three modes: On for

Seconds, On for Degrees, and On for Rotations. Note that there can be various ways of

programming to accomplish the same task.

TRY IT: UHHUH, ARE YOU NERVOUS, AUTO DRIVER?

Make a program that uses four Large Motor blocks. Have the fi rst and third blocks

to move the right motor for 1 second with the power of 50 and have the second and

fourth blocks to control the left motor with the same setting. Download and run the

program. Is your Auto-Driver bumbling around?

Measuring the Motor Degrees and Rotations

You may realize from the earlier Try It sidebar that instructing the robot to

make a 360º turn and instructing the motor to turn 360 degrees will bring about

two different results. To have the Auto-Driver make a 360º turn, you may have

experimented with different modes and with multiple values. When program-

ming, these experimental attempts are very important, but there is a tool that

makes writing your fi nal program a little bit easier. That tool is the Port View

app on the EV3 brick. With it, you can measure the degrees or rotations that

the motor makes when the robot make a particular turn. Here’s how to use it:

 1. Find the Port View app on the EV3 brick (see Figure 4-18). The screen will

show you that there are two motors plugged into ports B (left motor) and

C (right motor).

Figure 4-18: The Port View with the Auto-Driver

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 71

c04.indd 11:56:16:AM 07/22/2014 Page 71

 2. Navigate to port B to see the screen as shown in Figure 4-19.

Figure 4-19: Select port B on the Auto-Driver.

 3. Now pick up the Auto-Driver and set it down so that the swivel wheel

is facing you. Hold down the right motor with one of your hands and

manually turn the Auto-Driver until it makes a full turn. Do you see the

degree numbers change on the screen (see Figure 4-20)?

Hold it down

M
an

ua
lly

 tu
rn

 th

is
wheel this way

Check the degrees changing
on the screen

Figure 4-20: Manually turn the Auto-Driver to see how many degrees its left motor

should go to make a full turn.

72 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 72

 4. Come back to the program Large-Motor and change the mode to the On

for Degrees mode. Insert the value that you observed in the degrees input.

Does the Auto-Driver turn like when you turned it manually?

If you used the On for Degrees mode for the fi rst Try It sidebar, you may

realize that the number of degrees that you used is quite similar to the one that

you got from the Port View. This method can be useful if you want to have your

robot to make a specifi c movement.

Using Two Programming Sequences

You may realize that in a sequence of the code that includes the Large Motor

block, you can control only one of the Auto-Driver’s motors. With only one

motor on, the Auto-Driver only turns. In other words, to have the Auto-Driver

go straight, you need to have two motors active at the same time with the same

settings. To do this with the Large Motor blocks, you must create two lines of

code, each with the Large Motor block. As mentioned previously, you can have

more than one line of code, and it seems like as good of a time as any to try it out:

 1. Create a program called Large-Motor-Straight, and then line up the blocks

as shown in Figure 4-21.

Figure 4-21: Program the left motor to go on for 2 seconds with the power of 75

 2. Copy and paste the sequence of the blocks (follow the instructions in

Figure 4-22) and change port B to C.

1. Click the empty spot of the
 canvas and drag over the
 blocks to select them all
 together.

2. Click the selection, hold down
 the Command key(Mac) or
 Ctrl key(PC), then drag it to the
 empty spot.

3. You just copied and
 pasted the sequence!

Empty spot

4. Change port B to port C
 on the second sequence.

Figure 4-22: Program the Auto-Driver to move straight with two sequences of code

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 73

c04.indd 11:56:16:AM 07/22/2014 Page 73

Once you download and run the program, these two lines of code will be

executed at the same time and it will make the Auto-Driver move in a straight

direction.

Using multiple lines of code can enrich your program, but it is quite a great

deal of work to have this simple movement, isn’t it? Luckily, there are program-

ming blocks that enable you to control two large motors simultaneously: the

Move Steering and Move Tank blocks.

Controlling Two Motors with the Move Steering Block

With the Move Steering block, you can control two large motors together. You

can use this block to program a vehicle-type robot that has two driving wheels

and have the robot drive straight, turn, or stop. With the Large Motor block,

you can only get a tight turn, but with the Move Steering block, you can create

a wider range of turns.

Working with the Move Steering Block

Before trying some programs with the Move Steering block, in this section,

you’ll learn its features and how they control the large motors. As you can see

in Figure 4-23, the Move Steering block has a special input, a steering value that

determines the angle of a turn.

Figure 4-23: The Move Steering block on the canvas

How does the steering work with a two-motor controlled robot vehicle like

the Auto-Driver? (It doesn’t have a steering wheel!) You steer this type of robot

vehicle by setting different power levels for each motor. The motor that has more

power will go faster than its counterpart, and it will be outside of the turning

arc that the robot makes. If the difference of the power between two motors is

higher, the curve that the robot creates will be tighter. When we used the Large

Motor block, one motor was energized and the other was not even on. This cre-

ated a power difference and is why the Auto-Driver turned. If the difference of

the power between two motors is smaller, the curve that the robot makes will

be looser (see Figure 4-24). Well, what if there is no power difference between

74 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 74

two motors? If the both motors’ power levels are the same, the vehicle will go

straight without any curve.

B C

Faster

B C

Faster

Loose Turn
The power level difference

between motors B and C is LOW.

Tight Turn
The power level difference

between motors B and C is HIGH.

Figure 4-24: Tight turn vs. loose turn

When you use the steering value, the orientation of the two motors should

be the same, as shown in Figure 4-25.

It is important to defi ne which of the motors will be the left motor or the right

motor, because it will make it easier to visualize the direction of the curve. When

you place the Auto-Driver so that it is pointed away from you (the swivel wheel

is in the back), the motor on your left is the left motor, and the other one is the

right. When you choose the ports in the block, the port that your left motor is

plugged into should be on the left side in the port selector, and the port of the

right motor should be on the right side (see Figure 4-26).

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 75

c04.indd 11:56:16:AM 07/22/2014 Page 75

Figure 4-25: The orientations of two motors on the robot vehicle should be the same.

Right MotorLeft Motor

Figure 4-26: Setting the ports in the Move Steering block

When you click the steering value input, you will get the control bar that

you can move left to right or right to left. As you move the bar, you will see the

symbol of the Steering input change, from a straight arrow to a bended arrow,

which shows how the vehicle will turn (see Figure 4-27).

76 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 76

Figure 4-27: Controlling the steering value

If the steering value is the positive number, the left motor on the robot will

be the faster motor, and the robot will turn to the right as the arrow represents.

If the steering value is a negative number, the right motor on the robot will be

the faster one, and the robot will turn to the left.

The absolute number of the steering value (see it without the – sign) represents

the speed difference between two motors. If the number is higher, the robot

will steer tighter. When the value is 60, the curve that the robot makes will be

tighter than when the value is 30.

The input values that are designated on the block (Seconds, Degrees, and

Rotations) only affect the faster motor. Decide which motor will be the faster

motor by setting up the steering value fi rst, then set up the duration of that

motor by seconds, degrees, or rotations. The settings of the other motor will be

adjusted accordingly to embody the turn that the Steering input delivers (see

Figure 4-28).

Seconds Degrees Rotations

Figure 4-28: Controlling other input values

Creating Programs with the Move Steering Block

Now that you know how steering works and how to control the Move Steering

block, let’s visualize various steering values with the Auto-Driver:

 1. Create another program in the Auto-Driver project and name it

Move-Steering-10.

 2. Create an additional program and name it Move-Steering-50.

We will try to make the Auto-Driver change its position (like in

Figure 4-29; it doesn’t matter how far it moves as long as it changes its

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 77

c04.indd 11:56:16:AM 07/22/2014 Page 77

position in a 90º angle) by using two different steering values, 10 and 50.

Let’s see how they make for different turns.

Figure 4-29: Changing the Auto-Driver’s position in a 90º angle

 3. Create the codes for the Move Steering-10 and the Move-Steering-50 pro-

grams to resemble the image in Figure 4-30. The mode and input values

of the Move Steering block for each program should be same (Power: 75

and Rotations: 2). The steering values, however, will be different.

Move-Steering-50Move-Steering-10 Move-Steering-50

Figure 4-30: Programming the Motor Steering Block with different steering values

 4. Download both programs to the Auto-Driver and check the results. Did

you get movements from each program that looked like the image in

Figure 4-31? As discussed before, the program with the lower steering

values made a smooth, wide arc, and the one with the higher steering

value made a quick, tight arc.

78 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 78

Move-Steering-10

Move-Steering-50

Figure 4-31: The outcomes of the programs Move-Steering-10 and Move-Steering-50

N O T E Note that if the surface upon which you run your Auto-Driver is not smooth,

you might get a diff erent outcome.

The Move-Steering -10 program stopped the Auto-Driver too soon before it

got to a 90º angle. However, the Move-Steering -50 program let the Auto-Driver

go too long, and so it passed the point where it was supposed to stop. You can

solve these problems in various ways. You can try a new steering value, reset

the seconds that the motor should be on, and adjust the degrees or rotations

that the motor should make. Figure 4-32 shows some modifi cation examples.

Figure 4-32: Modify the programs to get the correct result.

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 79

c04.indd 11:56:16:AM 07/22/2014 Page 79

As the preceding exercise shows, even if the Steering block makes it easier to

program turns, you will still need to experiment with various steering values

or adjust the other input values in the block to have a robot turn the way that

you want.

Breaking Down a Task into Several Actions

Each programming block can have multiple functions, but it can execute only

one action at a time. For example, the Move Steering block has the capability to

program the robot to go forward, backward, turn, or stop; but Move Steering

can execute only one of these actions for each time that it occurs in the program.

So when you plan the code for your robot, it is helpful to break the task down

into several segments that correspond to the job that each programming block

should process. For instance, when you program the robot to go around the

shape like the left image in Figure 4-33, it will be helpful to break it down as

the image on the right side of Figure 4-33.

3. Turn
2. Go forw

ard
1. Turn 6. T

ur
n

5.
 G

o
fo

rw
ar

d
4.

 T

urn

Figure 4-33: Breaking down a task into several actions

80 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 80

Keep in mind that one programming block can only do one job at a time! This

method will be useful to solve more complicated challenges.

 TRY IT: BE CAREFUL AUTO DRIVER! YOU’RE DRIVIN’ ON THE EDGE

Set up a low, rectangular-shaped table or outline a rectangle on the fl oor with mask-

ing tape (safer). Program the Auto-Driver to go around the edges of the table (or tape

shape) and come back to the starting point. The programming order should be “go

forward for a certain duration” and then “steer to a certain angle” for the fi rst edge,

then “go forward” and “turn” again for the second edge. Repeat this until the fourth

edge. You will need eight Motor Steering blocks in total. Try to program an accurate

turn at each corner, because if you don’t the Auto-Driver may fall off (or deviate from

the tape outline). Keep a close eye on your robot and catch it if it falls from the table.

The idea is for you to make a series of accurately tuned programming blocks, not to

break your friend the Auto-Driver.

Creating a Spiral Turn

With the Motor Steering block, you can make the robot go in circles fairly

easily. Depending on the steering values, the robot can make circles of various

diameters. See the two examples in Figure 4-34.

About 24” About 12”

Figure 4-34: Programs to drive the Auto-Driver in two different sized circles

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 81

c04.indd 11:56:16:AM 07/22/2014 Page 81

As you may realize, if the steering value is higher, most likely the size of the

circle will be smaller, and the robot’s travel time is shorter to fi nish the circle.

Conversely, if the steering value is smaller, the size of the circle will be bigger

and so the robot needs to travel more to complete the circle.

Can you make the Auto-Driver follow the spiral shape shown in Figure 4-35,

from the outermost point to the innermost point?

Figure 4-35: The spiral shape

Let’s begin by thinking how many program blocks you will need. If you

can break down this spiral shape like the image in Figure 4-36, you’ll see that

you can program Auto-Driver to drive three half circles that are progressively

smaller from the outside in.

1

2

3

Figure 4-36: Breaking down the spiral shape into three half circles

82 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 82

Create a new program called Move-Steering-Spiral and make a line of code

with three Move Steering blocks. You’ll need to use a different steering value

and adjust other input values for each block to keep the motor on until the robot

completes the corresponding half circle. Following this reasoning, I created

the program shown in Figure 4-37. The half-circles in Figure 4-36 are getting

smaller, so the steering value should be increasing from the fi rst block to the

last block. For the same reason, the duration of the motor for each block should

be getting smaller. Also I chose the Coast for the Brake at End input to have

smoother connections between the half-circles.

Figure 4-37: The program for the Auto-Driver to go though the spiral shape

Try to design your own spiral shape. Don’t worry, the Auto-Driver is a tough

robot. It won’t get seasick if you make it drive in circles over and over again.

Using the Move Tank Block to Control the Power Level of
a Motor

The next block to explore is the Move Tank block. With this block, you can con-

trol each motor’s power level. You can change two motor’s speeds and turning

directions by adjusting their power level separately. Let’s begin by creating a

program called Move-Tank in the Auto-Driver project.

Working with the Move Tank Block

If you use this block to program the vehicle that has two motors with the same

orientation, it can be used similarly to the Move Steering block. It can control the

vehicle robot as it goes forward, backward, turns, and stops, just like the Move

Steering block. But the difference is the control system that makes the robot turn.

As always, defi ning the left motor and the right motor on the robot is important:

 1. Make sure that the left (right) motor is the motor on your left (right) side

when you have the swivel wheel facing toward you. Then set up the ports

in the port selector so that the left port is the port that has the left motor

plugged in and the other one is for the right motor.

 2. Drag the Move Tank block from the palette, and then connect it to the

Start block, as shown in Figure 4-38.

 Chapter 4 ■ Exploring Action Blocks Part 1: Programming Motors 83

c04.indd 11:56:16:AM 07/22/2014 Page 83

You will fi nd that there are two Power inputs. (Reminder: The power

input affects the speed and the turning direction of the motor.) The Power

input on the left is for the motor that is plugged in the port that is on the

left side in the port selector, and the other Power input is for the motor

that is in the right port in the port selector.

Figure 4-38: The Move Tank block

 3. You can now defi ne how aggressively your robot turns by controlling the

power level for each motor.

As you learned in “Controlling Two Motors with the Move Steering Block,”

the difference between the power levels between the motors defi nes the shape

of the arc that the robot will make. When you use the Move Steering block, it

decides how to power the motors according to the “steering value” that you

set. With the Move Tank block, however, you must manually control the power

level of both motors to turn.

Creating Programs with the Move Tank Block

Let’s see how the other standard block inputs work along with the two Power

inputs in this block. When you choose the On for Seconds mode, both of the

motors will be energized with their corresponding power level for the length

of time that you defi ne. When you choose On for Degrees or Rotations modes,

the motors will be on until one of the motors reaches that duration. See the

examples in Figure 4-39.

Motor B will reach the 360° first,

then the program will stop.

Motor C will make 3 rotations

first, then the program will stop.

Motors B & C both will go on for

2 seconds, then the program

will stop.

Figure 4-39: How the block inputs work in the Move Tank block

84 Exploring LEGO MINDSTORMS EV3

c04.indd 11:56:16:AM 07/22/2014 Page 84

TRY IT: MAKE AN OBSTACLE COURSE WITH THE OBJECTS AROUND YOU

Now that you know all the ways to control your Auto-Driver, let’s have a go through an

obstacle course. Set up a start point and end point in your room, and then place some

objects as obstacles between them and see whether you can program the Auto-Driver

to go though to the end point without bumping into the obstacles.

Summary

 In this chapter, you learned about the following:

 ■ The basics of block programming

 ■ The input values that control the motors: power level, seconds, motor

degrees, and rotations

 ■ How to use the motor blocks: the Large Motor, Medium Motor, Move

Steering, and Move Tank blocks

 ■ How to use the Port View with the motors

85

c05.indd 10:44:20:AM 07/15/2014 Page 85

In Chapter 4, “Exploring Action Blocks Part 1: Programming Motors,” you learned

how to use the motor blocks to move the Auto-Driver. By now, you’ve seen that

there are more than just motor blocks in the Action blocks palette (green tab).

Let’s say that you want to add custom images or text to the EV3 brick display

or make a robot play a sequence of tones. Then this would be the moment that

you have been waiting for. Venture forth and add a little character to that robot.

The Display Block

You’ve learned that the EV3 screen allows you to run programs, use the brick

apps, and check the brick’s info. You can actually program the robot to display

different things on the screen, such as text, shapes, stock images, and even custom

images. The programming block that allows you to do all of these things is the

Display block. You can fi nd it in the Action blocks palette (green tab) and it looks

like the image shown in Figure 5-1.

Figure 5-1: The Display block on the palette (left) and on the canvas (right)

C H A P T E R

5
Exploring Action Blocks Part 2:

Using Display, Sound and

Brick Status Light Blocks

86 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 86

This block has several modes to display custom content on the screen, and

each mode brings up corresponding block inputs. You will always see three

inputs with all the modes: Clear Screen, X, and Y (see Figure 5-2).

Clear Screen

X Y

Figure 5-2: Common block inputs on the Display block

If you click the box under the icon of the Clear Screen input, which looks like

an eraser, you will get two input values: True or False. If the input value is True,

the screen will be cleared up before this block displays anything. If it is False, the

contents that you program will be added on top of whatever is already on the screen.

Before we take a look at the X and Y inputs, let’s check out the dimensions of

the screen on the EV3 brick. It is a small, rectangular-shaped, black-and-white

screen—178 pixels in width and 128 pixels in height. Wait, but what is a pixel?

The defi nition of a pixel may vary depending on the context, but pixels can be

broadly defi ned as the smallest elements of a screen or digital image. (Imagine

graph paper; each square is like a pixel.) If you could enlarge the EV3 screen as

shown in Figure 5-3, you would see rows of small pixels.

178 pixels

12
8

pi
xe

ls

Figure 5-3: Pixels on the EV3 screen

When we talk about groups of pixels, we refer to them in “rows” and “col-

umns.” A row is a horizontal line of pixels (left to right), while a column is a

vertical stack (top to bottom). Each pixel in a row has its own assigned number.

 Chapter 5 ■ Exploring Action Blocks Part 2 87

c05.indd 10:44:20:AM 07/15/2014 Page 87

They start with pixel 0 on the left of the row and go up by increments of 1

as you move to the right. The number of the pixel within a row is called the

X-coordinate. Each row of pixels also has a number, which begins with 0 at

the top and increases in increments of 1 for each row as you move toward the

bottom. The number that we use to identify each row is called the Y-coordinate

(see Figure 5-4), which also tells us when a pixel is located within its column.

0

0

1

2

3

4

5

6

7

8

9

127

X-coordinate

Y-
co

or
di

na
te

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 177

(13,0)

(9,3)

(4,8)

Figure 5-4: The X- and Y-coordinates on the EV3 screen

Using this convention, each pixel will have one X-coordinate value and

one Y-coordinate value, which will indicate the position of the pixel on the

screen. These coordinates will be written as an ordered pair (X, Y). On the

EV3 screen, the range of the X values run from 0 to 177 (a sum of 178 pixels), and

the Y values go from 0 to 127 (a sum of 128 pixels).

T I P The Display block has a helpful feature that enables you to preview what your

program will display on the EV3 brick screen. If you click the Display Preview button in

the upper-left corner of the block, you will see a small screen pop up right above the

block (see Figure 5-5). I highly recommend you to open the Display Preview when you

program with the Display block.

Displaying Text: The Text-Pixels and Grid Modes

With the Display block, you can set simple text characters, numbers, and symbols

to show on the EV3 brick’s screen. It supports most of the common characters,

but not all of them. See Figure 5-6 to see the supported symbols and text. If

88 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 88

you use unsupported characters, they won’t appear on the EV3 screen or on

the Display Preview.

Display Preview button

Figure 5-5: The Display Preview shows how items will be shown on the screen.

Figure 5-6: Symbols and text that are supported by EV3

Two modes on the Display block enable you to put text on the brick’s screen.

If you click the mode area and move your cursor over to the Text option, you’ll

fi nd two options: Pixels and Grid. Let’s take a look at the Text-Pixels mode fi rst.

Text-Pixels Mode

To explore Text-Pixels mode, start by creating a new program in the Auto-Driver

project and name it Displaying Text. Then complete the following steps:

 1. Drag and connect the Display block to the Start block. If you choose the

Text-Pixels mode, the block will look like Figure 5-7.

Figure 5-7: The Text-Pixels mode

 2. Click the Display Preview button to turn on the preview screen. Do you

see MINDSTORMS on the preview? The box on the upper-right corner

of the block also shows the same text.

 Chapter 5 ■ Exploring Action Blocks Part 2 89

c05.indd 10:44:20:AM 07/15/2014 Page 89

 3. Click the box and type in something new. The text on the preview should

change along with the new input (see Figure 5-8). You can type a long sen-

tence, but only the part that fi ts in the screen will be shown, so be concise.

Click and type

Figure 5-8: Type into the text box and see the content change in the Display Preview.

When you click the Text box, you’ll see the Wired option. This option let you

pull input values from other blocks. In addition to block connecting, in EV3

programming there is another technique called data wiring. (You’ll learn more

about this in Chapter 11, “Programming with Data Wires and My Blocks,” and

even use the Wired option.)

Other than the Clear Screen input, there are four inputs that defi ne the posi-

tion and formatting of the onscreen text: X, Y, Color, and Font. As discussed

earlier, the X and Y values mean the X- coordinate and the Y-coordinate of a

pixel. In this mode, (X, Y) refers to the coordinate of the pixel that is on the top-

left corner of the text (see Figure 5-9). By changing the X and Y values, you can

alter the position of the text.

(20, 55)

(0, 95)

Figure 5-9: Setting the position of the text on the screen

90 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 90

The input next to the X and Y inputs is the Color. There can be two values,

White (true) and Black (false). If you choose White, the text will be white with a

black background, like the left image in Figure 5-10. Conversely, choosing Black

will display the text black with a clear background.

Figure 5-10: Black and White color options for the text

The last input in this mode is the Font. This input decides the formatting of the

text by changing its size and thickness. There are three values, which go from

0 to 2. The 0 value will display the text in the normal size; the 1 value will keep

the text at the normal size, but make the text bold; and the 2 value will enlarge

the text to greater than normal size. See the example in Figure 5-11.

Figure 5-11: Formatting text

 4. Let’s change the input values on the block to display your name on the

center of the screen.

 5. Download the program to the EV3 brick and try running it.

Did anything happen? Did nothing happen? Don’t worry—this is normal. The

reason why it seemed like nothing happened is because the EV3 brick imme-

diately clears up the screen when the program ends. With only one block, your

 Chapter 5 ■ Exploring Action Blocks Part 2 91

c05.indd 10:44:20:AM 07/15/2014 Page 91

program was over in an instant, and the evidence of your work was immediately

wiped from the brick’s screen.

To keep your new display message on, you must make the program run for

a longer duration by adding other blocks after the Display block. If the Display

block is followed by a motor block, for example, the text will stay on the screen

for as long as the motor stays running (see Figure 5-12).

Figure 5-12: The Display block with the Move steering block; the name will remain on the screen

until motors B and C make three full rotations.

In life, there is always more than one way to complete an action. Programming

is often the same way. You will almost certainly hit a roadblock while you are

coding and be forced to fi nd another way to get the results that you want. This

is problem solving, and it is a necessary skill for programmers, engineers, and

everyone in the world. Keeping the text on the screen by using a motor block

certainly does work, but there are other ways to do so. The Wait block is a simple

solution to the text display problem. You can fi nd it under the orange tab, second

block from the left (see Figure 5-13).

Figure 5-13: The Wait block

This block is equipped with various modes, but in this chapter we use only

the Time mode, the default setting when you drag the block to the canvas. The

Wait block with the Time mode set will make the program wait for the assigned

time until the next action.

 6. Drag the Wait block and connect it next to the Display block that you cre-

ated and put 3 in its input section to have a program that looks like the

one in Figure 5-14.

92 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 92

Figure 5-14: The Display block with the Wait block

In this program, no other block follows the Wait block, which means that the

next action after the 3-second wait will be to “end the program.” When you run

this program, the EV3 brick will show your name (or whatever you write) on

the center of the screen for 3 seconds and then end the program.

Text-Grid Mode

Another way to display the text on the screen is by using the Text-Grid mode.

Let’s clear up the canvas and have just one Display block connected to the Start

block. If you choose the Text-Grid mode, you will see two new inputs: Column

(X) and Row (Y) (see Figure 5-15).

Figure 5-15: The Text-Grid mode

With this mode, you can think of the screen with a grid system as shown

in Figure 5-16. Instead of breaking down the screen with pixels, it divides the

screen with 22 columns and 12 rows. The X value refers to the column numbers,

which determines how far from the left side of the screen the text should begin.

The Y value is the row number, which defi nes how far down from the top of

the screen the text should go.

The height of the row corresponds to the height of a normal-sized (font: 0) or a

bolded (font: 1) text character. This means the Y values become the line numbers

of the text. It makes it easier to set up multiple lines of the text on the screen

because instead of calculating how many pixels you need between the lines; you

can just set up the line number.

 Chapter 5 ■ Exploring Action Blocks Part 2 93

c05.indd 10:44:20:AM 07/15/2014 Page 93

0

0

1

2

3

4

5

6

7

11

X (Column #)

Y
(R

ow
 #

 =
 T

ex
t L

in
e

#)

1 2 3 4 5 6 7 8 9 10 21

Text line 0
Text line 1
Text line 2
Text line 3
Text line 4
Text line 5
Text line 6
Text line 7

Figure 5-16: The EV3 screen with the grid: The number of the row represents the number of the

text line.

TRY IT: BE MY MESSENGER, AUTO DRIVER

Now that you know how to make the Auto-Driver display the text, let’s have him

deliver messages. First of all, you need to program the Auto-Driver to drive to the

receiver using the motor blocks, then, have the Display block show the message on

the screen. Don’t forget to add the Wait block after the Display block to set up how

long the text should be staying on the screen. If you want to have multiple lines, you

need more than one Display block, and the following blocks after the fi rst one should

have the false value for the Clear Screen input.

TRY IT: SLIDING TEXT EFFECT

Can we try to have your name rise from the bottom of the screen and move to the top?

It would be just like the ending credits for a fi lm, but with your name. Here are some

steps that you can follow (but feel free to try your own way):

1. Connect the Display block and choose the Text-Pixels. Type your name into the

Text box and keep the Font value as 2.

2. Adjust the X value to have the name almost in the middle of the horizontal side.

3. Use 127 for the Y value.

4. Connect the Wait block and give it 0.5 seconds to wait.

You’ll want to repeat this procedure four times, which means connecting eight

more blocks in the order of D (Display block) – W (Wait block) – D – W – D – W – D – W,

each with the same text and X settings, but diff erent Y values. The Y values should be

getting smaller, say 98, 66, 27, and –14.

94 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 94

Drawing Shapes: The Line, Circle, Rectangle, and Point Modes

In addition to showing text, you can also draw different shapes such as a point,

line, circle, or rectangle on the screen. Go back to the EV3 software and create a

new program. Name it Displaying-Shapes and then drag over a Display block

and connect it to the Start block. If you click the mode area and hover your

cursor over Shapes, you will see the list of the shapes that you can create (see

Figure 5-17). We’ll take a look at each of these shapes next.

Figure 5-17: The Shapes mode on the Display block

Line Mode

If you choose the Shapes – Line mode, you will get the block with the inputs

as shown in Figure 5-18.

Figure 5-18: The Shapes – Line mode

You may better understand how these inputs work if you imagine how you

draw a line with a pencil. You would start from one point and move the pencil

to the second point. The X1 and Y1 coordinate refers the position of the fi rst

or starting point, and the X2 and Y2 coordinate represents the location of the

second or ending point of the line (see Figure 5-19).

The last input to the right, Color, is to set the color of the line. It has two val-

ues, True and False, and they present two colors, white and black. Once again,

anticipating what your drawings will look like on the screen will be easier if

you keep the Display Preview open.

 Chapter 5 ■ Exploring Action Blocks Part 2 95

c05.indd 10:44:20:AM 07/15/2014 Page 95

(38, 68)

(143, 39)

Figure 5-19: How to use the inputs to draw a line

Circle Mode

Now let’s take a look at the Circle mode. Does your block have inputs like the

block in the left image of Figure 5-20? Programming the brick to draw a circle

is like drawing a circle with a compass. When using a compass, you will fi rst

adjust the distance between the pencil and the needle. The longer the distance,

the larger the circle will be. Then, you hold down the needle and rotate the pencil

side around the needle until you have a complete circle. As you can see in the

right image of Figure 5-20, the X- and Y-coordinates mark where the compass

needle sat, specifying the center of the circle. The radius is the measure of the

distance between the needle and the pencil, defi ning the size of the circle.

(94, 62)

50

Figure 5-20: The Shapes – Circle mode and defining the center and the size of the circle

To review, the Color input (the last input to the right) sets the color of the

outline of the circle. The True value will give you a white outline, and the False

value will display a black outline. The value next to the Color input is the Fill

input. It can also have two input values, True or False. When it is True, the circle

will be fi lled with the color that you choose for the Color input, black or white.

96 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 96

The False value will leave the circle clear, and you will only see the outline of

it (see Figure 5-21).

Figure 5-21: The Fill and Color inputs

Rectangle Mode

If you choose the Rectangle mode, you will see some new inputs. As Figure 5-22

shows, the X and Y values specify the top-left corner of the rectangle, which

determines its position on the screen. You can set up the dimensions of the

rectangle by changing the width and height values. If you use the same values

for both the width and height, you will get a square.

(90, 30)
75

80

Figure 5-22: The Shapes – Rectangle mode and setting up the dimensions of the rectangle

 Chapter 5 ■ Exploring Action Blocks Part 2 97

c05.indd 10:44:20:AM 07/15/2014 Page 97

You will also get the Fill and Color inputs, and they work exactly the same

as they did with the Circle mode.

TRY IT: MAKE PATTERNS

Now that you know how to create diff erent types of shapes, let’s give the Auto-Driver

cool patterns. Figure 5-23 shows some patterns that you can try.

Figure 5-23: Patterns on the EV3 screen

See what patterns you can make. Here are some tips that can help you when you

program your design:

1. The Clean Screen input value should always be False in all the Display blocks

except the fi rst one.

2. The shape that goes in the back should be programmed fi rst.

3. After all the Display blocks, there should be the Wait block to tell how long the

shapes should last.

Point Mode

The last shape you can draw is the simplest one of all, a point. Choose the Point

mode and you will get the inputs shown in left image of Figure 5-24. Don’t they

all look familiar? Basically, the point is a single pixel on the screen, and with

this mode, you can pick a pixel to fi ll in by setting up the X- and Y-coordinates

and then coloring it with either white or black. The point is very small, smaller

than salt and pepper fl akes, so open your eyes wide when you use this mode.

By controlling the colors (white or black) of individual points, you can present

some unique effects on the screen. For example, you can make the screen dis-

solve in and out or visualize the data from a sensor as a graph. They require

advanced programming skills, so it won’t be easy to try now, but soon!

Displaying Images: The Image Mode

Did you have fun with playing with the shapes? More fun is coming in this

section. Other than drawing shapes, you can also display predrawn images

on the screen. Like Figure 5-25 shows, the inputs of this mode should all be

familiar to you.

98 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 98

(90, 30)

Figure 5-24: The Shapes – Point mode and its inputs

Figure 5-25: The Image mode and its inputs

The Clear Screen input either clears the screen before showing any other con-

tents or let the contents from the previous block stay. The X- and Y-coordinates

determine the location of the top-left corner of the image, thus enabling you to

position the image. Then how do you get the images? If you click the File Name

box on the top-right corner of the block, it will open a small window.

Pulling the Image from the LEGO Image Files Folder

After you open the little window, do you see the LEGO Image Files folder?

This folder has the images that come with the EV3 brick. All the images are

organized in seven different categories, and each has a variety of images (see

Figure 5-26). You will only see the fi lenames in the image folders, but if you

look at the User Guide that comes with the set (page 51~55), you will fi nd all

the images with the names.

This folder has
seven categories:
 *Expressions
 *Eyes
 *Information
 *LEGO
 *Objects
 *Progress
 *System

Figure 5-26: LEGO image files

 Chapter 5 ■ Exploring Action Blocks Part 2 99

c05.indd 10:44:20:AM 07/15/2014 Page 99

When you click the image fi le that you want to put on the screen, the Display

Preview window pops up automatically and shows the image that you picked,

as shown in Figure 5-27. I picked the Love fi le in the Eyes image folder.

Figure 5-27: Image showing in the Display Preview

Let’s connect another Display block and click the File Name box. Do you see

the fi lename that you used for the fi rst block in the Project Image folder? For your

convenience, the software will save the recently used fi les in the Project Image

folder. They will also be listed in the Images section in the Project Properties

(see Figure 5-28).

Figure 5-28: You will find the recently used files in the Project Image folder as well as in the

Project Properties.

TRY IT: AUTO DRIVER HAS EYES

Try creating fun face expressions on the Auto-Driver with the LEGO image fi les. How

about some blinking eyes? You can switch back and forth between the Neutral image

and Sleeping image in the Eye folder. Create various combinations with these images

and give the Auto-Driver a chance to express its emotions.

100 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 100

Using the Image Editor

LEGO has a lot of cool images, but wouldn’t it be more fun if you could use the

image that you created? Fortunately, the EV3 software has a tool that enables

you to design and edit your own image to make it suitable for the screen:

 1. Go to Tools on the menu bar and choose the Image Editor. Did you get

this new window to pop up (see Figure 5-29)?

Figure 5-29: The Image Editor

Figure 5-30 shows you how the Image Editor is designed. There are many

tools that let you draw your own graphics that can also be used to edit an image

that you import from your computer.

If you only want to draw your own image, you can just start drawing as soon

as you open the Image Editor. If you want to edit an existing image, though,

you need to complete a few more steps:

 2. Click the Open button and fi nd the image on your computer that you

want to edit; it will then appear in the editing area (see Figure 3-31).

 Chapter 5 ■ Exploring Action Blocks Part 2 101

c05.indd 10:44:20:AM 07/15/2014 Page 101

You can zoom in and out to have the image fi t in the EV3 screen. Note

that monochromatic images work best when importing. An image with

many colors and shades won’t be displayed well when it’s converted to

the EV3 screen.

Open

Pencil

*Pencil thickness
*Line thickness
*Thickness of the outlines of
 the ellipse and rectangle
*Size of the eraser

Paste the selected part.

Copy the selected part.

Cut the selected part.

Rectangle

Ellipse

Select

Line

Fill

Erase

Text

Small

Medium

Large

Decide

Save

New Undo

Redo

Figure 5-30: Editing tools in the Image Editor

Zoom
in & out

Imported image

Figure 5-31: Open the image file and adjust its size by using the Zoom-In and Zoom-Out

buttons.

102 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 102

 3. Click the Next button. Doing so will bring you to the page where you

can adjust the contrast of the image. At this point, the image will become

black and white.

 4. Click the Next button again to display the editing page where you may

customize the image (see Figure 5-32).

Figure 5-32: Adjust the contrast of the image and then customize it.

 Chapter 5 ■ Exploring Action Blocks Part 2 103

c05.indd 10:44:20:AM 07/15/2014 Page 103

 5. When you have fi nished editing, click the Cave button on the top menu,

give it a name, and then save it.

This image fi le will be listed on the Images tab in the Project Properties, and

it will also show up in the Project Images folder (see Figure 5-33). If you draw

graphics without any image importing, you can just save the fi nal graphic, and

it will also appear in the Project Properties and in the Project Images folder.

Figure 5-33: The customized image will be listed in Project Properties and in the Project

Images folder.

Resetting the Display: The Reset Screen Mode

At some point after all of this image display exploration, you may want to go

back to the default setting. You can use the Reset Screen mode to do this. It is

the last mode on the Display block. When this mode executes in a program, the

screen will reset and show the default information.

The Sound Block

You might have noticed that the EV3 brick makes sounds when you turn it on

and off or download programs. It has a built-in speaker, and you can program

it to play prerecorded sounds or a sound that you compose. Let’s create another

program and call it Playing-Sound. Drag the Sound block into the canvas and

connect it to the Start block. There are four different modes, and each one has

two common inputs, except for the Stop mode (see Figure 5-34).

Volume

Play Type

Figure 5-34: The Sound block and the Volume and Play Type inputs

104 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 104

The fi rst common input is Volume, which controls the loudness of the sound,

and the range of that value goes from 0 to 100. It works just like a volume control

for any speaker.

The second one is the Play Type input. When you click this input section, it

shows you three options (see Figure 5-35):

 ■ Wait for Completion: This option plays the sound once completely before

the program moves to the next block. In other words, it isn’t affected by

other blocks, and no matter what, the next block should wait until the

sound is complete.

 ■ Play Once: This option starts playing the sound; then the program moves

directly to the next block. Unlike the Wait for Completion option, the

program won’t wait for the sound to be completed. It is like the next block

starts running at the same time as the sound begins. The sound will go

on and be played once while the next block is running. If there are no

following blocks, you won’t hear a sound.

 ■ Repeat: This one works like the Play Once option but it plays the sound

over and over again until the program sees the next Sound block.

1. Play the sound
 once.

2. Begin the next
 block.

2. Begin the next
 block.

2. Begin the next
 block.

Programming
Block

Wait for Completion

Play Once

Repeat

1. Play the sound once; at the same time,
 begin the next programming block.

Programming
Block

Programming
Block

Programming
Block

Programming
Block

Programming
Block

Sound
Block

3. Begin the next
 block.

1. Play the sound and repeat until the next sound block;
 begin the next programming block
 with the sound starts playing.

Figure 5-35: How the Play Type inputs work

 Chapter 5 ■ Exploring Action Blocks Part 2 105

c05.indd 10:44:20:AM 07/15/2014 Page 105

Play File Mode

Let’s go over the Play File mode first. The EV3 software offers various

sounds that you can choose for your robot. This mode is similar to the

Image mode in the Display block, but the images are replaced with sounds. If

you click the File Name box, you will see the Project Sounds and LEGO Sounds

fi le folders.

Using the Prerecorded Sounds

In the LEGO Sounds folder, all the prerecorded sounds are organized in nine

categories. As a convenience, when you click any sound fi le, the software plays

that sound for you (just like the Display Preview shows the image that you

choose in the Display block). Once you use the sound, all of the recently played

sounds will be saved in the Project Sounds Folder. You can also fi nd them in

the Sound section in the Project Properties. Try to have your Auto-Driver play

some sounds (see Figure 5-36).

This folder has
nine categories:
 *Animals
 *Colors
 *Communication
 *Expressions
 *Information
 *Mechanical
 *Movements
 *Numbers
 *System

Figure 5-36: Playing the LEGO sounds

Creating Your Own Sounds: Using the Sound Editor

Just like you can design your own image for the Display block, you can

also create your own sounds. This time we will use a tool called the

Sound Editor:

 1. Go to the Tools menu and select Sound Editor. Did you get a pop-up

window that looks like the one in the bottom image in Figure 5-37?

You can use this tool in two ways. First, you can use it to record sound and

edit it. Alternatively, you can import sounds or music that you have in your

computer and then edit that.

106 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 106

Figure 5-37: Opening the Sound Editor

If you have a built-in or line-in microphone on your computer, you can record

your own sound. Click the Record button, the one with the red circle on, and it

will start recording for a maximum of 10 seconds. After that, it stops automati-

cally. You can edit the recorded sound if necessary and save it for your project.

Let’s walk you through the editing process with the example of importing an

existing sound. Try following the steps:

 2. Click the Open button and find a compatible music file. When you

open the fi le, you will see the waveforms appear in the black window

(see Figure 5-38).

If the Save button is grayed out, the current sound fi le is too big to be saved

onto the brick. However, you can solve this problem by editing the sound. You

can select the part of the sound that you want to use by moving the two sliders

on the top corners of the wave window. The Zoom-In and Zoom-Out buttons

can help you make an accurate selection:

 3. If necessary, move the sliders or zoom in and out, and the duration of the

sound will be changed accordingly (see Figure 5-39).

 4. Press the Play button to hear the selected part.

 Chapter 5 ■ Exploring Action Blocks Part 2 107

c05.indd 10:44:20:AM 07/15/2014 Page 107

Figure 5-38: The sound file opened in the Sound Editor

Figure 5-39: Editing the sound

Once the sound fi le is small enough to be saved onto the brick, the Save

button becomes available. You can then save the fi le and have it show up in

the Project Sounds folder in the Sound block and in the Sound section in the

Project Properties.

Play Tone Mode

The next mode is the Play Tone mode, which allows you to control the tone of a

sound. It uses a unit called the hertz (Hz). Let’s take a moment to see what it is.

Sounds are waves that travel through the air. Waves are all around us. Some

waves we can see, and others we cannot. Light waves can be visible, which

means we sense them with our eyes. Sound waves are invisible to the human

eye, but we have a pair of ears that can sense them. Visible and invisible waves

are remarkably similar in their most basic form. To create a visible wave at home,

take a heavy string, phone chord, or jump rope and attach one end to a chair or

some other heavy object. Hold the other end in your hand. You will use your

108 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 108

hand to produce mechanical energy, which will travel along the line. Moving

the line quickly up and down, you will create peaks and valleys, which will

travel along the line until they reach the end. Together, those peaks and valleys

form a wave. Unlike your jump-rope wave, sound waves are much smaller, and

the speed at which peaks and valleys are created is much, much faster.

Not only does your ear pick up the height of the peaks, but also how quickly

one peak follows the one before it. The time between peaks is called the fre-

quency. The pitch of a sound is defi ned by its frequency. High frequencies make

higher pitches, and low frequency makes for low pitches.

The unit for frequency is the hertz. Frequencies are written out in the same

way you would write out any other unit measurement, with the number and

then the unit. So, the frequency of a sound is written as 68Hz, or 218Hz, or

2Hz, and so on. As you can see in the right image in Figure 5-40, when you

click the Hz input, it will give the list of the frequencies and their equivalent

notes. You can either choose a note or just type in a frequency. The Duration

input lets you decide how long you want to have the tone play, measured

in seconds.

Frequency Duration in seconds

Figure 5-40: The Play Tone mode and the sound Frequency and Duration inputs

Play Note Mode

After Play Tone comes the Play Note mode. You can use this function to play a

specifi c musical note. If you click the Note input section, it will provide a piano

keyboard control like that shown in the right image of Figure 5-41, and you will

get to choose one of the notes. The letter (C-B) means the name of the musical

note, and the number (4-6) next to it represents the octave that that note is in.

You can also control the note’s duration in seconds.

 Chapter 5 ■ Exploring Action Blocks Part 2 109

c05.indd 10:44:20:AM 07/15/2014 Page 109

Note Duration in seconds

Figure 5-41: The Play Note mode and the Note and Duration inputs

TRY IT: PLAY A SIMPLE SONG

Now that you know how to make musical notes in the EV3 brick, try playing a simple

song, like one that would be in a movie about a giant shark. You can imitate the begin-

ning of the song by following these instructions:

E4 (1 sec)

F4 (0.2 sec)

Wait (0.8 sec)

E4 (1 sec)

F4 (0.2 sec)

Wait (0.8 sec)

E4 (0.2 sec)

F4 (0.2sec)

E4 (0.2 sec)

F4 (0.2sec)

E4 (0.2 sec)

F4 (0.2sec)

E4 (0.2 sec)

F4 (0.2sec)

E4 (1 sec)

What do you think? Does it feel like a shark is close by? Try to program the Auto-

Driver to perform along with the song.

Stop Mode

If you want to stop all the sounds that you have programmed, you can simply

connect another Sound block with the Stop mode. With that, all the sound that

was playing previously will stop. However, if you have a block with the Wait

for Completion input, it will still fi nish playing the sound fi rst, and then stop.

110 Exploring LEGO MINDSTORMS EV3

c05.indd 10:44:20:AM 07/15/2014 Page 110

The Brick Status Light Block

When you run the Auto-Driver, you might notice that the light around the

buttons of the EV3 brick stay on or are blinking. This light is called the Brick

status light and it can illuminate itself in red, orange, or green. The light may

be set to stay on or blink.

 Per the default setting, each light behavior indicates a different brick status:

 ■ When the red light stays on, it means the brick is starting up, updating,

or shutting down. When the brick is busy, the light blinks.

 ■ When the brick has any alerts, such as low battery, or when the brick

is ready, the orange light stays on. If you see a pulsing light, that either

indicates an alert or means that something is running on the brick.

 ■ When the brick is ready for any action, the green light stays on. When the

brick is running a program, the light blinks.

You can actually control the light’s performance by using the Brick Status

Light block.

The On Mode

The fi rst step to control the light is to choose the On mode. With this mode,

you can pick the color and its outcome action. As you can see in Figure 5-42, it

comes with two inputs, Color and Pulse. In the Color input, you can use numbers

that represent green (0), orange (1), or red (2). The Pulse input controls how to

present the light. The True value will make the light pulse, and the False value

makes the light stay on.

Color Pulse

Figure 5-42: The On mode and its inputs

The Off and Reset Modes

The Off mode simply turns off the brick status light. If you want to have no light

on your brick whatsoever, you can choose this mode. The Reset mode brings

back the default setting. So, when you run the program with this mode, the

green light will blink (see Figure 5-43).

 Chapter 5 ■ Exploring Action Blocks Part 2 111

c05.indd 10:44:20:AM 07/15/2014 Page 111

Figure 5-43: The Off and Reset modes

Summary

In this chapter, you learned about the following:

 ■ How to display text, shapes, and images on the EV3 brick’s screen with

the Display block

 ■ How to use the Image Editor

 ■ How to program the sound and musical notes on the EV3 brick with the

Sound block

 ■ How to use the Sound Editor

 ■ How to program the brick status light on the EV3 brick

c05.indd 10:44:20:AM 07/15/2014 Page 112

113

c06.indd 10:44:42:AM 07/15/2014 Page 113

In Chapter 4, “Exploring Action Blocks Part 1: Programming Motors,” and

Chapter 5, “Exploring Action Blocks Part 2: Using Display, Sound, and Brick

Status Light Blocks,” we looked through the Action blocks, which are found

under the green tab in the programming palettes. We used the Action blocks

to program the Auto-Driver to move around, play sounds, and display images

on its screen. Under the orange tab next to the green tab, you’ll fi nd the

Flow blocks. Unlike many of the previously discussed blocks, Flow blocks

do not enable the robot to perform an action. Instead, they control the fl ow

of the code.

If you think of the Action blocks as cars on a road, the Flow blocks are the

traffi c signs. They can make the program start, wait, repeat, or simply follow one

line of the code or the other. The Start and Wait blocks that we briefl y used in

previous chapters are examples of this traffi c management. Like traffi c signals

in the real world, Flow blocks can work with sensors to tweak how the Action

blocks behave in the code. This chapter covers Flow block basics like Switch

and Loop; more advanced operations such as linking the Flow block with an

infrared sensor are discussed in Chapter 8, “Sensing the Environments: Using

the Infrared, Touch, and Color Sensors.”

C H A P T E R

6

Exploring Flow Blocks

114 Exploring LEGO MINDSTORMS EV3

c06.indd 10:44:42:AM 07/15/2014 Page 114

The Start Block

As your robot’s builder, you have the responsibility of giving it lots of things

to do. You know by now that a crucial step in EV3 programming is to connect

any and all blocks to the Start block. You will always see this block whenever

you create a new program, but if you lose one or accidentally delete it, you can

fi nd it in the orange palette (see Figure 6-1).

Figure 6-1: The Start block

You’ve already read about most of the features of the Start block in previous

chapters, so the summary here recaps that information and throws in a few

new tips about how to use this block.

Starting the Program

The sequence of the code must begin with the Start block. Blocks that are not

connected to this block on the canvas will just sit around and collect digital dust.

You can have multiple lines of code on the canvas, and each one will run along

with the others if it has a Start block at the beginning. Even though each line

of code begins at the same time, they will run independently and not interact

with each other.

Demonstrating the Line of Code

If your robot is connected to the computer via USB cable, Bluetooth or WiFi, you

can demonstrate an individual line of the code by clicking the Play button on

the Start block. Let’s take a look at the example in Figure 6-2.

Figure 6-2: Two sequences of programming blocks

 Chapter 6 ■ Exploring Flow Blocks 115

c06.indd 10:44:42:AM 07/15/2014 Page 115

The top line of the programming blocks makes the Auto-Driver go forward

for 3 seconds, and the bottom line plays musical notes while the robot moves.

Let’s see whether the bottom line of programming blocks makes a decent tune.

Connect the robot to the computer and click the Play button on the Start block

on the bottom line. Only this line of the code will be downloaded and run

immediately. In the meantime, you will see the Play button on the hardware

page controller change to the Stop button, as shown in Figure 6-3.

Figure 6-3: The Stop button on the hardware page controller

After the line of code that you run is fi nished, the Stop button may stay, and

the EV3 brick status light may continue to blink, so make sure that you click

the Stop button when you have fi nished testing.

The Wait Block

The second block in the orange palette is the Wait block. It should look familiar

because we already used it to display the image on the EV3 screen in Chapter 5.

The command of Wait raises questions such as “for how long?” or “until when?”

These questions are basically asking, “When should I stop waiting?” For this

reason, when you ask someone to wait, you might give him a condition of when

to stop. Let’s take a look at the following scenarios.

I went to the baseball game with Lou. After the seventh-inning stretch, he

wanted to get a hot dog but I wanted to ask him to wait. I came up with three

wait conditions that I could choose from:

Scenario 1. For 5 minutes

Scenario 2. Until he saw the player come up to bat whose uniform

had a number that was greater than 33

Scenario 3. Until the current pitcher left the mound

If I go with the fi rst scenario, Lou simply needs to wait for 5 minutes and

then get a hot dog. If I choose the second scenario, he needs to keep comparing

upcoming players’ numbers with 33 until a player whose number is higher that

33 comes out of the dugout. If I ask him to follow the last scenario, he should

watch who the current pitcher is and keep track of whether he stays on the fi eld;

then he can leave for a hot dog.

116 Exploring LEGO MINDSTORMS EV3

c06.indd 10:44:42:AM 07/15/2014 Page 116

Each scenario has a different condition that can allow Lou to get his hot dog.

You can use the Wait block to apply these same types of conditions to your robot.

To have your robot wait for a certain amount of time, like the fi rst condition,

you can simply choose the Time mode and set up the time in seconds (again,

like you did to keep the image on the EV3 screen in Chapter 5). How might we

apply the second or third conditions to the robot? Read on.

The Compare Mode in the Wait Block

To end the great hot dog wait in the second scenario, Lou kept comparing the

upcoming players’ numbers with the given number. Once he saw the number

that met the given condition (greater than 33), he could stop waiting and go

get a hot dog. Here, the given number of 33 is the value that triggered a certain

action (Lou leaving to buy a hot dog); this is called a threshold value.

You can design a similar set of instructions for your robot using the Compare

mode with the Wait block. But fi rst you need to decide the following:

 ■ What type of data the robot should collect (Lou collected players’ uniform

numbers.)

 ■ What the threshold should be (It was 33 for Lou.)

 ■ What type of comparison you want to apply between incoming values

and the threshold value (It was “higher [greater] than” in Lou’s case.)

You can choose between the different types of data in the mode selector when

you choose the Compare mode, and most of the time the block will have inputs

for the threshold and types of comparison. The types of comparison will be

represented by signs that you probably will recognize from elementary school.

These operators are = (equal), ≠ (not equal), > (greater than), ≥ (greater than or

equal to), < (less than), and ≤ (less than or equal to). Figure 6-4 shows how they

appear on the block.

Threshold
Value

Compare
Type

Figure 6-4: The compare type and the threshold value inputs in the Compare mode

 Chapter 6 ■ Exploring Flow Blocks 117

c06.indd 10:44:42:AM 07/15/2014 Page 117

You can apply the basics of the Compare mode covered in this section in

various programming blocks, especially when you use sensors. So, you need to

understand what the threshold is and how the comparison is evaluated.

The Change Mode in the Wait Block

In the third scenario, Lou needed to wait only until another pitcher replaced the

current pitcher. Lou’s waiting was over as soon as the new pitcher walked onto the

mound. Once he fi nished waiting for the pitcher, he moved to his next action, yum.

Lou was basically waiting until he saw the pitcher leave the game, and that

change fi nished his waiting. You may also use this kind of condition with the

Wait block with the Change mode. With this mode, the Wait block will hold the

program until it detects a certain change.

Now that you know how to set up the different types of waiting conditions

that you can create for your robot by using the Compare and Change modes

(thanks to the previous broad and general explanation), the following section

explains more specifi cs about the Wait block with selected sensors. Because the

sensors have yet to be discussed, this coverage focuses on just the brick buttons

and Time modes. You will not read about all the features of the Wait block here,

but you learn about the rest in Chapter 8, which introduces the sensors.

THE WAIT BLOCK DOESN’T FREEZE THE WHOLE PROGRAM!

While the Wait block processes its commands, either by waiting for 5 seconds or wait-

ing to get a certain value, or even waiting for one of the brick buttons to be pressed,

the blocks before the Wait block keep doing what they were doing before the pro-

gram started to wait. The Wait block is telling the previous blocks to “continue what

you are doing until I fi nish processing my job!” and asking the next blocks to “wait to

begin your task until I fi nish what I am doing!” The whole program will still be running

while the Wait block is standing by. As you can see from the program in Figure 6-5,

motors B and C will keep turning as the Wait block is processing the action of “waiting

for 3 seconds.” After 3 seconds, motor B and C will stop.

Figure 6-5: Motors B and C will be running for 3 seconds and then stop.

The Time Mode

When you drag the Wait block to the canvas, its default will be set to the Time

mode. This setting doesn’t have the Compare or Change modes and is simply

118 Exploring LEGO MINDSTORMS EV3

c06.indd 10:44:42:AM 07/15/2014 Page 118

to tell your robot to wait for a number of seconds. Remember that “waiting for a

certain amount of time” doesn’t mean “stop the whole program for that amount

of time”; the previous blocks of the Wait block run during the wait. You’ve

already used this mode in Chapter 5, but take a look at Figure 6-6 for a reminder.

Figure 6-6: The Time mode in the Wait block

The Brick Buttons Mode

Now let’s take look at the Brick Buttons mode on the Wait block. In this mode,

the fi ve buttons in the center of the EV3 brick (brick buttons) are used to control

the wait period. With this block, your program will wait to proceed until one

of the buttons is pressed, released, or bumped.

PRESSED, RELEASED, OR BUMPED

These terms will keep coming up when you program the brick buttons or the touch

sensor. How do these three activations diff er from each other? Pressed means that the

button is being held down and will report back the number 1 for as long as it takes

to be released. Bumped means that the button just gets pressed down and released

almost immediately, producing an output of 2. Released refers to a button in its natu-

ral state of not being pressed or bumped. When the button is not pushed, it reports

back the number 2. If your program is waiting for that value to proceed, it will wait

until the button is no longer being pressed.

The Compare-Brick Buttons

As Figure 6-7 shows, if you click the mode selector, you will see the Brick Buttons –

Compare – Brick Buttons mode.

 Chapter 6 ■ Exploring Flow Blocks 119

c06.indd 10:44:42:AM 07/15/2014 Page 119

Figure 6-7: Choose Brick Buttons – Compare – Brick Buttons mode in the Wait block.

Note that each brick button has its own button ID number that refers to its

position on the EV3 brick. This ID number is what the software recognizes

when the brick button is activated in one way or another. Figure 6-8 shows the

button ID numbers.

None of them is activated: 0

1

4

5

32

Figure 6-8: The button ID numbers

In terms of coding your robot, this mode tells the program to wait until one

of the assigned brick buttons is activated. The fi rst input (Set of Brick Button

IDs) allows you to choose one or multiple buttons. The program will wait until

one of them is activated. The second input (State) determines how you defi ne

activated. The buttons may be pressed (represented by 1), released (represented

by 0), or bumped (represented by 2) to satisfy the conditions of the Wait block

and allow the program to proceed (see Figure 6-9).

You’ll fi nd that there is yet another section next to the inputs. It is a block

output, which allows one block to tell another programming block which of the

120 Exploring LEGO MINDSTORMS EV3

c06.indd 10:44:42:AM 07/15/2014 Page 120

fi ve buttons has been pressed. For the moment, we aren’t going to cover this,

but you will learn more about block outputs in Chapter 11, “Programming with

Data Wires and Using My Blocks.”

Set of Brick Button IDs State

Released

Pressed

Bumped

Figure 6-9: The inputs with the Brick Button mode

Let’s try using the Wait block with this mode in your program! We will have

the Auto-Driver wait until the center button (button ID: 2) is pressed, then move

forward for 2 seconds when the center button is pressed. Create a project called

Flow Blocks and make a new program named Brick Buttons then make it look

like Figure 6-10.

Figure 6-10: A program with the Wait block with the Compare – Brick Buttons mode

Download this program to the Auto-Driver. The Auto-Driver won’t be mov-

ing until you press the center button!

 Chapter 6 ■ Exploring Flow Blocks 121

c06.indd 10:44:42:AM 07/15/2014 Page 121

The Change-Brick Buttons

Let’s click the mode selector again and choose the Change – Brick Buttons. Did

you select the block that looks like the one in Figure 6-11?

Figure 6-11: The Brick Buttons – Change – Brick Buttons mode in the Wait block

This mode looks simpler than the Compare mode because it has only one

section for an output whereas the Compare mode has three sections for two

inputs and one output. With this setting in place, the Wait block will be seeking

any changes from the current status of the brick buttons. If none of the brick

buttons is pressed when the program gets to the Wait block, it will wait for any

of the buttons to be triggered.

Let’s open the Brick Buttons program so we can mess with it a bit. Click the

mode selector and try changing the mode in the Wait block to the Change –

Brick Buttons. The program will look like Figure 6-12.

Figure 6-12: A program with the Wait block with the Compare – Brick Buttons mode

When you run this program on the Auto-Driver, it won’t move and wait to

get a change from the current status of the brick buttons. If none of the buttons

are pressed when the program begins, the program will wait until any of the

buttons are pressed. What if the center button is pressed when the program

started? Then, the program will wait for either the center button to be released

or another button(s) to be pressed in addition to the center button.

The Loop Block

Here’s another programming block that you can use to beef up your code: the

Loop block. As the name suggests, with it you can repeat a sequence of code.

This can be useful when you want to make your robot perform a certain action

over and over again. For example, let’s say you want to program the Auto-Driver

to move forward for a second and stop for a second and then repeat the action.

122 Exploring LEGO MINDSTORMS EV3

c06.indd 10:44:42:AM 07/15/2014 Page 122

First, you need to create a sequence of code that makes the Auto-Driver move

forward for a second and stop for a second. Then, maybe you’d want to copy

this sequence and paste it over and over again on the canvas, however many

times that you’d want to repeat this action. Save yourself from the hassle! You

can achieve the same thing, in a much simpler way, with the Loop block. The

Loop block looks different from the other blocks on the canvas, so let’s review

its structure in Figure 6-13.

Create the program here.

Count output Mode selector

Loop name

Figure 6-13: The structure of the Loop block

You can create a line of the blocks that you want to repeat inside of the Loop

block. Then, the program will repeat the code inside of the Loop block until the

mode selector tells the program under what conditions the loop should continue

repeating and when it should stop and move on to the next block.

The Loop block automatically stretches to fi t new blocks as you drag them

inside, and it will also contract if you take blocks away. Should you want to

manually adjust the Loop block, click it; points should then appear around

the block, as shown in Figure 6-14. By dragging these points, you can adjust

the size.

Figure 6-14: Adjusting the size of the Loop block

 Chapter 6 ■ Exploring Flow Blocks 123

c06.indd 10:44:42:AM 07/15/2014 Page 123

Like many other blocks covered so far, the Loop block has many modes. You

can see them if you click the mode selector. The modes of the Loop block tell

the program under what conditions the loop should continue repeating and

when it should stop (see Figure 6-15).

Figure 6-15: The modes in the Loop block

By using different modes, you can set up the repeating action to last for a

certain number of seconds, to complete the loop a certain number of times, or

to continue looping until a specifi c condition is met. For example, you can tell

the Loop block to repeat the code contained within it for 5 seconds or until one

of the brick buttons is pressed. It also has an output section called the Count

output, and its value will be the number of the repetition that the Loop block

makes. You can have more than one Loop block, so it is important to label each

of them with different names or numbers because you may want to have one

Look block interact with other blocks. This block has many sensor modes, and

in this chapter we cover the Brick Buttons, Unlimited, Count, and Time modes.

To see how to use other sensor modes, see Chapter 8.

The Unlimited, Count, and Time Modes

The Unlimited, Count, and Time modes are straightforward because they don’t

require collecting any data from the sensors. Let’s create a new program called

Loop. Make the program resemble the one in Figure 6-16. The line of the code

124 Exploring LEGO MINDSTORMS EV3

c06.indd 10:44:42:AM 07/15/2014 Page 124

inside of the loop will make the Auto-Driver go forward for a second, and the

block that comes after that will make it move backward for a second.

Figure 6-16: The program with the Loop block and Motor blocks

The Unlimited Mode

The Loop block shown in Figure 6-16 has the Unlimited mode, the default set-

ting when you drag the Loop block onto the canvas. Once the program starts

and moves along to the Loop block, it will stay there and repeat the sequence

inside of it forever. Will the program ever reach the blocks that come after the

loop? No. Unfortunately, following blocks will not get their chance to shine.

Create a new program named Loop in the Flow Blocks project that you created

in the previous section. Try downloading this program to the Auto-Driver and

see what happens. The Auto-Driver will go forward forever.

The Count Mode

Click the mode selector in the program shown in Figure 6-16 and choose the

Count mode. Did you see the block change like in Figure 6-17? When the

Loop block starts, the program will count how many times it repeats. You

can put any number in its Count input. So, if the number is 4, the Loop block

will repeat the code inside for only 4 times, and then the program will move

to the next block.

Figure 6-17: The Loop block with the Count mode

 Chapter 6 ■ Exploring Flow Blocks 125

c06.indd 10:44:42:AM 07/15/2014 Page 125

The program in Figure 6-17 shows a loop that will take 1 second to complete

1 repetition because the Move Steering block that is inside of the loop says to

run the motors for 1 second. If you put 6 in the loop’s Count input, it will take 6

seconds for the Loop block to complete 6 repetitions, after which the robot will

move backward for 1 second.

Change the Unlimited mode in the Loop block to the Count mode in the Loop

program and feel free to change the Count input, as you want. Download the

program to the Auto-Driver and time it while it goes forward to see whether the

count number that you entered and the number of seconds that you measured

match each other.

The Time Mode

If you choose the Time mode, you will fi nd settings that should look familiar.

The Time mode in the Loop block looks and functions exactly as its counterpart

in the Wait block. With this mode, you can set the Loop block to repeat the code

that is inside for a period of time. You can determine how much time by enter-

ing a number in its Seconds input. Note that the Loop block will fi nish running

its contents before exiting. Let’s say you tell the Loop block to repeat the code

inside for 5 seconds. If you have a motor move for 10 seconds within the loop,

the program will still do the 10 seconds of motor movement. Then the program

will evaluate that it is past 5 seconds and exit out of the loop.

The Brick Button Mode

The Brick Button mode in the Loop block is similar to the Compare – Brick

Buttons mode in the Wait block. The repetition continues until one of the selected

brick buttons are activated by one of these actions: released (0), pressed (1), or

bumped (2). Let’s change the Loop program to look like Figure 6-18. To change

the mode in the Loop block, click the mode selector and choose the Brick Button

mode. Then, select 4 and 5 for the Brick Button ID input and 2 for the State input.

Figure 6-18: The Brick Button mode in the Loop block

126 Exploring LEGO MINDSTORMS EV3

c06.indd 10:44:42:AM 07/15/2014 Page 126

When you run this program, the Auto-Driver will go forward until the top

or bottom brick button is bumped. Then, it will move backward for 1 second.

Test out this program with your robot and see whether I’m right.

TRY IT: AUTODRIVER, BEEP EVERY SECOND WHEN YOU DRIVE FORWARD!

Let’s see if the Auto-Driver can report its movements to you by making a beeping

sound every second when it moves forward. First of all, you’ll want to program the

Auto-Driver to go forward for a second using the Move Steering block. Then, you’ll

want to add the Sound block that makes a beeping noise. I found that the Overpower

sound in the System folder sounds like a beeping noise. Then, you can put these two

blocks in a Loop block with the Unlimited mode. As long as the program is running,

the Auto-Driver will move forward beeping every second!

Demonstrate multiple Loop blocks with different modes. Also, try the Display

and Sound blocks in the Loop block in addition to the Motor blocks.

The Loop Interrupt Block

Some things in this world can make people stop in their tracks. They drop what

they are doing and begin a new activity that is altogether different from what

they were doing just a second before. Take, for example, a man who is walking

down Wall Street. He is wearing a nice suit, which he likes to wear on Mondays

to remind the people who work for him that he’s done well in his job and

deserves respect. His knuckles are scarred from years of boxing while he was

in the Marine Corps as a youth. This man is walking briskly down the sidewalk

to a meeting in a building on Broad Street when he passes a child with a puppy

on a leash. Instantly, the man kneels down and asks the child if he can pet the

puppy. The man fondly thinks back to when he was a young boy in Bay Ridge

and his mother surprised him with a beagle mutt. He named the dog Wally.

Wherever that man was going and whatever he was planning to say when

he got there didn’t matter as soon as he saw the puppy. The sight of the little

dog ended his task. Ladies and gentlemen, I present to you the Loop Interrupt

block! This block stops what a loop is doing, regardless of where the loop is in

its cycle. Check out Figure 6-19. It has only the Loop Interrupt mode and comes

with a text box in the top-right corner. When you click it, you will get the pop-up

list that shows all the names of the Loop blocks that you have in that program.

Then, you can pick the Loop block that you want to interrupt.

The program escapes the Loop block and jumps to the next block as soon as it

meets the corresponding Loop Interrupt block. Even though the Loop block has

an Unlimited mode, the Loop Interrupt block will break the infi nite loop. It can

 Chapter 6 ■ Exploring Flow Blocks 127

c06.indd 10:44:42:AM 07/15/2014 Page 127

be placed in a different sequence of the code apart from the one that contains

the loop that it is interrupting, or even within the interrupted loop.

Figure 6-19: The Loop Interrupt block

Let’s take a look at the example in Figure 6-20 and see how the Loop Interrupt

mode can be used in a program.

Figure 6-20: A program with the Loop Interrupt block

What will happen when we run this program with the Auto-Driver? The Auto-

Driver will move forward (bottom line of the code), and at the same time, it will

repeat the Speed up sound in intervals of 1 second (the code inside of the loop

on the top line of the code). After that, the Auto-Driver’s motors will make 10

rotations and the program will meet the Loop Interrupt block, which will stop

the Loop block that was repeating the Speed up sound. The Auto-Driver will

then play the Speed down sound. Create a new program called Loop Interrupt
and make it look like Figure 6-20. Download the program to the Auto-Driver

and see if it performs the way that I described to you!

The Switch Block

Life is all about making decisions. How many times did you have to choose one

thing over the other today? Based on your situation, you will often ask yourself

128 Exploring LEGO MINDSTORMS EV3

c06.indd 10:44:42:AM 07/15/2014 Page 128

a question to evaluate the options of that choice, and depending on the answer

your choice will be different. For example, you have $10 that you can spend for

your lunch. Before you sit down at the restaurant, you will look at the menu

and ask yourself a question: Is there any dish that is under $10? If the answer is

yes, you will walk in. If the answer is no, you will look for another restaurant.

You can program your robot to choose between two options based on the

answer of the yes or no question that you set ahead of time. The question for

your robot can be something like this. Is the center button pressed? If the answer

is yes, then say “Hello,” but if the answer is no, then say “Good bye”. The pro-

gramming block that allows this is the Switch block. This block will “test” a

question and depending on the answer, it will lead the program to follow one

case of code or the other. Figure 6-21 shows what this looks like.

The block will test
a question here.

Case 1

Case 2

Figure 6-21: The Switch block

As with the Wait or Loop blocks, you can choose different sensors in the

mode selector, and depending on what sensor you choose, you can design the

test questions differently. Again, you will have many chances to use the sensors

with the Switch block after we learn about them in Chapter 8. In this section

we will focus more on how the Switch block is structured and how it affects a

program’s fl ow. Also, we will see how the Compare and Measure mode work

in the Switch block.

The Compare Mode in the Switch Block

In the mode selector, all the sensors have the Compare mode except the Text,

Logic, and Numeric options. With the Compare mode, potential questions can

be something like this: Is brick button 3 pressed? Is the color that the color sen-

sor is reading red?

 Chapter 6 ■ Exploring Flow Blocks 129

c06.indd 10:44:42:AM 07/15/2014 Page 129

You will design a yes or no question with different types of inputs. If the

answer is yes, the program will run the code that is in the top section of the

Switch block, where the check mark is, and if the answer is no, it will execute

the code that is in the bottom section, where the X mark is. Here, the check mark

means true, and the X means false (see Figure 6-22).

The block will test
a question here.

True

False

If the answer to the question
is YES, the program will run

the code here.

If the answer to the question
is NO, the program will run

the code here.

Figure 6-22: The true and false cases in the Switch block

Let’s see the example with the Compare mode and the brick buttons. Once

you choose this mode, you will fi nd that the beginning of the block will change

like in Figure 6-23. Wait, doesn’t this look familiar? This mode is just like the

Compare mode in the Wait block. You select one or more numbers in a range of

0 to 5 for the Brick Button ID input, and choose the button’s status of released

(0), pressed (1), or bumped (2) for the State input.

Brick button
ID input

State button

Figure 6-23: The Brick Buttons – Compare mode

130 Exploring LEGO MINDSTORMS EV3

c06.indd 10:44:42:AM 07/15/2014 Page 130

Based on the inputs that you use, the test question will change. For example,

if you select 1 and/or 3 for the Brick Button ID input and 1 for the State input,

the test question for the program will be this: “Is one of brick buttons 1 and/or 3

pressed?” If you write the code for the Auto-Driver to go forward for 5 seconds for

the true case and move backward for 5 seconds for the false case, the Auto-Driver

will move forward for 5 seconds when the brick button 1 and/or 3 is pressed,

and it will go backward for 5 seconds in any other cases. Figure 6-24 shows this

example. Create a program called Switch and make it look like Figure 6-24.

Figure 6-24: A program with the Switch block with the Brick Buttons mode

As soon as you run this program, the program will ask the question imme-

diately and, unless you hold down the button 1 and/or 3 when the program

begins, the program will go directly to the false case. Then the program will

end. What if you want your program to ask this question over and over again?

Bingo! You may then use the Loop block. If you put the Switch block in the

Loop block as Figure 6-25 shows, the program will come back to the beginning,

ask the question again, perform either the true or false cases depending on the

answer to the question, and this procedure will be repeated over and over again.

The Measure Mode in the Switch Block

When you choose Brick Buttons, Color Sensor, and Infrared Sensor, you will fi nd

another mode: Measure mode. In this mode, you can program the Switch block

to ask the program a different type of question. It is not a yes or no question

but rather a multiple-choice question to specify multiple sensor values. In this

case, the Switch block can have more than two cases with codes. As a default,

the structure of the Switch block appears to be the same as when it has true or

false cases, but it is actually slightly different (see Figure 6-26).

 Chapter 6 ■ Exploring Flow Blocks 131

c06.indd 10:44:42:AM 07/15/2014 Page 131

Figure 6-25: The Switch block with the Brick Buttons mode in the Loop block

Add case

Default case

Remove case

Data Value to run case 1

Data Value to run case 2

Data Value to run case 3

Case 3

Case 2

Case 1

Figure 6-26: The Measure mode in the Switch block

N O T E If the incoming value doesn’t meet any of the values in any case, the program

will run the case that is marked as a default case.

Let’s come back to the example with the Brick Buttons mode and choose the

Measure mode. With this mode, the Switch block asks this question: “Which

132 Exploring LEGO MINDSTORMS EV3

c06.indd 10:44:42:AM 07/15/2014 Page 132

brick button is pressed?” You can design different cases for each answer. See

the example in Figure 6-27.

Default case Button 1

Button 2

Button 3

Case 3

Case 2

Case 1

Figure 6-27: The Brick Buttons – Measure mode

When the program sees the Switch block, it asks which brick button is pressed.

If it runs an examination with the incoming values and button 1 is pressed, it

will run the program in case 1. If button 2 is pressed, the program in case 2 will

be executed. If button 3 is pressed, the program in case 3 will be run. What if no

button is pressed? In that case, the program runs the code in the case marked

as the default (in this example, case 1).

Using a Value from a Data Wire

Three options do not have either the Compare or Measure modes: the Text,

Logic, and Numeric modes. Their questions for the program are completed by

the value that they get from other blocks though a data wire. The values can

be text, numbers, or the true/false conditions. You get to use these modes after

learning a bit about data wiring in Chapter 11.

 Chapter 6 ■ Exploring Flow Blocks 133

c06.indd 10:44:42:AM 07/15/2014 Page 133

FLAT VIEW VS. TABBED VIEW

There are two options for viewing the Switch block. The default option is the fl at view,

which shows all the cases in a row. You can toggle to the fl at view by clicking the but-

ton in the top-left corner. The tabbed view displays one case at a time, with other

cases shown as tabs on the top of the switch border (see Figure 6-28).

Flat View Tabbed View

Figure 6-28: Flat view and Tabbed view in the Switch block

In either view option, you can still resize the Switch block as you did with the Loop

block. Click any part of the Switch block and you will get the points around the border

of the block. By dragging them in and out, you can adjust the size of the block. In the

tabbed view, you can even set the height of each case.

Summary

In this chapter, you learned about the following:

 ■ How the Flow blocks work

 ■ How to program the robot with the Wait block

 ■ How to repeat a line of code with the Loop block

 ■ How to use the Loop Interrupt block

 ■ How to set up different conditions that the robot can choose between

based on incoming values with the Switch bl ock

135

c07.indd 10:45:36:AM 07/15/2014 Page 135

So far, you have used the Auto-Driver to test new programming skills that you

have learned. Now, though, it is time to explore a different robot. In this chapter,

you build the robot called Spy Rabbit (which you also use in Chapter 8, “Sensing

the Environments: Using the Infrared, Touch, and Color Sensors,” and Chapter 9,

“Using the Timer and the Rotation Sensor”). This robot requires more advanced

building skills than the Auto-Driver, and you will use new pieces to put it

together. Shh! Here comes the Spy Rabbit.

Understanding the Spy Rabbit

The Spy Rabbit is a robot that has two faces, and it transforms its body from one

shape that shows one face to the other shape to present another face. The fi rst

is a rabbit face that you can see in the left photo in Figure 7-1. The other one is

a humanoid robot like the photo on the right.

You will use this robot as you learn about sensor programming in Chapters 8

and 9. The robot’s original design comes with the infrared sensor, but you will

get to add more sensors later on.

C H A P T E R

7
Building the Spy Rabbit:

A Robot That Can React

to Its Surroundings

136 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 136

Figure 7-1: The two faces of Spy Rabbit

The Spy Rabbit’s Personality

If you see a rabbit that doesn’t hop but rolls around, watch out. It might be a

Spy Rabbit! The Spy Rabbit looks like a cute and dorky rabbit most of the time,

but once in a while, especially when your attention is somewhere else, its rab-

bit face rears back to expose a different robot. When it opens up, it uses its face

(which is the infrared sensor) to spy around. We will add more sensors, such

as the touch and color sensor, in the following chapter, and you will get to add

more personality to it. But for now, let’s get started building the Spy Rabbit.

Assembling the Spy Rabbit

Organize the parts shown in Figures 7-2 and 7-3, and then follow the step-by-step

building instructions (shown Figures 7-2 through 7-36) to build the Spy Rabbit.

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 137

c07.indd 10:45:36:AM 07/15/2014 Page 137

1x

2x

2x

2x

2x

2x4x

2x

1x 1x

1x

1x

1x

1x25cm / 10in

35cm / 14in

Figure 7-2: The parts for building Spy Rabbit – 1

138 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 138

10x 7x
1x

2x

14x

68x

2x
6x

5x

2x

4x

4x

1x

5x

2x

2x

2x

2x

2x

1x

1x

3x

2x

2x

2x

2x

2x

1x

1x

1x

1x

2x

10x

4x

3x

6x

4x

1x

3x#2

#6

#4

#3

#9

#7

#3

3x

6x

17x

15

13

11

9 6x

4x

2x

2x

2x

4x

#8

5

3

7

Figure 7-3: The parts for building Spy Rabbit – 2

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 139

c07.indd 10:45:36:AM 07/15/2014 Page 139

4x

1x

4x

STEP 1

2x

#2

4x

5

Figure 7-4: Step 1: Starting the rabbit’s head

4x

7
STEP 2

2x 2x

Figure 7-5: Step 2: Starting the rabbit’s head

140 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 140

9
STEP 3

2x 2x 2x

#6

Figure 7-6: Step 3: Starting the rabbit’s head

STEP 4

2x 1x

2x

2x
1x

Figure 7-7: Step 4: Adding eyes to the head

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 141

c07.indd 10:45:36:AM 07/15/2014 Page 141

STEP 5

4x 2x 2x2x

Figure 7-8: Step 5: Adjusting the eyes on the head

STEP 6

1x

3x

1x 1x

1x

1x

Figure 7-9: Step 6: Making a humanoid face with the infrared sensor

142 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 142

STEP 7

1x 1x

1x

1x

1x

1x

#3

Figure 7-10: Step 7: Finishing up the face

STEP 8

4x

Figure 7-11: Step 8: Adding the humanoid face to the rabbit’s head

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 143

c07.indd 10:45:36:AM 07/15/2014 Page 143

STEP 9

6x

2x

5
3

1x

1x 1x

Figure 7-12: Step 9: Finishing up the rabbit’s head

STEP 10

1x

1x

Figure 7-13: Step 10: Adding ears to the rabbit’s head

144 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 144

STEP 11

4x 1x

2x 1x

1x 1x

2x

1x1x

9

#7

2x2x

Figure 7-14: Step 11: Assembling pieces around the medium motor

STEP 12

1x 1x 2x 1x 1x

1x

#9

Figure 7-15: Step 12: Assembling pieces around the medium motor

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 145

c07.indd 10:45:36:AM 07/15/2014 Page 145

STEP 13

1x 1x

1x

2x

1x 1x4x

9

Figure 7-16: Step 13: Assembling pieces around the medium motor

STEP 14

2x
1x

4x

4x

Figure 7-17: Step 14: Building the base with two large motors

146 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 146

STEP 15

4x

2x 9

1x

Figure 7-18: Step 15: Building the base with two large motors

STEP 16

Figure 7-19: Step 16: Combining the part from step 13 with the base

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 147

c07.indd 10:45:36:AM 07/15/2014 Page 147

STEP 17

4x

1x 1x

1x

1x

Figure 7-20: Step 17: Firmly affixing the medium motor to the base along with supporter pieces

STEP 18

8x

1x 1x

1x

1x

Figure 7-21: Step 18: Firmly affixing the medium motor to the base with supporter pieces

148 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 148

STEP 19

4x

1x

Figure 7-22: Step 19: Adding the EV3 brick

STEP 20

1x

#3

1x1x

1x

3

1x

Figure 7-23: Step 20: Building up the left side of the body

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 149

c07.indd 10:45:36:AM 07/15/2014 Page 149

STEP 21
#4

2x

3x

1x

1x

Figure 7-24: Step 21: Building up the left side of the body

STEP 22

2x

2x
1x

15

1x

Figure 7-25: Step 22: Building up the left side of the body

150 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 150

STEP 23#6

1x 1x 1x1x

Figure 7-26: Step 23: Building up the left side of the body

STEP 24-b

STEP 24-a

5x
1x

1x1x1x

1x

3

#3

Figure 7-27: Step 24: Building up the right side of the body

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 151

c07.indd 10:45:36:AM 07/15/2014 Page 151

STEP 25

#4

2x 2x

2x

15

3x

1x

1x

Figure 7-28: Step 25: Building up the right side of the body

STEP 26

2x

#6

1x 1x 1x

Figure 7-29: Step 26: Building up the right side of the body

152 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 152

STEP 27-b

STEP 27-a

13

#6

2x
1x 1x

1x1x

1x
1x

1x

Figure 7-30: Step 27: Adding a hub

STEP 28-b

STEP 28-a

13

2x

1x 1x

1x

#8

1x

1x

Figure 7-31: Step 28: Adding a second hub

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 153

c07.indd 10:45:36:AM 07/15/2014 Page 153

STEP 29-b

STEP 29-a

13

2x

1x

1x

1x

1x

1x
#6

1x

1x

Figure 7-32: Step 29: Adding a hub on the left side of the body

STEP 30-b

STEP 30-a

13

2x

1x
11

1x

1x

#8

1x

1x1x

Figure 7-33: Step 30: Adding a second hub on the left side of the body

154 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 154

STEP 31

1x1x

2x

4x

Figure 7-34: Step 31: Attaching the arms to the body

STEP 32-b

STEP 32-a

2x

2x

1x

Figure 7-35: Step 32: Adding a rabbit’s foot

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 155

c07.indd 10:45:36:AM 07/15/2014 Page 155

STEP 33-b

STEP 33-a

2x

2x

1x

Figure 7-36: Step 33: Adding a rabbit’s foot

156 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 156

STEP 34

Figure 7-37: Step 34: Combining the head with the body

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 157

c07.indd 10:45:36:AM 07/15/2014 Page 157

STEP 35

2x

Figure 7-38: Step 35: Adding treads to the hubs

158 Exploring LEGO MINDSTORMS EV3

c07.indd 10:45:36:AM 07/15/2014 Page 158

25cm / 10in

25cm / 10in connector
cables for the Large motors

35cm / 14in connector cables
for the infrared sensor and the
Medium motor

35cm / 14in

2x

2x

Infrared Sensor: 4

STEP 36

D

C

Medium Motor: C

A
4

Figure 7-39: Step 36: Plugging the connector cables from the infrared sensor and the motors to

the EV3 brick

Now that you have fi nished assembling your Spy Rabbit, it is time to test it.

Testing the Moving Parts of the Spy Rabbit

Congratulations! You have fi nished building the Spy Rabbit. Again, you will

use this robot to learn about programming sensors in the following chapters.

Before we jump into those chapters, though, let’s see how the robot moves

around and transforms.

Create a new program named Spy Rabbit-test, and make it look like Figure 7-40.

Double-check to make sure that you have all the motors in, as directed in the

instructions, and make sure that you set up all the corresponding ports for the

motors with the programming blocks in the program.

Figure 7-40: Program to test the Spy Rabbit’s movements

 Chapter 7 ■ Building the Spy Rabbit: A Robot That Can React to Its Surroundings 159

c07.indd 10:45:36:AM 07/15/2014 Page 159

When you run this program, the Spy Rabbit will go forward for a second,

open its rabbit head, turn around, and then move forward again. Then, it will

close its head. Because of the position of the large motors, you need to set up

their power with a negative number to make them move forward.

N O T E A quick reminder: The power level is the number when you ignore the plus

or minus signs. This number represents the speed and power of the motor. The plus

and minus signs change the direction of the motor. These rules apply in the same way

when you program the medium motor.

With this program, the head of the Spy Rabbit should stop when it is all the

way up and all the way down. If, for some reason, the robot doesn’t perform

like this, you may want to tweak different numbers for the motor degrees on the

medium block. If you leave the medium motor set to keep going up or down,

you may hear something get stuck, and it may loosen some other part of your

robot. I know that you don’t want to decapitate your robot, so watch out when

you program the head of the Spy Rabbit.

Summary

In this chapter, you learned about the following:

 ■ What the Spy Rabbit does and what its personality is like

 ■ How to build the Spy Rabbit

 ■ The program that shows the Spy Rabbit’s transformation

161

c08.indd 11:58:19:AM 07/22/2014 Page 161

So far, you have learned how to program the Spy Rabbit robot’s actions, particu-

larly its physical movements. In your program, you set up the values for moving

the motors, displaying images, and playing sounds. The robot then applies them

as its actions. Your robot, however, can do more than just process preset values.

You can program your robot to collect information from its surroundings and

then use that information to determine its behaviors. For example, you can

program your robot to look around to see if there are any objects within a range

of 5 inches. You may then choose to make the robot play a sound when it does

fi nd an object within that range. Sensors are the devices that allow your robot

to do just that. This chapter covers the EV3 sensors and how to write programs

for your robot to read and use the information from the sensors.

In this chapter you will get to add more sensors to the Spy Rabbit that you

created in Chapter 7, “Building the Spy Rabbit: A Robot That Can React to Its

Surroundings,” and program the robot to do just that! Get ready to make the

Spy Rabbit act smarter.

Understanding Sensors

Wait a minute, what are the sensors? A sensor, usually as a part of a robot or a

machine, is a device that responds to an outside stimulus, converts information

C H A P T E R

8
Sensing the Environments:

Using the Infrared, Touch,

and Color Sensors

162 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 162

about the stimulus into a form that the robot can understand, and sends the

information to the main computer of the robot to which it belongs. The main

computer then processes this information as it relates to its program and decides

the robot’s next action.

Let’s think for a second about an automatic door. When a motion sensor at

the top of the door detects movement in front of the door, it sends a message to

the main computer to which the sensor is connected. Then, the main computer

engages the motor to open the door. “Sensing movement” is the role of the motion

sensor and “opening the door” is how the main computer is programmed to

react when the sensor’s input value changes. You might also say “play music”

instead of “open the door” or even “play music and open the door.” The idea that

I am trying to relate is that when you use sensors, they report only the results

of sensing. It is up to you to decide how your robot is to react to the sensors.

Programming a sensor is a doorway to opening interactions between your

robot and its environment. You can enrich your robot’s behavior by adding

interactions to what it senses. Let’s see what we can do with EV3’s sensors.

Intro to the EV3 Sensors

As discussed in Chapter 1, “Introducing LEGO MINDSTORMS EV3,” the EV3

set comes with the infrared, touch, and color sensors, in addition to the remote

infrared beacon (IR beacon), shown in Figure 8-1.

Figure 8-1: The EV3 sensors (from left): infrared, touch, color sensors and remote infrared

beacon

Each sensor collects different types of data from the outside world:

 ■ The infrared sensor can tell us how far an object is in front of it, or it can

communicate with the remote infrared beacon.

 ■ The touch sensor is a clickable button, and it reports back whether that

button is pressed, released, or bumped.

 ■ The color sensor can identify seven different colors. Alternatively, the

color sensor can be used to measure the brightness of light that is refl ected

from a surface or just ambient light.

 Chapter 8 ■ Sensing the Environments 163

c08.indd 11:58:19:AM 07/22/2014 Page 163

To use these sensors on your robot, you need to plug them into one of the ports

on the EV3 brick with the connector wire. As a default, port 1 is for the touch

sensor, port 3 is for the color sensor, and port 4 is for the infrared sensor. They are

all interchangeable, but I recommend following the default ports whenever pos-

sible; doing so will help you remember which sensor is plugged into which port.

After you decide what sensor you want to use on your robot and you connect

it to the EV3 brick, you are ready to add it into your program. Various program-

ming blocks work with the sensors, but in this chapter, we mostly explore sensor

programming with the Wait, Loop, and Switch blocks. Let’s get started.

SENSOR BLOCKS IN PROGRAMMING

In this chapter and the one that follows, we test the sensors and use their values along

with the Wait, Loop, and Switch blocks. However, you will also see the “sensor blocks”

in the yellow tab of the programming block.

Sensor blocks diff er from the Wait, Loop, or Switch blocks because they do not have

any action command, such as “wait” or “repeat.” Instead, they only collect sensor val-

ues and send them to other blocks through data wires. For example, you can use the

value from the infrared sensor (for instance, a reported value of 50) to set how many

degrees the motor should turn (50 degrees). You will use these blocks extensively

when you learn to use data wiring in your programs in Chapter 11, “Programming with

Data Wires and Using My Block.”

Using the Infrared Sensor and Remote Infrared Beacon

Let’s fi rst take a look at the infrared sensor. The Spy Rabbit has one of these

sensors as part of its design. It works like the robot’s eyes for “seeing” objects

in front of it, or receiving the signal from the remote infrared beacon. You can

work with this sensor in three different ways: Remote mode, Beacon mode, and

Proximity mode. In the Remote and Beacon modes, the sensor should work very

closely with the remote infrared beacon, which is a great new feature of the EV3

set. Let’s see how it works before jumping into the three modes.

Remote Infrared Beacon

The remote infrared beacon, also called the IR beacon, enables you to control

your robot without having to touch it. To use the IR beacon, your robot must

have the infrared sensor installed because it works as a receiver for the signal

from the IR beacon. Let’s take a closer look.

N O T E Before you use this remote control-like device, make sure that it has two AAA

batteries, which you can install or change by unscrewing the two screws on the back.

164 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 164

As Figure 8-2 shows, the IR beacon has fi ve gray buttons. The biggest button

is for turning the device on and off. When it’s on, you will see a green light.

No Button

Button ID

Button 1

Button 2

Button 3

Button 4

Button 9

Button 1 & 3

Button 1 & 4

Button 2 & 3

Button 2 & 4

Button 3 & 4

Button 1 & 2

0

1

1

9
2

2

3
3

4

4

9

5

6

7

8

11

10

Figure 8-2: Button ID numbers for the five buttons (left) and button combinations on the IR beacon

You can use these buttons individually or in two-button combinations.

Each button or combination of buttons has its own button ID. For example, the

largest gray button’s ID is 9, and a combination of buttons 2 and 3 has a button

ID of 7. When you send a signal from the IR beacon by pressing its button(s), the

infrared sensor receives the button ID number that was sent. The table on the

right side of Figure 8-3 shows the button IDs that correspond with each button

or button combination.

Apart from these buttons, you will fi nd a red circle with a number (the num-

ber on the red circle is small, so look closely) and a red sliding switch in the

middle of the IR beacon (see Figure 8-3). This switch is a channel selector, and

the number on the red circle shows the current channel number. If you slide the

channel selector up and down, you will see the numbers change from 1 to 4.

Channels are like roads for the signals. In real life, each road may have a dif-

ferent destination, just as each channel will lead the signal to its own destination.

For example, pressing button 1 in channel 1 and pressing button 1 in channel 2

can deliver different outcomes. When you write your code, the programming

block needs to know what type of signal is coming from which channel number.

You will get used to this requirement as you work with the three modes with

the infrared sensor in the following sections.

Remote Mode

This fi rst mode deals with the use of the IR beacon as a control device of

sorts. With this mode, the IR beacon works just like a regular remote control,

 Chapter 8 ■ Sensing the Environments 165

c08.indd 11:58:19:AM 07/22/2014 Page 165

sending a signal to an infrared sensor. Each button or combinations of buttons

can initiate different commands. For example, you can program the robot to

stop both the A and C motors when button 1 on the IR beacon in channel 1

is pressed.

Channel 1

Channel

Channel Selector

Channel 2 Channel 3 Channel 4

Figure 8-3: Channels and channel selector

BRICK APPS: IR CONTROL

Good news! If you want to try the IR beacon as your robot’s remote controller with-

out much eff ort, there is a quick way to control the motors without programming.

As Figure 8-4 shows, if you go to the Brick Apps on the EV3 brick, you will be able to

choose the IR control. Note that the infrared sensor has to be plugged in port 4 to use

this app.

Figure 8-4: Go to the Brick Apps and choose the IR control.

Then you will have the screens resembling those in Figure 8-5, and you can toggle

these two screens by pressing the middle brick button.

Continues

166 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 166

Figure 8-5: The control screens of the IR control app

When the screen says CH1+2, you can control motor B and C (or A and D) with the

four buttons on the IR beacon in channel 1 and control motor A and D in channel 2.

The set of buttons on the left can tell motor B to go forward (top button) or backward

(bottom button). The set of buttons on the right controls motor C in the same way. If

you toggle the screen to the other screen, which says CH3+4, you can control motor

B and C in channel 3 and A and D in channel 4. In the Spy Rabbit, motor C controls his

head, so try to use the IR beacon to open and close his head. You can choose either

CH1 or 3, and then control motor C with the set of buttons on the right (see Figure 8-6).

This button will
make motor C
turn forward.

Channel 1

With CH 1

With CH 3

Channel 3

This button will
make motor C

turn backwards.

This button will
make motor C
turn forward.

This button will
make motor C

turn backwards.

Figure 8-6: Control motor C on the Spy Rabbit with the IR control app.

continued

 Chapter 8 ■ Sensing the Environments 167

c08.indd 11:58:19:AM 07/22/2014 Page 167

Then, what does this mode look like as a string of programming blocks? When

you use this mode with the infrared sensor, you will always see the Channel

or Button ID inputs or both on the block. Figure 8-7 shows an example of the

Wait block with this mode. Sometimes they are shown as an output of the block.

Channel
Input

Button ID
Input

Figure 8-7: The Channel and Button ID inputs

You will fi nd three different fl avors of Remote mode in the programming

blocks:

 ■ Compare – Remote: In Compare – Remote mode, you set up the button

ID and the channel in a block, and the program will compare this with

the button ID that the sensor receives in the same channel.

 ■ Change – Remote: In Change – Remote mode, the program checks whether

a current value that the sensor is getting has been changed. For example,

suppose that the sensor is detecting no button ID coming from channel 1.

If any button is pressed on the IR beacon in channel 1, the program block

with this mode will sense a change.

 ■ Measure – Remote: In Measure – Remote mode, you set the channel,

and the program block will directly report which button(s) is pressed on

the IR beacon in the same channel. You will see this mode in the Switch

block, and depending on which button ID the sensor is getting, you can

have up to 12 cases of a code.

168 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 168

Figure 8-8 shows how these modes will appear in the Wait, Switch, and

Loop blocks.

Walt Block

Compare - Remote

Compare - Remote

(Compare) - Remote

Measure - Remote

Loop Block

Change - Remote

Switch Block

Figure 8-8: The Compare – Remote, Change – Remote, and Measure – Remote modes in the

Wait, Switch, and Loop blocks

 Chapter 8 ■ Sensing the Environments 169

c08.indd 11:58:19:AM 07/22/2014 Page 169

Beacon Mode

With the Beacon mode, the infrared sensor also gets signals from the IR

beacon, but it will be a different type of data than with the Remote mode. Instead

of sensing which button(s) is/are pressed, the sensor can actually detect which

direction (the heading of the signal) the signal is coming from and how far away

the signal’s origin (proximity) is. Thus, the sensor can estimate the location

of the IR beacon.

The sensor can search for the IR beacon for an approximate distance of 79 inches/

200 centimeters (represented as values between 0 and100) and in a little bit

larger than half-circle search range from the direction the sensor is facing. When

the signal is directly in front of the sensor, the heading value is 0. When the

sensor detects the signal from its left, the value is a negative number and goes

down to –25, and if the signal is from its right, the value is a positive number and

goes up to 25 (see Figure 8-9).

Sensor Value: 079in/ 200cm

The Proximity
in the Beacon mode

The Heading
in the Beacon mode

Sensor Value: −25 Sensor Value: 25

Sensor Value: 0 ∼ 25

Se
ns

or
 V

al
ue

: −
25

 ∼
0

S
en

so
r

V
al

u
e:

 0
 ∼

 1
0
0

Figure 8-9: The proximity and heading in the Beacon mode

Keep in mind that it is also important to set up the correct channel when you

program with the IR beacon. If your program tells the infrared sensor to search

for a signal on channel 3 of the IR beacon, it won’t fi nd it when its channel is

actually set to 1, 2, or 4.

Let’s see what this mode looks like in programming blocks. Because

the infrared sensor technically gets two different types of data in this mode,

170 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 170

the proximity and heading of the IR beacon often show as two modes in the

programming blocks. The former is referred to as beacon proximity and

the latter is called beacon heading.

These modes will appear as follows:

 ■ Compare – Beacon Proximity

 ■ Compare – Beacon Heading

 ■ Change – Beacon Proximity

 ■ Change – Beacon Heading

In the Compare modes, the program shows how the incoming beacon proxim-

ity or heading values from the IR beacon differ from the threshold input value

that you set up on the block. In the Change modes, the block checks whether

the incoming beacon proximity or heading values change from a number that

you specify beforehand. Figure 8-10 shows how these modes will be shown in

the Wait, Switch, and Loop blocks.

W A R N I N G When the infrared sensor is searching for the heading of the IR bea-

con, make sure that the IR beacon is in the infrared sensor’s searching area. The right

side of Figure 8-9 shows the range that the infrared sensor can search. If the IR beacon

is out of this range, the infrared sensor may give you some unexpected values. So,

keep this in mind when you use the Beacon mode.

Proximity Mode

The last infrared sensor mode that is covered here—Proximity mode—is used to

determine approximate distance between the robot and another object. Unlike

the other two modes, you can use this mode without the IR beacon. If you

choose this mode, the infrared sensor emits infrared light, which is invisible to

the naked eye. The sensor can then sense when the infrared light refl ects off of

a nearby object. In this way, the sensor can recognize how far away that object

sits from the robot.

The infrared sensor can detect from a distance of up to 27 inches/70 centi-

meters. The sensor reports back the distance on a scale of 0 to 100 that shows

in a relative way how “far” the object is from the sensor. Just like any of the

other values from the infrared sensor, these values don’t have a specifi c unit

(see Figure 8-11).

 Chapter 8 ■ Sensing the Environments 171

c08.indd 11:58:19:AM 07/22/2014 Page 171

Walt Block

Compare - Beacon Proximity Change - Beacon Proximity

Compare - Beacon Proximity Change - Beacon Proximity

(Compare) - Beacon Proximity (Compare) - Beacon Heading

Compare - Beacon Heading Change - Beacon Heading

Loop Block

Switch Block

Figure 8-10: Compare – Beacon Proximity, Compare – Beacon Heading, Change – Beacon

Proximity, and Change – Beacon Heading modes in the Wait, Switch, and Loop blocks

172 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 172

27in / 70cm

Proximity
in the Proximity mode

S
en

so
r

V
al

u
e:

 0
 ∼

 1
0
0

Figure 8-11: The infrared sensor with the Proximity mode

Let’s consider how to use this mode in the programming blocks. This mode

in the programming blocks will be shown as Compare – Proximity and Change

– Proximity. You should fi nd the functions of these modes familiar. Remember

that with the Compare mode, the program looks at the difference between the

proximity value that the sensor is currently reading and the input value that

you specify in the block. The Change mode sees whether the default value has

shifted by the amount that you set in the block. Figure 8-12 shows how these

modes appear in the Wait, Switch, and Loop blocks.

Reading Values from the Port View with the Infrared Sensor

There is a Brick app that you can use when you are programming the sensors;

it is called the Port View. When we went over the Brick Apps screen on the EV3

brick in Chapter 2, we used this app to get information about the current state of

the Auto-Driver's motors. Figure 8-15 will remind you how to fi nd this app; the

right-most image shows the Port View in action. The top four boxes in the Port

View show current reading values from output ports A, B, C, and D (ports for

the motors). The bottom four boxes in the Port View also represent the current

reading values, but from input ports 1, 2, 3, and 4 (ports used for sensors). As you

select each box, you will see more information about the device that is plugged

 Chapter 8 ■ Sensing the Environments 173

c08.indd 11:58:19:AM 07/22/2014 Page 173

into that port. The right image of Figure 8-13 is the Port View of the Spy Rabbit,

and it shows that there are three motors and one sensor plugged into the Brick.

Walt Block

Loop Block

Compare - Proximity Change - Proximity

Compare - Proximity

Compare - Proximity

Switch Block

Figure 8-12: The Compare – Proximity and Change – Proximity modes in the Wait, Switch, and

Loop blocks

Figure 8-13: The Port View of the Spy Rabbit

174 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 174

On the Port View, select the port that has the infrared sensor, which is the

bottom box on the far right. You will get a screen like the image on the left in

Figure 8-14. If you click it again, you get the list of the infrared sensor modes,

as shown in the image on the right of Figure 8-14.

Figure 8-14: The infrared sensors on the Port View.

The IR-PROX mode works the same as the Proximity mode, which means that

the output value represents the distance of an object from the sensor.

In the IR-SEEK mode, the sensor detects the heading of the signal from the

IR beacon. The IR-REMOTE mode shows the status of the IR beacon’s but-

tons (pressed, released, bumped). You can use both IR-SEEK and IR-Remote

to see whether the IR beacon and the infrared sensor are communicating well

(see Figure 8-15).

IR - PROX IR - SEEK IR - REMOTE

Figure 8-15: Three modes with the infrared sensor on the Port View

So, when does this information prove useful? As you’ve just learned, the values

that you get from the infrared sensors do not use the familiar units. The Port

 Chapter 8 ■ Sensing the Environments 175

c08.indd 11:58:19:AM 07/22/2014 Page 175

View can prove useful to see how the sensor values relate with the actual units

of measurement that we rely on in real life. If you want to program your robot

to make a sound when it sees something closer than 10 inches, you must note

what value the infrared sensor gets when it sees something 10 inches away by

using the Port View. You can use this value in your code, when you program

the infrared sensor. You can do the same thing when you program the infrared

sensor with the IR beacon. Open the Port View and choose the IR-SEEK. You

can then move the IR beacon from side to side in front of the infrared sensor

and estimate how the position of the IR beacon relates to the heading value.

Programming with the Infrared Sensor and Remote Infrared

Now it’s time to program the infrared sensor. Have the Spy Rabbit and the IR

beacon ready. Begin by creating a project called Spy Rabbit – Infrared Sensor.

Exercise 1: Spy Rabbit, Will You Be My Pet?

Spy Rabbit can be an obedient pet. Let’s tell him to run away and come back to

you. To begin, create a program called Remote Control. In this program, you

create the code that allows you to train the Spy Rabbit with the IR beacon. Check

out the plan for this action in Figure 8-16.

If button 1 on the IR beacon
is pressed

If button 2 on the IR beacon
is pressed

If none of the buttons
is pressed

Repeat

Stop

Move forward
(Run away)

Move backwards
(Come back)

Figure 8-16: Programming plan for the Remote Control program

To implement this plan, you can create a program like that in Figure 8-17.

After you download this program, you can have the Spy Rabbit run away from

you by pressing button 1 on the IR beacon using channel 1 and have him come

back to you by pressing button 2. When none of the buttons are pressed, he will

stop. As long as the program is running, he will repeat this action of running

away and coming back.

176 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 176

Port 4

Channel 1Switch block
with 3 cases

None

Button 2

Loop block with
the Unlimited mode

Button 1

Figure 8-17: Remote Control program: Programming the IR beacon to control motor A and D on

the Spy Rabbit

TRY IT: SPY RABBIT MAKES SOUNDS

Add the sound blocks to the Remote Control program and make the Spy Rabbit a bit

livelier. Try programming him to say “something” (your choice) when he is running

away from you and say “something else” when he is coming back.

TRY IT: SPY RABBIT GETS EXCITED

At the end of the day, even the Spy Rabbit is a rabbit. When you feed him, he will get

excited. Let’s create a program for the Spy Rabbit to show his excitement: He will wait

for you to put a carrot near his mouth, which is under the infrared sensor. When the

sensor “sees” the carrot, your robot will show his excitement by opening up and spin-

ning around. Use the programming chart in Figure 8-18 as a reference.

 Chapter 8 ■ Sensing the Environments 177

c08.indd 11:58:19:AM 07/22/2014 Page 177

Open the head
Medium Motor block

Power: –75
Rotation: 6

Spin around
Motor steering block

Steering: –100
Power : 100

For 3 seconds

Close the head
Medium Motor block

Power: 75
Rotation: 6

No action
(No programming block needed)

Does the Infrared sensor
get the value less than 2?

Switch block
Infrared Sensor - Compare - Proximity

(When you feed him, the carrot
should be very close to

the Infrared sensor.)
NO

YES

Repeat

Figure 8-18: Programming chart for showing excitement

T I P Depending on the last action of the program, sometimes the head of the Spy

Rabbit is left up. If you want to put the head back down before you run any other

program, you can use one of the Brick Apps in the EV3 brick called Motor Control. With

this app, you can readjust the position of the Spy Rabbit’s head. (Remember, motor C

controls the head.)

Exercise 2: Mission’s On: Find the IR Beacon

As a spy, our rabbit friend will have to go on search missions. As practice, we

will train him to fi nd the position of the IR beacon. We will program the Spy

Rabbit to open up his head fi rst and wait until the IR beacon comes close. Then,

we will have him search what direction the signal comes from and change the

direction of his movement toward the IR beacon. We will also use the Loop

block for the Spy Rabbit to repeat this searching action until the IR beacon is

out of sight.

Create a program called Finding – IR Beacon and follow the program shown

in Figure 8-19. See whether your Spy Rabbit has what it takes.

Wait until the Infrared sensor
sees the IR beacon within

threshold “50.”

Open the head

Wait block:
Infrared Sensor -

Compare -
Beacon Proximity

Switch block:
Infrared Sensor -

Compare -
Beacon Heading

If the Heading value
is less than 0,

turn right.

Repeat the code
in the Switch block
until the IR beacon

is further than
threshold “50.”

Loop block:
Infrared Sensor-

Compare-
Beacon Proximity

Once the IR beacon
is out of sight,
stop the motors.

Then, close the head.

If the Heading value
is greater than 0,

turn left.

Figure 8-19: Finding – IR Beacon program

178 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 178

TRY IT: SPY RABBIT RUNS AWAY

Let’s try to have the Spy Rabbit move away from the IR beacon. To do that, you still

want to program the Spy Rabbit to fi nd the IR beacon (reference the Finding – IR

Beacon program), but have him turn to the opposite direction from the IR beacon.

Exercise 3: Watch Out for Obstacles

We want the Spy Rabbit to maneuver well, and he can do that by using his

infrared sensor. We will create a program to have the Spy Rabbit change

his direction of movement when he sees something within 6 inches. Before you

put programming blocks together, use the Port View to measure what value

the infrared sensor reports back when it sees an object that is 6 inches away

(see Figure 8-20).

6 inches

Port View

Figure 8-20: Measuring the distance between the infrared sensor and an object and getting a

reading value from the sensor using the Port View

Programming blocks should be ordered like the top chart in Figure 8-21,

and the program will look like the code on the bottom of Figure 8-21. Create a

program called Avoiding and test it.

TRY IT: SPY RABBIT DISPLAYS WARNING SIGNS ON THE SCREEN

The Spy Rabbit can tell you when something is coming closer to him. Maybe it’s a spy

from the other side? Using the Port View, measure the infrared sensor values when

an object is 12 inches away, 8 inches away, and 3 inches away. (Hint: Use the IR-PROX

mode in the Port View.) Then, program the Spy Rabbit to display warning signs at each

stage. When the object is far, the warning should be mild; when it is close, though, the

warning should be severe.

 Chapter 8 ■ Sensing the Environments 179

c08.indd 11:58:19:AM 07/22/2014 Page 179

The value from
the Port View:

When an object is 6” away from the Infrared sensor,
it will report “16.” If the Infrared sensor’s reading value
is lower than 16, that means that an object is closer than 6in.

Open
the head.

Does the infrared sensor
see something within 6in?

NO

YES

Move backwards
for 1.5 seconds.

Make a turn backwards
to change the direction

of motion.

Repeat

Move Forward.

Figure 8-21: The programming chart and actual code for the Avoiding program

How did you enjoy using the infrared sensor? As we just discovered, by

programming the infrared sensor on your robot, you can make your robot react

to objects around it as well as the signal from the IR beacon. You may already

think that your robot is already amazing with just an infrared sensor, but this

is just the beginning! We have another sensor coming up, which reacts to a dif-

ferent type input. I present to you, the touch sensor!

Using the Touch Sensor

The touch sensor works in a familiar way when compared with the other EV3

sensors. It has a red button and detects its three different conditions: pressed,

released, and bumped (see Figure 8-22).

180 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 180

Pressed Released Bumped

Figure 8-22: The touch sensor’s three conditions

The pressed condition of the button means the condition of the button is

“pushed in.” You can program to move the motor forward whenever the touch

sensor detects that the red button is pressed. As soon as the button is released,

the motor stops. This position of the button is referred to as State: 1 in the pro-

gramming blocks.

To have the touch sensor detect the released condition of the button, the button

should be pressed before that command. For example, you can program the robot

to show a smiley face when the button is pressed and display a sad face when

it’s released. This status is referred to as State: 0 in the programming blocks.

When you say the button is bumped, that means it was pressed and immedi-

ately released. Bumping is like the action of typing with a keyboard. Each key

on a keyboard is an individual button, and you tap the keys to type. The keys

that you used as you type a sentence were “bumped” (pressed and released).

For example, if you want to type the letter E you tap the E key once. If you press

this key, it types eeeeeee... until it is released. The bumped status is referred to

as State: 2 in the programming blocks.

When you use the Wait block with the touch sensor, you will have Compare

– State or Change – State modes. With the Compare mode, the programming

block has the program wait until a user-specifi ed button state occurs. Change

mode has the program wait until a current button state changes to another. In

the Switch block, you simply choose one of the three button states. If the state

choice requirement that you set is satisfi ed, the code on the top of the switch

happens, and if not, the bottom code runs. In the Loop block, the touch sensor

setup is similar to the Switch block. You will choose which button states will

stop repeating the loop code. When the program gets to the end of the loop

and before it repeats the code inside of the loop, it will check the button state.

 Chapter 8 ■ Sensing the Environments 181

c08.indd 11:58:19:AM 07/22/2014 Page 181

When that button state occurs, the program gets out of the loop and moves to

the next block (see Figure 8-23).

Walt Block

(Compare) - State

Compare - State Change - State

Compare - State

Loop BlockSwitch Block

Figure 8-23: The Touch Sensor mode in the Wait, Switch, and Loop blocks

Adding the Touch Sensor to the Spy Rabbit

The Spy Rabbit is missing an important part. What is it that makes a rabbit cuter?

Did you say the tail? Yes, it is his tail. We are going to give the Spy Rabbit a tail

that is made out of a touch sensor. The tail on the back will help the Spy Rabbit to

maneuver around better by sensing objects that blocks his way when he moves

backward. We will program the Spy Rabbit to change direction when the tail

touches something behind it. Follow these instructions shown in Figures 8-24

to 8-27 and complete the Spy Rabbit’s missing tail.

182 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 182

1x 1x

4x

7

1x

#3
2x

STEP 1

Figure 8-24: Step 1: Adding supporter pieces on the touch sensor

1x 1x4x

#2

2x
2x

STEP 2

Figure 8-25: Step 2: Adding supporter pieces on the touch sensor

Reading Values from the Port View with the Touch Sensor

As you saw with the infrared sensor, you can also use the Port View to read the

status of the touch sensor’s red button. If you choose the port into which

the touch sensor is plugged, you will fi nd a 0 value on the screen when the

button is not in a pressed state and 1 value when the button is released (see

Figure 8-28). Then what about the bumped state? If you bump the button, you

will see the value change between 0 and 1.

 Chapter 8 ■ Sensing the Environments 183

c08.indd 11:58:19:AM 07/22/2014 Page 183

1x1x 1x
1x2x

#2

STEP 3

Figure 8-26: Step 3: Finishing up the tail bumper

1x

25cm / 10in
* Plug the connector cable into the Touch sensor

before connecting the tail on the Spy Rabbit.

Wrap the connector cable like the photo above
and plug the connector cable in port 1.

STEP 4

Po
rt

1

Figure 8-27: Step 4: Adding the tail on the Spy Rabbit

Programming with the Touch Sensor

Well, before programming the tail to be used as the Spy Rabbit’s back bumper,

we should use it to practice some touch sensor programming. To begin, create

a project with the name of Spy Rabbit – Touch.

184 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 184

PressedReleased

Figure 8-28: The touch sensor on the Port View

Exercise 1: Who’s Behind Me?

When someone taps your shoulder, you naturally want to turn around to face

that person. The Spy Rabbit can do the same thing, but instead of his shoulder,

you should tap his tail. To complete this action, the program for the Spy Rabbit

should look like this:

 1. Wait for the touch sensor to be bumped.

 2. When it is bumped, turn around 180º.

Figure 8-29 shows what this action looks like with the programming blocks.

Create the program called Turn Around, and let’s try it.

Wait for the Touch sensor
to get bumped.

To make the robot
turn around 180°,

the motor needs to turn
more than 180°.

Turn around 180°

Compare - State On for Degrees Repeat forever

Figure 8-29: Turn Around program

 Chapter 8 ■ Sensing the Environments 185

c08.indd 11:58:19:AM 07/22/2014 Page 185

If someone keeps tapping your shoulder for no reason and making you turn

around a thousand times, you will start to get annoyed, even if you are a nice

person. The Spy Rabbit is a nice rabbit, but his patience will run out after a while.

He will run away from you if you tap his tail fi ve times. To add this behavior to

your current code, you need to do only a little bit of tweaking. Instead of having

a Loop block set with the Unlimited mode, you can choose the Count mode. Use

5 for the counting number. After the Loop block, add the Move steering blocks

to have the Spy Rabbit move away from you (see Figure 8-30).

Turn around again.

Repeat the code inside
only 5 times.

Move away.

Figure 8-30: Turn Around program with the Count mode in the Loop block

TRY IT: THE SECRET FUNCTION OF THE SPY RABBIT’S TAIL

I know the tail is adorable as it is, but let’s give the tail another job to initiate a cute

action. We will use the tail to make the Spy Rabbit move his head up and down just like

he is nodding. Program the touch sensor on the tail to move the medium motor for-

ward for 0.5 seconds and backward for another 0.5 seconds when it is bumped. And if

you want to keep this function, and have this reaction whenever you bump the touch

sensor, you can put all of the program blocks in a loop.

Exercise 2: A Tail Bumper

The tail can also help the Spy Rabbit navigate uncertain terrain. Because he doesn’t

have an “eye” in the back of his head, we can make the touch sensor tail act like

one. Let’s grab the Avoiding code that we used for programming the infrared

sensor. In that code, the Spy Rabbit backed up when it saw an object and pivoted

to change his direction of motion. What if there is another object behind him

when he is backing up? Right here, the touch sensor tail will be useful. Once an

object triggers the touch sensor, it tells the Spy Rabbit to change his direction

again. See Figure 8-31 to check what you need to add.

186 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 186

Figure 8-31: Adding the bumper program to the Avoiding code

Programming the touch sensor is a lot of fun, isn’t it? We used the touch

sensor as a bumper with the Spy Rabbit, but take a second to brainstorm

other ways to use the touch sensor in other robots. Maybe it can be in the

shape of a pair of lips on the red button, and the robot activates when

someone gives it a smooch (the touch sensor will be pressed). What about

making it into an electronic drum so that whenever it is bumped, it can

generate a sound? There are so many cool things that you can do with

sensors. Here comes another sensor that will make your robot even more

awesome. Meet the color sensor.

 Chapter 8 ■ Sensing the Environments 187

c08.indd 11:58:19:AM 07/22/2014 Page 187

Using the Color Sensor

The fi nal sensor covered in this chapter is the color sensor. It is shaped like the

touch sensor, but in place of a red button, it has LED lights. As its name sug-

gests, this sensor can identify seven different colors, can detect the intensity of

the refl ected light from a surface, and can measure the amount of ambient light

in a space. EV3 programming distinguishes these features with three modes:

Color, Refl ected Light Intensity, and Ambient Light Intensity modes.

Color Mode

The Color mode allows the sensor to recognize seven colors: black, blue, green,

yellow, red, white, and brown. If the sensor “sees” a color that doesn’t match

with any of these seven colors, it will detect “No Color” or a similar color.

When you are programming, each color is represented with its own number,

and you need to use these numbers instead of their names. Here is how the

matching works:

No Color=0

Black=1

Blue=2

Green=3

Yellow=4

Red=5

White=6

Brown=7

Note that the color sensor is tuned to the LEGO color palette, which means

that it only reads a particular shade of a certain color as that color. For example,

it doesn’t read every shade of green as green. The color sensor will only iden-

tify a particular green to be the color green. For this reason, I would suggest

for you to check the colors that you want to use with the color sensor before

you use them with the Port View. If you want to use a certain red, show it the

color sensor fi rst. Let’s say that the sensor shows the reading value on the Port

view as a “5.” That red is an acceptable shade of red for the sensor to recognize.

However, if it shows a different number, the sensor doesn’t read that red as red,

and you should try a different shade. Annoying, yes. The end of the world, no.

When programming blocks, you will fi nd this mode appears like this: Compare

– Color, Change – Color, and Measure – Color. In Compare mode, the programming

188 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 188

block initiates the code based on the comparison of the reading color value

and the value that you set up in the block. In Change mode, the programming

block executes the code if the color that the color sensor is reading changes. In

Measure mode, the color sensor directly reports the color value that is currently

being read to the block (see Figure 8-32).

Walt Block

Change - Color

Measure - Color

(Compare) - Color

Compare - Color

Compare - Color

Loop Block

Switch Block

Figure 8-32: The Compare – Color, Change – Color, and Measure – Color in the Wait, Switch, and

Loop blocks

 Chapter 8 ■ Sensing the Environments 189

c08.indd 11:58:19:AM 07/22/2014 Page 189

W A R N I N G For a more accurate measurement when you use the color sensor

with the Color mode or the Refl ected Light Intensity mode, the sensor should be very

close and parallel to the object or surface that it’s examining. If the color sensor is set

at an angle to a surface or too far from a surface that it is intended to read, the result

will not be very accurate.

When using these modes, consider this factor when you add the color sensor to your

robot. The position and angle of the sensor are very important, and if you want to

program your robot to distinguish colors on the fl oor, the sensor should point directly

down to the fl oor, and its placement should be as low as possible.

Refl ected Light Intensity Mode

This mode works like the Color mode, but it detects the degree of the bright-

ness of an object or a surface. When this mode is active, the sensor emits a red

light. This light is used to make a refl ection on a surface, and the color sensor

evaluates the intensity of the refl ected light that comes back. Here is a question:

Which surface tone refl ects light more intensely, a dark one or a light one? The

answer is a bright surface. Imagine a sunny day after snow has fallen. Your

experience was probably that it was very bright out. That is because the white of

snow refl ects a great deal of light. In contrast, black absorbs light, which means

that it is less refl ective (see Figure 8-33).

Figure 8-33: The brightness of a surface and Reflected Light Intensity

190 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 190

The value that the color sensor reports back to you will be a number that

spans from 0 (weak intensity of refl ected light, usually meaning there is a very

dark surface) to 100 (a strong intensity of refl ected light, meaning a very bright

surface). In the Wait, Switch, and Loop blocks, this mode is shown either as

Compare – Refl ected Light Intensity or Change – Refl ected Light Intensity. In

Compare mode, the block makes a decision based on the difference between

the current reading values and the threshold value that you put in the block.

In Change mode, the programming block runs the code if the incoming value

changes by a user-specifi ed amount. See these modes in the Wait, Switch, and

Loop blocks in Figure 8-34.

Walt Block

Compare -
Reflected Light Intensity

Compare -
Reflected Light Intensity

(Compare) -
Reflected Light Intensity

Change -
Reflected Light Intensity

Loop BlockSwitch Block

Figure 8-34: The Compare – Reflected Light Intensity or Change – Reflected Light Intensity in

the Wait, Switch, and Loop blocks

 Chapter 8 ■ Sensing the Environments 191

c08.indd 11:58:19:AM 07/22/2014 Page 191

Ambient Light Intensity Mode

The last mode with the color sensor is the Ambient Light Intensity mode. With

this mode, the sensor measures the brightness of the room or space where it is

placed. Whereas the sensor detects the refl ected light from a surface with the

Refl ected Light Intensity mode, the color sensor with the Ambient Light Intensity

mode absorbs the light that is coming from its surroundings and calculates its

intensity. The intensity of the light is marked as percentages from 0 (very dark)

to 100 (very bright). This mode is shown as either Compare – Ambient Light

Intensity or Change – Ambient Light Intensity in the Wait, Switch, and Loop

blocks. They work in exactly the same manner as in the Refl ected Light Intensity

mode, but only with the intensity value of the ambient light (see Figure 8-35).

Walt Block

Compare -
Ambient Light Intensity

Compare -
Ambient Light Intensity

(Compare) -
Ambient Light Intensity

Change -
Ambient Light Intensity

Loop BlockSwitch Block

Figure 8-35: The Compare – Ambient Light Intensity or Change – Ambient Light Intensity in the

Wait, Switch, and Loop blocks

192 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 192

THE LED LIGHTS ON THE COLOR SENSOR

The LED lights on the color sensor emit a diff erent color of light depending on what

mode is active. In Color mode, red, green, and blue are on; in Refl ected Light Intensity

mode, only red is on; and in the Ambient Light Intensity mode, only blue is on. By

checking the color of the LED light that the sensor is emitting, you can quickly tell

what mode is being used.

Adding the Color Sensor to the Spy Rabbit

Since the Spy Rabbit’s “birth,” he has grown to be a fairly complex organism. But

now that he has a color sensor, he will fi nally live up to his nature as a rabbit as

well as a spy. As a spy, he will be able to detect more accurate information with

three sensors. As a rabbit, he can fi nally fi nd some grass and feed himself. Follow

the instructions in Figures 8-36 to 8-40 to add the last sensor to the Spy Rabbit.

Before putting the Color sensor, remove the head.

STEP 1

Figure 8-36: Step 1: Removing the head

 Chapter 8 ■ Sensing the Environments 193

c08.indd 11:58:19:AM 07/22/2014 Page 193

2x 2x 2x

STEP 2

Figure 8-37: Step 2: Adding pieces on the body of the Spy Rabbit

2x

#3

1x 2x

2x2x1x

STEP 3

Figure 8-38: Step 3: Adding supporter pieces on the color sensor

194 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 194

2x

11

4x

2x 2x 1x

STEP 4

Figure 8-39: Step 4: Adding supporter pieces on the color sensor

Plug the connector cable into
the Color sensor before connecting it

on the Spy Rabbit.

Wrap the connector cable
like the photo above and plug it in port 3.

Then put the head back on!

STEP 5

Port 325cm / 10in

1x

Figure 8-40: Step 5: Attach the color sensor on the body of the Spy Rabbit then put the head

back on.

 Chapter 8 ■ Sensing the Environments 195

c08.indd 11:58:19:AM 07/22/2014 Page 195

Reading Values from the Port View with the Color Sensor

In addition to displaying the infrared and touch sensors’ current values, the

Port View also shows the color sensor’s current values. It reports the values in

all three modes. If you select the port that has the color sensor plugged in and

then click the center brick button again, you will see the lists of the modes:

COL – REFLECT, COL – AMBIENT, and COL – COLOR. The fi rst two modes

show the intensity of refl ected light or ambient light in a range of 0 (very dark)

to 100 (very bright). The Color mode reports the color with its own number (see

Figure 8-41).

COL - REFLECT COL - AMBIENT COL - COLOR

Figure 8-41: The color sensor on the Port View

Programming with the Color Sensor

Now it’s time to program the color sensor. Create a project called Spy Rabbit –
Color, and follow along with the following exercises to see how the Color sensor

can make the Spy Rabbit even more unique.

Exercise 1: Lunch Time—Find Some Grass

Prior to this exercise, you fed Spy Rabbit carrots—see the sidebar “Try It: Spy

Rabbit Gets Excited” earlier in this chapter—but with the color sensor, he can

fi nd grass on his own. When he fi nds grass, he will open his head and say,

“Bravo.” Then he will spin around to express his excitement. His fi nal action

will be to put his head down so that he can eat.

First, we will need to fi nd the right shade of green for the sensor. As I men-

tioned before, the color sensor doesn’t read every shade of green as “green.”

To fi nd the right shade, you can use the Port View and test different greens to

see which one the color sensor will read as green. Once you fi nd the right one,

place a piece of paper or tape with that green on the fl oor, and then program

the Spy Rabbit to move toward it. In this case, you will have the Spy Rabbit go

in a straight line, and you will place some green in his path. Create a program

called Find Grass, and write code like that shown in Figure 8-42.

196 Exploring LEGO MINDSTORMS EV3

c08.indd 11:58:19:AM 07/22/2014 Page 196

Go forward

Until the Color sensor
sees green

Stop Open the head

Green

Wait block:
Color sensor -

Compare -
Color

Say “Bravo” Spin around Close the head

Figure 8-42: Find Grass program

Exercise 2: Play Music, Spy Rabbit

Not every spy has a cold heart. The Spy Rabbit can be creative in un-spy-like

ways. That is to say, he can play music for you. You can program him to play a

particular note when he sees a particular color. You can have up to seven notes.

Let’s try with three colors: red, yellow, and blue. Before creating the code, use

crayons, color pencils, markers, or colored paper to make a band of colors on

a piece of paper with red, yellow, and blue color blocks. The order of the color

doesn’t really matter. Eventually, you will have the Spy Rabbit run over the

colors and read them with the sensor.

Next, create the new program called Play Music and write a code with the

Switch block with three cases for each color and one case for default. In each case,

place the Sound block that plays a specifi ed note. For instance, if the color sensor

sees red, play note C until it detects a different color; if it sees yellow, play note D

until it sees a different color; and if it sees blue, play note E until it fi nds a differ-

ent color. If it sees none of these colors, stop playing. Put this Switch block in the

Loop block. The last step is adding another line in your program to have the Spy

Rabbit go straight. The program you will get looks like the code in Figure 8-43.

Place the Spy Rabbit at the beginning of the line and run the program to see

what he plays. If the color of the line turns red, then blue, and then green, he

will play the notes C, D, and E. Make sure that the Spy Rabbit’s color sensor is

pointed at the colored line when he moves.

TRY IT: ARE YOU A SPY OR A MUSICIAN?

So far, you’ve tried to make three colors play three notes. Can you try to use seven

colors so that the Spy Rabbit can play seven diff erent notes? You’ll need to add more

cases in the Switch block to the program that you used for Exercise 2. Then, create

another colored paper line with a more varied combination of colors (maybe you can

get notes from an actual song, like “Mary Had A Little Lamb,” and transfer each note to

an assigned color on the paper line) and see whether the Spy Rabbit can play it.

 Chapter 8 ■ Sensing the Environments 197

c08.indd 11:58:19:AM 07/22/2014 Page 197

When the Color sensor sees red,
play note C until it sees a different color.

Flat view

Default: If none of
these colors are detected,
stop playing.

Switch block:
Color sensor -

Measure - Color
Repeat the code inside.

Make the robot go forward.

When the Color sensor sees yellow,
play note D until it sees a different color.

When the Color sensor sees blue,
play note E until it sees a different color.

Figure 8-43: Play Music program

Summary

In this chapter, you learned about the following:

 ■ How to program the infrared sensor and IR beacon

 ■ How to program the touch sensor

 ■ How to program the color sensor

 ■ How to use the Port View to see the current values that are being reported

by the infrared sensor, touch sensor, and color sensor

 ■ How to add the touch sensor and color sensor to the Spy Rabbit

c08.indd 11:58:19:AM 07/22/2014 Page 198

199

c09.indd 11:59:12:AM 07/22/2014 Page 199

At the rate that you’ve been learning new concepts and skills, you must feel like a

sprinter in the 400-meter dash. From the beginning of the book up to Chapter 8,

“Sensing the Environments: Using the Infrared, Touch, and Color Sensors,” you’ve

been learning nonstop. Now, you are close to mastering the fundamentals of EV3

programming and moving on to more advanced programming and more robots.

In this chapter, you learn how to use the timer and the rotation sensor. More fun

activities are also in store as you make the Spy Rabbit better and better. For example,

you can make the Spy Rabbit measure how much time passes after he starts driving

forward and until his tail bumper is pressed. Also, the Spy Rabbit will be able to

know exactly how many degrees his motor has turned in a second.

Understanding the Timer

The timer is built in to the EV3 brick, so you don’t need to connect anything

to it to use this sensor. There are a total of eight timers in all, and you can use

them in the same program to time up to eight different things. You will get to

choose which timer you will use in a programming block. The timer will allow

you to time many different things. For example, as you can use a stopwatch to

see how fast you can fi nish a 100–meter dash in real life; with the EV3 timer,

C H A P T E R

9

Using the Timer and

the Rotation Sensor

200 Exploring LEGO MINDSTORMS EV3

c09.indd 11:59:12:AM 07/22/2014 Page 200

you can also measure the time that a robot takes to drive a certain distance.

Or you can see how much time passes between a robot’s actions.

To understand how the timer works, imagine how one uses a stopwatch.

A stopwatch measures time from the moment that the start button is pressed

until the button is pressed a second time to stop the counting. Like a stopwatch,

the EV3 timer measures elapsed time, starting at 0.0 seconds.

Note, however, that the timer always starts when the program begins.

Regardless, if you use the timer in your program, the built-in timer will be

running. So, it is important to reset your timer to 0.0 seconds when you want

to start timing an event in your program. You can reset the timer at any point

in your program, and it will start timing anew from that point. If the timer is

never reset, it simply measures the time that has elapsed since you started the

program (see Figure 9-1).

Timer without the reset point

Timer with the reset point

Programming
Block

Programming
Block

Programming
Block

Programming
Block

Programming
Block

Programming
Block

Time will be measured from the beginning of the program.

Time will be measured from this point.

Figure 9-1: Timer with/without the reset point

To reset the timer, you need to use the Timer block, which is under the yellow

tab in the programming palette. Just like any other sensor blocks, you can send

out the data that you get from the Timer block to other blocks via data wires.

But also it has a Reset mode, shown in Figure 9-2.

Timer Block

Timer Block
with the Reset mode

Figure 9-2: The Reset mode in the Timer block

 Chapter 9 ■ Using the Timer and the Rotation Sensor 201

c09.indd 11:59:12:AM 07/22/2014 Page 201

Again, you can use the Timer block with the Reset mode anywhere in your

program. When the program recognizes the Reset mode, the specifi ed timer

in the block resets to 0.0 seconds and starts measuring elapsed time from that

point on.

Working with the Timer in Programming Blocks

You will see the Timer mode used in several programming blocks. This section

explains how to use it in the Wait, Switch, and Loop blocks.

The Timer in the Wait Block

As in most of the other modes in the programming blocks, in the Wait block

the Timer mode will appear as either:

 ■ Timer – Compare – Time

 ■ Timer – Change – Time

The Compare – Timer mode checks whether the timer meets a certain thresh-

old value. This value can be a whole number; you can also include tenths of a

second (or one place past the decimal point; for example, 2.5 seconds). When

a program meets the Wait block with this mode, it will command, “Wait until

the measured time from the timer satisfi es the condition in the Wait block.”

With the Change – Timer mode, the Wait block makes the program wait until

the timer’s value changes by a certain threshold.

As Figure 9-3 shows, the timer in the Wait block measures the time interval

between the point where the timer reads 0.0 (either the moment when the program

started or when the timer was reset) and where the program meets this block.

If the measurement meets the threshold, the Wait block allows the program to

advance to the next block. If not, the Wait block holds up the program until the

threshold number of seconds has been reached.

If it takes less than 5 seconds to execute
these programming blocks,

the program will wait until the measured time
becomes greater than 5 seconds.

Wait until the measured time is
greater than the threshold.

The threshold
(5 seconds)

Programming
Block

Programming
Block

Figure 9-3: If the action between the reset point and threshold value (in seconds) takes less time

than what the timer says, the program waits until it meets that time.

202 Exploring LEGO MINDSTORMS EV3

c09.indd 11:59:12:AM 07/22/2014 Page 202

Well, then, what is the difference between using the Timer and Time modes?

Using the Wait block with the Timer mode, the program checks the status of a

timer that has already been ticking toward the threshold value. In the Timer

mode, time has been measured before a program gets to the Wait block. On

the other hand, when the program gets to the Wait block with Time mode, the

program will start a new timer, and the measurement of time begins at that

moment (see Figure 9-4).

Timer starts here.

Time will be measured
from this point.

Program will wait to reach
the threshod value (5 seconds here)

Programming
Block

Programming
Block

Programming
Block

Programming
Block

Time Mode

Timer Mode

Programming
Block

Programming
Block

Figure 9-4: Timer mode versus Time mode

The Timer in the Switch Block

In the Switch block, you will fi nd the Timer – Compare – Time mode. When the

program reaches the Switch block with this mode, the timer fi rst measures

the number of seconds that have elapsed since the timer was last reset. Then,

to verify a statement, the Switch block compares the measured time with the

threshold that you entered. Examples of statements that the Switch block could

test include “The value of the measured time is greater than 4 seconds” and “The

value of the measured time is less than 3 seconds.” If the statement is true, the

program executes the top line of the code in the Switch block. If the statement

is false, it runs the bottom line of the code (see Figure 9-5).

The Timer in the Loop Block

In the Loop block, the Timer mode appears the same way as in the Switch block,

with Timer – Compare – Time mode. You get to set up the compare type and

 Chapter 9 ■ Using the Timer and the Rotation Sensor 203

c09.indd 11:59:12:AM 07/22/2014 Page 203

the threshold in the Loop block with this mode. When the program reaches the

end of the code inside of the Loop block, the timer measures the elapsed time

from the reset point. Then, the program compares the measured time and

the threshold value in the block to determine whether the measured time has

met the threshold. The program repeats the code inside of the Loop block until

the comparison is right. Figure 9-6 shows an example of this process.

run the code here.

run the code here.

If the statement is False,

If the statement is TRUE,
Statement:
The measured time from
timer 1 greater than 5

Figure 9-5: The Wait block with the Timer mode

Figure 9-6: The Loop block with the Timer mode

When you start this program, you will hear the robot say, “Hello.” After “hello,”

if you press the touch sensor within 5 seconds, the comparison in the Loop block

will be true, and the program will exit out of the loop and say, “Good-bye.”

However, if you wait for more than 5 seconds after hearing “hello” to press the

touch sensor, the program goes back to the beginning of the code inside of the

loop and will play “hello” again. Note that the loop condition with the Timer

mode will be evaluated only when the code inside is completed. If the code

inside is not fi nished, a program will stay in the loop, waiting to complete the

code inside, and won’t get to evaluate the timer condition on the loop block. In

our case, if the touch sensor is never bumped, the program won’t get a chance

to escape from the loop. As a result, you won’t get to hear “Good-bye.”

204 Exploring LEGO MINDSTORMS EV3

c09.indd 11:59:12:AM 07/22/2014 Page 204

Programming with the Timer

Now it’s time to insert the Timer mode into your robot. Have the Spy Rabbit

ready and create the project called Spy Rabbit – Timer.

Exercise 1: Secret Code Is Activated

One of the skills that you need to learn as a spy is how to understand secret

code. In this section, you train the Spy Rabbit to understand the secret code

that you create. If the Spy Rabbit gets the right code, he will open his head,

but if the code is wrong, he will generate an error alarm. If you hear this

alarm, that means someone who doesn’t know the code is trying to use the

Spy Rabbit.

So, here is the “code” that you will assemble (starting with a simple code).

You want to have the Spy Rabbit open his head when the tail bumper is

pressed for more than 3 seconds. If his tail is bumped or pressed for less than

3 seconds, the alarm will go off. To do this, you need to measure how long

the tail is pressed.

Start the program with the Wait block with the touch sensor saying, “Wait

for the touch sensor to be pressed.” As soon as it is pressed, you want to start

measuring how long it takes until the touch sensor is released. To do this, place

a Timer block to reset the ticking timer to zero, and then add a Wait block

that says, “Wait for the touch sensor to be released.” When the touch sensor is

released, the program knows how long it took.

Then, you want to check a statement in the Switch block: The timer ran for

more than 3 seconds. If the statement is true, the Spy Rabbit opens his head. If

the statement is false, the alarm starts. Figure 9-7 shows how it looks as code.

Create the program called Secret Code and try these blocks. Does the Spy Rabbit

understand your signal?

Figure 9-7: The program for the secret code: “Is the tail bumper pressed longer than 3 seconds?”

 Chapter 9 ■ Using the Timer and the Rotation Sensor 205

c09.indd 11:59:12:AM 07/22/2014 Page 205

TRY IT: MAKE THE SECRET CODE MORE SECURE

The secret code from exercise 1 can be pretty easy to break. Can you try to add

another layer of diffi culty to your secret code? You can modify the program you used

in exercise 1 by adding more programming blocks.

What about trying this:

1. Duplicate the entire program (except the Start block) that you used in exercise 1

and put the blocks in the top container of the Switch block.

2. Delete the Medium Motor block that is in the top container of the fi rst Switch

block.

3. Change the threshold value in the second Switch block to 1.5 seconds and

change the compare type to Less Than.

With this code, to have the Spy Rabbit open his head, you need to press the touch

sensor for more than 3 seconds and release it, and then press it again for less than 1.5

seconds and release it. What do you think? Now the code is more diffi cult to crack.

Try more creative secret codes by changing time threshold values in the Switch

block’s comparison signs. You can have more intense alarms or actions when someone

puts in the wrong secret code.

Exercise 2: Wake Up

The Spy Rabbit will do whatever you tell him to do, even though you ask him

to do something silly because it is your robot. (Remember, robots only do things

according to how they are programmed.) Forget about the missions for a moment;

instead, let’s do something silly. We are going to have the Spy Rabbit be reborn as

the Snooze Rabbit. He will say, “Morning,” every 5 seconds over and over again

until his tail is bumped. Once his tail is bumped, he will stop saying “morning”

and will play “fanfare” instead. Figure 9-8 shows the code that makes it happen.

Figure 9-8: The code for the Snooze Rabbit

In this code, you will see the Loop block with the Touch Sensor mode that says,

“Repeat the code inside of the Loop block until the touch sensor is bumped.”

The code inside of the Loop block makes the Snooze Rabbit say “morning” every

5 seconds. As you can see, whenever the program repeats the code inside of the

Loop block, the timer resets so that it can start timing from 0.0 seconds again.

206 Exploring LEGO MINDSTORMS EV3

c09.indd 11:59:12:AM 07/22/2014 Page 206

If you don’t reset the timer, the time will add up whenever the program repeats

the code. The interval time between the Timer block and the Wait block is 5 sec-

onds, and as soon as the timer starts timing, the robot will say, “Morning.” The

timer will still be going until it reaches 5 seconds. The programming block that

comes after is to make the robot play “fanfare” if the touch sensor is bumped.

Remember, when you bump the touch sensor, if the timer hasn’t reached 5 seconds

yet, the program will wait until it gets to 5 seconds fi rst and then play “fanfare.”

Create the program called Snooze and follow the code in Figure 9-8. Do you

know anyone who struggles to wake up in the morning? Then, it’s time to put

the Snooze Rabbit to work.

TRY IT: MOVE AROUND, SNOOZE RABBIT

So far, the Snooze Rabbit is being nice by staying still while it tries to wake people

up. If you really want him to be eff ective at waking people up, you can make him a

bit meaner. Rather than just saying “morning,” what if you made him move around a

little so that it’s hard to predict where his tail is pointing? You can have him turn in a

big circle whenever he says “morning,” and you can add the Move steering block that

makes him turn a little bit after the fi rst Sound block. If he keeps driving around, it will

be harder to shut him up.

Understanding the Motor Rotation Sensor

So far, you used the motors as the main device that moves the parts of the robot

and programmed them with the Action blocks. However, both the large and

medium EV3 motors have a built-in rotation sensor. As you learned, sensors

report data to the EV3 brick, and the program uses them to take certain actions.

The data that the motor rotation sensor sends to the EV3 brick is how far it has

turned as well as its current power level.

The current power level will be measured between –100 (when the motor is

moving backward with full power) and 100 (when the motor is moving forward

with full power).

When the motor rotation sensor measures how far it moved, the turning

amount is represented in two ways: in degrees and rotations. A rotation here

means a motor’s full turn, which is 360º. So, one rotation is 360º, two rotations

are 720º, and so on. Also it can be a decimal number, like 0.5 rotations (180º),

1.8 rotations (648º), and so on.

Wait, but doesn’t the motor turn in two ways, forward and backward? Don’t

worry; the rotation sensor detects the direction of the turn. If the motor rota-

tion sensor is turning forward, the measuring value is a positive number. If it is

 Chapter 9 ■ Using the Timer and the Rotation Sensor 207

c09.indd 11:59:12:AM 07/22/2014 Page 207

turning backward, the measuring value is a negative number. Figure 9-9 shows

the forward and backward turning movements on the motor.

Forward (+) Backward (–)

Figure 9-9: Motor turning directions

N O T E Unlike other sensors, when you use the rotation sensor it won’t work if it

is connected to ports 1, 2, 3. or 4. It is still used like a motor, so you must plug it into

ports A, B, C, or D. Make sure to specify in the programming block the motor from

which you want to get the rotation values.

Using the Motor Rotation Sensor in Programming Blocks

Similar to the timer, the motor rotation sensor measures the rotation of the

motor as long as the motor is turning. If your robot is running in a circle for 2

seconds from the beginning of the code, then if you try to measure the motor’s

rotation values, the motor rotation sensor reports the value that it detected for 2

seconds. Is there any way that you can measure the rotation values in a certain

range of the code? Yes.

As you might have already guessed, you can reset the motor rotation sen-

sor at any point in your program. Therefore, you can make the motor rotation

sensor restart the measurement of the motor’s rotation values from zero again.

To do this, you must use the Reset mode in the Motor Rotation block. Just like

the Timer block, you can fi nd the Motor Rotation block under the yellow tab in

programming palette (see Figure 9-10).

208 Exploring LEGO MINDSTORMS EV3

c09.indd 11:59:12:AM 07/22/2014 Page 208

Motor Rotation block

Motor Rotation block
with the Reset mode

Figure 9-10: The Reset mode in the Motor Rotation block

If you use the motor rotation sensor without resetting it at any point in your

program, it will give you the number of rotations that have occurred since the

beginning of the program. If you get some ridiculous values when you use

the motor rotation sensor, you probably forgot to reset the motor rotation sensor.

The Motor Rotation in the Wait Block

In the Wait block, you will fi nd the following modes:

 ■ Motor Rotation – Compare – Degrees, Rotations, or Current Power

 ■ Motor Rotation – Change – Degrees, Rotations, or Current Power

With the Motor Rotation – Compare mode, the program waits to get certain

data (in degrees, rotations, or its current power) that satisfi es the comparison

in the Wait block. Figure 9-11 shows, for example, that if the Wait block says,

“Wait until the motor rotation value from port C is greater than 6,” the program

will wait until the motor plugged into port C turns enough so that the motor

rotation sensor reports back a value that is greater than 6.

Compare Type Port

Threshold ValueMotor Rotation-
Compare-
Rotations

Figure 9-11: The Motor Rotation – Compare – Rotations mode in the Wait block

In the Motor Rotation – Change mode, the Wait block still detects the same

types of data (motor degrees, rotations, or its current power), but instead of

comparing the reading value with the threshold value, it checks whether that

value has been changed by a certain amount (see Figure 9-12). If you run

this code, motor B and C will go on until the rotation sensor in motor C sees

the motor’s rotation change by 5 in either direction.

 Chapter 9 ■ Using the Timer and the Rotation Sensor 209

c09.indd 11:59:12:AM 07/22/2014 Page 209

Direction Port

AmountMotor Rotation-
Change-
Rotations

Figure 9-12: The Motor Rotation – Change – Rotations mode in the Wait block

Just as a reminder, when you set the direction in this mode, 0 (represented

by the arrow that points up) means increase, which makes the program check

whether the amount of change has been added up. 1 (represented by the arrow

that points down) means decrease, which tells the program to check whether

the amount of change has been subtracted. 2 (represented by the arrows on

each end) means either direction, and the program will accept the change that

happened with both scenarios.

The Motor Rotation in the Switch Block

In the Switch block, you can choose the Motor Rotation – Compare – Degrees,

Rotations, or Current Power modes. With these modes, the program asks, “Does

the reading value from the motor rotation sensor meet the comparison condi-

tion?” If the answer is true (yes), the line of the code on top is run. If the answer

is false (no), the other line of the code is executed. See the example in Figure 9-13.

Figure 9-13: Example of using the Switch block with the Motor Rotation – Compare –

Rotation mode

If you run this program with the Spy Rabbit, he will open up his head and

start moving forward until the infrared sensor sees an object within a distance

threshold value 50. If the infrared sensor sees something, and if the motor

210 Exploring LEGO MINDSTORMS EV3

c09.indd 11:59:12:AM 07/22/2014 Page 210

rotation sensor in port A detects that more than fi ve rotations have been made,

the Spy Rabbit will stop (top line of the code). If the rotation value that the motor

rotation sensor reported is less than 5, he will stop and close his head (bottom

line of the code).

The Motor Rotation in the Loop Block

You can also use the values from the motor rotation sensor to determine whether

the program should stay in the loop and repeat the code inside or escape from

the loop and stop repeating the code. There are Motor Rotation – Compare –

Degrees, Rotations, or Current Power modes. You can set up a comparison con-

dition in the Loop block, and the program will check whether the value from

the motor rotation sensor satisfi es the condition. Depending on what mode

you choose, the motor degrees, rotations, or current power will be used for

the comparison. The program repeats the code inside of the Loop block until

the incoming value fulfi lls the comparison condition. Take a look at the chunk

of code in Figure 9-14.

Figure 9-14: Example of using the Loop block with the Motor Rotation – Compare –

Rotation mode

Once the program reaches the Motor Rotation block, it resets the motor rotation

sensor in port A to zero. Then, the program starts the code inside of the Loop

block, which makes motors A and D go forward until the infrared sensor gets

the signal from the IR beacon. If the motor A turns more than three rotations

when the infrared sensor detected the signal from the IR beacon, it will repeat

the code in the loop. To stop the robot, or in other words to escape the loop,

you should send the IR beacon signal before motor A makes three rotations.

Programming with the Motor Rotation Sensor

Now it’s time to implement the Motor Rotation mode in your program. Using

the rotation sensor, you will make your program more complex. Have the Spy

Rabbit ready and create the project called Spy Rabbit – Motor Rotation.

 Chapter 9 ■ Using the Timer and the Rotation Sensor 211

c09.indd 11:59:12:AM 07/22/2014 Page 211

Exercise 1: Warming Up

Sometimes, before a big mission, the Spy Rabbit takes some time to do a

warm up. What he usually does to check his system is open his head bit by bit

every 2 seconds until it is open up all the way. Create a program called Warming
up and replicate the code in Figure 9-15.

Figure 9-15: The program to make the Spy Rabbit open his head a little by little every 2 seconds

Can you see what’s happening in this code? In the loop, we told the program

to turn the medium motor in –0.5 rotations, which makes the Spy Rabbit open

up his head a little bit, say, “Up,” and then wait for 2 seconds.

You might be wondering why the number of the rotations is negative. A

negative or positive number corresponds with the direction of the motor. To

open the Spy Rabbit’s head, the medium motor should turn backward, which is

the reason why it says –0.5 in the Medium Motor block. The Spy Rabbit repeats

this action until the medium motor makes –6.5 rotations. Whenever it repeats

the code inside of the loop, the number of rotations will add up like (–0.5) +

(–0.5)…+ (–0.5); because the number of rotations is a negative number, the sum

number will be smaller and smaller.

When the number of rotations gets smaller than –6.5, the program

escapes the loop, and Spy Rabbit says, “Good.” Now we know the Spy Rabbit

is ready to work. Why don’t we add more code for more actions? Maybe

we can grab some parts of the code that you used in the Avoiding program in

Chapter 8?

TRY IT: SYSTEM OFF

When the Spy Rabbit was warming up the system, he opened his head. You can use

this Warming up program at the beginning of any program for the Spy Rabbit. Then

what about creating a code that we can use at the end of the code? Can you

modify the Warming up program to make him close his head at a rate of 1.5 rotations

per second?

212 Exploring LEGO MINDSTORMS EV3

c09.indd 11:59:12:AM 07/22/2014 Page 212

Exercise 2: Wind Up the Spy Rabbit

Being a spy can be very tiring. For this reason, sometimes our robo-rabbit can

be very diffi cult to work with. When he is not in a working mood, there is only

one way to make him move: You have to wind him up.

Turn his motor A for three rotations in any direction, and he will move on

his own for three rotations. Figure 9-16 shows the code for this action.

Figure 9-16: Wind up the Spy Rabbit’s motor for three rotations to make him move himself for

three rotations.

When you run this program in the Spy Rabbit, he just waits until his

motor A turns three rotations in any direction, which means you can turn

his motor A either backward or forward. Because the Spy Rabbit has treads

connected to its motor, it will seem like it’s not easy to manually turn his

motor. However, if you use the red piece attached on the back hub, you’ll fi nd

it easier to move the tread to turn motor A. Once you turn motor A, the Spy

Rabbit will say, “Ready,” and wait for 2 seconds for you to put him down to

the fl oor. Then he will go forward for three rotations. Because all the blocks

are in the Loop block with the Unlimited mode, you will have as long as

you want to make him move. Create the program called Wind up and see

whether this program works for the Spy Rabbit.

TRY IT: MORE EXERCISE FOR YOU, SPY RABBIT

From exercise 2, you fi nally made the Spy Rabbit move forward a little bit, but he

needs to move around some more. Maybe you can make him go backward, as well?

Let’s have him move backward when we wind up his motor D so that we can make him

do more exercises. Hint: Start from the Wind up program. Copy and paste the whole

line of the code, including the Start block. Then, change the port for the motor and

make the Spy Rabbit go backward.

 Chapter 9 ■ Using the Timer and the Rotation Sensor 213

c09.indd 11:59:12:AM 07/22/2014 Page 213

ON BRICK PROGRAMMING: USING THE BRICK PROGRAM APP

So far, we have learned how to use the fundamental programming blocks with the

software to control the motors, use data from sensors, display images, and so on. But

what if a computer or the software is not available? Luckily, the EV3 brick comes with

an app that allows you to do programming that is similar to the software. You may

fi nd it to be a bit limiting, but it is very useful when the software is not available or

you want to test some tasks quickly. You can fi nd this app on the Brick Apps screen,

which appears when you select the third icon from the left on the top of the EV3 main

screen. Once you click Brick Program, you will get the Start and Loop blocks on the

screen with a broken line and a pointing-up arrow in the middle (see Figure 9-17).

Brick Apps screen Brick Program Start screen
with the Start and Loop blocks

Start Block Loop Block

Figure 9-17: Open the Brick Program app and see the start screen.

Adding a New Programming Block

The broken line and the arrow mean that you can add a programming block in that

place. You can navigate the blocks on your program by using the left and right but-

tons and, when navigating, you will see the broken line and the arrow between the

blocks. When you see them on your program, if you press the up button, you will get

the Block palette. There will be two types of blocks: action and wait. All the Action

blocks have a small arrow at the top right corner, and icons on the block represent

what they do. All the Wait blocks have an hourglass at the top right corner and sensor

icons that indicate which sensor will control the wait. You can tell which icon refers to

which sensor, but you may also fi nd some icons that you have never seen; these are

sensors that don’t come with this particular set. You can navigate the Block palette

with the up, down, left, and right buttons and choose the block that you want to use

by pressing the center button (see Figure 9-18).

Continues

214 Exploring LEGO MINDSTORMS EV3

c09.indd 11:59:12:AM 07/22/2014 Page 214

Press the Up button on the Brick Select the block that you want to
use from the Block Palette

Figure 9-18: Open the Block palette and choose the block that you want to use.

Deleting or Replacing Existing Programming Blocks

If there is a block that you want to delete or replace, you can navigate to that block

and press the up button. Then, you will see the Block palette again. You can select

the trashcan icon to delete the block or choose another block that you want to

replace it with.

Modifying Programming Block Settings

To change the settings of the programming blocks, you need to select the block by

pressing the center button, then change the parameters by using the up and down

buttons. Be aware that each programming block has only one setting that you can

play with, unlike the programming blocks in the software. For example, in the Medium

Motor block in the Brick Program, you can only change the power level; and in the

Move Steering block, you will have the only option to modify the direction of steering.

Keep in mind that you need to use the preassigned ports that are shown on the pro-

gramming block, and you won’t be able to change them. For example, to program the

Medium motor, the motor needs to be plugged in port A, and to program the infrared

sensor you need to use port 4.

Running a Program

Once you are done with your program, you can navigate to the Start button and press

the center button. Note that you can also set up how many times you want to repeat

the code by adjusting the Loop block’s setting. You can select a number between 1

and 10 to specify how many times you want the code to repeat. After 10, you will fi nd

the infi nity option, and the code will repeat forever until you press the back button.

continued

 Chapter 9 ■ Using the Timer and the Rotation Sensor 215

c09.indd 11:59:12:AM 07/22/2014 Page 215

Saving and Opening a Program

If you navigate your code to the Start block, you will see the save and open icons

on the left side of the Start block. If you click the save icon, the EV3 brick will let you

save the code in the BrkProg_SAVE folder that you can fi nd on the File Navigation

screen—you can fi nd this screen by clicking the second icon from the left on the top

of the EV3 main screen. If you click the open icon, you will be able to open saved pro-

grams that you created with the Brick Program.

Summary

In this chapter, you learned about the following:

 ■ How the timer works in EV3 programming

 ■ How to use the timer in the Wait, Switch, and Loop blocks

 ■ How the rotation sensor works

 ■ How to use the motor rotations in the Wait, Switch, and Loop blocks

 ■ How to program the motor rotation sensor

 ■ How to do on brick programming by using the Brick Program app on

the EV3 brick

217

c10.indd 11:59:40:AM 07/22/2014 Page 217

You had a great time with the Spy Rabbit, didn’t you? While you were learning

what he could do, you also learned a couple more programming tricks. After

working with the Spy Rabbit for three chapters, it is time to build another friend.

In this chapter, you get to meet a new robot named Mr. Turto, who will help

you explore additional programming techniques.

Understanding Mr. Turto

So far in this book, you have learned to build robots that drive around, like a

vehicle or a tank. Remember, though, that you do not want to limit yourself

to just one method of moving your robot. Mr. Turto introduces a new moving

mechanism: the crawl.

As you might guess from his name, Mr. Turto is a turtle-like robot that

crawls on a fl at, smooth surface, just like a sea turtle crawls across the beach

(see Figure 10-1). Although graceful in the water, leatherback sea turtles move

slowly on land. When it comes time for female sea turtles to lay their eggs,

they must lumber across the sand, using their front fl ippers to drag themselves

forward. Before starting to put him together and testing his motions, take a

look at how Mr. Turto’s body is structured and how it works.

C H A P T E R

10

Building Mr. Turto:

A Sea Turtle Robot

218 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 218

Figure 10-1: The Mr. Turto robot

The Structure of Mr. Turto’s Body

A sea turtle has a big and heavy shell on its back, which really slows it down

on land. Mr. Turto’s body is structured to replicate these characteristics. How,

then, does the crawling motion work? Imagine that you are on a skateboard,

lying on your belly. To move forward, you could stretch your arms out in front

of you and then push your body forward by sweeping your arms to the side

of your body. like the second movement of a jumping jack. Mr. Turto’s front

fl ippers work like your arms would in that example (see Figure 10-2). A tire

on each fl ipper creates friction, yet it allows his fl ippers to pivot and push his

entire body forward (or backward). The wheels under his body allow it to slide

smoothly when it gets pushed.

For Mr. Turto’s fl ippers to sweep and pull his body forward more than once,

the fl ippers should freely move back into a position so that they can pull the

robot forward another time. But what is going to happen if the tires on the fl ip-

pers are still touching the ground? The fl ippers will push the body backward

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 219

c10.indd 11:59:40:AM 07/22/2014 Page 219

when they return to the front. If that is the case, Mr. Turto will just go forward

and backward and not make any forward progress.

To prevent this from happening, I added a medium motor to Mr. Turto’s torso

that allows him to lift up his body. When his body is raised up slightly, he can

swing his fl ippers back and forth without them making contact with the ground.

So, if you want to program Mr. Turto to go forward, you need your program

to say, “Lift up the body, move the fl ippers to the front, lower the body down,

and then move the fl ippers to the sides of the body.” Mr. Turto’s front fl ippers

can also be controlled individually to make Mr. Turto turn right or left. Let’s

build him and see how he moves.

Figure 10-2: Mr. Turto’s moving mechanism

Assembling Mr. Turto

Collect the parts shown in Figures 10-3 and 10-4, and then follow the step-by-

step building instruction in Figures 10-5 to 10-39 to put Mr. Turto together.

220 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 220

1x

2x

3x
1x

4x 2x 2x

2x

1x

1x

35cm / 14in

25cm / 10in

Figure 10-3: Parts for Mr. Turto: 1

2x

2x

3x

2x

2x

2x

6x

2x
2x

15

13

11

9

7

5

3

1x

3x

2x

3x

3x

4x

4x

10x

1x

6x

3x

2x

2x

2x

2x

2x

8x

4x

2x

4x

69x

20x

11x

2x

#4
#8

#2

#3

#5

2x 5x

5x

9x

4x

19x

Figure 10-4: Parts for Mr. Turto: 2

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 221

c10.indd 11:59:40:AM 07/22/2014 Page 221

2x

12x

1x 2x 1x 1x

1x

15

9

STEP 1

Figure 10-5: Step 1: Building Mr. Turto’s chassis

222 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 222

1x1x

1x

1x

Plug the connector cable
in the medium motor.

1x

2x

25cm / 10in

#8

#2 STEP 2

Figure 10-6: Step 2: Building Mr. Turto’s chassis

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 223

c10.indd 11:59:40:AM 07/22/2014 Page 223

2x 2x

2x

2x

15

9

1x

9x

1x

STEP 3

Figure 10-7: Step 3: Building Mr. Turto’s chassis

224 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 224

1x 2x

6x 2x

3#2

1x

1x

1x

1x

STEP 4

Figure 10-8: Step 4: Building the front left flipper

3x 1x

7

1x1x1x

STEP 5

Figure 10-9: Step 5: Building the front left flipper

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 225

c10.indd 11:59:40:AM 07/22/2014 Page 225

3x

95

1x

1x

1x1x

1x

STEP 6

Figure 10-10: Step 6: Building the front left flipper

1x

1x 1x

#4

1x
1x

STEP 7

Figure 10-11: Step 7: Building the front left flipper

226 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 226

1x
PC

STEP 8

Figure 10-12: Step 8: Connecting the front left flipper to the EV3 brick

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 227

c10.indd 11:59:40:AM 07/22/2014 Page 227

1x

1x 1x 1x 1x

2x

#2

2x

STEP 9

Figure 10-13: Step 9: Connecting the front left flipper to the EV3 brick

228 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 228

1x

1x 1x 1x

1x 1x

1x

3

2x

#2

#33x

STEP 10

Figure 10-14: Step 10: Building the front right flipper

1x 1x
1x

1x

1x

1x 1x

1x

1x

7

2x

#5 STEP 11

Figure 10-15: Step 11: Building the front right flipper

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 229

c10.indd 11:59:40:AM 07/22/2014 Page 229

7

1x 1x 1x 1x1x1x

Don’t flip the piece over,
but turn it around so that
the port is on the left side.

#5
STEP 12

Figure 10-16: Step 12: Building the front right flipper

1x

1x 1x 1x

1x

5 9

3x

STEP 13

Figure 10-17: Step 13: Building the front right flipper

230 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 230

1x 1x

1x 1x

1x

#4
STEP 14

Figure 10-18: Step 14: Building the front right flipper

STEP 15

Figure 10-19: Step 15: Connecting the front right flipper to the EV3 brick

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 231

c10.indd 11:59:40:AM 07/22/2014 Page 231

1x

1x 2x 1x

1x 1x1x

#2
STEP 16

Figure 10-20: Step 16: Connecting the front right flipper to the EV3 brick

232 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 232

1x

STEP 17

Figure 10-21: Step 17: Combining Mr. Turto’s chassis and the EV3 brick with the flippers

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 233

c10.indd 11:59:40:AM 07/22/2014 Page 233

1x

1x

STEP 18

Figure 10-22: Step 18: Combining Mr. Turto’s chassis and the EV3 brick with the flippers

234 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 234

1x

#2 13

1x

2x

3
4x

1x 1x 1x

STEP 19

Figure 10-23: Step 19: Building the back right flipper

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 235

c10.indd 11:59:40:AM 07/22/2014 Page 235

#2

1x

1x 1x

STEP 20

Figure 10-24: Step 20: Connecting the back right flipper to the body

236 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 236

#2

1x

1x 1x 1x

2x

1x4x

13

3

STEP 21

Figure 10-25: Step 21: Building the back left flipper

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 237

c10.indd 11:59:40:AM 07/22/2014 Page 237

#2

1x

1x 1x

STEP 22

Figure 10-26: Step 22: Connecting the back left flipper to the body

238 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 238

4x

1x
2x

STEP 23

Figure 10-27: Step 23: Adding the tail

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 239

c10.indd 11:59:40:AM 07/22/2014 Page 239

STEP 24

Ri
gh

t L
ar

ge
 M

ot
or

 -
Po

rt
C

Le
ft

La
rg

e
M

o t
or

 -
Po

rt
 B

M
ed

iu
m

 M
ot

or
 -

Po
rt

 A

25cm / 10in

2x

Figure 10-28: Step 24: Plugging the connector cables: port A = medium motor; port B = left

large motor; and port C = right large motor

#5 #3

1x 1x 1x 1x 2x

STEP 25

Figure 10-29: Step 25: Building the neck

240 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 240

2x 1x 1x

3x

STEP 26

Figure 10-30: Step 26: Building the neck

#5

2x 2x

3

1x 1x 1x 1x

2x

STEP 27

Figure 10-31: Step 27: Adding the infrared sensor to the neck (the head of Mr. Turto)

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 241

c10.indd 11:59:40:AM 07/22/2014 Page 241

1x

#3 13

1x 1x

STEP 28

Figure 10-32: Step 28: Connecting the head to the body

242 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 242

*Wrap the connector
cable around the neck
like the photo.

Infrared Sensor
- Port 4

35cm / 14in

1x

STEP 29

Figure 10-33: Step 29: Plugging in the connector cable: port 4 = Infrared Sensor

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 243

c10.indd 11:59:40:AM 07/22/2014 Page 243

#2

1x 2x

2x

2x

4x

10x

STEP 30

Figure 10-34: Step 30: Building the shell

244 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 244

1x

1x

11

1x 1x2x

STEP 31

Figure 10-35: Step 31: Building the shell

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 245

c10.indd 11:59:40:AM 07/22/2014 Page 245

2x 2x 2x

STEP 32

Figure 10-36: Step 32: Building the shell

2x 2x 2x

#3

4x

STEP 33

Figure 10-37: Step 33: Building the shell

246 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 246

1x 4x 1x 1x

STEP 34

Figure 10-38: Step 34: Building the shell

STEP 35

Figure 10-39: Step 35: Adding the shell to the body

 Chapter 10 ■ Building Mr. Turto: A Sea Turtle Robot 247

c10.indd 11:59:40:AM 07/22/2014 Page 247

Testing Mr. Turto’s Movements

Now that you have Mr. Turto assembled, let’s put him into action. Note that he

will best perform on a hard, smooth surface like a hardwood fl oor or a table.

(Don’t let him fall!) In this section, you just test his movement to see whether

everything is in the right place. You will do more programming with sensors

in the next chapter.

Make sure that the large motors for the fl ippers are plugged into ports B and

C and that the medium motor is connected to port A. Next, lift up the front

part of the body and check to determine whether the red piece on the medium

motor is positioned like it is in Figure 10-40.

Figure 10-40: Make sure that the red piece on the medium motor is placed like it is in the photo.

Create a project called Mr – Turto and make a new program called

Mr – Turto – test. When you are ready, write code that looks like Figure 10-41.

The two front fl ippers should be position to rest against the side of Mr. Turto’s

body before you run the program.

248 Exploring LEGO MINDSTORMS EV3

c10.indd 11:59:40:AM 07/22/2014 Page 248

Figure 10-41: Program to test Mr. Turto’s movements

When you run this program, Mr. Turto will lift up his torso (fi rst Medium

Motor block) and sweep his two front fl ippers forward (fi rst Move Tank block),

without them touching the ground. While his fl ippers swing forward, you will

see Mr. Turto lift up his head. (The same motor powers his right fl ipper and his

head, so when the fl ipper swings forward, the head moves up, and when the

fl ipper sweeps backward, the head goes down.) Once the fl ippers are in their

forward position, his torso lowers back down (second Medium Motor block), and

Mr. Turto will drag his body forward by swinging his fl ippers back against his

torso (second Move Tank block). He will repeat this action four times (Loop block

with the Count mode). Note that he performs better when the large motor’s power

is set to low. It will be slower, but more predictable, just like a real sea turtle.

Summary

In this chapter, you learned about the following:

 ■ How Mr. Turto is structured and how he moves

 ■ How to build Mr. Turto

 ■ How to program Mr. Turto to move like a real sea turtle

249

c11.indd 12:0:26:PM 07/22/2014 Page 249

You may recall that previous chapters alluded to “programming with data wires”

but delayed the lesson by saying that it will be covered in Chapter 11. Well, here

we are, Chapter 11 at last. Up to this point, we’ve used the principle method

of EV3 programming, which is connecting programming blocks to each other

in a row. This chapter, however, teaches you a new technique that allows the

programming blocks to exchange data between one another via data wires. For

example, you can use the reading value from the infrared sensor as the input

value that controls the volume of the sound on the sound block. In addition,

you will learn how to design your own programming block. Mr. Turto will be

your partner throughout the chapter, so have him ready.

What Is a Data Wire?

Programming blocks can be “data wired” to one another. A data wire is a vir-

tual pipeline for moving data. When a data wire connects one programming

block to the other, the value that one block collects is sent to the other block to

be used as its input value. For example, the value that you get from the infrared

sensor can be sent to the Sound block to be used to control the sound volume.

So, if the value from the infrared sensor was 65, then the sound’s volume will

be set to 65 correspondingly. The output value from the Infrared Sensor block

is used as an input value for the Sound block.

C H A P T E R

11

Programming with Data Wires

and Using My Blocks

250 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 250

Confused? Think of it like this: Programming blocks work like train stations.

Data that a block sends out or takes in represents the trains, and data wires are

the tracks (see Figure 11-1). Like train stations have switches to reroute the trains,

programming blocks have hubs that send out or accept data. These hubs are

called block outputs and block inputs. You can wire one block’s block output to

another block’s block input, and the data moves around within your program.

STATION A
(Programming block)

STATION B
(Programming block)

TRAIN TRACK
(Data Wire)

TRAIN
(Data)

Figure 11-1: You can think of programming blocks as train stations, data as trains, and data

wires as train tracks.

You will be the one laying down the train tracks (the data wires) for the data

that travels throughout your program. By mastering this skill, you will allow

yourself more fl exibility in programming your robot by removing the need to

decide on block settings beforehand.

How Do Data Wires Work?

Now that you know what a data wire is, you want to learn how to put it into

your code. This section uses a simple example to demonstrate how data wires

work, and then introduces you to some techniques for managing them. Also,

you will learn to choose between different types of data wires. So, get ready

for some data wiring activities.

Getting Started with Data Wire Programming

Before beginning an example, let’s connect the touch sensor to Mr. Turto. Plug

the sensor into port 1 with a connector cable. Don’t worry about how you attach

the cable to his body. It can just hang there like a leash for now.

 Chapter 11 ■ Programming with Data Wires and Using My Blocks 251

c11.indd 12:0:26:PM 07/22/2014 Page 251

Make a new program called Mr-Turto-Touch in the project Mr. Turto from

Chapter 10, “Building Mr. Turto: A Sea Turtle Robot.” Then follow the instruc-

tions in Figure 11-2 and Figure 11-3 to write the example code.

Touch Sensor Block
(Compare - State Mode)

Brick Status Light Block
(On mode)

Figure 11-2: Creating a line of code with the Touch Sensor block and Brick Status Light block

1. Click here 3. Drop here

2. Drag this way

Figure 11-3: Connecting the block output in the Touch Sensor block to the block input in the

Brick Status Light block

Download this program to the EV3 brick and see what happens when you

run it. The brick status light will be green when you start the program, and if

you press the button the light will turn orange. Because the line of code is in

the loop, the light will go back and forth between green and orange as long as

you press and release the button.

Let’s take a closer look at the program and see what each block did. What hap-

pened to the Touch Sensor block? As you learned before, the touch sensor button

has three states: released, represented by the number 0; pressed, represented

by the number 1; and bumped, represented by the number 2. When you make

any of these three actions, the Touch Sensor block receives its corresponding

252 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 252

number as a reading value. Then, this measured value is the output value of

the Touch Sensor block and ready to be sent out.

What about the Brick Status Light block? Like the touch sensor’s states, each

color of the brick status light also has a corresponding number: 0 means green,

1 means orange, and 2 means red. The Brick Status block needs one of these

numbers as its input value so that it may determine what color of light should

turn on.

So, here we are with two blocks, one has the value that will be sent out and

the other block is waiting to receive a value. We connected these two blocks

with a data wire so that the output value from the Touch Sensor block can be

the input value for the Brick Status Light block (see Figure 11-4).

When touch sensor is pressed, brick status light will be orange.

When touch sensor is pressed, brick status light will be green.

2 2

1 1

Figure 11-4: A summary of the program Mr-Turto-Touch that directs the touch sensor state to

determine the color of the brick status light

However, you’ll fi nd that even though you bump the touch sensor button,

which should give you a value of 2, you never get to see the red light turn on as

a result. This is because the bumping action is actually the combination of two

actions, pressing and releasing. So, when you bump the touch sensor, the data

 Chapter 11 ■ Programming with Data Wires and Using My Blocks 253

c11.indd 12:0:26:PM 07/22/2014 Page 253

wire quickly carries the values of 1 (pressed) and 0 (released) from the Touch

Sensor block to the Brick Status block. The Brick Status block will never receive

the value of 2 from the touch sensor.

Using Block Input and Output

To use the data wire, you need to pull out the data wire from one block and

plug it into another block, just like you did in the example program. How do

you know where on a programming block you can pull out or plug in the data

wire? Recall the train analogy: A programming block has gates for data to come

in or go out like the train station has gates for trains that are arriving or depart-

ing. There are two types of gates: one for receiving the data, which is called

the block input; and another for sending the data out, which is called the block

output. Luckily, they appear differently on a programming block, as shown in

Figure 11-5. The block input has a bump that sticks out from the top, and the

block output has a small bump pointing down. These small parts basically

represent which direction the data will travel (into the block or out of the block).

Block Input Block InputBlock Output

Figure 11-5: Block input and block output in a programming block

Then, how do you delete a data wire that has already been connected? You’ll

want to click the block input where the wire ends and drag it out, as shown in

Figure 11-6. When you click as directed, the data wire will disappear.

Click here
and drag out.

Figure 11-6: Deleting a data wire

254 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 254

Note that you can pull out multiple data wires from a block output, which

means that you can use the same data for more than one block. A block input,

however, can only have one value coming in. For example, when you use the

infrared sensor, you can have two wires coming out from its block and connect

them to the Sound and Large Motor block’s block inputs to control the volume

of the sound and the power of the large motor. However, the block input for

controlling the volume of the sound in the Sound block cannot have two dif-

ferent output values coming in.

Understanding Data Types and Data Wire Types

You have learned how to construct the data wires, so let’s see what kind of values

that they can carry. Data wires can transfer fi ve types of information between

blocks: numeric, text, logic, numeric array, and logic array. This chapter covers

only the fi rst three. The remaining two data types will be covered in Chapter 12,

“Using Data Operations Blocks,” when we learn about arrays. This section dis-

cusses the kind of information each data type delivers and how they are used in

programs, but fi rst you need to see how they appear in a program.

If you take a look at block input and output closely, you will see the stick-

ing parts have different shapes: half-circle shape (numeric data), pointy shape

(logic data), square (text data), and so on. The shapes indicate the data type.

Just as there are different lines of trains, there are different types of data. And

just like a gate at a train station only lets an assigned train come in or out, each

block input/output in a programming block is designed to allow only a specifi c

type of data. The shape of a block input/output tells you what type of informa-

tion it can carry. For example, we used the block input and output that have

half-circle shaped sticking parts in the program that we made in Figure 11-2

and 11-3, which can transfer numeric data (numbers).

The data type that a block output carries determines the data wire type. They

are distinguished by color and thickness. For example, the numeric data wire

is a thin yellow line, and the logic data wire is a thin green line. Each data type

has a corresponding data wire. Figure 11-7 shows the summary of the block

input and output of each data type and corresponding data wires.

Let’s go over each data type and see how the different types of data will be

and how they can be used in the program.

 ■ Numeric data type: This data type is composed of numbers. These numbers

can be positive (greater than zero), negative numbers (less than zero) or

zero. They also can have decimal values such as 2.8, 10.234, –4.56, and so

on. Figure 11-8 shows an example of using this value type with the data

wire. The value that the Timer block gets, which is a numeric value, can

be wired to control the power of the motor. The Timer block will send out

the amount of time that it measures, which increases as time goes by, to the

 Chapter 11 ■ Programming with Data Wires and Using My Blocks 255

c11.indd 12:0:26:PM 07/22/2014 Page 255

Power input of the Move Steering block. Because this sequence of the blocks

is in a loop, the program repeats the code within and as a result, motors B

and C will accelerate until their power value settings hit 100.

Numeric
Data

Block
Output

Block
Input

Block
Output

Block
Input

Block
Output

Block
Input

Numeric Data Wire:
Thin Yellow

Logic Data Wire:
Thin Green

Text Data Wire:
Thin Orange

Logic
Data

Text
Data

Figure 11-7: The block input and output of each data type and corresponding data wires

Timer block
(Measure - Time Mode)

Move Steering block
(On Mode)

Figure 11-8: A program where the timer controls the power of motors B and C

256 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 256

 ■ Text data type: Do you want to display your robot’s name on the EV3

screen? If so, you need to use this type of data. Text data appears as lines

of text, which can be a word (boy, girl), a sentence (I am a boy, you are a

girl.) or a sequence of any supported text. Note that numeric values can

be read as text, which means that they can be wired into a text block input

on a programming block.

N O T E To see the EV3 supported text, go to EV3 help on the Lobby area - General -

Supported Text.

Let’s take a look at an example of using the text data type with the data wire.

The example that Figure 11-9 shows is to display the motor rotation value from

motor B on the EV3 screen.

Motor Rotations block
(Measure - Degrees Mode)

Display block
(Text - Grid Mode)

Choose “Wired”

Figure 11-9: A program to print out motor B’s rotation value on the EV3 screen

If you run this program with Mr. Turto, whenever you manually swing his

fl ipper that is connected to port B, the screen will show the reading values. (Take

off Mr. Turto’s shell to have a clearer view of the screen, if you want.) You will

fi nd that the data wire that connects the Motor Rotation block output and the

Display block input is a numeric data type wire, not a text data type. It’s because

the type of data wire is determined by the value type that the block output

sends out, which in this case is a numeric type of value. Note that you should

choose Wired in the Block Text fi eld in the Display block when you program it

to show the text from a data wire.

 ■ Logic data type: The logic data type has one of two potential values: true

or false. This data type can be used for values that can have two condi-

tions like a compare result so that you can fi nd the Compare mode in a

programming block. For example, you can set up the Touch Sensor block

to compare whether the touch sensor is being pressed or not being pressed.

Then, the block can send out the true or false result of this statement via a

logic data wire. Also, the brick status light’s pulse status can have a true or

false value. When it gets the true input, the light will be blinking. We can

 Chapter 11 ■ Programming with Data Wires and Using My Blocks 257

c11.indd 12:0:26:PM 07/22/2014 Page 257

use these two blocks together and use the touch sensor’s compare result

(pressed: true, released: false) as an input for the brick status light’s pulse

status. If the touch sensor is pressed, the brick status light will be blinking.

This true or false logic values also can be read as a numeric value. When

it’s true, it has a numeric value 1, and when it’s false, it has 0. Therefore,

you can use the logic value to control the value that can have 0 or 1 as its

input such as the color of the brick status light. See the two examples in

Figure 11-10.

Compare Result Output
(True or False)

Pulse Input
(True or False)

Compare Result Output
(1 or 0)

Color Input
(1 or 0)

Figure 11-10: Using the logic value from the Touch Sensor block to control the brick

status light’s pulse status (top) or the color of the light (bottom)

Just like the U.S. Postal Service needs to collect mail so that it may deliver it,

a programming block should fi rst collect its data before in order to send them

out to another block. In EV3, we collect data by using sensors. Each sensor has

its own programming block, which allows collected data to be sent out to other

blocks. In the following section, we will learn how they work and how to use

these blocks with data wires.

Sensor Blocks and Data Wires

At the beginning of the book, we fi rst started programming with EV3 by learn-

ing Action blocks such as the Motor Steering block, Motor Tank block, Display

block, and so on. These blocks are mostly for executing a robot’s actions, which

258 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 258

is the outcome of the program. How then did we confi gure these blocks to

make the robot perform those specifi c actions? We set up the input values for

each parameter by manually typing in the values. Now that you are learning

data wiring, you will fi nd that you can pull a value from another block with

a data wire and plug it into where you usually type in.

Just as there are programming blocks that wait to get the input values to pro-

duce outcomes (Action blocks), there are also blocks whose job is to collect the

information from the robot’s surroundings and export the data to other blocks.

As you might’ve guessed, I’m talking about the sensor blocks.

Sensor blocks don’t really do anything by themselves in a program, but you

can use them to collect data to confi gure the other blocks. For example, if the

program has the Infrared Sensor block alone, it will still get the reading values

from the sensor but won’t make any changes to a robot’s performance. However,

if you add a Large Motor block to the project and pull the reading value from

the infrared sensor to control the level of the large motor, the results could be

very useful for future robot designs. Let’s see what the settings of the sensor

block look like.

Setting Up the Sensor Blocks

You’ll fi nd six sensor blocks under the yellow tab in the programming palette:

Brick Buttons, Color Sensor, Infrared Sensor, Motor Rotations Sensor, Timer,

and Touch Sensor blocks. They all have two modes between which you can

choose: Measure and Compare.

When you choose the Measure mode in the sensor blocks, they will simply

read the incoming values that come from the sensor. For example, if you choose

the Measure – Beacon mode in the Infrared Sensor block, the measured values

will be the beacon heading (numeric value), beacon proximity (numeric value),

and beacon detected status (logic value; true or false).

The Compare mode presents an additional setting. You can set up the com-

parison statement, such as “Is the motor rotation sensor turned greater than

90º?” Then the outputs are going to be the compare result, yes or no (true or false;

logic value) and the actual measured value. See this example in a programming

block in Figure 11-11. When you use the Infrared Sensor, Color Sensor (Refl ected

Light Intensity and Ambient Light Intensity modes), and Timer blocks with the

Compare mode, you will see the similar format on the block.

Some blocks’ comparison statements will differ from the example in

Figure 11-11. If the sensor tends to detect the state of stimulus, there won’t be the

compare type input or threshold value. The comparison statement will be more

 Chapter 11 ■ Programming with Data Wires and Using My Blocks 259

c11.indd 12:0:26:PM 07/22/2014 Page 259

like asking whether a specifi c event happened or not, such as “Is the touch sen-

sor pressed?” or “Is the color sensor reading red?” The outputs of these blocks

will be the compare result and the actual measured value. Figure 11-12 shows

what they’ll look like in a program.

Compare
Type

Threshold
Value

Compare
Result

Compare - Degrees Mode

Measured
Value

(Degrees)

Figure 11-11: The Motor Rotation block with the Compare mode

Is the button that has
Button ID #2 pressed?

Is the Color sensor
reading red?

Is the touch sensor
pressed?

Figure 11-12: The Brick Buttons, Color Sensor, and Touch Sensor blocks with the Compare

mode

Now let’s use some sensor blocks in your programs. Mr. Turto will volunteer

as our testing robot for the following exercises. If you still have the touch sensor

attached, take it off for the time being. Instead, mount the color sensor onto his

shell (see Figure 11-13).

Let’s fi nd and open the program that we made in Chapter 10, “Building Mr.

Turto: A Sea Turtle Robot,” which is called Mr-Turto-Test. This is the program

that makes Mr. Turto move forward. Note that the position of the red piece on

the medium motor should point to your left and the fl ippers should be next to

his torso when you use the Mr-Turto-Test program.

Exercise 1: Yay! I Found Something

When Mr. Turto gets excited, he moves his fl ippers back and forth and lifts his

torso up and down. So, what makes him act this way? As a lonely turtle robot,

260 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 260

Mr. Turto gets excited when he fi nds someone very close to him. Unfortunately,

he can’t tell the difference between living beings and objects (yet), so he will get

excited when he fi nds a random object in front him.

2x

25cm / 10in

Connect the Color Sensor
in Port 3 with the connector cable.

1x

1x

Figure 11-13: Adding the color sensor on Mr. Turto’s shell

To give Mr. Turto this personality trait, you must program him to use his

infrared sensor to detect how close he is to an object and change his movement

accordingly. You can control his fl ipper movements in two ways. First, you can

change it by altering the power of the motor (affecting the speed of the fl ipper’s

movement), or second, you can change it by altering the number of degrees that the

motor turns (affecting the fl ipper’s turning radius). Here, we modify the motor’s

rotation, in degrees. Just like the code that we used in the program Mr-Turto-Test,

the motor that controls the fl ipper can move in 100º maximum, which makes Mr.

Turto move his fl ipper in about a quarter of the radius of a circle. So, if we have

 Chapter 11 ■ Programming with Data Wires and Using My Blocks 261

c11.indd 12:0:26:PM 07/22/2014 Page 261

a smaller value than 100 for motor degrees, the fl ipper’s moving radius will be

smaller as well. In this case, because it will take less time to make a smaller radius

the fl ippers are moving back and forth at a faster rate than when the motors turn

100º, Because the infrared sensor gets smaller values when an object is closer, we

can use these values to control the motor degrees so that when Mr. Turto fi nds

something close by, his fl ippers will move back and forth more quickly.

Let’s write this program together. Make a program called Mr – Turto – IR
sensor – Degrees, and then connect the Loop block to the Start Block. Inside

of the loop, put in an Infrared Sensor block with the Measure – Proximity

mode. Then, go to the Mr-Turto-Test program and copy the code inside of the

loop (copy: select the blocks that you want, and then press Cmd+C [OS X]

/ Ctrl+C [PC]) and bring them to the current program (paste: Cmd+V [OS X] /

Ctrl+V [PC]).

Now it’s data wiring time. Pull out the data wire from the Infrared Sensor

block and connect it to the motor degrees input in the fi rst Move Tank block.

Then, pull out another data wire and connect it to the same input in the sec-

ond Move Tank block. Wait, there is one more thing that requires our attention

before we run the program! On the code that we initially copied from the Mr

– Turto – Test program, we had –100º as the degree input value for the second

Move Tank block because we needed to move the motors backward to have the

fl ippers come back to the sides of the torso. Now that the second Move Tank

block gets its degree input value from the infrared sensor’s reading, the degree

value will always be a positive number. As a solution, we’ll need to change the

direction of the motors. You can change the power levels to be negative, which

means on the code, the power levels on the second Move Tank block should be

changed from 20 to –20. The program should look like the one in Figure 11-14.

Figure 11-14: Program where the infrared sensor value controls the degrees of motors B and C

Run the program and have him come toward you. Can you tell how happy

Mr. Turto is to see you?

Exercise 2: Can You Hear Me?

Poor Mr. Turto is a lonely robot, and he is always looking for someone to listen

to him. He will keep moving forward and shouting to get anybody’s attention.

When everything is far away, his infrared sensor reading value will be 100.

262 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 262

When he gets closer to someone or something, his voice will become softer and

softer. When he is really close to that object, (his infrared sensor reads the value

that is smaller than 10), he will stop and gently say “Hi.”

To get this behavior, you need to use the Switch block along with an infrared

sensor that is set to Compare – Proximity mode. Then, complete the compare

statement in this way: Is the reading value smaller than 10? If the answer is true,

meaning that Mr. Turto found something close by, you want to program him

to stop (Move Tank block with the Off mode) and say “Hi” (Sound block). If

the answer is false, which means things are still not close enough, you want to

program him to move forward (you will use the line of the code that was inside

of the loop in the Mr-Turto-Test program) and shout (the Sound block again).

You also want to control the volume of his voice to be softer as he approaches

an object, which means that the volume control value should be getting smaller

as the infrared sensor reading value diminishes. The data wire will prove useful

right here. You can add in the Infrared Sensor block with the Measure – Proximity

mode after the code that makes Mr. Turto move. Use its output value as the input

value for the volume in the Sound block. See the program in Figure 11-15. Does

it all make sense? You will fi nd that I put the Switch block in the Loop block

and added the Loop Interrupt block at the end of the top line of the code. With

these blocks, the program will get to repeat only the bottom line of the code in

the Switch block because once it runs the top line of the code, the program will

exit from the loop.

Figure 11-15: Program that controls the volume of Mr. Turto’s voice, which is controlled by the

distance between him and the object

Create a program called Mr – Turto – IR sensor – Volume and follow the

program shown in Figure 11-15. When you run the program, is Mr. Turto des-

perately shouting?

Exercise 3: Bright Light Makes Mr. Turto Awake

Before you start this exercise, have a fl ashlight handy. Why? A fl ashlight is

important because Mr. Turto can change his behavior by reacting to the amount

 Chapter 11 ■ Programming with Data Wires and Using My Blocks 263

c11.indd 12:0:26:PM 07/22/2014 Page 263

of light that his color sensor picks up. When Mr. Turto’s color sensor senses a

great deal of light, he will move his fl ippers faster back and forth, but when

the sensor gets only a small amount of light, he will move very slowly. You can

adjust the amount of light that the fl ashlight shines into the sensor by moving

it closer or farther away.

In this scenario, the speed of Mr. Turto’s fl ippers changes depending on the

amount of light that the color sensor gets. Can you see how we can use the data

wire here? Let’s make a program called Mr – Turto – Light and copy and paste

the code from the Mr-Turto-Test program.

First, change the Loop block mode to Unlimited. Second, let’s put the Color

Sensor block between the fi rst Medium Motor block and the fi rst Move Tank

block, and set it to the Measure – Ambient Light Intensity mode. Finally, connect

the output values from the color sensor to both of the motor Power inputs on

both of the Move Tank blocks. We are using one output value for four inputs,

meaning that you have four data wires coming out from the color sensor.

There is one more block that you want to add to this program to make it

work better. Because the range of the value that the color sensor can measure

(with the Measure – Ambient Light Intensity mode) spans from 0 to 100, there

is a chance that the motor power can be set to 0 through its connection with the

data wire. If this happens, the Move Tank block won’t be able to fi nish its task,

which is to turn the motor 100º, because its power level is set to 0. In that case,

the program would be stuck there, and Mr. Turto would stop moving. To avoid

this situation, it is important to add the Wait block with the Compare – Ambient

Light Intensity mode right before the Color Sensor block. Set up the compare

type input to 2 and the threshold value to 5 (if the motors receive a value that

is lower than 5 for their power value, they won’t have enough torque to move

the fl ippers). With this block, the color sensor will wait until it receives a value

greater than 5. As a result, the Move Tank blocks won’t get the number less than

5 for their power value. Figure 11-16 shows the fi nal program.

Figure 11-16: The amount of light from the color sensor controls the speed of the movement of

Mr. Turto’s flippers.

Download this program and run it on Mr. Turto. Point the fl ashlight at his

color sensor and see how he reacts.

264 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 264

Introducing My Blocks

Knowing how to make a program with data wires is a big step forward. You

may realize that the line of program blocks is getting longer as it becomes more

complicated. This section introduces a tool that is very useful for simplifying

your program by making a line of code that does a task. For example, the entire

Mr-Turto-Test program can be loaded into a single new programming block.

Basically, you can make your own customized block, and you can use it in your

program over and over again like with any other programming block. In EV3

programming, we call this type of block a My block. Not only can a My block

store a line of code, but it can also have parameters that will be inputs or out-

puts of the block. You will get to choose parameters for your My block when

you build one. You can export your My block and save it on your computer so

that you can share the My block with other people or use the block in other

programs as well by importing. Let’s try it out.

Using the My Block Builder

We’ll use the Mr-Turto-Test program as an example. After you make this line of

code as a My block, there will be no need to copy and paste the whole program.

Instead, you will have a single block to do the same job. How convenient is that?

Open the Mr-Turto-Test program and select all the blocks except the Start

block. Go to the Tools menu at the top of the screen and choose My Block

Builder. You can follow the instruction in Figure 11-17. A My Block Builder

window will pop up.

2. Go to the “Tools” menu. 3. Select “My Block Builder.”

1. Select the line of code except the Start block.

Figure 11-17: Select the line of the code except the Start block and then go to the Tools menu

and select My Block Builder.

 Chapter 11 ■ Programming with Data Wires and Using My Blocks 265

c11.indd 12:0:26:PM 07/22/2014 Page 265

Once you get the My Block Builder window open (see Figure 11-18), name the

block (I named this block Move_Forward) and write a short description about

what it does. Note that you can only use lower/uppercase letters and under-

scores for the name. You can also choose the icon for your block from the My

block icons palette at the bottom.

Figure 11-18: In the My Block Builder window, name the My block, put in a short description

about the block, and choose the block icon.

We will add two parameters to the Move_Forward block: one for controlling

the input value for the motor power and the other for setting up the Loop block’s

count number. You can add a parameter by clicking the + icon on the block. You

will then see a new blank parameter on the block, as shown in Figure 11-19. In

addition, two more tabs will show up next to the My Block Icon tab.

The new tabs that you made, Parameter Setup and Parameter Icons, are for

setting up parameter features. If you click the Parameter Setup tab, you can

defi ne parameter type, parameter data type, default value, and parameter style.

As you can see in Figure 11-20, I named the parameter Motor Power and set it

up to be an input value (parameter type) for the motor power. The data type

should be a number, and I set its default value to be equal to 20. For its style, I

chose the vertical slider and set its minimum value to 5 (the minimum power

266 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 266

level that the motors can have to produce enough torque to move the fl ippers)

and its maximum value to 100.

Click here to add
a new parameter

New parameter
is added here

Figure 11-19: Adding a parameter to your My block

Figure 11-20: Setting up parameter features

If you click the Parameter Icons tab, you will see a number of icons that you

can choose between to customize your parameter. When you select one, it will

be shown in the block (see Figure 11-21).

 Chapter 11 ■ Programming with Data Wires and Using My Blocks 267

c11.indd 12:0:26:PM 07/22/2014 Page 267

Figure 11-21: Selecting an icon for your parameter

As mentioned previously, you want to have a total of two parameters, one

for the motor power and another one for the Loop block’s count number. Add

another parameter in the same way that you did the fi rst one and set up its

confi guration like in Figure 11-22.

Figure 11-22: Adding another parameter for controlling the loop count

Click Finish, and the code of the Move_Forward block will be shown in another

program window as a gray parameter block. You can then wire parameters to

268 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 268

the motor Power inputs and the count input of the Loop block, as shown in

Figure 11-23.

Figure 11-23: Data wiring the parameters

Then go back to the Mr-Turto-Test program. Like the left image in Figure 11-24

shows, instead of the whole line of the code, you will see the Move_Forward

block that you just created. As you set up, you will also fi nd the two input

parameters on the block. This block is placed in the programming palette, under

the My blocks tab (turquoise tab), as shown in the right image in Figure 11-24.

Figure 11-24: The Move_Forward block shown in the program (left) and the programming

palette (right)

If you edit your My block, you can double-click it to open the program

window. Congratulations. You’ve just made your fi rst My block.

Exporting and Importing My Blocks

Once you build the My block, it will be listed on the My blocks tab in the project

properties, as shown in Figure 11-25.

 Chapter 11 ■ Programming with Data Wires and Using My Blocks 269

c11.indd 12:0:26:PM 07/22/2014 Page 269

Here, you can export any My blocks that you made for saving to your com-

puter. If you click the name of the block on the window, you will see the Export

button at the bottom become activated. Click it. The Save window then pops

up, and you get to choose where your computer will keep the fi le. If you go to

the folder where you saved it, you will fi nd the fi le with a .ev3s extension. With

the block that we just created, it will be Move_Forward.ev3s. Why is it useful to

save My blocks on the computer? It is useful because you can then import these

block fi les for use in other projects as well as share them with other people.

Figure 11-25: The My blocks will be listed on the My blocks tab in the project properties.

Importing a My block is similar to exporting it. You’ll fi nd an Import button

next to the Export button. If you click it, the Open window pops up, and you can

fi nd the My block that you want to import. Figure 11-26 shows how to export

and import a My block.

You have learned a lot of new skills in this chapter. Programming with data

wires is a great way to actively use data across different blocks, and it enables

you to give many more personalities to your robot. While your program is

becoming richer and more advanced with new loops and data wires, My blocks

will help you to simplify you program so that it is neater and more organized.

270 Exploring LEGO MINDSTORMS EV3

c11.indd 12:0:26:PM 07/22/2014 Page 270

1. Select

2. Click “Export”

Click “Import”

Importing a My Block

Exporting a My Block

Figure 11-26: Exporting and importing a My block

Summary

In this chapter, you learned about the following:

 ■ What data wires are and how they work

 ■ Data types and data wire types

 ■ How to use data wires in your program

 ■ How to confi gure the sensor blocks

 ■ How to build a My block

271

c12.indd 10:48:50:AM 07/15/2014 Page 271

If you have been following along to this point, you have already learned a great

deal about EV3 programming. You’ve learned many techniques that have helped

to expand your programming skills, but there is one more advanced EV3 pro-

gramming technique that this book has yet to cover. Let’s begin.

Using data wires, from the previous chapter, you were able to move data from

one programming block to another. The values that you used were “raw.” In

other words, when we wired together the two programming blocks, one block’s

output data went directly to the other block’s input without any processing in

between. In this chapter, you learn how to process these raw values so that they

become more useful within your program.

Suppose, for instance, that you want to use the values from the infrared

sensor to control the power of the large motor to have it go backward until the

touch sensor is pressed. To move the motor backward, you need a negative

power value, but the value from the infrared sensor will range only from 0 to

100. The programming blocks that you learn about in this chapter can change

this value to a negative number. In addition to simple data operations, you will

also learn how to store a value in the EV3 brick memory. Once it’s there, you

can use it later or have a different program update it so that it can be used as

another block’s input value. The programming blocks that enable these func-

tions are in the data operations palette, which appears as a red tab. Now let’s

fi nd out what each block does and how we can use it in one of our programs.

C H A P T E R

12

Using Data Operations Blocks

272 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 272

The Variable Block

The fi rst block that you will see in the data operations palette is the Variable

block. Simply speaking, unlike all the other blocks that you have learned about

so far, the value that this block carries can be changeable or updatable, meaning

that a program can process and update the block’s value while the program

is running. For example, if the infrared sensor gets a reading of 57, the value

will stay as it is until the outside conditions change, or until that which it is

measuring changes. The program itself cannot change this value; instead, it

can only use it.

Suppose, however, that the Variable block has 57 as its initial value. You can

program the initial value to update itself by increasing the value by 10, which

gives you a progression of 67, 77, 87, and so on. This progression of climbing

values all happens while the program is running. At the end of the program, it

will still be the same block, but with a different value. I know it can be a little

bit confusing, but once you understand what a variable is, this will all become

much clearer.

What Is a Variable?

Let’s imagine that computer memory is a big shelf that has multiple racks and

that thousands of briefcases are packed onto each of those racks. Those briefcases

break down the big storage area into smaller units so that all the data can be

stored within the computer memory in a more organized way. You can add a

new briefcase or delete an old one. Each briefcase can carry a different type of

data and may have different levels of security that limit what you can do with

what’s inside. For example, if the briefcase has a Read Only setting, then when

a program is running, it can only read the data in this briefcase. The program

will not be able to alter (or “write”) new data.

A variable is another type of briefcase in your computer’s memory. Its security

setting lets a program read the existing data or write over the old data with new

data. In other words, the data contained within a variable can be both readable

and updatable. The data inside the briefcase can vary—thus it is variable.
With the Variable block, you can create a variable in the memory of the EV3

brick. Once the variable stores a value (you can set up the initial value or it can

be wired with another block’s output), that value stays in memory so that when

a program is running, it can access the stored value over and over again, wher-

ever it is in the program. The Variable block has two modes that represent the

two paths in which you might use a variable. The fi rst is used to read existing

data (Read mode), and the other writes new data (Write mode). Let’s see how

you can employ the Variable block in a program.

 Chapter 12 ■ Using Data Operations Blocks 273

c12.indd 10:48:50:AM 07/15/2014 Page 273

Setting Up the Variable Block

When you place a new Variable block, you must defi ne three things: the new

variable’s name, data-accessing mode (Read or Write), and the data type that it

will carry. This section covers each step, and as you progress, you will get used

to the block’s interface.

Adding a New Variable

To use a variable in the EV3 brick’s memory, you need to add one in there. Again,

think of the brick’s memory as a big shelf; you need to add a briefcase there to

store something. If you click the text fi eld in the upper-right corner of the block,

an Add Variable box appears. Click this and you will see a pop-up dialog box

in which you can name this new variable (see Figure 12-1).

1. Click the text field. 3. Name a variable.

2. Click here.

Figure 12-1: Adding a new variable

Name the variable Sensor Reading, and then click OK. The text fi eld will

show the name of the new variable. When you click the variable’s name, you

will see it listed, as well, like in Figure 12-2.

The new variable on the list Displaying the variable
name in a comment box

Figure 12-2: The Variable block with a new variable name

T I P Because the text fi eld is too small to carry a long name, I used the comment tool

to leave the variable’s name fully visible. You can fi nd the comment tool in the upper-

right corner of the window. When you have a number of variables in your program,

you may want to use this method to tell them apart. Alternatively, you may give the

variables a shorter name that fi ts within the text fi eld.

274 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 274

Congratulations! You’ve just created your fi rst variable. You can access this

variable from any program that is in the same project. It is now time to set up

a data-accessing mode.

Selecting Read or Write Modes

As mentioned previously, a variable allows two ways in which to access the

value that it carries (in the briefcase). In the Variable block, the two options

appear as modes: Read and Write. When you click the mode selector, you will

see them as options.

Let’s take a look at the Sensor Reading variable. Currently, it has the Write –

Numeric mode. (You will learn about the data type in the following section.)

Add another Variable block next to it and choose the Sensor Reading variable

from the list in the text fi eld. Then, select the Read – Numeric mode so that you

can have two variable blocks like in Figure 12-3. As you see here, one variable

can appear in two Variable blocks.

Figure 12-3: The Variable block with Read mode (left block) and Write mode (right block)

When you see a Variable block with Write mode activated, you will fi nd that

it has one block input, meaning that the block can have a value coming in. You

can set up the initial value by typing it in (in this example, you can type in

any number), and that will be stored in the selected variable (in this example,

the Sensor Reading variable). If the block gets input values via a data wire, the

existing value in the variable will be replaced with the new value.

It is like opening a briefcase and replacing what is inside with new contents.

For example, set up the Variable block so that it gets the reading values from

infrared sensor via a data wire, as shown in Figure 12-4. Let’s suppose that the

sensor was activated three times (three sensor readings) while a program was

running. If we say that these three readings were 28, 67, and 90, the value that the

variable stored was updated three times: initial value to 28, 28 to 67, and 67 to 90.

When you look at a Variable block with Read mode activated, you will see

that it has one block output, which means that the block can send out the value

via a data wire. With this mode, you can use the value that is stored in this

variable as another block’s input. It works the same way as a sensor block that

is sending out the sensor’s reading value to other blocks via a data wire. But

 Chapter 12 ■ Using Data Operations Blocks 275

c12.indd 10:48:50:AM 07/15/2014 Page 275

in this case, the value that a Variable block sends out will be its stored value. It

is like opening a briefcase, copying down the value that is written inside, and

using it as the input value for another block.

As the sensor gets
new readings,

the variable value
will be updated.

Figure 12-4: The Sensor Reading variable will get input values from the infrared sensor and

update them as it gets a new value.

Let’s continue the example with the infrared sensor. As the variable replaces

its stored values (like the progression in the previous paragraph) with 28, 67,

and 90, the reading value from it is updated as 28, 67, and 90.

We can build up the code so that it looks like the example in Figure 12-5.

Although you directly connect the sensor block to the display block with a

data wire, I am including the variable blocks to illustrate how you can pull out

the stored value from the “briefcase” to use with another block. It feels a little

redundant now, but once you learn more about the Data Operations blocks,

you will see the benefi t of using blocks in between blocks. With this code, the

Sensor Reading variable stores the reading value from the infrared sensor and

updates the reading value every 2 seconds. As it updates, the updated value

will be displayed on the EV3 brick.

Figure 12-5: A program that makes the EV3 screen show the infrared sensor

reading every 2 seconds

To try this code, have the EV3 brick ready and plug the infrared sensor into port

4. Create a project called Data Operations and make a program called Variable.

276 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 276

Run the program and try to move an object back and forth in front of the infrared

sensor. Does the screen show different numbers?

Choosing the Variable Types

When you choose the Read or Write modes, the list of available data types will

appear automatically. From this list, you can then choose which data type the

variable will carry. Depending on the data type that you set up, the Variable

block has a corresponding block input or output. For example, Figure 12-3

shows the numeric data type selected on the Variable block. In Chapter 11,

“Programming with Data Wires and Using My Blocks,” you learned about the

fi rst three data types shown here: text, numeric, and logic. You will fi nd that

there are also data types that you have yet to see: numeric array and logic array.

If you understand what an array is, you will more easily understand how these

new data types work.

What is an array? An array is an arrangement that a computer’s memory

uses to store data. The type of array that you will use in EV3 programming is a

linear array, and it is structured like a line of boxes, each with its own element

inside. The element in the box is a value, and in your program, that value will

come in the form of a number or logic statement. Each box has an index number

that counts upward from a starting point of 0 so that a program can locate the

value that it carries. Figure 12-6 shows the concept of an array.

Value Value Value Value Value

Index: 0 Index: 1 Index: 2 Index: 3 Index: 4

Figure 12-6: An array is a linear list of values.

Perhaps you will fi nd it easier to think of an array as an organizer inside of

the briefcase. Without this organizer, the briefcase can have just a single value,

but with an organizer, the briefcase can have as many values as the slots that

the organizer provides. The numeric array is a line of boxes with numeric val-

ues (4, 56, 7.8, 100...) inside each one, and the logic array is a line of boxes with

logic values (True or False, also represented as the number 1 meaning True or

0 meaning False) inside. Let’s see how they look in the Variable block.

When you choose the numeric array type, the Variable block will look like

the one in Figure 12-7. When it is the Read mode, the block can send out an

array of numbers, and when it is the Write mode, the block can get an array of

numbers as its input.

With the Write mode, if you click the block output to put in the initial value,

you will see a little window pop up like the one in Figure 12-8. You can add

more boxes by clicking the + button (they will be slots within the array) and

delete them by clicking the X button. You can type in a number in each box,

 Chapter 12 ■ Using Data Operations Blocks 277

c12.indd 10:48:50:AM 07/15/2014 Page 277

and they will be elements that array. When you have fi nished making an array,

you can click any blank space on the programming canvas. It will be shown in

the format [value 1; value 2; ...] in the block output.

Figure 12-7: The Variable blocks with the Read – Numeric Array (left) and the Write –

Numeric Array (right)

[1; 32; 4]

Figure 12-8: Creating an initial value in the Variable block with the Write – Numeric Array mode

The Variable block with the Logic Array mode works very similarly to the

Numeric Array mode, but it carries logic values instead of numeric values. They

look like the values in Figure 12-9.

Figure 12-9: The Variable blocks with the Read – Logic Array (left) and the Write – Logic Array

(right)

The process of creating a logic array for the initial value of a Variable block

with the Write – Logic Array mode is same as making a numeric array. Click

the block output and add slots to the array. Then you can fi ll these boxes with a

logic value, which is either True or False. They will be symbolized with a check

mark or an X. In the block output, the logic values in the array are presented as

1 (True) or 0 (False). So, if you set up a logic array as True, True, False, True, the

block output will show this array: [1; 1; 0; 1] (see Figure 12-10).

278 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 278

[1; 1; 0; 1]

Figure 12-10: Creating an initial value in the Variable block with the Write – Logic Array mode

If a variable has never had a value, meaning that it never received any value

from other blocks or that you never set an initial value for the variable, it will

automatically have a default value.

The default values are as follows:

 ■ Numeric variable: 0

 ■ Logic variable: False

 ■ Text variable: Empty text (“ “, nothing will be displayed)

 ■ Numeric array and logic array: Empty array ([])

ACCESSING EXISTING VARIABLES

As you create new variables, they are listed up in the text fi eld, but not all of them will

show up at the same time. Depending on what type of data is chosen in the mode

selector, the text fi eld will show the list of the variables that match the chosen data

type. Suppose, for instance, that you have two numeric type variables. If you select

the numeric type in the mode selector and open the text fi eld, they both will show up

there. However, if you pick the text type, they won’t be on the list. Keep this in mind

when you want to fi nd existing variables.

When no variables of a certain data type exist, the text fi eld is blank. However, if

you have already made some variables with a selected data type, the fi rst one that you

created will be selected in the text fi eld as the default.

The Constant Block

The second block that comes after the Variable block in the data operations palette

is the Constant block. Just as the Variable block stores values in the EV3 brick

memory, this block also keeps values, which you may access at any point within

your program. With the Variable block, you were able to read or write a value.

The Constant block, in contrast, only allows you to read a value. In other words,

 Chapter 12 ■ Using Data Operations Blocks 279

c12.indd 10:48:50:AM 07/15/2014 Page 279

a program can see and use the value that it carries several times, but you cannot

change the value while the program is running. Let’s see how it works in a program.

The Constant Block’s Many Modes

This block has a text fi eld and one output. When you use this block, you can

defi ne a value by typing in its text fi eld, and this value will travel from the block

output to other blocks via the data wire, as shown in Figure 12-11.

Type in
a value.

Output

Choose
a data type.

Figure 12-11: The structure of the Constant block

The Constant block has fi ve modes, and each mode represents the data type

that it can carry: text, numeric, logic, numeric array, and logic array. As you

can see, they are the same data types that the Variable block can have. You

choose one of the modes and then type a suitable value in the text fi eld. For

example, when you choose the Numeric Array mode, you will get to put a

numeric array in the text fi eld, such as [10; 3.14; 89; 903]. This block can prove

very useful when you want to use the same data for multiple blocks’ inputs, and

it makes it easier to update them all at the same time. Here comes an example.

Constant Blocks in Action

Let’s say you want to control the volume of the sound and the power of the motor

with the same value; when the power of the medium motor is 10, the volume of

the sound can also be 10. You can use the Constant block like in Figure 12-12. The

Constant block has the Numeric mode and has 10 as its value. This value is plugged

in to the input of the Sound block’s volume and the Medium Motor block’s power.

Figure 12-12: Using the Constant block to control the power of the motor and

volume of the sound

280 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 280

When you run this code, the EV3 brick will say “Hello” very softly, with the

volume value 10, and then the medium motor will turn slowly for 3 seconds

with the power of 10. Because these input values are coming from the Constant

block, if you want to change them, you can simply give a different value to the

Constant block.

Our example has only two blocks, but imagine that you have 15 blocks and

that 5 blocks need the same input value. When you set up the input value for

these 5 blocks, instead of typing in the same value 5 times for each block, you

can use the Constant block and wire the value. When you want to update the

value, you’ll only need to change the value in the Constant block rather than

going to each of the 5 blocks to update the value individually. This can help to

make the management of your program more effi cient.

The Array Operations Block

The Array Operations block is the third block in the data operations palette,

and it is the block that enables you to modify specifi c aspects within arrays

that exist in your program. Suppose, for example, that you’ve created an array

with the Variable block. You may then use the Array Operations block to do

a few things. The block can tell an array to read an element from a specifi c

slot, to write a new element over the old one, or to see how many elements

are contained within the array. The Array Operations block has four modes:

Append, Read at Index, Write at Index, and Length. Each mode handles arrays

differently.

Append Mode

The fi rst mode is the Append mode. This mode basically allows you to add one

additional slot to the end of the numeric or logic array. When you choose the

Append – Numeric mode, the slot that is added will be able to carry a numeric

value, and when you choose the Append – Logic mode, the additional slot will

be able to contain a logic value. As you can see in Figure 12-13, this mode has

two block inputs, which are the Array In and the Value, and one block output.

In Figure 12-13, I created a numeric array variable, cleverly named Numeric

Array, in the Variable block, which has [10; 4; 30]. I wired it to the array in the

Array Operations block. I added 7 for the Value input, and then wired the Array

Out to the Variable block so that it can update the original array. What will the

updated array look like?

When this line of code runs, the Array Operations block will process the coming

array, which is [10; 4; 30], to have an additional slot at the end and put 7 in its new

slot. As a result, the fi nal array that the Numeric Array variable will have will be

[10; 4; 30; 7]. The Append – Logic mode will work exactly the same as the Append

– Numeric mode, but the array values will be logic statements, True or False.

 Chapter 12 ■ Using Data Operations Blocks 281

c12.indd 10:48:50:AM 07/15/2014 Page 281

[10; 4; 30]

[10; 4; 30; 7]

[10; 4; 30]

Array In Value

Figure 12-13: The Array Operations block with the Append – Numeric mode

Read and Write at Index Modes

The following two modes are to read or overwrite an element in a specifi ed slot.

As mentioned previously, an array has a certain number of slots, and each slot

has its own index starting from 0. For example, if we use the Numeric Array

variable ([10; 4; 30]) again, it has three slots, and the index will be 0 for the fi rst

slot, 1 for the second slot, and 2 for the third slot. In other words, the index will

be “slot number minus 1.” You need to use the index to specify which element

should be read or overwritten.

As you can see in the line of code in Figure 12-14, in the Array Operations

block with the Read at Index mode – Numeric, you need to set up an array

through Array In ([10; 4; 30] in the example), specify the index of the element (2

in the example), and then read that element (it will be 30 in the example). The

value output will carry the value of the read element.

[10; 4; 30]
[10; 4; 30]

Array In Index

30

Figure 12-14: The Array Operations block with the Read at Index – Numeric mode

Similar to the Read at Index mode - Numeric, the Write at Index mode allows

you to overwrite the element that you specifi ed in the block. As you can see in the

line of code in Figure 12-15, the Array Operations block with the Write at Index

will have block inputs for the Array Index and Value (that will be overwritten)

and a block output for the Array Out, which will carry the new updated array.

In this example, the Array Operations block will get the array of [10, 4, 30] and

update the element that is in index 0 with 67. Then, the array that the Array Out

will carry will be the array of [67; 4; 30].

282 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 282

[10; 4; 30]
[10; 4; 30]

Array In ValueIndex

[67; 4; 30]

Figure 12-15: The Array Operations block with the Write at Index – Numeric mode

The Read and Write at Index – Logic modes will work in exactly the same

way, but the array values will instead be logic statements. For example, if the

array that is coming in to the Array Operation block is [False; False; True; True],

which will appear like [0; 0; 1; 1], if you ask the block to read the element in

index 1, the output value will be 0. If you tell the block to write the True value

(1) in index 0, the output array will be [1; 0; 1; 1].

As you saw, you can store multiple values within an array. For example, sup-

pose that you want to set the motor power to 55 and have it on for 3 seconds,

all while making all sounds play with a volume of 80. You can make an array

that contains these values (it will look like [55; 3; 80]), and then you can read the

individual values and wire them to the correct block inputs in your program.

Length Mode

The last mode, Length, is for reading the length of the array that comes into the Array

In. The length of the array is the same as the number of elements that the array car-

ries within it. It can also be thought of as the number of slots. Look at the Numeric

Array variable that we created, for example. It has three elements within it, [10, 4, 3].

Therefore, its length is 3. Both the Length – Numeric and Logic modes will have the

Array In input and the Length output, as shown in Figure 12-16.

[10; 4; 30]
[10; 4; 30]

Array In

3

Figure 12-16: The Length – Numeric and Logic modes in the Array Operations block

The Length output will always get a numeric value because the measurement of

the array’s length will always be a number. If the Array Operations block gets the

array of [True, False, False], the length output will send out 3 as the array’s length.

 Chapter 12 ■ Using Data Operations Blocks 283

c12.indd 10:48:50:AM 07/15/2014 Page 283

The Logic Operations Block

This block will operate two logic statements: True or False. These statements

will be the inputs for this block, and depending on the logical relation of these

two statements, the output will also be True or False values (see Figure 12-17).

For example, this block can be set up to check whether both of its input values

are True. If they both are indeed True, the block sends out its own True value;

otherwise, its output value is False. There are four logic operation modes that

process two logic inputs differently. Each of them is shown with the Venn dia-

gram that represents the logical relation between two inputs that makes the

result True.

Logic Statement A
(True or False)

Logic Statement B
(True or False)

Result
(True or False)

Logic
Operations

Figure 12-17: The Logic Operations block

And Mode

To get the True output with And mode, both of the test statements should be

True. Otherwise, the result is False. Figure 12-18 shows an example. In this code,

only one case brings the True result from the Logic Operations block: when the

touch sensor is pressed and the color sensor sees red at the same time. In any

other cases, the result from the Logic Operations block will be False.

If the Touch sensor is pressed (True)

and the Color sensor sees red (True)

In any other cases,
the result from the Logic Operations block will be False.

And

TRUE

Figure 12-18: The True result from the Logic Operations block with the And mode

284 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 284

Or Mode

With the Or mode, it is less diffi cult to get the True result. The only case that

gives the False result is when the both of the inputs are False. In the example

in Figure 12-18, the block will provide True as its result when either the touch

sensor is pressed or the color sensor detects red (or when both of these actions

happen). When the touch sensor is not pressed and the color sensor doesn’t see

red, the result is False. See the summary in Figure 12-19.

If the Touch sensor ISN’T pressed (False)

and the Color sensor DOESN’T see red (False)

In any other cases,
the result from the Logic Operations block will be True.

Or

FALSE

Figure 12-19: The False result from the Logic Operations block with the Or mode

XOR Mode

To satisfy XOR mode, two inputs cannot have the same value. In other words,

to get the True result with this mode, only one of the inputs should have True.

If both of them are True or both of them are False, the block result will be False.

Going back to the example in Figure 12-18, the True case will be only when the

touch sensor is pressed and the color sensor doesn’t see red, or the touch sen-

sor is not pressed and the color sensor sees red. See the summary of the True/

False cases in Figure 12-20.

Not Mode

Unlike other modes, Not mode has only one input. This mode processes one

True/False statement to see whether it delivers the True value or False value.

As the name of the mode implies, the result of the block is the opposite of

the statement’s value. See the example in Figure 12-21. If the touch sensor is

pressed, its compare result will be True, and this value will be the input of the

Logic Operations block. Then, the result of this block with the Not mode will

be False. If the touch sensor is not pressed, the result of the Logic Operations

block will be True.

 Chapter 12 ■ Using Data Operations Blocks 285

c12.indd 10:48:50:AM 07/15/2014 Page 285

If the Touch sensor is pressed (True)

and the Color sensor sees red (True)

If the Touch sensor ISN’T pressed (False)

and the Color sensor DOESN’T see red (False)

If the Touch sensor is pressed (True)

and the Color sensor DOESN’t see red (False)

If the Touch sensor ISN’T pressed (False)

and the Color sensor sees red (True)

XOR
FALSE

XOR
FALSE

XOR
TRUE

XOR
TRUE

Figure 12-20: The True/False results from the Logic Operations block with the Or mode

286 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 286

If the Touch sensor is pressed (True)

Not
FALSE

If the Touch sensor ISN’T pressed (False)

Not
TRUE

Figure 12-21: The True/ False results from the Logic Operations block with the Not mode

The Math and Round Blocks

Here come the blocks that you can use to play with numbers: the Math block

and Round block. With the Math block, you can do anything from simple arith-

metic to advanced calculations. With the Round block, you can make a decimal

number into an integer value. Let’s take a look at the Math block fi rst.

The Math Block

The Math block has eight modes to make different math operations. The fi rst

four modes—Add, Subtract, Multiply, and Divide—have two block inputs that

can have numbers. A program will process these two numbers according to the

selected mode. See the summary in Figure 12-22.

The following modes contain the possibility for advanced mathematical

concepts. The full extent of these blocks is beyond the scope of this book,

but you will learn here about the relationship between the inputs and out-

put result.

With Absolute mode, you can set up one numeric input, and the block will

calculate how far the input value is from 0. If the input value is negative,

getting the absolute value essentially removes its negative sign. If the input

number is 0 or a positive number, the output is the same as what went in.

For example, if the input is –34, the output will be 34; if the input is 56, the

output will be 56.

 Chapter 12 ■ Using Data Operations Blocks 287

c12.indd 10:48:50:AM 07/15/2014 Page 287

With the Square Root mode, you will have one input, and the output will

be the square root of that number. If your input is 4, the block will operate the

square root of 4, and the result (your output) will be 2. So, 144 becomes 12, 100

becomes 10, and so on.

15

10 + 5

2

10 ÷ 5

50

10 × 5

5

10 − 5

Figure 12-22: The Math block with the Add, Subtract, Multiply, and Divide modes

With the Exponent mode, there will be two inputs: one for the base number

(will appear as a on the block), and the second will be the exponent (will appear

as n on the block). The output will be the result of the operation. For example, if

you put 3 as your base number and 2 as your exponent, the block will operate

3 raised to the power of 2, and the result will be 9 (3 x 3).

The last mode in the Math block is the Advanced mode. All the other modes

process only one math operation, but with Advanced mode, you can create an

equation that can handle multiple math operations. You can have four numeric

inputs (which appear as a, b, c, and d) and set up the equation in the text fi eld.

The output will be the result of the equation with the input values.

Sometimes sensor readings won’t really work for your program in their raw

state and need to be processed. For example, let’s say you have a robot with

two motors in ports B and C and they need negative numbers for their power

levels to move forward. Say that you want to have the motors turn one rotation

forward every two seconds. If you want to use the infrared sensor readings to

control the power of these motors, they’ll need to be processed to be negative

because the reading values from the infrared sensor will always be a positive

number (0 to 100). In this case, you can use the infrared sensor value as the

input value for the Math block, which will then multiply the input value by –1.

The resulting output value from the Math block will always be negative. You

can then wire this output to the power inputs of the Motor block. Figure 12-23

shows an example of how this program can look.

288 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 288

The reading value
from the infrared sensor

will be stored
in the Sensor variable.

Sensor variable
-Write mode

Sensor variable
-Read mode

The stored value
in the Sensor variable

will be multiplied by -1.

The power level
for motors B and C will get

negative numbers.

Figure 12-23: The Math block is used to change the reading value from the infrared sensor into

a negative number.

In this example, you will set up the variable fi rst, and then the reading value

from the infrared sensor will be stored in a Variable block to be named “Sensor.”

The stored value will then be sent to the following Math block, which will mul-

tiply the value by –1. The product from this operation will be sent as the power

level input for the Move Steering block that controls motors B and C. Use the

Math blocks to creatively crunch data to guide your robot!

The Round Block

The Round block will refi ne a decimal number to become an integer or simply

trim digits after a decimal point down to a certain number. The fi rst three modes

in this block show different ways to make a decimal number into an integer,

and they will have one numeric input and one output for the processed integer.

With the To Nearest mode, the block follows the standard rounding rules.

So, in this case, if the fi rst decimal value is greater than or equal to 5, the last

digit number of the integer part will be increased by 1. However, if the fi rst

decimal value is less than 5, the last digit number of the integer part will stay

as it is. If the input value is 6.78, the output will be 7, and if the input value is

3.1, the output will be 3.

The Round Up mode means an integer will always be increased by 1 if there

are any numbers past the decimal. Round Down mode means that an integer

will always stay as it is and the following decimal numbers will disappear. For

example, if the input is 89.2 with the Round Up mode, the output will be 90. If

the input is 7.8 with the Round Down mode, the output will be 7.

The Truncate mode cuts digits off of the number from the right of the deci-

mal. In addition to the number input, you will see an additional input on the

block, which determines the number of decimals places that are allowed in the

output result. If the decimal input value is 6.935 and the value for the number

 Chapter 12 ■ Using Data Operations Blocks 289

c12.indd 10:48:50:AM 07/15/2014 Page 289

of decimals is 2, the output will be 6.93. Using the same input number, if the

number of places past the decimal is set to 0, the output will be 6. There will

be no rounding up or down. Truncating means that you are simply cutting

decimal places from the number. See the summary of using the Round block

in Figure 12-24.

5
To Nearest

4 4.7

5

Round Down Truncate

Round Up

Figure 12-24: Using the Round block

The Compare, Range, and Random Blocks

Here are the blocks that you can use to compare two input values, check if

an input value is in a certain range, or generate a random value. They are the

Compare, Range, and Random blocks. Let’s look at the Compare block fi rst.

The Compare Block

This block evaluates two numeric values against one another (the inputs of

the block) by using a certain comparison type (the mode of the block) to see

whether the result of the comparison is True or False (the output of the block).

As you can see in Figure 12-25, you may choose between six comparison types.

You can wire up the values from other blocks, or put in your own numbers

into the block inputs. Suppose, for instance, that you want to see whether your

two-wheeled vehicle-type robot made a turn. The robot has two wheels attached

to motors B and C. When the robot is going straight, the motor rotations will be

the same. If the robot makes a turn, however, one motor’s rotation value will

be greater than the other’s. You can use the motor rotation values from motor

B&C as the input values in the Compare block and choose the Not Equal To

mode. When the robot goes straight, the output of the Compare block will be

False, but when the robot makes a turn, the output of the block will be True.

290 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 290

Numeric Value

Numeric Value

Comparison
Types

Result: Logic Value
(True or False)

Figure 12-25: The Compare block with the six comparison types

The Range Block

The Range block will see whether the input value is inside or outside of a certain

range. For example, the Range block can check if the input value is in the range

of 10 and 56 or outside of that range. According to the result, the block will have

True or False value as its output. As you can see in Figure 12-26, there are three

inputs, from left to right—Text Value, Lower Bound (10 in the example), and

Upper Bound (56 in the example)—and one logic output (the result). Two modes

of the block, Inside and Outside, determine the area of the range.

Test Value

Lower Bound

Upper Bound

Result: Logic Value
(True or False)

In this example, TRUE

Inside Outside

Test Value

Lower Bound

Upper Bound

Result: Logic Value
(True or False)

In this example, FALSE

Figure 12-26: The Range block with the Inside mode and the Outside mode

When you choose the Inside mode and set up the Lower Bound as 100 and

Upper Bound as 200, if the Test value is 178, the result will be True. If the block

is getting 290 as its Test value, the result will be False. If you change the mode

as Outside, the block will get the True value with the Test value 290.

 Chapter 12 ■ Using Data Operations Blocks 291

c12.indd 10:48:50:AM 07/15/2014 Page 291

The Random Block

The Random block will make a program that generates a random value within

a certain numeric range. For example, you can set up your program to set the

power level of your robot’s motors to a number that falls within a range of 30–100.

As a result, whenever you run this program, your robot’s motors will run at

an unexpected power level between 30–100. It is the perfect block to use when

you desire a random and unexpected outcome. You can either have a random

numeric or logic value (see Figure 12-27).

Lower Bound Upper Bound Probability of True

Random
Numeric Value

Numeric Random
Logic Value

Logic

Figure 12-27: The Random block with the Numeric and Logic modes

If you want to get a random numeric value, you need to choose the Numeric

mode. Then, you will get to defi ne the range by setting up the Lower and Upper

Bounds. The block picks a random number in that range as its output. If you

want to have a random logic value, you want to choose the Logic mode. With

this mode, you get to set up the probability of True, which means, how likely

you will get the True value. For example, if you put 50, the changes that the

block gets the True value will be 50 percent. Play with this block to have some

unexpected, fun behavior from your robot.

The Text Block

The last Data Operations block that we have is the Text block. Unlike other blocks,

with this block you will get to combine text strings. It has three text inputs (A,

B, and C), and the output will be a merged string of text inputs in order (ABC).

You can type in the text directly into the block inputs but also wire the value

from other blocks. If the block input gets no text, when the block merges all the

inputs, it will skip the empty input (see Figure 12-28).

292 Exploring LEGO MINDSTORMS EV3

c12.indd 10:48:50:AM 07/15/2014 Page 292

Combined Text

Text Text Text

Merge

Figure 12-28: The Text block

It will be useful to print out the sensor reading values on the screen. For

example, the fi rst input can say Motor A, and the third input can say Degrees.

Then, you can plug in the motor degrees values in the Motor Rotations block

from motor A to the second input of the text block. Wire up the output to the

Display block to see the value on the screen. When motor A is turned 89 degrees,

the screen will show Motor A 89 Degrees.

The Data Operations blocks open up a whole new way to use the data in your

program. As you get used to them, you will fi nd more and more interesting

possibilities that you can try with your robot.

Summary

In this chapter, you learned about the following:

 ■ What a variable is and how to create it in EV3 programming

 ■ How to use the Variable block

 ■ What an array is and different types of arrays

 ■ How to use the Constant block

 ■ How to use the Array and Logic Operations blocks

 ■ How to use the Math and Round blocks

 ■ How to use the Compare, Range, and Random blocks

 ■ How to have a text displayed with the Text block

293

c13.indd 12:1:10:PM 07/22/2014 Page 293

You worked hard to learn all the new EV3 programming skills, so now let’s

build another fun robot. This chapter introduces you to a new robot that you

can feed. His name is the Big Belly Bot. When he is full of food, he reacts in a

funny way. Follow the building instructions to make the robot, and make sure

to take note of my program examples. They will help you to understand how

the Big Belly Bot works. Later, you can modify the program samples to create

your own program, like you did with the other projects. So, without further

ado, meet the Big Belly Bot.

Understanding the Big Belly Bot

Big Belly Bot is a stand-up robot, and as his name implies, the Big Belly Bot has

a big stomach. He also has a big mouth that you must open and close to help

him eat. Check him out in Figure 13-1.

As you can see by his big mouth and belly, this guy loves to eat. How lucky

you are that you are the one that gets to make him happy by feeding him. Let’s

see what kind of robot he is and how he functions.

C H A P T E R

13

Building the Big Belly Bot:

A Robot That Eats and Poops

294 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 294

Figure 13-1: Meet the Big Belly Bot.

The Big Belly Bot’s Personality

It would have been really nice if you could invite Big Belly Bot to dinner and

share your food with him, but unfortunately he can’t eat human food. What he

can eat are the red balls that come with the EV3 set, but the three balls just aren’t

enough to make him full. In addition to these balls, you can feed him with other

small object whose size and shape is comparable to the small LEGO ball, such

as marbles or wooden balls. If you don’t have these on hand, consider making

some balls out of foil (like aluminum foil) to feed him, like the ones in the left

photo of Figure 13-2. As the right photo of Figure 13-2 shows, you can open his

mouth and drop the foil balls right in. You’ll need quite a few food balls.

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 295

c13.indd 12:1:10:PM 07/22/2014 Page 295

Figure 13-2: You can feed him the small LEGO balls or foil balls.

Whenever you feed him, close his mouth to see whether he is full. If he is still

hungry, he won’t give you any reaction, other than his look of desire for more

food. Note that he needs a great deal of food to make him full. You need to stack

the balls right up to the top of his mouth. When he is full, he will say, “Uh-oh.”

Can you guess what happens next? Yep. He will throw his hips forward and

poop. Yikes. He will release the food out that he just ate and shake his body a

little bit for good measure. He will close his back end and, yes, that means he

is ready to eat again. He certainly can eat his fi ll, but he is also smart enough to

know when he is full and how to empty his belly. How does he do that?

The Mechanisms of the Big Belly Bot

The Big Belly Bot has two sensors that help him realize when he is full: The

color sensor and the infrared sensor. As you can see in Figure 13-3, the color

sensor is located behind his upper lip, and the infrared sensor is in his throat.

The infrared sensor in his throat will see whether his belly is full. If he still

has some space left in his belly after you feed him, the reading value from the

infrared sensor will stay the same. However, when his belly fi lls all the way up

to his throat, the infrared sensor’s reading value changes. Then he will know

it’s time to let things out of his stomach. Wait, but when you feed him, the food

has to pass the infrared sensor as it goes into his belly, right? We want him to

recognize the difference between times when food is going down his throat

(the action of eating) and others when it is piling up to the top of his throat (he

is full). To do this, we need to use the color sensor.

296 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 296

Infrared sensor

Color sensor

Figure 13-3: Color sensor and infrared sensor on the Big Belly Bot’s mouth

The color sensor can tell whether his mouth is open or closed. When his

mouth is closed, the color sensor gets the refl ected light from the back of his

upper lip. However, when his mouth is open, the color sensor does not see a

refl ection. This function allows the Big Belly Bot to know when to collect the

value from the infrared sensor. When the mouth is open, the food is com-

ing in, and at that point, he does not use the reading value from the infrared

sensor to judge if his belly is full. When his mouth is closed, he knows that

feeding is done. Then he will see whether the infrared sensor’s reading value

has changed. If the food went down to his stomach, the sensor reading value

will be the same as before; he knows then that he is not yet full. However, if

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 297

c13.indd 12:1:10:PM 07/22/2014 Page 297

the food has piled up to the top of his throat and stays there after his mouth

is closed (meaning that the food is blocking the infrared sensor), the reading

value from the infrared sensor will change. When this happens, he knows that

he is full and moves to the next action.

His pooping mechanism is simpler than his eating mechanism. His belly is

designed in the shape of a hopper, so that all the food can gather in one spot.

This spot has a hole that is blocked by a trap door. When he is eating, the bar

on the medium motor holds the door closed. When he is ready to poop, the

bar releases the door. He then lets out the objects inside of his belly and closes

the door. Sometimes, after he poops, some objects remain in his belly (because

they can get jammed together in the hopper). But don’t worry, he can handle a

little bit of constipation. After he eats and moves his body again, these objects

should eventually come out.

Now that you know how he functions, let’s build him and see just how well

he eats and poops.

Assembling the Big Belly Bot

Collect the parts shown in Figures 13-4 and 13-5, and then follow the step-by-

step building instructions detailed in Figures 13-6 to 13-34 to put the Big Belly

Bot together.

2x

2x 2x 2x

2x 2x

1x

1x

1x

1x 1x

1x

4x

25cm / 10in

35cm / 14in

1x

Figure 13-4: Parts for the Big Belly Bot, 1

298 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 298

2x 2x

2x 2x

2x

2x

2x

4x

8x

2x

2x

2x

2x
4x

4x

2x

91x

27x 33x

13

15

11

9 8x

6x
7

5

3

12x

4x
8x

5x

8x

8x2x

#9

#3

#5

7x
2x

1x4x

1x

2x

10x

#2

#3

4x

11x

1x

2x
2x

Figure 13-5: Parts for the Big Belly Bot, 2

STEP 1

1x

PC

14x

6x

2x

2x

2x

2x 9

4x

Figure 13-6: Step 1. Assembling the Big Belly Bot’s torso

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 299

c13.indd 12:1:10:PM 07/22/2014 Page 299

STEP 2
3

2x

6x

8x

4x

4x

2x

2x

7

5

1x

Figure 13-7: Step 2. Assembling the Big Belly Bot’s torso

300 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 300

STEP 3

1x

1x

1x1x

1x

5x

2x

3

1x

#3

1x

Figure 13-8: Step 3. Building the left leg

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 301

c13.indd 12:1:10:PM 07/22/2014 Page 301

STEP 4

2x

5x

1x

1x 1x 1x

1x

3 13

9

2x

Figure 13-9: Step 4. Building the left leg

302 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 302

STEP 5

2x

1x

Figure 13-10: Step 5. Attaching the left leg to the torso

STEP 6
2x

2x

1x

1x

1x
#3

1x 1x 1x 1x

1x

1x 15

113

1x

Figure 13-11: Step 6. Building the left arm

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 303

c13.indd 12:1:10:PM 07/22/2014 Page 303

STEP 7

BACK FRONT

Figure 13-12: Step 7. Attaching the left arm to the torso

STEP 83

#3

2x

5x

1x

1x

1x

1x 1x 1x1x

Figure 13-13: Step 8. Building the right leg

304 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 304

STEP 9

5x

5x

1x

1x

3 13

9

2x 1x 1x 1x1x

Figure 13-14: Step 9. Building the right leg

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 305

c13.indd 12:1:10:PM 07/22/2014 Page 305

STEP 10
#2

1x

1x 1x 1x

5

Figure 13-15: Step 10. Adding the touch sensor to the right leg

STEP 11

2x

1x

Figure 13-16: Step 11. Attaching the right leg to the torso

306 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 306

STEP 12
2x

2x

1x

1x

1x

1x

1x

1x
1x 1x

3 11

15

1x
1x

#3

Figure 13-17: Step 12. Building the right arm

STEP 13
BACK FRONT

Figure 13-18: Step 13. Attaching the right arm to the torso

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 307

c13.indd 12:1:10:PM 07/22/2014 Page 307

STEP 14

#3

#2

1x

2x

2x 2x

2x 2x 1x

1x 5

4x

Figure 13-19: Step 14. Assembling the belly

STEP 15

2x

2x
1x

#5

Figure 13-20: Step 15. Assembling the belly

308 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 308

STEP 16

2x

14x

8x

Figure 13-21: Step 16. Assembling the belly

STEP 17

2x

2x

2x 2x

Figure 13-22: Step 17. Assembling the belly

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 309

c13.indd 12:1:10:PM 07/22/2014 Page 309

STEP 18

Figure 13-23: Step 18. Assembling the belly

STEP 19

Figure 13-24: Step 19. Adding the belly to the torso

310 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 310

STEP 20

2x 2x 7x 8x

2x

2x

7

2x
1x 1x

4x#3

11

Figure 13-25: Step 20. Building the Big Belly Bot’s jaw

STEP 21

1x 2x 1x 2x
2x

3

9

Figure 13-26: Step 21. Building the Big Belly Bot’s jaw

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 311

c13.indd 12:1:10:PM 07/22/2014 Page 311

STEP 22

2x

4x 2x

2x

5
7

1x

1x

1x

6x

Figure 13-27: Step 22. Building the Big Belly Bot’s jaw

STEP 23

1x 1x
14x

1x

1x

1x 2x

5
7

9

Figure 13-28: Step 23. Assembling the Big Belly Bot’s upper head

312 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 312

STEP 24

2x

2x 2x

4x

1x

9

#5

Figure 13-29: Step 24. Assembling the Big Belly Bot’s upper head

STEP 25

2x

2x

#5

2x 2x 2x

2x

Figure 13-30: Step 25. Assembling the Big Belly Bot’s upper head

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 313

c13.indd 12:1:10:PM 07/22/2014 Page 313

STEP 26

1x 2x

#9

Figure 13-31: Step 26. Combining the Big Belly Bot’s upper head and his jaw

STEP 27

Figure 13-32: Step 27. Adding the Big Belly Bot’s head to the torso

314 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 314

STEP 28

Infrared Sensor
- Port 4

(25cm / 10in)

25cm / 10in

35cm / 14in

4x

2x

Left
Large Motor

- Port B
(35cm / 14in)

Right
Large Motor

- Port C
(25cm / 10in)

Touch
Sensor
- Port 3

(25cm / 10in)

Medium Motor
- Port A

(25cm / 10in)

Color Sensor
- Port 1

(35cm / 14in)

Figure 13-33: Step 28. Connecting the sensors and motors with the connector cables

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 315

c13.indd 12:1:10:PM 07/22/2014 Page 315

STEP 29

1x

Rubber band

Figure 13-34: Step 29. Adding the LEGO rubber band between the Big Belly Bot’s

upper head and jaw

316 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 316

Programming the Big Belly Bot

You just fi nished building the hungriest robot in the world. He is ready for your

gentle, nonjudgmental care. Before we jump into programming him, make sure

that you have his food (small LEGO balls/foil balls) ready. You need about 20

to 25 balls to make him completely full.

Let’s break down his behavior into several actions and make each of them as

a My block. You want to program the following actions:

 1. Standing Up Straight: Lean backward to improve posture.

 2. Eating: Check to see whether his belly is full after the food comes in. When

he feels full, say “Uh-oh.”

 3. Pooping: Bend over, open the back end, poop, and shake the body.

 4. Close the back end. (This will not be a My block.)

Let’s follow this order and program him for all the actions. However, after

we make My blocks, you can make different combinations of performance.

Furthermore, you can design more actions for him. For example, you can program

him to know how many times he gets to be fed (count the number of times that

his mouth is open and closed with the Variable block) and make him angry if he

is not full after four feedings. The actions that we program in this chapter are

the basic things that you can do with him, and you will fi nd more programs in

the companion website for this book. Create the new project named Big Belly
Bot and make the program called BBB-basics to get started.

Action 1 – Standing Up Straight: Lean Backward
to Improve Posture

As mentioned before, his upper body is pretty heavy. You will sometimes fi nd

his upper body leaning forward because of the weight. However, you want

him to stand up straight when he is in action. The two blocks in the program

in Figure 13-35 make him stand up. He will move his body backward until

the touch sensor that is on the back of his leg is pressed. I added more blocks

afterward to make him say “Hello,” bow gently, and stand back again.

When you have this program ready, select all the blocks except the Start block,

go to Tools and click My Block Builder. Give it a proper name that describes

the action (I named it Standing, for instance) and choose an icon. You will fi nd

this new My block in the My block palette. We will continue the program after

the Standing block.

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 317

c13.indd 12:1:10:PM 07/22/2014 Page 317

continues...

...continued

Figure 13-35: The program that makes the Big Belly Bot stand back, say “Hi,” and gently bow

Action 2 – Eating: Check If His Belly Is Full When the Food
Comes In. When He Feels Full, Say “Uh-Oh”

The second action is to make him react after he is fed and check to see whether he

is full. We will use the Switch block with the color sensor in Compare – Refl ected

Light Intensity mode to see if his mouth is open or closed. The program will go

like this: If the color sensor receives a value of less than 10, which means the

mouth is open, the program will run the code that is in the top container of the

Switch block. When the color sensor gets a value of more than 10, which means

the mouth is closed, the program runs the code that is in the bottom container

of the Switch block.

In the top container in the Switch block, we’ll write code that dictates his

reaction to getting fed. There will be the Wait block with the infrared sensor in

Change – Proximity mode to see whether the food is passing his throat, another

Wait block with the color sensor in Compare – Refl ected Light Intensity mode to

see whether the mouth is closed after feeding, and a Sound block that makes a

crunching sound. When he is not fed, his mouth will stay closed, which means

the program will run the code in the bottom container of the Switch block. We

want to have him continue to stay still when he is not fed, so we do not put any

code in the bottom container.

This Switch block is placed in the Loop block with the infrared sensor in

Compare – Proximity mode to check whether the food is piled up to the top

of his throat after feeding and that his mouth is closed. When the food piles

up at the top of his throat, it will completely block the infrared sensor that

is placed at the top. The infrared sensor will get a value of 0. When the sen-

sor gets the 0 reading and the Big Belly Bot’s mouth is closed, it means his

belly is full. The program will escape the loop and make him say “Uh-oh.”

However, if the infrared sensor doesn’t get blocked by piled up food when

his mouth is closed (meaning that the sensor is getting a value that is greater

than 0), the program will go back to the beginning of the Switch block, and

the Big Belly Bot will wait for more food. Figure 13-36 shows the code for

the second action.

318 Exploring LEGO MINDSTORMS EV3

c13.indd 12:1:10:PM 07/22/2014 Page 318

Figure 13-36: The program that makes the Big Belly Bot react to feeding and check whether his

belly is full. An enlarged version of this figure appears on page 320.

Just as you did for the fi rst action, select all the blocks except the Start block

and the Standing block and make them into a My block. (I named mine Eating.)

After you make this My block, there should be only three blocks on the canvas:

the Start block, Standing block, and Eating block. Isn’t it neat? This is the power

of the My block.

Action 3 – Pooping: Bend Over, Open the Back End, Poop, and
Shake the Body

The programming that we have written will let Big Belly Bot know when he is

full. Now, let’s make him release the food from his belly. The pooping action

starts with him bending his body forward slightly. It can be done with the

Steering block that moves both of the large motors 40 degrees with the power of

–5. Then, he needs to open his back end. For this action, you want to program the

medium motor to rotate the blocker that is connected to it and let the trapdoor

swing open. When that happens, you will see the food balls dropping out from

his back end. Sometimes, the balls inside of his belly get stuck. To help manage

the food traffi c in his belly, we will make him shake his body back and forth a

couple of times. Continue with the program after the Eating block and insert

the code that looks like what you see in Figure 13-37.

Figure 13-37: The program that makes the Big Belly Bot poop

 Chapter 13 ■ Building the Big Belly Bot: A Robot That Eats and Poops 319

c13.indd 12:1:10:PM 07/22/2014 Page 319

Again, select the blocks that you just created and make them into one My

block. (I named mine Pooping.) When you fi nish this process, you should see

only the Start, Standing, Eating, and Pooping blocks.

Action 4 – Close the Back End

The fi nal action of this code is to make him close his back end. Continue the

program where you left off after the Pooping block. After you have the Big Belly

Bot shake his body, you want to tell him to wait for a second before he closes

his back end so that the balls inside of his belly can have a little more time to

come out. You can simply use the Wait block for this action. Then, program the

medium motor to rotate the blocker so that it closes the trapdoor on his back

end. After the Medium Motor block, I added the Move Steering block to program

the large motors to make his upper body lean backward. When all these actions

are done, he will say, “Fantastic.” I also put all the blocks in the Loop block so

that he can repeat his behavior, which means after pooping he will want more

food. Figure 13-38 shows what the fi nal code looks like.

Figure 13-38: The final program for the Big Belly Bot

Congratulations! You’ve just made a robot poop. The program that you made

shows the basic performances that the Big Belly Bot can make. Expand the pro-

gram to give him more fun sounds and actions to perform before, during, and

after the eating/pooping process. How’s that for input and output?

Summary

 In this chapter, you learned about the following:

 ■ The Big Belly Bot’s personality and what he does

 ■ How the Big Belly Bot functions

 ■ How to build the Big Belly Bot

 ■ How to program the Big Belly Bot

Figure 13-36: An enlarged version of Figure 13-36

321

c14.indd 12:2:14:PM 07/22/2014 Page 321

So far, you’ve followed many different sets of building instructions to make

several robots. Now you may be ready to create your own robot. This chapter

introduces some tips for how to begin your own robot by sharing my process

for designing and building robots. Let’s get down to business: I have another

robot for you. His name is Guapo, and as you can see in Figure 4-1, he is the

robotic puppy. I will take you through his development from his start as an

idea to becoming an actual robot.

Many builders and artists have their own process for making their projects,

and, depending on the project, the building process may vary. This means that

there isn’t only one right way to do things. The process you will learn in this

chapter works for me, and I hope that it inspires you to start your own robot.

Build Guapo, the Robotic Puppy

Before you learn how I built Guapo, let’s bring him to life. Then, I will tell you

the story behind how Guapo came to be. In this section, we build Guapo fi rst.

Collect the parts shown in Figures 14-2 and 14-3 and follow the step-by-step

building instructions in Figures 14-4 to 14.43. Then, throughout the rest of this

chapter, you learn how each of his various sections work. Follow the building

instructions and prepare yourself for the story of Guapo.

C H A P T E R

14
Design Your Own Robot:

How Did Guapo, the Robotic

Puppy, Come to Be?

322 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 322

Figure 14-1: Meet Guapo, the robotic puppy.

1x

1x

1x

4x1x
1x

2x 2x

35cm / 14in

25cm / 10in

2x

1x 1x 1x 1x

2x

Figure 14-2: Parts for Guapo, 1

 Chapter 14 ■ Design Your Own Robot 323

c14.indd 12:2:14:PM 07/22/2014 Page 323

1x

2x

2x

2x

4x

2x

2x 2x

2x2x

#2

#3

#3

#9
#4

#6

#7

#5

2x

2x

1x

1x

3x

2x

2x

4x

4x

1x 1x

4x

17x

2x
5x

4x

4x

4x

6x

6x 5

3 4x

6x

7x9

11

7

8x

8x

4x

9x

1x

12x

1x

6x

2x 2x

2x 28x

85x 34x 13

15
4x4x

Figure 14-3: Parts for Guapo, 2

STEP 1
1x

1x

5

7

1x

1x 1x

1x

1x

1x

1x

1x 1x

13

1x

#4
#6

5x

Figure 14-4: Step 1: Building a right side of Guapo’s head

324 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 324

STEP 2

1x
1x

4x

2x 1x

5

Figure 14-5: Step 2: Building a right side of the head

STEP 3

2x

1x

1x

1x

1x

#3

1x

1x

Figure 14-6: Step 3: Building a right side of the head

 Chapter 14 ■ Design Your Own Robot 325

c14.indd 12:2:14:PM 07/22/2014 Page 325

STEP 4

3x

#3

4x

4x1x

Figure 14-7: Step 4: Building the nose

STEP 5

1x

2x

2x

1x

Figure 14-8: Step 5: Attaching the nose to the right side of the face

326 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 326

STEP 6

1x

2x

1x 1x 1x 1x

#3

#7

Figure 14-9: Step 6: Adding the jaw

 Chapter 14 ■ Design Your Own Robot 327

c14.indd 12:2:14:PM 07/22/2014 Page 327

STEP 7

1x

3

1x

1x

3x

#3

#52x 5x

2x 2x 2x2x 1x

Figure 14-10: Step 7: Adding the jaw

328 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 328

STEP 8

2x

2x

6x 1x

3

1x4x

Figure 14-11: Step 8: Adding the jaw

 Chapter 14 ■ Design Your Own Robot 329

c14.indd 12:2:14:PM 07/22/2014 Page 329

STEP 9
1x

1x

1x

1x 1x

1x

1x

1x 1x

13

#6
#4

1x

1x

1x

5

7

3x

Figure 14-12: Step 9: Building a left side of the head

STEP 10

1x

1x

5
4x

2x

Figure 14-13: Step 10: Building a left side of the head

330 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 330

STEP 11
1x

1x
1x#2

2x2x

2x1x1x

Figure 14-14: Step 11: Building a left side of the head

STEP 12
2x

15

1x
1x

1x

Figure 14-15: Step 12: Completing the head

 Chapter 14 ■ Design Your Own Robot 331

c14.indd 12:2:14:PM 07/22/2014 Page 331

STEP 13

2x

5x

1x

4x

Figure 14-16: Step 13: Completing the head

332 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 332

STEP 14

1x

1x

1x

1x 1x
1x

1x

15

2x

#3

Figure 14-17: Step 14: Completing the head

 Chapter 14 ■ Design Your Own Robot 333

c14.indd 12:2:14:PM 07/22/2014 Page 333

STEP 15

1x

1x

25cm / 10in

*Large motor

- 25cm / 10in connector cable

*Medium motor

- 35cm / 14in connector cable

*Run the cables like in the photo

35cm / 14in

Figure 14-18: Step 15: Plugging connector cables into the medium and large motor

STEP 1615

710x

2x

2x

2x

2x

*Align the holes and cross holes
in the two big gears like the ones
in the diagram above.

4x

1x

1x
1x

1x

#5 #9

Figure 14-19: Step 16: Building the base structure for the legs

334 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 334

STEP 1753

#31x
1x

1x 1x

4x

1x

2x

2x
1x

Figure 14-20: Step 17: Building the base structure for the legs

STEP 18

2x1x 1x

1x

1x1x1x

5

1x

3x

*Align the holes and cross holes
in the two big gears like the ones
in the diagram above.

Figure 14-21: Step 18: Building the base structure for the legs

 Chapter 14 ■ Design Your Own Robot 335

c14.indd 12:2:14:PM 07/22/2014 Page 335

STEP 19

1x

3

2x

1x

Figure 14-22: Step 19: Building the base structure for the legs

STEP 20

7x
7

1x

1x
1x

1x 1x

2x
3x 2x 2x

9

Figure 14-23: Step 20: Adding a color sensor

336 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 336

STEP 21

1x

#3 1113

3x

2x

1x

1x

1x

1x

#4

1x 1x

3

1x

Figure 14-24: Step 21: Starting the front legs

 Chapter 14 ■ Design Your Own Robot 337

c14.indd 12:2:14:PM 07/22/2014 Page 337

STEP 22

73x

1x

4x

1x

Figure 14-25: Step 22: Starting the front legs

STEP 23

1x

1x

1x

1x 1x

Figure 14-26: Step 23: Starting the front legs

338 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 338

STEP 24

#4

1x1x

1x

1x

#3 13

3

11

1x

1x

1x

3x
1x

2x

Figure 14-27: Step 24: Starting the front legs

 Chapter 14 ■ Design Your Own Robot 339

c14.indd 12:2:14:PM 07/22/2014 Page 339

STEP 25

2x 2x

1x

1x

5

9

Figure 14-28: Step 25: Building one of the back legs

340 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 340

STEP 26

3x

#3

1x 1x

1x

1x

3

1x

11

Figure 14-29: Step 26: Building one of the back legs

 Chapter 14 ■ Design Your Own Robot 341

c14.indd 12:2:14:PM 07/22/2014 Page 341

STEP 27

3x

9

1x

1x

Figure 14-30: Step 27: Finishing up one of the front legs

342 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 342

STEP 28

2x

1x

1x
#3

Figure 14-31: Step 28: Finishing up one of the front legs

 Chapter 14 ■ Design Your Own Robot 343

c14.indd 12:2:14:PM 07/22/2014 Page 343

STEP 29

#3

9

1x

1x

1x 1x4x

Figure 14-32: Step 29: Finishing up the other front leg

344 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 344

STEP 30

2x 2x 9

5

1x

1x

Figure 14-33: Step 30: Completing the other back leg

 Chapter 14 ■ Design Your Own Robot 345

c14.indd 12:2:14:PM 07/22/2014 Page 345

STEP 31

3x

1x 1x
1x

1x

3

#3
1x

11

Figure 14-34: Step 31: Completing the other back leg

STEP 32

2x

2x

1x

Figure 14-35: Step 32: Completing the other back leg

346 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 346

STEP 33

2x

35cm / 14in

*Large motor
- 35cm / 14in connector cable

*Color sensor
- 25cm / 10in connector cable

*Infrared sensor
- 25cm / 10in connector cable

*Run the cables like in the photo

25cm / 10in

1x

Figure 14-36: Step 33: Connecting connector cables to the infrared sensor, color sensor, and

large motor

STEP 34
4x

1x

Figure 14-37: Step 34: Adding the EV3 brick

 Chapter 14 ■ Design Your Own Robot 347

c14.indd 12:2:14:PM 07/22/2014 Page 347

STEP 35

2x

#3

1x

Figure 14-38: Step 35: Adding the head on the legs

STEP 36

Figure 14-39: Step 36: Adding the head on the legs

348 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 348

STEP 37

4x

Figure 14-40: Step 37: Adding the head on the legs

STEP 38

1x

#3

2x

Figure 14-41: Step 38: Adding the head on the legs

 Chapter 14 ■ Design Your Own Robot 349

c14.indd 12:2:14:PM 07/22/2014 Page 349

STEP 39

*Run the cables like in the photo Infrared
sensor
- Port 4

Color sensor
- Port 3

Touch sensor - Port 1

1x (for a touch sensor)

25cm / 10in

Figure 14-42: Step 39: Wiring the sensors to the EV3 brick

STEP 40

Large motor
from legs
- Port A

*Run the cables like in the photo

Large motor
from head
- Port B

Medium motor
- Port C

Figure 14-43: Step 40: Wiring the motors to the EV3 brick

350 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 350

Set a Goal: What Do You Want to Build?

Robots all do something, which is to say that they all serve a purpose. When

you design your own robot, it is important to know what it will be and what it

will do. You can just start putting some pieces together and adding motors and

sensors, but it won’t always turn out to be a robot. Knowing what you want the

end product to be will help you to fi gure out how to break down a large process

into smaller sets of plans. Also, when something doesn’t work and you feel lost,

you can always go back to your goal and review what you were trying to do

and perhaps try a different direction to get to that goal. Now for your fi rst step!

Collecting Inspirations for the Goal

If you already have a clear idea of what your robot will be, go for it. That can

be your goal. However, if you are not sure what you want to do, don’t worry;

there are plenty of ways to brainstorm. The ideas for your robot can be some-

thing specifi c such as a robotic gorilla, a car that can steer itself, or even a LEGO

piece-sorting machine.

The inspiration for your project can also come from some of the behaviors

that you want your robot to exhibit. You could decide that you want a walking

robot, a jumping robot, or a laughing machine. When I worked on the Big Belly

Bot, my inspiration was to build a pooping robot.

Inspiration can also come from what you want to try. Do you want more

practice programming a project that uses the color or infrared sensors? Do you

want to try to use all three motors for your robot? Do you want to try gearing?

Pick a thought that is most attractive to you and start from there.

When I started Guapo, I wanted to try building a four-legged creature. It

was a pretty broad idea, one that required me to fi ll in a lot of details later on

down the line. While you are proceeding with your idea, your goal will become

clearer. The following sections show you how Guapo went from being just a

four-legged creature to a cute robotic dog.

Defi ning Your Robot’s Actions: What Does It Do?

Once the inspiration for your robot is clear, try to decide what you want it to

do. For example, if your idea already refers to a specifi c image, such as a robotic

gorilla, you’ll need to decide how you want him to perform. Do you want your

gorilla to dance by shaking his body from side to side? Do you want him to roll

forward on four legs? Should he be able to stand up?

If you plan to use an infrared sensor on your robot, think about what the robot

will do when the infrared sensor sees something close by. Perhaps your robot

has two arms that will be activated by the infrared sensor. What about using

these two arms as drum sticks so that they can beat a drum? Then, your robot

 Chapter 14 ■ Design Your Own Robot 351

c14.indd 12:2:14:PM 07/22/2014 Page 351

can be a drummer. If your robot has two arms that can make a clapping motion,

perhaps it can be a clapping monkey. As with the examples here, if your idea is

broad, give it shape while you fi gure out your robot’s action. Follow this line of

thinking to add features that support the purpose of this robot. When you are

in this step, try to defi ne your robot like this: My robot does X, Y, and Z. This

then is your goal.

When defi ning the actions of my four-legged robot, of course I wanted to

have it walk using its legs, but simply making it walk didn’t satisfy me. I wanted

to add something to give it more character. I like to build robots with person-

ality, so I decided to make a head that moves its eyes, eyelids, and mouth so

that it can make facial expressions. At this point in the process, I wasn’t sure

whether it would be a dog or something else. Keep in mind that if you can see

the big picture of what your robot will do, you can fi ll in the smaller details

at a later time.

Decide on Moving Parts and Sensors

Once you have the big picture of your robot and how it will operate, it’s a good

time to decide which parts it actually needs to move to complete the actions

that you’ve planned. If you want to make a clapping monkey, what parts of him

need to move? You might want to have his arms open and close side to side.

If you want your robot to beat a drum, his arms need to move up and down. I

suggest beginning this step with a simple sketch of your robot.

Planning by Sketching: The Way to Decide Which
Parts Will Move

Sketching your project idea is always a good idea. The fi rst reason that I like

it so much is that it is cheap and available. Let me explain. When I get a good

idea, I make a little sketch. I can use whatever is handy to draw. Scrap paper

works well, notebooks are great, and a whiteboard is amazing. The thing that

they all have in common is that they provide a quick and easy way to take the

idea that is in my mind and make it exist in the real world. Then I can look at

it with my actual eyes as opposed to my mind’s eye. Now I can use my critical

thinking skills to decide where the moving parts will be and how I can place

the sensors to get the most out of them.

N O T E I can be anywhere when an idea strikes me, so I will write down my idea on

whatever I have available to me at the time. As I write this, I can glance up at the wall

behind my desk and see all the notes and sketches that I have made while writing this

book. These sketches keep me striving toward the goal that I set at the beginning of

the project.

352 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 352

While visualizing your design, try to break down the design into individual

sections and then decide what parts you want to move. Next, mark moving

points and add arrows to point how they move. Also, think about where motors

should go and how to convert a rotation (spinning) motion from a motor to

another type of motion like up and down or side to side. In addition, consider

whether you can achieve more than one motion at the same time.

Sometimes it’s hard to fi gure out what needs to move to make a certain motion

work, and you may question if it is even possible to make the movement that

you planned. For this reason, research is necessary. As you do your research,

sketch out the individual moving parts of the robot and think about how you

can make them move. Are you going to use linkages to connect two sections

and move them together? Are you going to use gears to make the motion slower

or faster? Improve your sketch with what you learn. Also, if your robot’s move-

ments should happen in a specifi c order or if the motors need to work in concert

with the sensors, write down the steps in order. All this information will prove

helpful when you program the robot.

When I started working on Guapo, I took time to research the movement of

four-legged creatures. I watched online videos that depicted walking robots. I

fl ipped through books that showed how different walking mechanisms worked.

I tried sketching out how I could link the legs together, where the power source

could be, and how to translate the rotation motion from a motor into a walking

motion. I also made a list of the things that I wanted to try. For example, I wanted

to move Guapo’s eyes and eyelids together, which means when the eyes point

up, the eyelids should point up and vice versa. To do this, I needed to fi gure

out how to connect them. Another goal was to make his mouth open and close,

so I needed to decide whether his jaw was going to move up and down like an

elevator or perform more like a trapdoor when it opened and closed.

When you feel like you have a clearer idea about how your robot’s moving

parts will work, try to assign motors for each action. Remember that whenever

you decide to place a motor, you must also consider how much power you need to

make that movement and how well the placement of a motor fi ts in your design.

Also, try to think where you can put the EV3 brick. The EV3 brick is big and

heavy, and when you are still sketching you should consider where it will go.

I chose to design the mechanism to move all four legs concurrently (at the same

time) with a single power source. I assigned a large motor for this movement

because the power of a motor should be strong enough to move the weight of

his entire body. I also decided to use a large motor for Guapo’s eyes and eyelids

because the shape of a large motor fi t in really well as a nose.

Finally, I had one medium motor left; so, I assigned it to move Guapo’s mouth.

Before I even started putting pieces together, I knew how I wanted to position

the two large motors. I wasn’t yet sure how I would place the medium motor

at this point.

 Chapter 14 ■ Design Your Own Robot 353

c14.indd 12:2:14:PM 07/22/2014 Page 353

T I P Keep in mind that it’s okay to have some uncertainty in your sketch. You can

postpone making decisions for some parts when you are still unsure. Your design in

a sketch can seem almost perfect before you started building, but it may still evolve

while you are building and fi xing your project. The purpose of a sketch is to have a

guide that you can follow when you are building that also reminds you which parts

need more work and which parts may need a second look.

Adding Sensors: Where Sensors Will Be Most Useful

If a sensor is an important element of your robot, you may already have a plan

for how to use it and where to put it. However, if you haven’t already thought

about sensors, now is a good time to do so. When I build a robot, I mostly focus

on moving parts before I get around to using sensors. Once I have a good vision

of the moving parts, I decide where sensors will fi t the best in my design and

how I want to use the data from the sensors for my robot’s actions. Sensors can

be used casually to give your robot an additional feature, but sometimes it is

necessary to use them to control essential movements of your robot.

If you are building a clapping monkey that will be activated by an infrared

sensor, try to fi gure out where you want to put the sensor when you sketch.

Can it be a part of the monkey’s face? Perhaps you can place it on his back?

You might brainstorm how you want to collect data from an infrared sensor to

control the motion of the monkey’s arms.

Your goal may not include sensors now, but try to think where sensors can be

useful for enriching your robot’s behavior. If you are building a robotic gorilla,

can you use the data from an infrared sensor to control his movement? Maybe

you can add a color sensor so that he can follow a line? What about using a

touch sensor for his lips so that he can react to a kiss? When you think about

using sensors, you might get some new ideas for your robot. With that in mind,

it’s good to be open to adding sensors to any design.

As mentioned earlier, it is sometimes necessary to use sensors to make moving

parts function correctly. When I built Guapo, I fi gured that I would need sen-

sors to control his mouth and eye/eyelid movements. Unlike the movement of a

rotating wheel (continuous motion), the mouth’s movement uses an alternating

motion that goes back and forth between two directions, such as opening and

closing. When you design this kind of movement, it is important to know when

the motion should stop and change its direction; after all, we don’t want to force

a motor to keep going when something is blocking its way. For example, Guapo’s

mouth should stop opening when it hits his body, and it should stop closing

when his jaws are together. So, as the model on the right image in Figure 14-44

shows, I added a color sensor behind his jaw. The jaw blocks the color sensor

when his mouth is fully open, and it changes the amount of refl ected light that

the sensor gets. You won’t see the color sensor on the left image in Figure 14-44

354 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 354

because his mouth is opened and the color sensor is blocked by his jaw. When

the mouth is open, the sensor does not get any refl ected light, but when the

mouth is closed, the sensor gets refl ected light from the jaw.

Now I know when the mouth is open all the way, and I can also fi gure out (by

using the Port View app on the EV3 brick) how many degrees the motor needs

to move to have the mouth fully closed. I opened the mouth wide and went to

the Port View menu, selected the port that has the medium motor plugged into

it, and manually closed the mouth. The number of degrees that the Port View

shows here is the number that you want to use for the motor when you want

to program the completely open mouth to close all the way. When I measured

the number of degrees to close Guapo’s mouth, I found that I needed to move

the medium motor –70º, which meant that the motor should move backward

70º. With this data, you can position the mouth wherever you want within in its

movable range. Suppose, for example, that you want to have him open his mouth

halfway. First you can program his mouth to be fully open from wherever it

was (open until the color sensor gets more amount of refl ected light) and then

move the motor backward 35º.

It is important to set the mouth to a default position. I recommend that in the

beginning of the program you make it so that his mouth is either fully open

or fully closed. Why is that? Let’s say you want to have his mouth open all the

way and close all the way two times. In your program, you can say fully open

– fully closed – fully open – fully closed. But what if the mouth was already

halfway closed or already fully open when you run this program? Then, this

program won’t work. You can avoid this problem by setting up the default

position at the beginning of the program. You will know that the mouth will

always be placed in a certain position, and then you can plan the rest of the

program for the mouth based on this default position.

For the same reason I planned to use a touch sensor to control Guapo’s eyes/

eyelids. When his eyes/eyelids point all the ways up, the touch sensor will be

pressed, and it will stop the motor. Later, I also measured how far his eyes/

eyelids can angle all the way down, which told me that the motor should turn

backward 100º. So if you want to have his eyes/eyelids point straight forward,

you want to move the motor backward 50º after the touch sensor is pressed.

Figure 14-44 and Figure 14-45 show how a color sensor and a touch sensor work

for Guapo’s mouth and eye/eyelid movements.

 Chapter 14 ■ Design Your Own Robot 355

c14.indd 12:2:14:PM 07/22/2014 Page 355

When his mouth is fully open

Blocked Opened

At other times

Figure 14-44: How Guapo’s mouth works with a color sensor

When his eyes/ eyelinds point all the way up

Pressed Released

At other times

Figure 14-45: How Guapo’s eyes/eyelids work with a touch sensor

356 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 356

I also decided that the default position for the mouth would be fully closed

and for the eyes/eyelids it would be pointing straight forward. Figure 14-46

shows a program that I made to set up the default position of Guapo’s mouth

and eyes/eyelids.

Open the mouth,

until the reflected light
that the color sensor gets

is more than 4
(when the mouth is not fully open,

the reflected light that
the color sensor gets will be 0).

Then, close the mouth
all the way.

Move the eyes/
eyelids up,

until the touch sensor
is pressed.

Then, move them
half way down, so that

the eyes can point
straight forward.

Set the eyes/eyelids to a default positionSet the mouth to a default position

Figure 14-46: A program to set up Guapo’s mouth and eyes/eyelids at their default position

You don’t need to fi gure out detailed programs for sensors in this step, just as

long as you know how you want to use them for your robot. My plan included

sensors in this way: a touch sensor (or color sensor) for calibrating the position

of eyes/eyelids, a color sensor (or touch sensor) for calibrating the position of

mouth, and an infrared sensor to control his walking with an IR beacon.

At this point, I wasn’t sure where I wanted to add an infrared sensor. So, I

thought maybe it could be on his back or it could be his tail. I didn’t even decide

which sensor I would use for the mouth and eyes/eyelids until after I tried

placing them here and there. I chose a color sensor for the mouth and a touch

sensor for the eyes/eyelids because, design-wise, they ended up fi tting better

in their respective locations. Like I did here, you will get to make more detailed

decisions while you are building, which is the next step.

Build and Modify: From Core Sections to
Decorative Sections

Now it’s time to put the pieces together. Keep your sketch, notes, and other

parts of your research somewhere you can see them. When building, I usually

assemble individual sections fi rst, and then I put them all together. The fi rst

section that I try is always a core section of my design. When I say a core section,

I am referring to the main section of the robot or the section that works like a

base for all the other sections. If you are building a clapping monkey, his torso

 Chapter 14 ■ Design Your Own Robot 357

c14.indd 12:2:14:PM 07/22/2014 Page 357

with arms can be a core section. When I feel satisfi ed with the core section, I

move to the secondary sections.

Whenever I am done with each individual section (if it contains moving

parts), I try programming it to see whether it moves the way I planned. If its

movement is smooth and stable, that’s great. Sometimes, though, things don’t

work the way you envisioned. Then it’s time to modify the design and try some

different things. This might require more research and brainstorming, and you

might fi nd the process time-consuming and frustrating.

N O T E It is important to remember that you will learn the most when you try

to work through problems. Also, you will feel very proud of yourself after you get

through this process.

I highly recommend that you program the individual sections of your robot

before you assemble everything because once things are all put together it is

very diffi cult to fi nd what is causing trouble. Again, the building process

is not only the process of following the plans that you made but also modifying

and improving your initial design. Other than facing problems, there is a good

chance that you may discover new mechanisms and movements.

When you feel satisfi ed with the individual sections, it’s time to put the whole

thing together. You should ask yourself several questions when you assemble

them all together:

 ■ Do the sections function as well together as they did individually?

 ■ Do you fi nd the whole structure to be sturdy?

 ■ Does the robot keep its balance when all the sections are in action?

 ■ Do the sensors work as they were intended to work?

After troubleshooting, you might need to change some designs again or

reposition motors or sensors. Try writing a simple program that can test basic

movements of each section before you write a more complicated program.

When I started making Guapo, I built the four-legged walking mechanism

fi rst because the legs and motor are the core section of this robot. I changed

the design of the legs and feet several times to get the movement that I wanted.

When I felt happy with it, I moved on to build the head. I started with a large

motor that powered the eyes and eyelids. Then, I tried to fi gure out the position

of a medium motor. When I fi rst fi nished the head, a medium motor wasn’t

mounted vertically like it is now. It was originally placed horizontally so that it

was perpendicular to the face, but later on I had to change it because that posi-

tion didn’t really work out after I had connected it to the leg mechanism. I added

the EV3 brick on the leg mechanism before I started programming because it

was important to know whether the leg structure was strong enough to carry

the heavy weight of the EV3 brick. I tested out the leg mechanism multiple

358 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 358

times with the EV3 brick and tried to fi nd the best structure to boost walking

performance. I did the same thing with the head, too. In this step, I decided to

use a touch sensor to control the eyes and eyelids and placed it in a position

where it can be pressed when the eyes and eyelids are pointing up. I also tried

to fi nd a suitable position for a color sensor where it could be blocked by the

mouth when it opened.

After I tested the individual sections, I put the head and the leg mechanism

together. It wasn’t easy to fi nd a position for the head that gave the robot a good

balance. When I attached the head so that it was far from the leg mechanism, the

legs weren’t moving properly because it was such a heavy structure. I changed

the position of the medium motor so that the head could be close to the rest of

the body. It was then that I also decided to use an infrared sensor as his tail.

I checked to see whether it still got the signal from an IR beacon even though

it was pointing backward. Most of the time the infrared sensor got the signal

from a IR beacon just fi ne with this placement, but I found that sometimes when

I tried the same thing in a small area, the communication between the sensor

and IR beacon wasn’t stable. It may be because the IR signal was being refl ected

off surrounding walls, and I had to keep it in mind when I programmed them.

After you fi nish assembling the sections, it is a good time to add some deco-

rative parts. Decorative parts are, by defi nition, just for looks. So, they are not

really necessary for the robot’s motion, but they are important for expressing

the characteristics of the robot. Be creative. You can give your clapping mon-

key a set of wings or you can decorate your gorilla with a funny face. As you

go, make sure that your robot performs well despite all the decorative parts.

Sometimes additional components can make a robot really heavy or can get in

the way of moving parts.

After I fi nished working on the core structure of my robot, I started getting

serious with adding decorative parts. The core structure work didn’t leave

Guapo with any ears or cheeks, so as I began adding these elements, I decided

to make him into a dog. I chose a dog robot because I like dogs and, hey, it was

fun to make him into a dog. Moreover, the robot’s range and style of movements

do pretty well in representing those of a dog, in my opinion. At the end of the

day, it will be your robot, so feel free to add things that you like and that keep

you creative.

Time to Program

When you fi nish building, you will have a working model of the project, and

you may begin experimenting with the model’s programming. Earlier I sug-

gested that you test some of the programs as you build each section of the model.

That way you will know that when the project is complete all the sections will

 Chapter 14 ■ Design Your Own Robot 359

c14.indd 12:2:14:PM 07/22/2014 Page 359

move as intended, which then allows you to focus on programming the entire

robot. Remember your goal as you write your program. After all, the code that

you write moves the motors, which drive the other sections and allow you to

achieve your vision of what your robot would do. You may use trial and error

with different power levels for each motor to fi nd something that works best

for your robot’s performance. The same advice applies when you are setting

the thresholds for the sensors.

You can do several things with Guapo. We can make him walk forward and

backward simply by using the IR beacon with the IR Control app. I wouldn’t use

the IR beacon to move his eyes and eyelids or mouth because the IR Control app

does not give you control over the power of the motors; in addition, at the default

power level, the motor will be too strong to make those features perform well.

We can program combined actions by using the software. Guapo can walk up

to you, look up at your face, and then bark as if asking for food. When you pro-

gram his mouth and eyes, begin the program with the program shown in Figure

14-46 so that you can put them into their default positions. Once this program is

running, his mouth will close, and his eyes will point straight ahead. From these

default positions, his jaw can drop in a range of 70º, which means that you can

move a medium motor for 70º to completely open his mouth. If you only want to

have his mouth open a little bit, you can use any number of degrees that is less

than 70º. I recommend using 10 (or –10, when you program the mouth to close)

as the medium motor’s power level. For his eyes, the large motor that powers

them can move in a range of 100º. From the default position, his eyes can point

50º up or 50º down. I also recommend using 10 (or –10, when you program the

eyes to point down). See the code example in Figure 14-47. In this code, I made

the code that Figure 14-46 shows as a My block and named it Reset.

Look down,

Walk forward for 3 seconds.

Open the mouth. Bark. Close the mouth.

Bark moving the mouth 3 times.and look
all the way up
at your face.

My block- Reset:
resets Guapo’s mouth

and eyes/eyelids at
their default positions.

Figure 14-47: A program that causes Guapo to walk up to you, look up at your face,

and then bark

Try putting together some more programs to have more fun with Guapo. You

can create more facial expressions by combining his eye and mouth movements.

Can you also make him walk faster or slower? How would you make him start

walking just by rubbing his tail? (You can program him to start walking when

360 Exploring LEGO MINDSTORMS EV3

c14.indd 12:2:14:PM 07/22/2014 Page 360

the infrared sensor says that your hand is really close, like within .5 inches.)

Guapo is ready to play with his buddy!

Summary

 In this chapter, you learned about the following:

 ■ Steps for building your own robot

 ■ How Guapo came to be

 ■ How to build Guapo

 ■ How to program Guapo

361

bapp01.indd 10:52:1:AM 07/15/2014 Page 361

A P P E N D I X

AUsing Bluetooth and WiFi

with the EV3 Brick

Instead of using a USB cable to connect the EV3 brick and a computer together

to download programs, you can do it wirelessly via Bluetooth or WiFi. Using

these connections will give you more fl exibility in downloading a program from

your computer to the brick because you won’t need to plug in a USB cable to

do so. Deciding how to assemble your robot will come with fewer restrictions

because you won’t need to worry about your design blocking the PC port on

the EV3. Note that Bluetooth or WiFi connections are possible only if the com-

puter that you are using has Bluetooth or Wireless built in or connected as an

accessory. In addition to computers, Bluetooth connections will allow the EV3

brick to communicate with Apple iOS devices such as iPhone, iPad, and iPod.

Using Bluetooth with the EV3 Brick

Depending on whether you want to download a program to the EV3 brick

(computer to robot) or use an iOS device as a remote (iOS to robot), you must

confi gure your Bluetooth setup accordingly. To avoid problems, make sure that

you do not enable Bluetooth settings for the computer and the iOS device at the

same time.

362 Exploring LEGO MINDSTORMS EV3

bapp01.indd 10:52:1:AM 07/15/2014 Page 362

Connecting the EV3 Brick to a Computer

To connect the EV3 brick to a computer, follow these steps:

 1. Turn on the EV3 brick and go to the Settings screen. Choose the Bluetooth

option by clicking the Center button. A new dialog box will pop up with

four options: Connections, Visibility, Bluetooth, and iPhone/iPad/iPod.

 2. If the Visibility option is not checked, navigate to that option by using the

Up and Down buttons and select it by clicking the center button. Then,

go to the Bluetooth option and select it as well. To come back to the main

menu, use the Down button and select the check mark button at the bottom

of the dialog box. Once Bluetooth is turned on, you will fi nd a left-arrow

symbol (<) with a Bluetooth symbol in the upper-left corner of the screen

(see Figure A-1).

Check
Check

Check

Figure A-1: Activate Bluetooth on the EV3 brick.

 3. Make sure that your computer’s Bluetooth option is turned on.

 4. Open or create a project with the EV3 software.

 5. In the lower-right corner of the software window of the Hardware page,

click the Available Bricks tab. After doing so, click the Refresh button (see

Figure A-2).

Figure A-2: Check available bricks.

 6. When the software gives you a list of Bluetooth devices, fi nd your EV3

brick. If this is your fi rst time connecting the EV3 brick with this computer,

bapp01.indd 10:52:1:AM 07/15/2014 Page 363

you will see the Pair button. Click that button, and then you will get a

dialog box that asks whether you want to make a connection with the

computer on the EV3 screen. When you accept the computer’s request to

connect on the EV3 brick’s screen, you need to enter the passkey, which

is set to 1234 by default (see Figure A-3). Click the Enter button.

Figure A-3: Accept a Bluetooth connections request on the EV3 brick.

T I P If you are mainly using your EV3 brick at home, I suggest keeping the passkey as

the default, as to avoid any future confusion.

N O T E If this isn’t your fi rst time, the software will remember the Brick that was con-

nected before. You may refresh the available bricks on the Hardware page and choose

the EV3 brick that you want to use from the list of Bluetooth devices in the pop-up

window. If that brick has been connected before, the software won’t ask for a pass-

code, and the brick will be connected.

 7. Come back to the computer. If the window with a list of Bluetooth devices

is still on the screen, select your EV3 brick. The Hardware page will show

your EV3 brick under the Available brick tab. Click that brick and you

will get a pop-up window that asks for a passcode. Type in 1234 and click

the Pair button. Your EV3 brick will then be connected to the computer,

and the < symbol with a Bluetooth symbol in the upper-left corner of the

EV3 screen should change to a pair of arrow symbols (< >). If <> does not

appear in the upper-left corner of the EV3 screen, you might see an error

message instead.

 Appendix ■ Using Bluetooth and WiFi with the EV3 Brick 363

364 Exploring LEGO MINDSTORMS EV3

bapp01.indd 10:52:1:AM 07/15/2014 Page 364

The process of establishing a Bluetooth connection may produce an error

message. If this happens, try restarting the EV3 brick and software. Also, you

may want to delete other EV3 devices that you are not currently using from the

list of Bluetooth devices on the pop-up window that appears when you refresh

available bricks. Close the window and refresh available bricks again before

trying again to connect the brick.

Using WiFi to Download a Program to the EV3 Brick

One of the new features of the EV3 brick is that it can make a WiFi connection.

Keep in mind that you’ll need to buy a WiFi USB dongle to activate this feature;

LEGO recommends that you use the NETGEAR N150 Wireless USB Adapter.

So that you can plug in the dongle when you want to make a WiFi connection,

ensure that the USB host port on the EV3 brick is available and not blocked by

any part of your robot. Follow the steps described here to use this feature.

N O T E Make sure that you have an available wireless network. You need to know

the name of the network and its password.

 1. Close the EV3 software on your computer and plug the USB dongle into

the USB host port on the EV3 brick. Then go to the Settings screen on the

EV3 brick and select the WiFi option.

 2. You will get a pop-up dialog that has three options: None, Connections, and

WiFi. Navigate to the WiFi option by using the Up and Down buttons

and select it by clicking the center button. The box next to WiFi will be

checked, and you will see the WiFi icon in the upper-left corner of the screen.

 3. Go to Connections by using the Up button and select it by clicking the

center button. You will get a window that shows the available wireless

networks from which you may choose the one that you want to access.

 4. Select Connect on the next window that pops up. You then choose between

network encryption modes: None or WPA2. The type of encryption of the

network that you are connecting to will depend on how it is confi gured.

You may need to experiment between the two if you are unsure. If the

network asks you to enter a password, use the Up, Down, Left, and Right

keys to navigate the virtual keyboard, and then type in a password for the

network. Click the Enter button when you fi nish typing in the password.

bapp01.indd 10:52:1:AM 07/15/2014 Page 365

 5. The check mark at the bottom of the dialog window will take you back to

the previous window. Click the check mark again and you will fi nd your-

self back at the main menu. When the connection establishes successfully,

you will see arrow symbols (top arrow pointing to the right and bottom

arrow pointing to the left) next to the wireless icon in the upper-left corner

of the screen.

 6. Now the EV3 brick is connected to your preferred wireless network! Make

sure that your computer is connected to the same network and launch the

EV3 software and open or create a project. Refresh the available brick on

the Hardware page (see Figure A-2 in the Bluetooth section of this appen-

dix); you will see the EV3 brick that you just connected to the wireless

network.

You can also enable a wireless connection on the EV3 brick from a computer,

as follows:

 1. First you need to follow steps 1–2, and then open the EV3 software.

 2. Connect the EV3 brick to the computer with a USB cable.

 3. Click the Tools menu and choose Wireless Setup. You will get a pop-up

window with a list of network names.

 4. Click the one that you want to use, and then click the Connect button.

 5. If necessary, type in the password for that network.

Once a wireless connection is established, you may unplug the USB cable.

The EV3 brick will be connected to the computer via a shared wireless network.

Using Apple iOS Devices with the EV3 Brick

 To use Apple iOS devices to control your EV3 robot, you need to download the

free app called LEGO MINDSRORMS robot commander from Apple’s App Store.

You can fi nd this app by searching for “EV3 commander.” After you download

the app, you will see the Commander app icon on your iOS device. To use this

app with your EV3 robot, follow these steps:

 1. First you need to enable both Bluetooth and the iPhone/iPad/iPod from

the dialog box that appears when you choose the Bluetooth option on the

Settings screen. See Figure A-1 to fi nd how to get to the dialog box.

 2. On your Apple iOS device, go to Settings and activate Bluetooth. Once

Bluetooth is on, the device shows the list of the available devices. Choose

your EV3 brick. Then, go through the pairing process by accepting the

 Appendix ■ Using Bluetooth and WiFi with the EV3 Brick 365

366 Exploring LEGO MINDSTORMS EV3

bapp01.indd 10:52:1:AM 07/15/2014 Page 366

pairing request on both on the device and on your EV3 brick, like in the

previous section.

 3. Launch the app. There are premade controllers for the robots that you see

in the Lobby area on the software. If you slide the screen to the left, you

will see the display that says “Create & command your own robot.” When

you click either this display or the “play” symbol on the bottom, it will

bring you a blank page with a + symbol. Click one of the signs, and you

will then be able to navigate different controller options such as joystick,

horizontal slider, or switch by sliding the screen or using the arrow on

the sides of the screen. Choose whatever you like, set up confi gurations,

and then click the + symbol at the bottom.

 4. Repeat this process to add more controllers.

LEGO MINDSRORMS robot commander provides many control options that

you can use with your robot. Design your own controller that works the best

for your robot and have fun.

367

bindex.indd 10:41:33:AM 07/15/2014 Page 367

Index

A

action blocks

Brick Status Light, 110–111

Display, 85–103

Large Motor, 68–73

Medium Motor, 63–68

Move Steering, 73–82

Move Tank, 82–84

Sound, 103–109

Add Project tab, Lobby, 43

Ambient Light Intensity mode, color

sensor, 191

And mode, Logic Operations

mode, 283

Append mode, Array Operations

block, 280–281

Apple iOS devices, 365–366

Array Operations block, 280–282

arrays, 276–278

assembling

Auto-Driver, 15–29

Big Belly Bot, 297–315

Guapo, 321–349

Mr. Turto, 219–246

Spy Rabbit, 136–158

Auto-Driver

assembling, 15–29

Brick Buttons program, 120

capabilities, 13

connecting to computer, 52

Demo program, 36–37

Displaying–Shapes program, 94–97

Displaying–Text program, 88

downloading program to EV3 brick,

51–57

Large–Motor program, 68

Large–Motor–Straight program,

72–73

Loop program, 123–125

Move–Steering–10 program, 76–79

Move–Steering–50 program, 76–79

Move–Steering–Spiral program, 82

Move–Tank program, 82

parts list, 16

Playing–Sound program, 103–109

programming to move forward/

backward, 49–51

TEST–1 program, 57

Available Bricks tab, hardware page,

54–56

bindex.indd 10:41:33:AM 07/15/2014 Page 368

368 Index ■ A–C

Avoiding program, 178–179

axles, measuring, 14–15

B

batteries, EV3 brick, 2

BBB–basics program, 316–319

Beacon mode, infrared sensor, 169–170

beams, 7

measuring, 14–15

Big Belly Bot

assembling, 297–315

mechanisms, 295–296

parts list, 297–298

personality, 294–295

programming, 316–319

blocks

action blocks

Brick Status Light, 110–111

Display, 85–103

Large Motor, 68–73

Medium Motor, 68

Move Steering, 73–82

Move Tank, 82–84

Sound, 103–109

data operations blocks, 271

Array Operations, 280–282

Compare, 289–290

Constant, 278–280

Logic Operations, 283–286

Math, 286–288

Random, 291

Range, 290

Round, 288–289

Text, 291–292

Variable, 272–278

fl ow blocks

Loop, 121–126

Loop Interrupt, 126–127

Start, 59–61, 114–115

Switch, 127–133

Wait, 91–92, 115–121

programming

adding blocks, 213–214

block structure, 62

deleting blocks, 214

program fl ow, 61–62

replacing blocks, 214

Start block, 59–61, 114–115

sensor blocks

Brick Buttons, 258–259

Color Sensor, 258–259, 263

Compare mode, 258–259

and data wires, 257–263

Infrared Sensor, 258–259, 261, 262

Measure mode, 258

Motor Rotation, 207–210, 256,

258–259

Timer, 200–201, 254–255

Touch Sensor, 251–253, 256–257,

258–259

structure of, 62

Bluetooth connections, 361–364

booting EV3 brick, 30

Brake at End block, 63–64

brick. See EV3 brick

Brick Apps screen, EV3 brick,

32–35

Brick Button mode, Loop block,

125–126

Brick Buttons block, 258–259

Brick Buttons mode, Wait block,

118–121

Brick Buttons program, 120–121

Brick Information tab, hardware page,

54–55

Brick Program app, 32, 35, 213–215

Brick Status Light block, 110–111

building instructions booklet, 10

bumped condition, touch sensor, 180

buttons, EV3 brick, 29

C

cables, 5, 52

cam, 9

center button, EV3 brick, 29

Change mode, Wait block, 117

circles, drawing on EV3 brick, 95–96

Close Content Editor button, 48

coders, 40

Color mode, color sensor, 187–189

bindex.indd 10:41:33:AM 07/15/2014 Page 369

 Index ■ C–E 369

color sensor, 4, 162, 187–197

adding to Spy Rabbit, 192–194

Ambient Light Intensity mode, 191

Color mode, 187–189

programming with, 195–197

reading values from Port View

with, 195

Refl ected Light Intensity mode,

189–190

Color Sensor block, 258–259, 263

Compare block, 289–290

Compare mode

Switch block, 128–130

Wait block, 116–117

connections

Bluetooth, 361–364

EV3 brick to computer, 52

WiFi, 364–365

connector cables, 5, 52

connector pegs, 8

Constant block, 278–280

content editor, 47, 48

Count mode, Loop block, 124–125

D

data operations blocks, 271

Array Operations, 280–282

Compare, 289–290

Constant, 278–280

Logic Operations, 283–286

Math, 286–288

Random, 291

Range, 290

Round, 288–289

Text, 291–292

Variable, 272–278

Data Operations project, 275–276

data types, 254–257

choosing, 276–278

data wires, 249–264

block input and output, 253–254

data types and, 254–257

data wire types, 254–257

defi nition, 249–250

example, 250–253

sensor blocks and, 257–263

using values in Switch block, 132

Demo program, Auto-Driver, 36–37

Display block, 85–103

images, 97–103

resetting screen, 103

shapes, 94–97

text, 87–93

Displaying–Shapes program, 94–97

Displaying–Text program, 88–93

double bevel gears, 9

downloading

EV3 software, 5–7

programs to EV3 brick, 51–57

E

Edit Mode button, content editor, 48

EV3

brick. See EV3 brick

Brick Program app, 32, 35, 213–215

building instructions booklet, 10

components

electronic, 2–5

measuring system, 14–15

organizing, 9–10

software, 5–7

TECHNIC, 7–10

test board, 10

IR Control app, 32, 33–34, 165–166

Motor View app, 33–34, 177

vs. NXT, 11

Port View app. See Port View app

EV3 brick, 2, 3

battery requirements, 2

Brick Apps screen, 32–35

buttons, 29

connections, 52

Bluetooth, 361–364

WiFi, 364–365

controlling with iOS devices,

365–366

displaying on screen

images, 97–103

shapes, 94–97

text, 87–93

bindex.indd 10:41:33:AM 07/15/2014 Page 370

370 Index ■ E–I

downloading programs to, 51–57

File Navigation screen, 31

icons, 30

Run Recent screen, 31

screen dimensions, 86–87

Settings screen, 35

shutting down, 36

sleep mode, 35, 36

Starting screen, 30

status lights, 110–111

turning on, 30

EV3 software, 5–7, 41. See also

programming

Auto-Driver programming example,

49–51

creating projects, 43–45

downloading, 5–7

Lobby, 42–43

naming projects, 46

programming area, 47–49

project properties, 45–46

versions, 7

exporting My blocks, 268–270

F

False statement, 283–286

File Navigation screen, EV3 brick, 31

Find Grass program, 195–196

Finding–IR Beacon program, 177

fi rmware, updating, 53–54

fl at view, Switch block, 133

Flow blocks, 113

Loop, 121–126

Loop Interrupt, 126–127

Start, 59–61, 114–115

Switch, 127–133

Wait, 115–121

frequency, 108

G

Guapo

assembling, 321–349

parts list, 322–323

H

hardware page, 47, 49, 54–57

human-friendly programming

languages, 40–41

Hz (hertz), 107–108

I

icons, EV3 brick, 30

Image Editor, 100–103

Image mode, Display block, 97–103

images

displaying on EV3 brick, 97–103

editing, 100–103

Images tab, Project Properties, 103

importing My blocks, 268–270

infrared beacon. See IR beacon

infrared sensor, 4, 162, 163–179

Beacon mode, 169–170

programming, 175–179

Proximity mode, 170–172

reading values from Port View,

172–175

Remote mode, 164–168

Infrared Sensor block, 258–259,

261, 262

input values

comparing, 289–290

determining if in a range, 290

generating random values, 291

reading from Port View

with color sensor, 195

with infrared sensor, 172–175

with touch sensor, 182–183

instructions booklet, 10

IR beacon, 4, 163–164. See also infrared

sensor

estimating location of, 169–170

fi nding, 177

as remote control, 164–168

IR Control app, 32, 34–35, 165–166

IR-PROX mode, 174–175

IR-REMOTE mode, 174–175

IR-SEEK mode, 174–175

 Index ■ L–M 371

bindex.indd 10:41:33:AM 07/15/2014 Page 371

L

languages, programming, 40

Large Motor block, 68–73

Off mode, 63–64

On for Degrees mode, 64–66

On for Rotations mode, 66

On for Seconds mode, 64

On mode, 64

Power input, 67–68

programming Auto-Driver, 68–73

Large–Motor program, 68–73

LEGO Image Files folder, 98–100

LEGO MINDSTORMS Robot

Commander, 365–366

Length mode, Array Operations

block, 282

lines, drawing on EV3 brick, 94

Lobby, 42–43

logic arrays, 276–278

logic data type, 256–257

Logic Operations block, 283–286

Loop block, 121–126

using motor rotation sensor in, 210

using Timer mode in, 202–203

Loop Interrupt block, 126–127

Loop Interrupt program, 127

Loop program, 123–125

M

machine-friendly programming

languages, 40

Math block, 286–288

Measure mode

sensor blocks, 258–259

Switch block, 130–132

measuring system, 14–15

mechanical pieces, 9

Medium Motor block, 63–68

Memory Browser, 55

More Robots tab, Lobby, 43

motor blocks, 63

Large Motor, 69–73

Medium Motor, 63–68

Move Steering, 73–82

Move Tank, 82–84

Off mode, 63–64

On for Degrees mode, 64–66

On for Rotations mode, 66

On for Seconds mode, 64

Power input, 67

Motor Control app, 33–34, 177

motor degrees, 33, 34

measuring, 70–72

Mr–Turto–IR sensor–Degrees

program, 261–262

Motor Rotation block, 207–210, 256,

258–259

motor rotation sensor, 206–212

in programming blocks, 207–210

programming with, 210–212

motors, 2–3

controlling

with Large Motor block, 68–73

with Move Steering block, 73–82

with Move Tank block, 82–84

input values, 62–68, 76

ports, 32–33, 55–56

Power input, 67–68

stopping, 63–64

turning on, 64–66

Move Steering block, 73–82

Move Tank block, 82–84

Move–Steering–10 program, 76–79

Move–Steering–50 program, 76–79

Move–Steering–Spiral program, 82

Move–Tank program, 82–84

Mr. Turto

assembling, 219–246

body structure, 218–219

Mr–Turto–IR sensor–Degrees

program, 261

Mr–Turto–IR sensor–Volume

program, 262

Mr–Turto–Light program, 263

Mr–Turto–Test program, 247–248

Mr–Turto–Touch program, 251–253

bindex.indd 10:41:33:AM 07/15/2014 Page 372

372 Index ■ M–P

parts list, 220

testing movements, 247–248

musical notes, playing on EV3 brick,

108–109

My Block Builder, 264–268

My Block Icon tab, My Block

Builder, 265

My blocks, 264–270

importing/exporting, 268–270

My Block Builder, 264–268

N

naming projects, 46

navigation buttons, EV3 brick, 29

NETGEAR N150 Wireless USB

Adapter, 364

Neutral image, 99

News tab, Lobby, 43

Not mode, Logic Operations block,

284, 286

numbers

displaying on EV3 brick, 87–93

Math block, 286–288

Round block, 288–289

numeric arrays, 276–278

numeric data type, 254–255

NXT vs. EV3, 11

O

Off mode

Brick Status Light block, 110–111

motor blocks, 63–64

On for Degrees mode, motor blocks,

64–66

On for Rotations mode, motor

blocks, 66

On for Seconds mode, motor

blocks, 64

On mode

Brick Status Light block, 110

motor blocks, 64

Open Recent tab, Lobby, 43

Or mode, Logic Operations block,

284, 285

P

Parameter Icons tab, My Block Builder,

265–267

Parameter Setup tab, My Block

Builder, 265–266

parts list

Auto-Driver, 16

Big Belly Bot, 297–298

Guapo, 322–323

Mr. Turto, 220

Spy Rabbit, 137–138

Play File mode, Sound block, 105–107

Play Music program, 196–197

Play Note mode, Sound block, 108–109

Play Tone mode, Sound block, 107–108

Play Type input, Sound block, 104

Playing–Sound program, 103–109

points, drawing on EV3 brick, 97

pooping mechanism, Big Belly Bot,

297, 318–319

Port View app, 32–33

measuring motor degrees and

rotation, 70–72

reading values from, 172–175

with color sensor, 195

with infrared sensor, 172–175

with touch sensor, 182–183

Port View tab, hardware page, 54–55

ports, 32–33, 55–56

Power input

motor blocks, 67

Move Tank block, 83

prerecorded sounds, 105

pressed condition, touch sensor, 180

Program tab, 43–45, 44

programming. See also EV3 software

Auto-Driver, 49–51

block programming

adding blocks, 213–214

block structure, 62

deleting blocks, 214

Loop block, 121–126

Loop Interrupt block, 126–127

program fl ow, 61–62

bindex.indd 10:41:33:AM 07/15/2014 Page 373

 Index ■ P–R 373

replacing blocks, 214

Start block, 59–61, 114–115

Switch block, 127–133

Wait block, 115–121

data operations blocks, 271

Array Operations, 280–282

Compare, 289–290

Constant, 278–280

Logic Operations, 283–286

Math, 286–288

Random, 291

Range, 290

Round, 288–289

Text, 291–292

Variable, 272–278

data wires, 249–264

block input and output, 253–254

data types and, 254–257

data wire types, 254–257

defi nition, 249–250

example, 250–253

sensor blocks and, 257–263

using values in Switch block, 132

experience requirement, 40

languages, 40–41

My blocks, 264–270

role of, 40

programming canvas, EV3 software, 47

dragging and dropping blocks, 49–51

programming palettes, EV3 software,

47, 49

programming toolbar, EV3 software,

47–48

programs. See also projects

creating, 43–51

downloading to EV3 brick, 51–57

opening, 215

vs. projects, 44–45

recently run, 31

running, 214

saving, 215

projects. See also programs

creating, 43–45

naming, 46

vs. programs, 44–45

properties, 45–46

recently opened, 43

saving, 46

Proximity mode, infrared sensor,

170–172

Q

Quick Start tab, Lobby, 43

R

Random block, 291

Range block, 290

Read at Index mode, Array Operations

block, 281–282

Read mode, Variable block,

274–278

recently run programs, 31

rectangles, drawing on EV3 brick,

96–97

Refl ected Light Intensity mode, color

sensor, 189–190

released condition, touch sensor, 180

Remote Control program,

175–177

remote infrared beacon. See IR beacon

Remote mode, infrared sensor,

164–168

Reset mode

Brick Status Light block, 110–111

Timer block, 200–201

Reset Screen mode, Display block, 103

Robot Commander, 365–366

robots, building. See also Auto-Driver,

Big Belly Bot, Mr. Turto, Spy Rabbit

assembling sections, 356–358

Guapo example, 321–349

planning

goals, 350–351

moving parts, 351–353

sensors, 353–356

programming, 358–360

Round block, 286, 288–289

Run Recent screen, EV3 brick, 31

374 Index ■ S–S

bindex.indd 10:41:33:AM 07/15/2014 Page 374

S

SD card, displaying contents, 31

Secret Code program, 204–205

sensor blocks

Brick Buttons, 258–259

Color Sensor, 258–259, 263

Compare mode, 258–259

and data wires, 257–263

Infrared Sensor, 258–259, 261, 262

Measure mode, 258

Motor Rotation, 207–210, 256, 258–259

Timer, 200–201, 254–255

Touch Sensor, 251–253, 256–257,

258–259

vs. Wait, Loop, Switch blocks, 163

sensors, 4, 161–163

color, 4, 162, 187–197

adding to Spy Rabbit, 192–194

Ambient Light Intensity mode, 191

Color mode, 187–189

programming with, 195–197

reading values from Port View

with, 195

Refl ected Light Intensity mode,

189–190

infrared, 4, 162, 163–179

Beacon mode, 169–170

programming, 175–179

Proximity mode, 170–172

reading values from Port View,

172–175

Remote mode, 164–168

motor rotation, 206–212

in programming blocks, 207–210

programming with, 210–212

ports, 32–33, 55–56

timer, 199–206

in programming blocks, 201–203

programming with, 204–206

resetting, 200–201

touch, 4, 162, 179–186

adding to Spy Rabbit, 181–182

conditions, 179–180

programming with, 183–186

reading values from Port View

with, 182–183

Settings screen, EV3 brick, 35

shapes, drawing on EV3 brick

circles, 95–96

lines, 94

points, 97

rectangles, 96–97

Shapes–Circle mode, Display block,

95–96

Shapes–Line mode, Display block, 94

Shapes–Point mode, Display block, 97

Shapes–Rectangle mode, Display

block, 96–97

shutting down EV3 brick, 36

sleep mode, 35, 36

Sleeping image, 99

sliding text effect, 93

Snooze program, 205–206

Snooze Rabbit, 205–206

software. See EV3 software

Sound block, 103–109

Play File mode, 105–107

Play Note mode, 108–109

Play Tone mode, 107–108

Stop mode, 109

Sound Editor, 105–107

sounds

controlling tone, 107–108

creating, 105–107

displaying downloaded fi les, 31

frequency, 108

hertz (Hz), 107–108

musical notes, 108–109

prerecorded, 105

sound waves, 107–108

stopping, 109

spiral turns, creating, 80–82

spur gears, 9

Spy Rabbit, 135

assembling, 136–158

Avoiding program, 178–179

bindex.indd 10:41:33:AM 07/15/2014 Page 375

 Index ■ S–V 375

Color project, 195–197

Find Grass program, 195–196

Finding–IR Beacon program, 177–178

Infrared Sensor project, 175–179

Motor Rotation project, 210–212

parts list, 137–138

personality, 136

Play Music program, 196–197

Remote Control program, 175–177

Secret Code program, 204–205

Snooze program, 205–206

testing movements, 158–159

Timer project, 204–206

Touch project, 183–186

Turn Around program, 184–185

Warming up program, 211

Wind up program, 212

Start block, 59–61, 114–115

Starting screen, EV3 brick, 30

status lights, 110–111

Stop mode, Sound block, 109

stopping

motors, 63–64

sounds, 109

studless TECHNIC beams, 7, 14–15

Switch block, 127–133

Compare mode, 128–130

Logic mode, 132

Measure mode, 130–132

Numeric mode, 132

Text mode, 132

Timer mode, 202

using motor rotation sensor in,

209–210

Switch program, 130

symbols, displaying on EV3 brick,

87–93

T

tabbed view, Switch block, 133

TECHNIC building parts, 7–9

test board, 10

TEST–1 program, 49, 57

testing

Mr. Turto, 247–248

Spy Rabbit, 158–159

text

combining text strings, 291–292

displaying on EV3 brick, 87–93

sliding text effect, 93

Text block, 291–292

text data type, 256

Text-Grid mode, Display block, 92–93

Text-Pixels mode, Display block, 88–92

Time mode

Loop block, 125

Wait block, 117–118

timer, 199–201

in programming blocks, 201–203

programming with, 204–206

resetting, 200–201

Timer block, 200–201, 254–255

Timer mode

in the Loop block, 202–203

in the Switch block, 202

in the Wait block, 201–202

touch sensor, 4, 162, 179–186

adding to Spy Rabbit, 181–182

conditions, 179–180

programming with, 183–186

reading values from Port View with,

182–183

Touch Sensor block, 251–253, 256–257,

258–259

True statement, 283–286

Turn Around program, 184–185

turning on EV3 brick, 30

U

Unlimited mode, Loop block, 124

USB 2.0 cable, 5

connecting EV3 brick to computer, 52

V

Variable block, 272–278

Variable program, 275–276

bindex.indd 10:41:33:AM 07/15/2014 Page 376

376 Index ■ V–X

variables

accessing, 278

adding to EV3 brick’s memory,

273–274

choosing data types, 276–278

defi nition of, 272

selecting Read/Write modes, 274–276

volume

EV3 brick, 35

Volume input, Sound block, 103–104

W

Wait block, 91–92, 115–121

Brick Buttons mode, 118–121

Change mode, 117

Compare mode, 116–117

Time mode, 117–118

Timer mode, 201–202

using motor rotation sensor in,

208–209

Warming up program, 211

Wind up program, 212

Wireless Setup, 55, 365

Write at Index mode, Array

Operations block, 281–282

Write mode, Variable block, 274–278

X

XOR mode, Logic Operations block,

284

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	MirKnig.com_Raffaella
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Foreword
	Introduction
	Chapter 1 Introducing LEGO MINDSTORMS EV3
	Understanding the EV3 Set: It Begins When You Open the Box���
	EV3 Electronic Parts���������������������������
	EV3 Software�������������������
	TECHNIC Building Parts�����������������������������
	The Building Instructions and the Test Board���

	Comparing EV3 and NXT����������������������������
	Summary��������������

	Chapter 2 Building the Auto-Driver: A Starter Vehicle
	Getting Started with the Auto-Driver���
	What You Can Do with the Auto-Driver���
	Assembling the Auto-Driver���������������������������������

	Understanding the EV3 Brick Interface��
	Using the Brick Buttons������������������������������
	Exploring Four Basic Screens�����������������������������������
	Operating the Auto-Driver��������������������������������

	Summary��������������

	Chapter 3 Getting Started with Programming
	What Is Programming?���������������������������
	Communicating with Robots��������������������������������
	Understanding Programming Languages��
	Previewing the EV3 Software System���

	Launching the EV3 Software���������������������������������
	What Do You See on the Screen?�������������������������������������
	Understanding the Programming Interface and Graphic Languages��
	Getting Used to the Interface������������������������������������

	Downloading Programs to a Robot��������������������������������������
	Connecting the EV3 Brick to a Computer���
	Reading the EV3 Brick on the Software��

	Summary��������������

	Chapter 4 Exploring Action Blocks Part 1: Programming Motors
	Understanding the Basics of Block Programming��
	Rule 1: Use the Start Block����������������������������������
	Rule 2: Respect the Program Flow���������������������������������������
	Overview of the Programming Block’s Structure��

	Getting to Know the Input Values for the Motors��
	The Off, On, and On for Seconds Modes��
	The On for Degrees and On for Rotations Modes��
	Motor Power Input and the Direction of the Motor���

	Controlling Motors with the Large Motor Block and the Medium Motor Block���
	Working with the Large Motor Block���
	Creating Programs with the Large Motor Block���

	Controlling Two Motors with the Move Steering Block��
	Working with the Move Steering Block���
	Creating Programs with the Move Steering Block���

	Using the Move Tank Block to Control the Power Level of a Motor��
	Working with the Move Tank Block���������������������������������������
	Creating Programs with the Move Tank Block���

	Summary��������������

	Chapter 5 Exploring Action Blocks Part 2: Using Display, Sound and Brick Status Light Blocks
	The Display Block������������������������
	Displaying Text: The Text-Pixels and Grid Modes��
	Drawing Shapes: The Line, Circle, Rectangle, and Point Modes���
	Displaying Images: The Image Mode��
	Resetting the Display: The Reset Screen Mode���

	The Sound Block����������������������
	Play File Mode���������������������
	Play Tone Mode���������������������
	Play Note Mode���������������������
	Stop Mode����������������

	The Brick Status Light Block�����������������������������������
	The On Mode������������������
	The Off and Reset Modes������������������������������

	Summary��������������

	Chapter 6 Exploring Flow Blocks
	The Start Block����������������������
	Starting the Program���������������������������
	Demonstrating the Line of Code�������������������������������������

	The Wait Block���������������������
	The Compare Mode in the Wait Block���
	The Change Mode in the Wait Block��
	The Time Mode��������������������
	The Brick Buttons Mode�����������������������������

	The Loop Block���������������������
	The Unlimited, Count, and Time Modes���
	The Brick Button Mode����������������������������

	The Loop Interrupt Block�������������������������������
	The Switch Block�����������������������
	The Compare Mode in the Switch Block���
	The Measure Mode in the Switch Block���
	Using a Value from a Data Wire�������������������������������������

	Summary��������������

	Chapter 7 Building the Spy Rabbit: A Robot That Can React to Its Surroundings
	Understanding the Spy Rabbit�����������������������������������
	The Spy Rabbit’s Personality�����������������������������������
	Assembling the Spy Rabbit��������������������������������

	Testing the Moving Parts of the Spy Rabbit���
	Summary��������������

	Chapter 8 Sensing the Environments: Using the Infrared, Touch, and Color Sensors
	Understanding Sensors����������������������������
	Intro to the EV3 Sensors�������������������������������
	Using the Infrared Sensor and Remote Infrared Beacon���
	Remote Infrared Beacon�����������������������������
	Remote Mode������������������
	Beacon Mode������������������
	Proximity Mode���������������������
	Reading Values from the Port View with the Infrared Sensor���
	Programming with the Infrared Sensor and Remote Infrared���

	Using the Touch Sensor�����������������������������
	Adding the Touch Sensor to the Spy Rabbit��
	Reading Values from the Port View with the Touch Sensor��
	Programming with the Touch Sensor��

	Using the Color Sensor�����������������������������
	Color Mode�����������������
	Reflected Light Intensity Mode�������������������������������������
	Ambient Light Intensity Mode�����������������������������������
	Adding the Color Sensor to the Spy Rabbit��
	Reading Values from the Port View with the Color Sensor��
	Programming with the Color Sensor��

	Summary��������������

	Chapter 9 Using the Timer and the Rotation Sensor
	Understanding the Timer������������������������������
	Working with the Timer in Programming Blocks���
	Programming with the Timer���������������������������������

	Understanding the Motor Rotation Sensor��
	Using the Motor Rotation Sensor in Programming Blocks��
	Programming with the Motor Rotation Sensor���

	Summary��������������

	Chapter 10 Building Mr. Turto: A Sea Turtle Robot
	Understanding Mr. Turto������������������������������
	The Structure of Mr. Turto’s Body��
	Assembling Mr. Turto���������������������������

	Testing Mr. Turto’s Movements������������������������������������
	Summary��������������

	Chapter 11 Programming with Data Wires and Using My Blocks
	What Is a Data Wire?���������������������������
	How Do Data Wires Work?������������������������������
	Getting Started with Data Wire Programming���
	Using Block Input and Output�����������������������������������
	Understanding Data Types and Data Wire Types���

	Sensor Blocks and Data Wires�����������������������������������
	Setting Up the Sensor Blocks�����������������������������������
	Exercise 1: Yay! I Found Something���
	Exercise 2: Can You Hear Me?�����������������������������������
	Exercise 3: Bright Light Makes Mr. Turto Awake���

	Introducing My Blocks����������������������������
	Using the My Block Builder���������������������������������
	Exporting and Importing My Blocks��

	Summary��������������

	Chapter 12 Using Data Operations Blocks
	The Variable Block�������������������������
	What Is a Variable?��������������������������
	Setting Up the Variable Block������������������������������������

	The Constant Block�������������������������
	The Constant Block’s Many Modes��������������������������������������
	Constant Blocks in Action��������������������������������

	The Array Operations Block���������������������������������
	Append Mode������������������
	Read and Write at Index Modes������������������������������������
	Length Mode������������������

	The Logic Operations Block���������������������������������
	And Mode���������������
	Or Mode��������������
	XOR Mode���������������
	Not Mode���������������

	The Math and Round Blocks��������������������������������
	The Math Block���������������������
	The Round Block����������������������

	The Compare, Range, and Random Blocks��
	The Compare Block������������������������
	The Range Block����������������������
	The Random Block�����������������������

	The Text Block���������������������
	Summary��������������

	Chapter 13 Building the Big Belly Bot: A Robot That Eats and Poops
	Understanding the Big Belly Bot��������������������������������������
	The Big Belly Bot’s Personality��������������������������������������
	The Mechanisms of the Big Belly Bot��
	Assembling the Big Belly Bot�����������������������������������

	Programming the Big Belly Bot������������������������������������
	Action 1 – Standing Up Straight: Lean Backward to Improve Posture��
	Action 2 – Eating: Check If His Belly Is Full When the Food Comes In. When He Feels Full, Say “Uh-Oh”��
	Action 3 – Pooping: Bend Over, Open the Back End, Poop, and Shake the Body���
	Action 4 – Close the Back End������������������������������������

	Summary��������������

	Chapter 14 Design Your Own Robot: How Did Guapo, the Robotic Puppy, Come to Be?
	Build Guapo, the Robotic Puppy�������������������������������������
	Set a Goal: What Do You Want to Build?���
	Collecting Inspirations for the Goal���
	Defining Your Robot’s Actions: What Does It Do?��

	Decide on Moving Parts and Sensors���
	Planning by Sketching: The Way to Decide Which Parts Will Move���
	Adding Sensors: Where Sensors Will Be Most Useful��

	Build and Modify: From Core Sections to Decorative Sections��
	Time to Program����������������������
	Summary��������������

	Appendix: Using Bluetooth and WiFi with the EV3 Brick
	Using Bluetooth with the EV3 Brick
	Connecting the EV3 Brick to a Computer

	Using WiFi to Download a Program to the EV3 Brick
	Using Apple iOS Devices with the EV3 Brick

	Index
	EULA

