Наш коллега - робот

25.12.2010, 10:50
Автор:
  • Владимир Николаевич Бусленко

  • Издатель: Серия "Эврика"
    Размер: 400k.
    Рассказ: Фантастика

    Стр. 1 : Стр. 2 : Страница 3 : Стр. 4 : Стр. 5 : Стр. 6 : Стр. 7 : Стр. 8 : Стр. 9 :

    ескую обработку. Особенно широко они применяются в машиностроении и металлургии.
    Сейчас нет, пожалуй, такой области промышленного производства, где бы робот не попробовал свои силы, а попробовав, не завоевал бы престижного положения.
    Наибольшее число роботов первого поколения работает в автомобильной промышленности. Волжский автомобильный завод, завод имени Лихачева, автомобильный завод имени Ленинского комсомола не только применяют, но и сами разрабатывают и строят промышленные роботы и автоматизированные комплексы.
    Среди автомобильных фирм Европы лидирующее положение по применению роботов занимает давний партнер СССР - компания "Фиат". С 1973 года компания работает над проблемой использования роботов в сварочных операциях - сварка автомобильных корпусов модели 132. В связи с подтверждением экономической эффективности такого применения в 1975 году была создана сварочная линия, на которой обрабатывались корпуса модели 131. В результате полученного опыта инженеры пришли к заключению, что сварка с использованием роботов дает значительно меньший процент брака, чем при сварке обычными универсальными сварочными аппаратами. Однако применение роботов требует большой точности работ на предварительных стадиях сборки.
    Сразу после осуществления "прихватки" кузов проходит через автоматический контрольно-проверочный пункт, показывающий наличие отклонений по размерам.
    На участке завершения изготовления кузовов модели 131 размещается 23 робота-сварщика модели "Юнимейт", которые в час выполняют 620 сварочных соединений на 50 автокузовах, то есть каждый робот в час выполняет работу одного сварщика за смену. Сборка кузовов с четырьмя и двумя дверями выполняется на одной конвейерной линии. Это является единственным изменением программы, хотя "Юнимейт" способен действовать в соответствии с большим количеством программ, что необходимо, если на одной конвейерной линии изготавливается две или три модели автомобилей с различной формой корпусов. Но пока на этой линии "Фиат" данное качество робота "Юнимейт" не используется.
    Первоначально два из двадцати трех роботов на этой линии сварки были оставлены в качестве резерва на случай выхода из строя одного из действующих роботов. Они были запрограммированы на работу по любой из используемых программ. Однако практика подтвердила высокую надежность, и два указанных робота были перепрограммированы на регулярную работу.
    В составе линии пятнадцать роботов типа "Юнимейт-2000" и шесть "Юнимейт-4000".
    По утверждению специалистов компании, средняя эффективность роботов достигает 94 процентов, тогда как у "многосварочных" автоматов около 80 процентов. И хотя многосварочный автомат выполнял большее количество операций в единицу времени, чем робот, однако при его повреждении вся поточная линия останавливалась. При выходе же из строя одного из роботов поточная линия может продолжать функционировать, так как функции вышедшего из строя берет на себя соседний робот.
    Специалисты компании "Фиат" отмечают исключительно высокую надежность роботов марки "Юнимейт".
    За весь пятилетний период эксплуатации не было произведено ни одной замены робота. Стоит, однако, сказать, что длительной службе роботов способствовал высокий уровень технического обслуживания: специалисты хорошо изучили наиболее слабые узлы, что позволило осуществлять техническое обслуживание роботов своевременно и в короткий срок. Изнашивающиеся части своевременно заменялись по мере обнаружения признаков износа.
    Преимущества программируемоети роботов дают возможность компании более быстро приспосабливать производство к меняющимся условиям рынка. Поистине применение промышленных роботов позволит преодолеть ужасающую тенденцию к единообразию промышленного производства, зародившуюся еще в недрах промышленной революции.
    Накопленный опыт не прошел даром. К середиче 1976 года на заводах "Фиат" использовалось уже 90 роботов - 23 на сварке и 67 в основном для механической транспортировки деталей (штампованных изделий, поковок, отливок, изделий машобработки). В целях расширения масштабов использования роботов осуществляются экспериментальные работы по парному применению роботов при сварке. Один из роботов совмещает свариваемые панели, а другой производит точечную сварку.
    В настоящее время все ведущие автомобильные концерны Японии используют, и весьма широко, промышленные роботы. Американская фирма "Дженерал дайнемикс" применяет роботы при изготовлении фюзеляжей самолетов, а "Дженерал электрик" - в производстве холодильников. Устройства такого типа используются также в атомной промышленности, где они, манипулируя с радиоактивными материалами, избавляют людей от этой опасной работы.
    Существуют и оригинальные профессии роботов, например роботы-пекари. В Москве на 10-м хлебозаводе впервые в стране включился в работу такой необычный пекарь-робот.
    ...В цехе, где берет начало несколько хлебных "рек":
    "ржаная", рядом "бородинская", дальше "орловская", - собран автоматизированный комплекс, положивший начало еще одному потоку хлеба "новоукраинскому". Здесь нашел свою первую трудовую вахту робот, созданный, как и комплекс, коллективом ремонтно-механического комбината Управления хлебопекарной промышленности Мосгорисполкома в содружестве с новаторами завода.
    Оператор проверяет температуру в печи. Приборы показывают: термоагрегат готов принять формы с тестом. Включен пускатель, и многочисленные узлы сложного комплекса пришли в движение. Форсунки спрыснули масляной эмульсией формы. Послышался щелчок реле, и конвейер с формами мгновенно остановился.
    Этого момента, казалось, и ждал робот. За четырнадцать секунд он заполнил тестом двадцать форм и дал команду передвинуть конвейер. Снова положил в новые формы точно отмеренные куски теста, и снова - команда конвейеру.
    Прошло два часа, из печи показались первые буханки хорошо выпеченного "роботического" хлеба. "Внедрение технических новинок даст заметный экономический эффект, - говорит директор комбината. - На тех же производственных площадях выпуск хлеба увеличится на десять тонн в сутки, сократится расход растительного масла, улучшатся условия труда".
    Чем отличаются алмазы от бриллиантов? Ответ на этот вопрос знает робот, который трудится на смоленском производственном объединении "Кристалл". Именно этот коллектив одним из первых в стране начал пробовать на шлифовке алмазов механические приспособления, а теперь подключил к этому делу и роботы.
    Нелегко, однако, было научить робота превращать алмазы в бриллианты. Ведь для того чтобь! небольшой светлый камешек, как говорится, "заиграл", нужно придать ему определенную правильную форму, а затем нанести на камешек несколько десятков граней.
    Но не просто нанести, а открыть в камне заложенную гармонию и красоту! Да доступно ли подобное роботу?
    Пока нет! Для начала специалисты поставили себе задачу поскромнее использовать робот на черновых операциях, то есть на наиболее нетворческих, занимающих тем не менее от 80 до 90 процентов общей трудоемкости при превращении алмаза в бриллиант.
    Остальные проценты - это уже в прямом и переносном смысле ювелирная работа, здесь без человека не обойтись.
    "Занялись мы внедрением манипуляторов сначала на предварительной шлифовке, - рассказывает генеральный директор объединения И. Судовский. Правда, никто нам этой работы не планировал, а значит, и не финансировал. Такое уж воспитание у наших инженеров: не могут они равнодушно смотреть на ручной труд, пусть даже самый высококвалифицированный, да и дефицит рабочих рук заставил нас искать им замену".
    С одним из мастеров своего дела - огранщиком бриллиантов с двадцатилетним стажем В. Карпачеповым - мы встретились на рабочем месте. О манипуляторах он самого высокого мнения. Да и как не быть ему довольным? Ведь еще не так давно и он, как и многие его товарищи, работающие пока без "механических рук", то и дело подносили к глазам ограночное приспособление, через лупу проверяли геометрию, сверяли размеры, теряли на это время, быстро уставали...
    Совсем по-иному сейчас: вставил в руку роботу камешек, нажал кнопку - и пошла шлифовка. Рукам же остается чистая, приятная работа - доводка бриллианта до нужных кондиций.
    Сейчас только в смоленских цехах "Кристалла" трудятся 380 электромеханических роботов третьего поколения.
    Каждый день приносит нам все новые и новые сообщения об оригинальных профессиях робота: роботпожарный, робот-сиделка, робот-музыкант, робот-сборщик. Любая газета, любой журнал может оказаться интересным продолжателем темы этих страниц. Нужно только присмотреться повнимательнее, и мы увидим, как неспешно, но уверенно роботы входят в нашу жизнь.
    ЧЕГО НЕ МОГУТ ПРОМЫШЛЕННЫЕ РОБОТЫ?
    Да, многое, очень многое могут и умеют роботы, одно только им не под силу. Не могут эти железные работяги сами собой внедряться на заводы и фабрики, на предприятия и объединения. Внедрение промышленных роботов забота человеческая.
    "К сожалению, товарищи, как раз с внедрением в практику достижений науки и техники у нас, как вы знаете, дело обстоит еще плохо. Хозяйственник, который пошел "на риск" и ввел на предприятии новую технологию, применил или произвел новое оборудование, нередко остается в проигрыше, а тот, кто чурается новшеств, ничего не теряет. Разработать такую систему организационных, экономических и моральных мер, которая заинтересовала бы в обновлении техники и руководителей, и рабочих, и, конечно, ученых и конструкторов, сделала бы невыгодной работу по старинке, - вот в чем задача", - сказал на июньском (1983 г.) Пленуме ЦК КПСС товарищ Ю. В. Андропов.
    Чтобы робот решительно шагнул в промышленность и сельское хозяйство, на транспорт и в сферу обслуживания, необходимо не только и не столько внедрять роботы как факт, но прежде всего обеспечить такую организационную стратегию роботизации, чтобы внедрение действительно было выгодно, действенно и эффективно. Хозяйственник, внедряющий новое, может оказаться в проигрыше не только потому, что роботы дороги, перестройка производства требует времени и существенных организационно-технических усилий, но и потому, что он, хозяйственник, не сообразовал это внедрение со стратегией роботизации.
    Еще недавно при слове "робот" человек восклицал:
    "А, фантастика!" - и поудобнее устраивался в мягком кресле, чтобы сладко "интеллектуально" дремать под завораживающую воображение сказку. Он еще и сегодня, проснувшись от дрема прогнозов, ждет от робота фантастического совершенства. Здесь постарались и писатели-фантасты, привив нам восторженный интерес к своим человекоподобным героям, наделенным сверхинтеллектом, сверхсилой, сверхвыносливостью, сверхбыстротой, антропоморфно романтизируя их "жизненный" путь, их служение людям, их "самопожертвование".
    А затем выясняется, что современные роботы дороги, сложны, порой капризны в эксплуатации и даже небезопасны для человека. Они зачастую требуют перенастройки всей производственной системы "под себя". Более того, появление робота на производстве вскрывает целый ряд наших чисто человеческих несовершенств, с которыми робот не может мириться. Наше техническое детище - робот, подобно ребенку в семье, заставляет нас взглянуть на себя его глазами - критически.
    На производстве действует неумолимый фактор: любая техника должна быть экономически эффективной.
    Опытный образец нового манипулятора, как правило, решает задачу, не решаемую другим путем или вообще не решенную до него. Он работает точнее, быстрее, надежней, оправдывая тем самым свое появление на лестнице эволюции. Появление же робота в цехе подчиняется совсем другим законам экономическим. В цехе робот будет делать то, что делал до него человек, и если применение робота не приведет к существенному повышению производительности, к удешевление продукции, то такая, автоматизация, такой технический прогресс будет нам "не по карману".
    Нецелесообразно, например, заменять роботом рабочего, так сказать, один к одному или держать сложного робота рядом со станком, когда деталь обрабатывается несколько часов. Здесь лучше в нужный момент "подкатить" механического помощника или же использовать простейший манипулятор с ручным управлением.
    Для успешной эволюции роботов необходимо, чтобы они находили спрос на предприятиях, в объединениях, на транспортных системах и в научно-исследовательских лабораториях. Для этого нужно, чтобы они обеспечивали заметный, желательно невооруженным глазом, прирост эффективности, прежде всего экономической. Такая постановка проблемы учитывает важное, но не всегда близкое сердцу требование, предъявляемое ко всему новому: каждый из новых объектов, вводимых вместо старого, должен иметь перед ним и определенные преимущества. На промышленном предприятии внедрение роботов может увеличить объем продукции, повысить надежность и качество изделий, может снизить расход энергии и материалов, но может и не сделать этого. Сама по себе установка робота еще не свидетельствует об ускорении технического прогресса, если она не улучшает общих системных характеристик. Именно общих, а не отдельных участков цехов или станков.
    Таким образом, внедрение робота следует оценивать с точки зрения его влияния на повышение эффективности предприятия в целом, а не отдельных операций и требует комплексного, системного подхода. С этой точки зрения недостаточно, например, просто выявить бракованную деталь, нужно устранить сам источник брака.
    Допустим, что мы установили робота-контролера на предприятии, но технологический процесс не изменили.
    Качество контроля, конечно, возрастет, доля выпущенных бракованных изделий резко уменьшится или совсем исчезнет, так как контроль робота строгий и точный; уменьшится и число рабочих ОТК, но труд робота окажется бесполезным, поскольку источники брака сохранились и эффективность предприятия осталась на прежнем уровне. Возрастет ли при этом общая эффективность производства?
    Разумеется, нет, потому что контроль, по-видимому, не является "узким местом" на этом заводе, хотя на ряде других предприятий, где качество контроля недостаточно, применение роботов может оказаться главным фактором повышения эффективности всей системы.
    Выделение "узких мест", препятствующих расширению производства или являющихся источником брака,- задача, доступная решению только квалифицированных специалистов, имеющих статус системных аналитиков.
    Они должны не только досконально знать производство, не только обладать системным взглядом на объект, но и уметь просто считать деньги, то есть быть отчасти бухгалтерами.
    Часто приходится слышать от представителей промышленности, что рабочих на производстве не хватает, поэтому они согласны вводить автоматизацию "любой ценой". Но такая точка зрения является наивной, ведь на изготовление робота тратятся труд, электроэнергия, металл, пластмассы, дорогостоящая электроника, что, естественно, отражается на стоимости. И если эти затраты не вернутся обществу с лихвой, то такая роботизация вместо восполнения дефицита рабочей силы будет только увеличивать его. Пусть на нашем заводе мы заменим роботами 50 рабочих и при этом вынуждены будем увеличить численность персонала на заводе, изготовляющем роботов, например, на 100 человек. Будет ли в этом случае такая замена оправданна?
    Экспериментальные образцы НИИ и КБ должны быть и универсальными и интеллектуальными. Промышленные же роботы прежде всего экономически выгодными производству, даже если для этого им придется быть проще, глупее и уже ориентированными на то дело, для которого они предназначены.
    "Сложилась такая ситуация, когда, как мне кажется, наука оказалась в большом долгу перед страной, - говорит А. Фишкис, лауреат Государственной премии СССР, главный сварщик ЗИЛа, - почти 10 лет идет работа по созданию и внедрению промышленных роботов, но еще и сегодня нет отработанной, надежной конструкции для условий массового производства. Далеко не все, что могли, сделали ученые и конструкторы. Представляется, что они должны были за эти годы отработать три-четыре конструкции типовых роботов и передать их в промышленность. А они увлеклись экзотикой, занялись говорящим роботом. Действительно, это очень интересно. Однако на сегодняшний день производству нужен обычный универсальный робот-манипулятор, но надежный. Увы, его нет!"
    Вот один пример. Был создан робот-мойщик, которого предложили опробовать на мойке поршневых колец. Условия работы для человека почти невыносимые: содовый раствор, температура 70° С, испарения. Робот же оказался здесь на своем месте, работая в полтора раза производительнее человека. Однако он не справился со своими обязанностями, как говорят, "не потянул". Почему? Оказалось, что на этом предприятии ни в первую, ни во вторую декады месяца колец просто не выпускали, зато в третьей "гнали" весь план. Робот не смог приспособиться к такому графику. Не выдержал "интенсификации" труда, сломался.
    Таким образом, проблема внедрения роботов тесно связана с проблемой дисциплины производства. Не менее остро сейчас встает вопрос о переоснащении цеха, об изменении всего облика производства. А когда вы посмотрите, как двухметровая рука робота летает от станка к станку с колоссальной скоростью, то невольно подумаете и о новых нормах техники безопасности.
    ВТОРОЕ ПОКОЛЕНИЕ
    ОЧУВСТВЛЕННЫЕ РОБОТЫ
    СМЕНА ПОКОЛЕНИЙ
    Так же, как и поколения ЭВМ, "поколения роботов" - понятие весьма условное, оно вызвано к жизни тем, что за время короткой истории роботы претерпели существенную эволюцию в смысле элементной базы, на которой они строятся, изменения их структуры, появления новых функций и возможностей, расширения областей применения, характера использования.
    Роботы первого поколения - это роботы с программным управлением. Они предназначены для выполнения жестко запрограммированной последовательности операций. Управление таким роботом осуществляется по заранее заданной человеком программе при строго определенных и неизменных условиях функционирования.
    Несмотря на широкое распространение и эффективное функционирование, роботы первого поколения "глупы" и "слепы", они лишь выполняют соответствующие инструкции и не способны адаптироваться к неожиданной ситуации, касается ли это какого-нибудь тонкого дефекта или крыши цеха, обрушившейся им на голову.
    Однако роботы не будут столь ограниченны, когда в промышленности появятся их новые образцы, наделенные способностью "чувствовать". Это и будут роботы второго поколения.
    Зная о несовершенстве роботов первого поколения, мы порой утешаем себя популярной пословицей "нет худа без добра". Примитивные роботы дисциплинируют производство, заставляют обеспечить ритмичную доставку деталей, их строгую ориентацию в пространстве с помощью специальной тары, накопителей, стеллажей, транспортных средств. Но не стоит особенно обольщаться по этому поводу. Реорганизация производственной среды может оказаться более дорогостоящей, да и большая жесткость требований к конструкции робота порождает большую цену. Скажем, для того чтобы рука робота "могла" идеально точно встретиться с движущейся по транспортеру деталью, приходится особенно тщательно "выбирать" зазоры в сочленениях, ликвидировать люфты, снижать скорость движения для уменьшения моментов инерции, повышать строгость управления, учитывая упругость звеньев.
    Снижающая точность деформация механических систем промышленного робота происходит практически постоянно под действием собственной массы руки, массы перемещаемого груза и инерционных нагрузок, возникающих во время движения. Несущие звенья руки робота даже при идеально точной остановке привода изза деформации механической системы подвергаются интенсивным силовым инерционным нагрузкам. Деформация от инерционных нагрузок приводит к возникновению затухающих механических колебаний, которые снижают точность и увеличивают время самого позиционирования. Эта деформация особенно сильна в точках изменения ускорения движения по величине или направлению: в начале разгона руки и в конце разгона, в начале торможения и в конце торможения. Как говорят специалисты, деформация возникает под действием собственного кинематического возбуждения робота.
    Для уменьшения вредных последствий этого явления приходится принимать соответствующие меры: уменьшать массу, длину руки, добавлять ребра жесткости, как бы дополнительные "косточки скелета", ставить упорные подшипники с ограничителями и т. п.
    Необходимо учитывать также температурные деформации.
    Таким образом, точность позиционирования в один миллиметр, достигаемая у современных роботов с позиционной системой управления и длиной руки 1,5-2 метра (типа "Юнимейт"), является, по-видимому, максимально возможной. Тем не менее такая точность позиционирования в некоторых случаях может оказаться недостаточной. Так вот "чувства" позволяют по-новому решить такие задачи, используя иной принцип управления. И, что самое важное, такие адаптивные роботы могут оказаться при той же точности не дороже роботов первого поколения, поскольку задача точного измерения и отработки многих координат "вслепую" требует применения прецизионных датчиков положения со сложной измерительной системой, что само по себе довольно сложно и дорого.
    Известное достоинство и вместе с тем существенный недостаток роботов первого поколения - это удивительное постоянство, однообразие их движений, которое породило метафору "двигающийся как робот". Однако они отлично работают в постоянных, неизменных условиях. Но окружающая среда, в том числе и производственная, весьма динамична. И это, пожалуй, единственное ее постоянное качество.
    Если в процессе производства происходит любое, самое минимальное отклонение от заранее заданных условий (упало напряжение в электросети или упала деталь с конвейера), робот первого поколения оказывается беспомощным перед этим технологическим пустяком. В лучшем случае он остановится, разинув схват, как зевака рот. В худшем случае будет продолжать работать, тыкая своей пустой рукой в воздух и не замечая, что усилия его бесполезны. Он не может адаптироваться к изменению окружающей обстановки. Для успеха совместной работы окружающая обстановка вынуждена сама адаптироваться к роботу. Но тогда непонятно, кто кому служит. Робот производству или производство роботу?
    Может быть, это является причиной того парадоксального положения, при котором роботизированные комплексы, в которые вложены крупные государственные средства, оказываются "безработными" в силу малой надежности и слабой защиты от помех?
    Таким образом, появление более совершенных роботов второго поколения не просто процесс естественной смены поколений, как поколений ЭВМ. Эволюция роботов - это насущное требование жизни, это, если хотите, условие их "выживания" в динамично усложняющейся производственной среде. Робот второго поколения, как говорится, "и жить торопится и чувствовать спешит".
    Многие из возникающих в робототехнике проблем решаются проще, коль скоро мы снабдим нашего механического слепого если не полноценным зрением, то, по крайней мере, посохом, которым он может ощупывать дорогу.
    Итак, речь идет о повышении уровня интеллекта роботов, ибо "разумность" семейства их первого поколения оставляет желать лучшего. В сущности говоря, их интеллект не выше, чем у примитивного насекомого.
    Представьте себе, что на линии сборки автомобилей случается какой-нибудь перекос. Роботы этой ошибки не замечают. Их настроили на то, чтобы сверлить отверстия в дверце, а они сверлят теперь их в баке для горючего. То, что изделие установлено неправильно, их совершенно "не волнует". Кроме того, если в их электронной схеме произойдет сбой, автомат в "слепой ярости" начнет колотить своей мощной стальной лапой по чему попало. И здесь возникают уже совсем другие проблемы. Заменять человека на вредных и опасных работах - это одно, а самому быть источником опасности для человека - совсем иное.
    Как же обуздать вышедшего из подчинения "железного раба"? Как обеспечить стопроцентную безопасность рабочего в роботизированном цехе? Самый совершенный помощник не заслужил права быть источником травматизма. И хотя, конечно, робот работает автоматически, однако цеха не достигли еще такого технологического уровня, чтобы работа происходила совсем без наблюдения человека. В случае конфликтной ситуации любой механизм может "забарахлить", и тогда в зоне действия его руки должен оказаться рабочий-ремонтник.
    Что произойдет тогда?
    Манипулятор обязан остановиться сам, автоматически... Столкновение робота с человеком может оказаться для последнего трагическим. Недаром Япония, страна, занимающая первое место в мире по применению промышленных роботов, стала и первой страной, где промышленный робот убил человека. Погибшим стал 37-летний наладчик, который подошел к агрегату, чтобы проверить его работу, но был схвачен стальной рукой робота и сунут точно под резец. Владельцы завода и их эксперты обвинили в гибели самого рабочего, который должен был подходить к станку с определенной стороны, отключая робот.
    Для обеспечения безопасности в роботизированном цехе используются различные конструктивные решения: подпружиненные трапы на полу в рабочей зоне робота или соединенные с блокирующими выключателями ограждения, при открывании которых подается команда "стоп", ограждение зоны световым лучом. Вот, например, комплекс на основе робота Ум-160. Спроектирован он в Институте металлорежущих станков, а изготовлен на заводе "Станкоконструкция" для московского электромеханического объединения "Динамо". Световые лучи делят рабочую зону комплекса на "секции".
    Наладчик, подходя к станку, обязательно пересекает луч света, ограждающий одну из секций. Включается система защиты, и, если манипулятор находится в той же секции, он отключается; если он вне ее, то продолжает работу, но вход в защищаемую зону кому бы то ни было запрещен. Покинув световую ограду, наладчик дублирует пересечение луча специальной кнопкой, сообщая о снятии "охраны".
    Заметим, что робот, останавливающийся при появлении в рабочей зоне человека, - это уже не "слепец", но еще и не "зрячий". Простейшее очувствление зародилось еще в недрах первого поколения: робот останавливается, если в заданном месте, между пальцами схвата, не оказывается требуемой детали. Здесь все "богатство чувств" сводится к принципу "есть - нет".
    Простейшая адаптация к обстановке обеспечивает роботу большие физические возможности. Так, манипулятор фирмы "То кё Кэйки" распознавал габариты и вес детали и по-разному осуществлял их подъем: легкие, до десяти килограммов, поднимал на вытянутой руке, а тяжелые, до сорока килограммов, - на втянутой руке. Алгоритм "адаптации" заключается в следующем: захват объекта, определение веса, движение при втянутой или вытянутой руке.
    Кроме того, что робот, обладающий теми или иными чувствами, безопаснее, удобнее и точнее робота первого поколения, он обладает еще рядом специфических достоинств. Он может выполнять операции, которые и "не снились", если бы он мог видеть сны, роботу, лишенному чувств. Такие производственные обязанности, как операции с неориентированными изделиями переменной формы и размера или изделиями, движущимися по транспортеру, не могут быть выполнены без очувствления. Процедуры автоматической сборки также требуют, чтобы робот чувствовал усилия, с которыми вгоняется, например, болт в отверстие, иначе или отверстие, или болт может оказаться поврежденным; чтобы робот видел, куда нужно загнать щетку электромотора и почему она туда не входит. Казалось бы, проблема проста: создать аналог человеческого глаза - и порядок.
    Но как раз этот-то "порядок" и недостижим на сегодняшний день. А если и достижим, то обходится он чрезвычайно дорого. Поэтому вместо полноценного оптического зрения роботы активно используют всяческие его "суррогаты", которые еще не слишком дороги, но уже достаточно эффективны.
    Вот пример: нужно "выловить" одну деталь из целой кучи ей подобных. Тут, казалось бы, без зрения не обойтись, но вот как научили это делать робота в Институте проблем передачи информации АН СССР.
    В ящик с заготовками рука робота погружала электромагнит. Датчик сигнализировал о контакте магнита с содержимым ящика, после чего в обмотку магнита подавался ток. Затем рука поднималась с целой "гроздью" притянутых деталей, система управления анализировала вес "грозди" и постепенно уменьшала ток в обмотке. "Гроздь" рассыпалась, на магните держалась только одна деталь. Ток снова увеличивался, и рука переносила надежно "схваченный" предмет.
    ШЕСТОЕ ЧУВСТВО
    Всем известны слова "шестое чувство", часто характеризующие что-то вроде интуиции или предчувствия.
    Употребляется это словосочетание в тексте примерно следующего содержания: "И тут какое-то шестое чувство подсказало мне (ему)..." дальше описывается,что подсказало чувство. Это выражение пошло от известного факта, что число чувств человека равно пяти: зрение, слух, осязание, обоняние, вкус. Однако человек чувствует, несомненно, больше: чувство равновесия, чувство времени, веса (правда, довольно грубые). Мы ощущаем тепло на расстоянии. Что это? Осязание? Вообще-то да, но тогда почему на расстоянии? Человек чувствует чужой взгляд, чувствует, как меняется давление, аллергик "чувствует" присутствие аллергена и т. п. Так что разнообразных "шестых" чувств предостаточно.
    Однако человек имеет, прямо скажем, весьма ограниченный чувствительный аппарат. Окружающая нас живая природа может предоставить гораздо более широкий перечень разнообразнейших чувствительных элементов. Это системы акустического видения дельфинов, ультразвуковые локаторы летучей мыши, тепловое видение змей, умение некоторых животных ориентироваться в электростатических, электромагнитных, тепловых, ультрафиолетовых и других полях. Например, у собак почти фантастический нюх, крысы слышат ультразвук, змеи чувствительны к вибрации и т. п.
    Как научить робота хотя бы малой толике этого богатства? Не будем отчаиваться, современные очувствленные роботы обладают не меньшей гаммой чувствительных элементов, не все из них позаимствованы у природы, есть и собственные "патенты" человека.
    Чувствительные элементы роботов называются датчиками. Датчики промышленных роботов можно разделить на два больших класса: внутренние и внешние.
    Первые предназначены для контроля за функционированием самих роботов. Они устанавливаются в приводах исполнительных механизмов. Вторые предназначены для контроля за состоянием тех объектов, с которыми работают промышленные роботы. С помощью этих датчиков определяется положение, форма и другие характеристики детали, заготовки, готового узла.
    Датчики внутренней информации - своеобразный самоконтроль робота, предназначенный для определения положений, углов поворота, скоростей и моментов руки, кисти, плеча и других механизмов. Человек тоже обладает подобной чувствительностью. Закрыв глаза, на основании одних только мышечных ощущений мы можем не только принять любую позу или сделать нужный жест, но и совершить более сложные манипуляции, например переставить телефон с тумбочки на стол.
    Если управление роботом осуществляется на основе предельных выключателей по принципу "включено - выключено", то сами выключатели и являются такими внутренними датчиками: довел робот руку до положения, в котором выключатель сработал, значит, нужная фаза движения реализована. В более сложных случаях здесь используются сервомеханизмы с обратной связью: потенциометры, сельсины, резольверы, аналогоцифровые преобразователи и т. п.
    Датчики положения руки робота в большинстве случаев устроены так, что преобразуют разнообразные перемещения в электрические импульсы. Эти-то "нервные" импульсы и делают робота "чувственным". Датчиков у робота целая куча: электромагнитные, емкостные, индуктивные, резистивные (на сопротивлениях), фотоэлектрические. Работа, например, потенциометра основана на изменении сопротивления проволоки или пленки при изменении угла поворота. Надежность потенциометра из-за наличия контакта, как правило, невысокая: максимальный срок службы около двух миллионов оборотов. В конструкции сельсина используется принцип работы трансформатора. Первичная обмотка питается однофазным напряжением. Напряжение, индуцированное во вторичной обмотке, определяется углом поворота.
    Сельсин как бесконтактное устройство, основанное на принципе электромагнитной индукции, обладает высокой надежностью, помехоустойчивостью, однако точность сельсинов ограничена значением в полградуса.
    Резольверы были разработаны позднее сельсинов и основаны на тех же принципах. Однако на статоре и роторе резольвера располагаются по две обмотки, сдвинутые на 90 градусов друг относительно друга. Отсюда и точность у резольверов больше, чем у сельсинов. Индуктивные датчики устроены так же, как и сельсины, только здесь в электрическое напряжение преобразуется линейное напряжение вторичной обмотки относительно первичной. Точность такого датчика порядка одного миллиметра.
    Аналогоцифровые преобразователи представлены генератором импульсов. В фотоэлектрических генераторах на дисках, соединенных с осью вращения, имеются прозрачные и непрозрачные участки. В качестве источников света используются лампы или другие элементы, а в качестве регистрирующих элементов - фототранзисторы, гелиевые элементы и другие устройства. Имеются генераторы, основанные на принципе информации с разрешающей способностью до нескольких тысяч импульсов на один оборот. Существует много датчиков счеточного типа, где значениям 1 и 0 соответствуют проводящие и изолированные участки кодовых пластин.
    Наличие контакта обусловливает определенное ограничение долговечности.
    Существует и масса других датчиков. Например, датчики, интегрирующие скорость, подобно электродвигателям, магнитные счетчики и т. п. Большинство из этих датчиков самоконтроля роботов зародилось еще в недрах первого поколения, это благодаря им удается повысить точность позиционирования и обеспечить "деликатное" обращение с хрупкими, сыпучими и "текучими" грузами.
    Разумеется, при переходе ко второму поколению эти внутренние "чувства" робота расцвели пышно и многообразно, однако главное внимание чувствительного аппарата второго поколения роботов направлено вовне, туда, где кипит производственная жизнь.
    Среди наиболее простых и наиболее распространенных датчиков внешней информации можно отметить так называемые "контактные" датчики - осязание промышленного робота. На концах схвата - руки робота устанавливаются специальные выключатели, которые фиксируют факт прикосновения к детали или станку и посылают импульс в "мозг" робота. Десяток таких выключателей, расположенных не только внутри пальцев схвата, но и на наружной его поверхности (сверху, снизу, справа и слева), помогают роботу "на ощупь" определить положение детали или возникшего препятствия.
    "Я дотронулся правым датчиком до заготовки, значит, она справа, "соображает" робот, - передвину-ка я руку поправее, теперь дотронулся левым, значит, многовато, примерно половину пути назад будет в самый раз" - так "рассуждает" робот, на ощупь ориентируясь в рабочей зоне.
    Однако человек, манипулируя с предметом, фиксирует не только факт соприкосновения, но и ощущает давление руки на предмет через кожу и таким образом может регулировать усилие сжатия соответственно весу и прочности предмета (вспомним бумажный стаканчик). Такой датчик представляет собой, например, слой электропроводящего вспененного полиуретана, заключенного между тонкими металлическими пластинами. В зависимости от давления расстояние между пластинами меняется и соответственно изменяется электрическое сопротивление цепи. Эти свойства искусственной чувствительной кожи уже используются в области протезирования. Механизм управления силой сжатия руки с обратной связью по давлению предотвращает повреждение предмета и самой искусственной руки.
    Среди датчиков особенно удобны бесконтактные: оптические, электромагнитные, ультразвуковые, струйные, так как из-за отсутствия непосредственного соприкосновения не приходится бояться ударов об объект или плохого контакта, кроме того, они "чувствуют" предмет заранее, и в этом их основное преимущество. Они фиксируют объект до непосредственного соприкосновения - и это уже "замашки" своеобразного зрения роботов.
    Электромагнитные контактные датчики работают на расстоянии от нескольких миллиметров до нескольких сантиметров. В них используется эффект изменения сопротивления магнитной цепи или изменения импеданса катушки при прохождении магнитного или электрического поля через объект. Они обладают высокой точностью и надежностью, однако взаимодействуют, естественно, лишь с металлическими предметами.
    Куда более похожи на зрение оптические датчики.
    Если в качестве источников света использовать лампы, светодиоды, а в качестве светоприемников - фотоэлементы, фотодиоды, фототранзисторы, то для обнаружения детали и определения ее положения можно использовать пересечение объектом светового потока или световой импульс, отраженный от предмета. Этот несложный "глаз" состоит из двух линзочек, за которыми прячутся светодиод и фотодиод. Обе линзы сфокусированы на одну точку, расположенную в нескольких десятках миллиметров. Фотодиод не уловит сигнала светодиода, пока в этой точке не окажется какой-нибудь поверхности. Чтобы датчик не реагировал на внешнюю засветку, светодиод излучает свет с определенной частотой, на которую настроен и фотодиод.
    Ультразвуковые датчики представляют собой систему, состоящую из передатчика и приемника сигналов.
    С помощью отраженного звукового сигнала можно обнаруживать объекты и измерять расстояние до них.
    Ультразвуковые датчики имеют по сравнению с оптическими следующие преимущества: они могут обнаруживать прозрачные объекты, в том числе и неметаллические; срок службы генератора колебаний практически не ограничен; их показания не зависят от освещения; их можно использовать на открытом воздухе и при наличии помех: на них не оказывают значительного влияния пыль, пар и другие факторы среды; измерения с ними можно проводить под водой и т. д.
    Принцип действия датчика заключается в акустической локации пространства вблизи захвата. Посланные датчиком ультразвуковые импульсы отражаются от ближайшего предмета, и измерение времени между посылкой импульса и приходом отраженного сигнала позволяет со сравнительно большой точностью судить о расстоянии от предмета до захвата. Особенностью такого устройства является применение в качестве излучателя п приемника одного и того же обратимого преобразователя, разработанного специально для этих целей и представляющего собой разновидность конденсаторного микрофона.
    Ультразвуковые датчики, помимо измерения расстояния, позволяют решать и более хитрые задачи, например, точного наведения оси схвата на предмет. Если на каждом пальце схвата поместить по одинаковому датчику, то они образуют уже два глаза - "симметричную стереопару", и при равенстве расстояний обоих датчиков до детали происходит совмещение оси схвата с осью предмета. Это полезное свойство применимо, однако, лишь для предметов правильной формы.
    К сожалению, ультразвуковые датчики обладают ограниченной способностью для обнаружения микроскопически малых тел, что связано с относительно большой длиной ультразвуковых волн.
    Существует подход, при котором воздушную струю можно использовать подобно пучр:у света. Этот датчик можно применять как своеобразный бесконтактный выключатель. Таким образом, можно измерять расстояние, превышающее диаметр сопла примерно в пятьдесят раз.
    При измерении расстояния до движущихся объектов получаются несколько завышенные значения вследствие завихрений воздуха вокруг самих объектов. Чувствительность струйных датчиков может быть даже выше, чем оптических.
    Тактильные, оптические, ультразвуковые, струйные- это лишь малая толика используемых датчиков робота. Так же, как схваты, чувства робота ориентированы на тип производимой работы. Кое-где достаточно осязания, в другом процессе не обойтись без примитивного зрения, в третьем - нужны "нежные струи" воздушных датчиков. Иногда необходим и инфракрасный локатор, весьма перспективно и лазерное "зрение". Если писать обо всем подробно, то каждое из перспективных направлений очувствления заслужило бы по отдельной книжке. Нам же не терпится посмотреть на очувствленного робота.
    В особом конструкторском бюро технической кибернетики Ленинградского политехнического института имени М. И. Калинина проводят экспериментальную проверку возможностей промышленных роботов, оснащенных целой гаммой чувствительных датчиков.
    Захват одного из роботов представляет собой лапу с двумя пальцами, на внешней поверхности которых расположено целое поле тактильных датчиков, представляющих собой подпружиненные металлические пластины. Набор датчиков выполнен в виде "рыбьей чешуи", что позволяет покрыть всю поверхность пальца, практически без нечувствительных зон. На каждом пальце размещено по 12 таких датчиков, так что прикосновение к любому участку поверхности пальца приводит к замыканию соответствующего контакта, связанного с подвижной пластиной датчика, и информация о месте прикосновения передается в систему управления роботом.
    Кроме контактных тактильных датчиков осязания, на пальцах захвата размещены двенадцать светолокационных датчиков, которые сигнализируют о приближении захвата к предмету на расстоянии двух-трех сантиметров. Они расположены на концах пальцев, на боковой и торцевой поверхностях.
    Так как работа светолокационного датчика основана на обнаружении светового потока, отраженного от предмета, то для исключения влияния внешнего освещения на работу датчика используется специальным образом модулированный по интенсивности световой поток.
    В процессе работы робота возникает необходимость получать сведения не только о приближении или прикосновении к предмету, но и о наличии предмета внутри захвата между пальцами. Для этого на внутренней поверхности пальцев размещены еще четыре фотодатчика, работающих не на отраженном свете, а на прямом просвечивании межпальцевого пространства. Они позволяют контролировать наличие предмета между губками, а также ориентировочно судить о положении предмета по количеству перекрываемых лучей. Столь мощное очувствление дает роботу второго поколения невиданные доселе возможности поиска предметов, нежного обращения с деталями, сборки разнообразных и непростых конструкций. Для примера перечислим операции, выполняемые двуруким роботом второго поколения с тактильным очувствлением, который был разработан с целью исследования методов координированного управления двумя руками при их совместной работе. Робот выполняет следующие операции:
    - перемещение предметов, которые нельзя взять одной рукой, обеими руками с переворотом в процессе перемещения;
    - перенос трех деталей прямоугольной формы, при этом средняя удерживается благодаря силе сжатия со стороны боковых;
    - сверление ручным коловоротом; одна рука нажимает коловорот, а вторая вращает его;
    - вычерчивание линий по лекалу, удерживаемому другой рукой;
    - свинчивание болта и гайки; одна рука держит гайку, а другая головку болта и вращает ее, перехватывая;
    - сборка узла из двух деталей, соединяемых болтом и гайкой, и др.
    Все эти процессы обеспечиваются тонкой координацией действий обеих рук робота по сигналам тактильных датчиков. При этом в процессе выполнения одна рука выполняет роль ведущей, а вторая отслеживает ее положение.
    Этот метод управления, названный авторами методом вертуального эталона, как раз и исследовался на разработанном роботе.
    КАК МЫ ВИДИМ ТО, ЧТО МЫ ВИДИМ
    Органом зрения мы издавна привыкли считать глаз.
    Однако, чтобы установить истину, нам придется отказаться от этого заблуждения. Человек видит отнюдь не глазами. А чем же, спросит недоуменный читатель, датчиками, что ли? Нет, человек видит мозгом! Действительно, глаз участвует в процессе видения, однако распознавание зрительных картин настолько тонкий и интеллектуальный процесс, что сказать "мы видим глазами" так же наивно, как "мы говорим языком".
    Посмотрите вокруг. Мы видим разноцветные пятна на пестром фоне, и только мозг сообщает нам, что это деревья, дома и осенняя листва на мостовой.
    Чтобы научиться видеть, человек затрачивает несколько лет жизни. Рассмотреть фотографию не так-то просто, нужно научиться воспринимать цветное объемное изображение в виде плоскостного предмета, заполненного серо-белыми пятнышками. Индейцу одного из американских племен показали фотографию животного, которое он встречал каждый день, - лошади. Он увидел в изображении нечто таинственное и бесконечно далекое от данного животного.
    "Из всех органов чувств, связывающих наше сознание с внешним миром, зрение является важнейшим, ибо оно дает 80-90 процентов информации об окружающей нас действительности, - говорит заведующая кафедрой глазных болезней Новосибирского медицинского института, доцент Н. Орлова. - Где бы мы ни были - у себя дома, на улице, на рабочем месте, на отдыхе, - весь период бодрствования человек совершает колоссальную зрительную работу. Он рассматривает форму и детали предмета - это центральное зрение; ориентируется в пространстве - это периферическое зрение; воспринимает различную освещенность - светоощущение; распознает спектральный состав света, что создает впечатление многоцветности мира; фокусирует рассматриваемый объект; определяет расстояние до предметов и между ними, что дает впечатление глубины, стереоскопичности. И все это одномоментно и связно - воистину неоценимая деятельность. Глаза приспособлены к видению даже при ничтожно слабом свете - ночью. Кроме того, глаз, как и сердце, успевает отдохнуть в процессе работы, во время коротких миганий".
    Как научить робота "видеть"? У нас нет нужды приделывать ему "голову с глазами". Глаз мы можем поместить, например, на потолке, а затем сообщать роботу название и форму детали, и он будет собирать их.
    В другом варианте мы могли бы поместить глаз робота ему на "ладонь".
    Допустим, что при сварке различных конструкций робог должен помещать их металлические части в разные положения. Если его "глаз" расположен на "ладони", автомат сам сможет "видеть", где именно и как должна происходить сварка. Есть проект робота - упаковщика шоколада. Сейчас на обычной шоколадной фабрике работницы сидят за столом, а перед ними движется поток пустых коробок. Шоколадки подаются конвейерной линией. Работницы укладывают их в коробки по две штуки в секунду. Планируется установить у линии два небольших манипулятора и телекамеру. Камера будет сообщать манипуляторам, что делать их "пальцам" для укладки шоколадок. В данном случае у манипуляторов есть некое зачаточное "зрение". Но это крайне упрощенный случай - темные шоколадки на светлом фоне. Если сказать такому роботу: "Прошу тебя пойти и собрать букет белых лилий", для него невозможно было бы выполнить столь сложный приказ.
    До настоящего времени оснащение зрением какоголибо устройства из металла требовало талантов поистине нечеловеческих. Однако усовершенствование технологии компьютеров радикальным образом изменило ситуацию. Разработка видеосистем для роботов началась с создания телекамер. Изображение объекта превращается в тысячи точек, из которых состоит телевизионное изображение. Эти черные и белые точки вводятся в ЭВМ, управляющую роботом, в виде цифровой информации в двоичном коде (0,1). Черную точку отображает единица, белую - ноль. Изображение предмета преобразуется в электронной памяти компьютера в серию нолей и единиц. Теперь робот может "увидеть" предмет, то есть сравнить его цифровую кодограмму с набором цифр, хранящихся в памяти, и "узнать" его, то есть определить, к классу каких объектов он относится.
    Там, где нули переходят в единицы, компьютер отмечает силуэт объекта и его ориентацию. После этого он немедленно вычисляет многие из его характеристик, например площадь, периметр, диаметр и т. д., и сравнивает их с характеристиками объекта, хранящимися в его памяти. Когда ЭВМ отыщет в своей памяти подобный набор цифр, робот узнает, что же он видит перед собой.
    Сказав на электронном языке "агаЬ, он даст команду своим "пальцам" сделать с предметом то, что нужно, например схватить за край, поднять и перевернуть.
    Поскольку робот не может различать многочисленные оттенки серого цвета, необходимо высококонтрастное освещение, а как его осуществить для изделий, движущихся на сборочном конвейере?
    Сейчас разрабатываются более совершенные системы, которые будут различать много оттенков яркости.
    Создаются приборы, способные формировать изображение с помощью так называемой "серой шкалы", где яркость может быть выражена в диапазоне величин от О до 15 или даже от 0 до 255. С такими "способностями" компьютер сможет различить малейшие изменения яркости и обеспечить точное опознавание объектов. Однако системы с "серой шкалой" столь сложны, что время распознавания даже для мощной ЭВМ оказывается очень большим. Если имеется сотня уровней "серости" в широком поле зрения, то для распознавания образца компьютер должен выполнить огромное количество вычислений, и чем беспорядочней и хаотичней "сцена",тем сложнее задача ЭВМ. Таким образом, будущее систем со "прением" зависит как от продолжающегося прогресса в компьютерной технике, так и от создания лучших устройств распознавания.
    Однако, чтобы быть таким же эффективным, как человеческий глаз, "глаз" робота должен опираться па соответствующий интеллект компьютера, который работает в миллион раз быстрее, чем любой из современных.
    И хотя некоторым ученым это не кажется фантастнчным, особенно учитывая головокружительный прогресс микроэлектроники, даже современное состояние вычислительной техники позволяет делать весьма оптимистические прогнозы. В конце концов робот может "видеть" гораздо лучше человека и сегодня, ведь человеческому глазу доступна для восприятия лишь оптическая часть спектра электромагнитных волн. А соответствующее электронное устройство свободно от биологических ограничений, его можно сделать чувствительным к инфракрасным и ультрафиолетовым лучам. К электронному глазу можно подключить радар или сонар, он сможет видеть в темноте и при сверхъярком свете в печи телескопически или микроскопически, фиксировать процессы, проистекающие или очень быстро, или чересчур медленно. Тогда станет возможным то, что "и не снилось" зрению человека, например спектрографический анализ вещества объекта путем простого "осматривания".
    На очувствленном роботе Токийского университета проводятся эксперименты с движущимися предметами.
    Робот оснащен подсистемой "визуального очувствления", или, попросту говоря, зрения на телекамере. Это позволяет ему весьма точно определять координаты предмета. Управляющее устройство -на базе микрокомпьютера осуществляет пересчет из системы координат рабочей зоны в систему координат манипулятора и вырабатывает управляющее воздействие на приводы манипулятора. Управление осуществляется в так называемом реальном времени.
    Вот по рабочему полю катится шарик. Робот сможет захватить его и аккуратно опустить в движущийся по транспортеру стаканчик. Для облегчения визуального контроля все предметы, за которыми наблюдает глаз робота: шарик, стаканчик, схват робота, - окрашены контрастной ярко-белой по отношению к серому фону краской. А вот другой эксперимент, в котором робот ловко бросает шары в специальную коробку, расположенную в полутора метрах. Под конец робот выполняет ряд явно рекламных манипуляций: зажигает спичку и даже играет на ксилофоне.
    СЕМЬ РАЗ ОТМЕРЬ
    Роботы второго поколения, оснащенные мощными "чувствами", открыли совершенно новую область применения роботов - контроль. Робот-контролер с успехом заменяет человека на столь трудоемкой и нудной операции. Появились даже специальные профессионально ориентированные роботы, так называемые измерительные центры. Кисть руки такого робота оснащена системой щупов, тоненьких чувствительных пальчиков, которые, перемещаясь по измеряемой поверхности, могут передавать в мозг робота сверхточную информацию по всем размерам и параметрам ощупываемой кривой. Способ замера без остановки щупа - измерения "в полете" - позволяет быстро и точно контролировать форму и размеры любой замысловатой конфигурации.
    Такой робот представляет собой, как правило, массивное основание, исключающее вибрацию и другие помехи, влияющие на точность измерения и величественную портальную конструкцию, обеспечивающую идеальный доступ ко всем точкам детали.
    К измерительной головке может подсоединяться до пяти наконечников-щупов, выставленных в разных направлениях.
    Результаты измерений вводятся в ЭВМ, обрабатываются и представляются пользователю на экране дисплея. Кроме того, широкая гамма специальных программ позволяет использовать этот робот с большой универсальностью. Здесь и программы специальных геометрических расчетов, программы расчета допусков и припусков, программы автоматического программирования под данную деталь станков с ЧПУ и др.
    Главное роботическое свойство этого измерительного центра - это гибкость. Его можно запрограммировать на деталь любой формы и размера, задать требуемую точность и допустимую скорость измерения, научить сообщать о всех отклонениях в измеряемой детали и даже управлять станками с ЧПУ по корректировке положения режущих инструментов. Использование такого робота на выборочном контроле формы автомобильных кузовов позволило сократить эту операцию с нескольких дней до нескольких часов. Однако, естественно, одним ощупыванием дело контроля не исчерпывается. Вот еще два примера.
    На одном автозаводе создана система с применением робота, который как бы "вынюхивает" отверстия в кузове нового автомобиля. Рабочие вводят в машину под давлением небольшое количество гелия, а переносимые роботом по определенным траекториям датчики улавливают любую утечку газа, которая может произойти оттого, что плохо сварены швы или неплотно прилегают двери и окна. Это самый совершенный тест, которого можно добиться в условиях современной технологии, да и той, которая появится в ближайшем будущем. Чтобы обеспечить такую четкую работу, раньше конвейер должен был всегда останавливаться перед роботом, а кузов находиться в определенном положении.
    На заводе эту проблему решили по-новому, следующим образом: один из старых конвейеров был модернизирован так, что специальные устройства фиксируют автомобили с точностью до 1,5 миллиметра. В результате такого преобразования роботы впервые используются на постоянно двигающемся конвейере, при этом роботов "заставляют" работать с большой точностью.
    К профессиям промышленных очувствленных роботов недавно добавилась еще одна - дегустатор питьевой воды. В Берлине сейчас установлены шесть таких роботов, которые через определенные промежутки времени берут из водопроводной сети пробы воды и в считанные секунды проводят ее анализ. Данные анализа тут же сообщаются на центральный диспетчерский пункт водного хозяйства столицы ГДР.
    Как мы уже говорили, роботы первого поколения не умеют "брать" заготовки, лежащие в беспорядке, "навалом", специальная же укладка деталей в определенном порядке - операция ручная, она снижает общий уровень производительности труда. Кроме того, в используемой для этого специальной таре с ячейками детали, как правило, должны укладываться в один слой, а это требует увеличения тары и объемов складов.
    Вот если бы можно было поставить перед роботом ту же тару, которой пользуются на заводе! Для этого, однако, надо решить довольно сложную задачу распознавания образов - "узнавания" - и последующего ориентирования деталей. Экспериментальные "умные" роботы справляются с этой работой хорошо, однако до "прописки" в цехе им еще далеко. Производственную деталь вообще распознать трудно: она может быть покрыта грязью и окалиной, по-разному освещаться, неожиданно бликовать. Правда, производство - это не совсем неупорядоченная система. Во-первых, здесь оперируют деталями, часто имеющими достаточно правильную форму, во-вторых, мы вправе потребовать введения некоторых элементов порядка, которые хотя и будут носить частный характер, однако могут привести к резкому упрощению задачи.
    "Иногда кибернетики, занимающиеся проблемами "очувствления" роботов, не чувствуют особенностей производства и работают над отвлеченными проблемами, интересными с точки зрения математики, но далекими от практики. Например, сортировка деталей различной формы или размеров, уложенных в один ящик.
    Но ведь такой ситуации производственники всячески избегают. Зачем смешивать то, что потом придется сортировать? Задача "узнавания" детали тоже не слишком актуальна. На производстве всегда можно ввести в систему управления робота полные сведения о геометрии деталей, которые ему поданы, ведь и рабочему вместе с заготовками дается чертеж. Правда, есть разновидность этих задач, имеющая практический смысл, - определение положения известной детали", - говорит ведущий конструктор ЭНИМС С. Житомирский.
    Если форма детали известна заранее, то ее положение можно проанализировать, употребив некоторые искусственные приемы, которые позволяют обходиться более простыми алгоритмами.
    Вот, например, как подошли к решению такой задачи специалисты французской фирмы "Акма": для экспериментов были выбраны заготовки деталей подвески автомобиля - отливки сложной формы. Опыты показали, что на плоскости любая такая деталь может лежать только пятью разными способами, причем каждое положение, будучи отображенным на телеэкране, занимает разную площадь. Таким образом, получив изображение тела, по размеру его площади ЭВМ сразу "узнавала" расположение детали. Дополнительные расчеты давали достаточную информацию для того, чтобы робот мог захватить и сориентировать деталь.
    Да, робот второго поколения обладает несомненно более сильным интеллектом. В чем же он проявляется?
    Во-первых, в том, что робот выполняет функции, заложенные в нем при "рождении", в очень широком диапазоне условий, не снижая точности и качества работы.
    Во-вторых, он всегда, при всех условиях действует в наиболее выгодных оптимальных режимах.
    Рассмотрим пример из области сварки. Рабочий сваривает любые изделия из материала различной толщины, изменяя режим сварки и выбирая электроды на глазок. Опытный сварщик делает это мастерски, хотя и медленно; менее опытный может ошибаться, следствием чего явится брак. Робот первого поколения, действующий по "жесткой" программе, производит сварку намного быстрее человека, но он не меняет режимов работы.
    Если толщина пришедшей к нему детали немного изменилась, он, не обладая соответствующими чувствительными элементами, просто "не знает" этого. Следовательно, быстрота операций возрастает, но с качеством дело обстоит хуже: если допуск на поступающие изделия очень широк, то доля брака может даже увеличиться.
    Робот-сварщик второго поколения с помощью специальных устройств "осматривает" деталь, оценивает изменения ее внешних параметров, затем автоматически настраивается на такой режим работы, который обеспечивает наивысшее качество сварки.
    Другой робот, имеющий специальность контролера, проверяет работу "сварщика". От такого объединения роботов в комплексе получается значительный выигрыш.
    "Узкие места" технологического процесса довольно часто проявляются при воздействии сильных помех. Например, при изменении напряжения в сети может резко ухудшиться качество - в результате появится брак. Роботы второго поколения должны "парировать" подобные помехи. Но для этого они должны быть снабжены датчиками, сигнализирующими о тех или иных отклонениях, и логическими устройствами, обрабатывающими полученную информацию и изменяющими режим работы.
    Есть еще один источник брака и даже остановки технологического процесса - отказы в системах. Сложная система, в которой произошел отказ, может взбунтоваться, стать опасной, угрожать аварией или даже катастрофой, как в известной ситуации, описанной К. Чапеком.
    Снизить опасность отказов позволяет дублирование: параллельное подключение резервных систем, переключение на которые осуществляют специальные логические устройства, обнаруживающие отказы. Впрочем, эти устройства также надо защищать от отказов...
    В ОКБ технической кибернетики Ленинградского политехнического института с 1968 года ведутся работы по созданию и исследованию процессов управления очувствленными роботами. Для изучения процесса роботизированной сборки используется образец робота со схватом, оснащенным ультразвуковыми датчиками. Это упрощенное ультразвуковое "зрение" позволяет роботу увидеть детали на рабочем столе, автоматически навести схват на деталь, центрировать схват относительно детали для ее точного взятия, определить тип детали по ее характеристическому размеру, правильно ориентировать схват относительно поверхности сборочного стола и базовой оси сборки.
    Вот в процессе работы робот обнаружил очередную группу деталей на рабочем столе. Он ловко берет ближайшую из них, "узнает" ее тип по размеру сомкнутого схвата, устанавливает деталь на собираемый узел или откладывает в промежуточный накопитель, чтобы сразу же взять ее, когда она потребуется по программе сборки. Необходимая для работы информация: последовательность сборки, эталоны размеров детали, координаты "жестких" точек рабочей зоны задаются и фиксируются с помощью потенциометров. Образец этого робота предназначен для исследования процессов функционирования простых, легко перепрограммируемых сборочных автоматов.
    Популярность электронно-механических роботов второго поколения растет с каждым годом. Чтобы быстрее приспосабливать их к разным операциям, их собирают из стандартных модулей, снабжая широким набором универсальных приспособлений. Оригинальную конструкцию для радиоэлектронной промышленности предложили инженеры фирмы "Сормель" (Франция). Восемь встроенных головок различного назначения, подключение и взаимодействие которых определяется заложенной в компьютер программой, позволяют собирать изделия из деталей, размер которых измеряется миллиметрами, а вес - долями грамма.
    Роботы второго поколения, оснащенные столь мощным набором сенсорных датчиков и соответствующим компьютером, значительно превосходят по своим возможностям роботов первого поколения: они могут работать с неориентированными деталями произвольной формы, осуществлять сборочные и монтажные операции, собирать информацию о неизвестной и меняющейся среде. Однако, несмотря на это, они, вообще говоря, не должны заменить роботов первого поколения во всех сферах их приложения. Оба поколения роботов взаимно дополняют друг друга, выполняют действия различной сложности при различной степени информированности о внешней среде. Их совокупность представляет собой весьма гибкую систему, позволяющую автоматизировать подавляющее большинство ручных операций в сфере производства.
    ОБРАТНАЯ СВЯЗЬ - ПОСОХ СЛЕПОГО
    Прикоснувшись к горячему предмету, мы автоматически отдергиваем руку. Действительно ли ее отдергиваем мы? Точнее было бы сказать, что рука отдергивается сама, не дожидаясь нашей команды, "автоматически". Этот простой пример показывает и объясняет тот факт, что большинство "очувствленных" задач может быть решено при весьма скромном интеллекте. Вместе с тем гамма роботов второго поколения весьма расплывчата: с одной стороны - это любой манипулятор, имеющий мало-мальски простой датчик и использующий его в процессе функционирования для адаптации к изменяющейся обстановке; с другой стороны, сама адаптация - это настолько разветвленный и сложный процесс, что границы адаптивной способности у робота просто нет, своей адаптационной осью робот второго поколения заходит уже в сферу жизни третьего. Но здесь мы будем все еще говорить о втором поколении роботов, а именно о принципах их управления.
    Управление очувствленным роботом базируется на идее обратной связи. Это фундаментальнейшая идея кибернетики. Управление роботом первого поколения можно охарактеризовать как прямую связь: робот воздействует на объект манипулирования. Благодаря наличию чувств роботу второго поколения доступна и обратная связь: объект манипулирования "воздействует" на робота. Закон управления очувствленным роботом является функцией текущего состояния робота и состояния внешней среды. Для решения задачи управления очувствленным роботом уже невозможно ограничиться только запоминающим и программирующим устройством, как в роботах первого поколения. Система управления очувствленного робота должна решать новый класс задач: обработку и анализ информации, поступающей от искусственных органов чувств, и управление исполнительными приводами с учетом этой информации, использованием принципов обратной связи. Описанная схема управления с обратной связью напоминает открытую И. Павловым схему формирования условных рефлексов у животных. Такое единство живого и неживого организмов - одна из фундаментальных аксиом кибернетики. Часть сенсорных сигналов о внешней среде, поступающих через органы чувств в "мозг" робота, можно считать аналогичными безусловным раздражителям по терминологии И. Павлова. Это, например, сигналы о наличии детали, с которой должен "общаться" робот.
    Другая часть сигналов - "условные раздражители", например определенные звуковые, зрительные или другие информационные сигналы.
    В результате обучения робота (а заметим, что очувствленный робот рождается не со знанием, а лишь со способностью учиться, опираясь на свои органы чувств) определенному сочетанию безусловных и условных раздражителей ставится в соответствие некоторая реакция.
    Таким образом складываются внутренние рефлекторные связи "ситуации реакции". Они играют роль, именно играют роль, а не являются на самом деле, представлений робота о внешнем мире и о своих собственных возможностях взаимодействия с ним.
    Обучение робота, то есть формирование совокупности связей "ситуации реакции", производится человеком. Под текущей ситуацией понимается значение совокупности сигналов, сформированных сенсорной системой. Класс ситуаций характеризуется тем свойством, что любая ситуация из одного и того же класса обусловливает одну и ту же реакцию (из класса необходимых реакций). Такая правильно выбранная реакция называется адекватной данной ситуации. Структура и функционирование системы управления очувствленным роботом имеет три эшелона.
    Верхний - распознавание и анализ ситуации. От того, к какому классу принадлежит ситуация, зависит планирование реакций, которую робот "мыслит" как достаточно адекватную.
    Второй эшелон управления получает на вход значение желаемой реакции и формирует соответствующее программное движение, строит план - желаемый закон изменения координат исполнительных механизмов с учетом возможных препятствий и ограничений.
    И, наконец, третий обеспечивает осуществление выбранного движения.
    Рассмотренная структура управления "ситуации - реакции" позволяет очувствленному роботу гибко приспосабливать свое поведение к складывающейся, порой резко меняющейся обстановке. Может создаться впечатление, что с помощью совокупности связей "ситуации - реакции" можно организовать любое, сколь угодно сложное целенаправленное поведение робота. Достаточно лишь вложить в память управляющей системы побольше таких связей.
    К сожалению, такая концепция слишком оптимистична. Произвольное число "реактивных" связей позволяет совершать лишь те действия, для которых с самого начала были предусмотрены условные или безусловные раздражители. Формирование сложных действий в ответ на сложные сенсорные ситуации представляет собой самостоятельную, сложную проблему.
    Для большинства интеллектуальных задач, для которых невозможно заранее сформировать однозначные алгоритмы их решений, невозможно и задать реализуюющие этот алгоритм наборы связей "ситуации - реакции".
    ТРЕТЬЕ ПОКОЛЕНИЕ
    РОБОТЫ - ИНТЕЛЛЕКТУАЛЫ
    Я МЫСЛЮ - СЛЕДОВАТЕЛЬНО, Я СУЩЕСТВУЮ
    Интеллектуальный робот третьего поколения - своеобразное кибернетическое "живое" существо, разумеется, если понимать этот термин достаточно широко. Рассмотрим основные органы этого существа.
    Оно наделено рецепторами - разнообразными датчиками внешней и внутренней информации: зрением, слухом, осязанием, обонянием. Кроме рецепторов, оно имеет эффекторы - средства воздействия на окружаюшую среду. Это мышцы, или сервомоторы, приводящие в действие разнообразные конечности: руки, ноги, хобот, щупальца и т. д.
    Главным в таком организме является достаточно развитый мозг, роль которого играет центральный компьютер. Компьютер, кроме всего прочего, имеет непосредственную связь с человеком - оператором. Самое главное, что такой робот обладает вполне целесообразным поведением; по крайней мере, он не глупее обезьяны. Этот организм и есть истинный робот, какую бы физическую форму он ни имел.
    Чтобы отличать его от всех других роботов, с которыми мы до сих пор встречались на страницах этой книги, мы будем называть его "кибер", ибо породившая его наука - кибернетика - как раз и постулирует факт универсального единства живого и неживого целенаправленного поведения. Недаром один из создателей интеллектуальных роботов писал: "Робот - это функциональное описание системы, которая до недавнего времени могла быть получена лишь в результате роста живых клеток, а теперь начинает становиться чем-то, что мы можем сами изготовлять".
    Кибер способен понимать человеческий язык, на котором ведет диалог с оператором, он сам формируете своем "сознании" довольно подробную модель внешней среды - реальной обстановки, в которой ему приходится "жить". Он может анализировать сложившуюся ситуацию, планировать свои действия для достижения поставленной оператором общей цели, намечать желаемые движения и реализовывать их в условиях неполной информации и быстро меняющейся ситуации.
    Стоит заметить, что мы еще далеки от того, чтобы охватить человеческое мышление во всей его глубине.
    Тем не менее некоторые исследователи пытаются создать некий "микромир", который вычислительная машина все-таки могла бы понимать.
    Вот, например, робот, созданный Д. Уиногрэдом в лаборатории искусственного интеллекта Массачусетского технологического института. Он пытается целиком и полностью освоить игру в кубики: их расстановку и перемещение, геометрические конструкции - в той мере, в какой это знакомо ребенку. Эта машина способна самостоятельно передвигаться и брать определенные предметы. Она "видит" и анализирует увиденное. Она повинуется командам и отвечает на вопросы на человеческом языке. И что всего важнее, автомат способен к "пониманию".
    Рассмотрим пример взаимопонимания этого робота и человека, взятый из книги Б. Бирюкова и М. Гутчина "Машина и творчество".
    Человек. Подними большой красный блок.
    Робот. Хорошо (прежде чем поднять красный блок, машине приходится его освободить: найти место для зеленого блока, лежащего на красном, и перенести его).
    Человек. Схвати пирамиду.
    Робот. Я не знаю, какую пирамиду вы имеете в виду (так как имеются три пирамиды, робот ничего не делает).
    Человек. Найди блок, который выше, чем тот, который ты держишь, и поставь его в ящик.
    Робот. Хорошо ("рука" робота опускает красный блок и, поднимая высокий голубой блок, ставит его в ящик).
    Человек. Что находится в ящике?
    Робот. Голубая пирамида и голубой блок.
    Человек. Что поддерживает пирамиду?
    Робот. Ящик (такой ответ дан потому, что если раньше программа не знала, о какой пирамиде идет речь, то сейчас предполагает, что мы имеем в виду ту пирамиду, которая только что была упомянута).
    Человек. Сколько блоков не находится в ящике?
    Робот. Четыре.
    Человек. Является ли по крайней мере один из них более узким, чем тот, который я просил тебя поднять?
    Робот. Да, красный куб.
    Человек. Он опирается на что-либо?
    Робот. Да, на стол.
    Человек. Может ли стол поднимать блоки?
    Робот. Нет.
    Человек. Может ли пирамида опираться на блок?
    Робот. Да (дедуктивная система находит реальный пример и поэтому знает, что это возможно).
    Человек. Может ли пирамида опираться на пирамиду?
    Робот. Я не знаю (таких примеров на сцене нет).
    Человек. Собери вместе (поставь друг на друга) две пирамиды.
    Робот. Я не могу (робот пробует, но терпит неудачу).
    Человек. Голубая пирамида - моя.
    Робот. Я понимаю.
    Человек. Моими являются блоки, цвет которых не красный, но то, что поддерживает пирамиду, не является моим.
    Робот. Я понимаю (строятся две новые теоремы, касающиеся вопросов собственности - чей, кому принадлежит).
    Человек. Ящик мой?
    Робот. Нет.
    Человек. Что-нибудь находящееся в ящике является моим?
    Робот. Да, два предмета: голубой блок и голубая пирамида.
    Человек. Не соберешь ли ты вместе оба красных блока, а также зеленый куб и пирамиду?
    Робот. Хорошо (робот выбирает зеленый куб, на котором ничего нет, ставит его на большой красный блок, после чего снимает маленькую пирамиду с маленького красного куба и использует его для завершения указания).
    Мы только что познакомились с отрывком из работы американского кибернетика по фамилии Уиногрэд (такова ее английская транскрипция, однако иногда его фамилию переводят просто как Виноград). Про эту работу М. Минский на советско-американской конференции сказал: "За последние десять лет мы увеличили разум ЭВМ в 106 раз, и я просто как игрок в покер скажу, что на руках у меня имеются доказательства существования искусственного разума. Это докторская диссертация Т. Уиногрэда из Массачусетского технологического института... В ней мы находим программу для вычислительной машины, обладающей небольшой, но все же заметной долей человеческого разума".
    Однако, несмотря на видимые успехи искусственного интеллекта роботов, крупный вексель, выданный кибернетиками, еще не оплачен. И дело здесь не только в недостаточном быстродействии ЭВМ или в малом ассортименте сенсорных датчиков. Причина в другом: не хватает конструктивных идей для построения программ разумного поведения роботов. Ведь процессы мышления человека при решении даже самых тривиальных задач еще не разгаданы. Процесс самопознания интеллекта человека продвигается чрезвычайно медленно. Задача "познай самого себя" становится камнем преткновения на пути развития человекоподобных мыслящих устройств.
    Проблема создания интеллектуальных роботов, "живущих" в среде, обладающей свойствами неопределенности, привела в последние годы к глубокому осознанию и даже самоосознанию процессов подобного рода, происходящих в биологических системах, в мозгу животных и человека. В результате появилась концепция иерархических адаптивных систем управления, которая эффективно развивается как фундамент организации целесообразного поведения роботов, наделенных интеллектом. Каким образом наш мозг управляет нашим телом, которое даже при грубой оценке с чисто механических позиций имеет более 200 степеней свободы? Как он командует каждой мышцей при выполнении сложных движений, когда мы пишем, ходим, бегаем, плывем, играем на рояле? Как успевает он переработать в минимальное время столь большой объем информации? А никак. Мозг, наш центральный процессор, "выше" этого.
    Он вообще не контролирует действия отдельных двигательных единиц нашего тела. Детализация движений происходит на уровнях гораздо более низких, чем кора больших полушарий. Это похоже на программирование на языке высокого уровня, где достаточно указать "цикл от 1 до 20 с шагом 1", а машина сама развернет эту команду цикла в детализированную систему операций. Наиболее очевидные распоряжения типа "прикоснешься к горячему - отдерни руку" происходят даже без осознания их мозгом.
    Такое распределение функций, представляющее собой распределение крупной задачи между несколькими уровнями, гораздо выгоднее, экономнее, оперативнее, чем жестко централизованное, когда управляющий орган точно предписывает необходимое действие каждому из составляющих систему элементов. При решении серьезных задач такой централизованный мозг оказался бы настолько сложным, что едва ли уместился бы не только в черепной коробке, но даже во всем теле человека.
    При выполнении тех или иных сложных движений мы складываем их из некоторых обобщенных кирпичиков: встать, сесть, шаг правой, шаг левой. Обучение ребенка всему многообразию движений сводится к формированию и закреплению в его "памяти" соответствующих кирпичиков. Кстати, аналогично организуется и процесс восприятия. Чувственный образ - это определенная последовательность или комбинация звуковых, зрительных или обонятельных импульсов (лошадь, человек) или их комбинации (человек на лошади или кентавр.)
    Другой общий принцип организации управления в сложных биологических системах - это способность к обучению, адаптация к заранее неизвестным, меняющимся в довольно широких пределах условиям жизни.
    Способность к адаптации присуща не только организму в целом, но и отдельным его органам и даже функциям. Эта способность незаменима в тех случаях, когда одна и та же проблема должна решаться многократно. Таким образом, феномен адаптации играет существенную роль в целесообразном поведении всего живого.
    В начале нашего века зоопсихолог Э. Торндайк провел следующий эксперимент с животными. Имелся Т-образный лабиринт с тремя площадками. На площадку, находившуюся в основании буквы Т, помещалось подопытное животное, а на две другие площадки, находившиеся у концов горизонтальной перекладины буквы Т, помещалась приманка. Животное могло делать альтернативный выбор: добежав до развилки, оно могло повернуть к левой площадке или к правой площадке.
    Но по пути к приманке его ожидала неприятность.
    В стенки коридора были вмонтированы электроды.
    С некоторой фиксированной вероятностью на них подавалось напряжение, и тогда пробегавшее мимо них животное получало болевое раздражение - среда выдавала сигнал наказания. Сигналом же поощрения среды была та пища, которая ожидала животное на конечной площадке. Если в эксперименте вероятность раздражения в одном из коридоров (например, в левом) намного превосходила вероятность такого раздражения в другом коридоре (в правом), то естественно было бы считать, что животное адаптируется к условиям среды: после серии пробежек оно будет предпочитать поворачивать в правый коридор, а не в левый. Больше всего Э. Торндайк экспериментировал с крысами. Оказалось, что они быстрее оценивают более безопасный путь и уверенно выбирают его даже при небольшой разнице наказаний.
    Другие подопытные животные делали это с разной степенью адаптивности, но способность эта оказалась присущей всем видам животных, участвующих в экспериментах.
    Проблема управления интеллектуальным роботом заключается, таким образом, в моделировании способности животного и человека к адаптации.
    Иерархическая организация управления роботами - это прежде всего распределение функций восприятия, обработки информации и управления между отдельными уровнями иерархии и подсистемами роботов. Полностью централизованные алгоритмы обработки информации и управления при больших объемах обработки, свойственных роботам третьего поколения, оказываются малоэффективными или даже непригодными. Таким образом, возникновение иерархической адаптивной структуры диктуется в первую очередь стремлением повысить качество управления роботом, то есть уменьшить уровень неопределенности и увеличить быстродействие.
    Для функционирования отдельных уровней и подсистем необходим значительно меньший объем информации.
    Так возникает распараллеливание алгоритмов, что и позволяет решить задачу в условиях существенно меньшей неопределенности.
    Итак, для активной жизни роботов третьего поколения жизненно необходимы "хорошие мозги", ибо именно от степени интеллектуальности робота зависит принадлежность его к тому или иному поколению. Существует даже весьма обоснованная классификация роботов в зависимости от функций его электронного мозга.
    Управляемые роботы. Роботы "нулевого поколения" - управляемые человеком манипуляторы - не обладают, естественно, никакими свойствами интеллектуальности - все заключено в операторе.
    Обучаемые роботы. Роботы первого поколения имеют память. План и порядок действий задает человек - оператор, а робот всего лишь запоминает (способность обучаться) и воспроизводит.
    Очувствленные роботы. План действий задает человек, а робот, запомнив план, вычисляет конкретный порядок действий в зависимости от тех или иных данных внешней среды (обратная связь).
    Интеллектуальные роботы. Человек задает лишь цель, а робот сам составляет план операции, определяет порядок действий с учетом реальных условий и превращает действия в движения исполнительных механизмов. Для этого роботу необходимо иметь не только широкую систему чувств, не только интеллект, но и модель окружающей действительности и даже модель самого себя (сознание и самосознание робота).
    КАК РОБОТЫ НАБИРАЛИСЬ УМА
    "Представление о том, что компьютеры делают только то, что им диктуют люди, обманчиво. Если вы не можете сказать компьютеру, как сделать что-то самым лучшим образом, то вы оОязываете его испробовать множество подходов. И если кто-то потом будет говорить, что машина действовала так, как ей было сказано, в этом будут содержаться двусмысленности. Ведь вы не устанавливали и не могли знать, какой из подходов изберет машина", указывает М. Минский, специалист в области искусственного интеллекта.
    Обычные вычислительные машины, которые обрабатывают счета за электричество или производят банковские операции, - это всего лишь счетные устройства: быстродействующие, но абсолютно неразумные. Вся их программа содержит лишь список команд, которые они безошибочно выполняют.
    В некоторых научно-исследовательских центрах уже имеются другие вычислительные машины, внешне очень похожие на прежние, но в них заложены более сложные программы. Ученые начиняют машину информацией и учат ее "мыслить". Такие машины, наделенные "разумом", постепенно смогут имитировать многие наши способности, а в некоторых случаях даже превзойти их. В скором времени, возможно, это будут роботы, которые начнут рассуждать, понимать, приобретут способность учиться, а после этого попытаются изменить наши представления о жизни и даже о сам-их себе.
    Исследователи во всем мире занимаются этой проблемой вот уже в течение 25 лет. Во время второй мировой войны английский математик А. Тьюринг изобрел машину - прародительницу современных вычислительных машин. Это была система, способная расшифровывать вражеские сообщения. Всю свою жизнь изобретатель затем мечтал о создании такой машины, которая была бы способна учиться и стать разумной.
    То, что сейчас называют первым "искусственным мозгом", родилось в проектах другого известного математика- Дж. фон Неймана в октябре 1945 года в Принстоне. Он так же, как и его будущие последователи, был увлечен психологией и неврологией. После бесплодных попыток создать математическую модель человеческого поведения он потерял веру в возможность создания "искусственного разума", элементы первых громоздких вычислительных устройств имели настолько большие размеры, что Дж. фон Нейман не в состоянии был решить вопрос - каким образом заменить ими ничтожно малые нервные клетки.
    Поскольку в те времена человеческий мозг рассматривали как нечто сотканное из взаимосвязанных нейронов, его можно было представить в виде какого-то вычислительного устройства, в котором циркулирует не энергия, а информация. Если принять такую аналогию, рассуждали ученые, то почему бы не придумать систему, в которой разум будет зарождаться в результате прохождения через нее информации?
    Выдвигались самые различные теории относительно искусственного мышления. Физик Д. Мак-Кей предложил, например, интересный метод аналогий и вероятностей, пользуясь которым машина могла бы мыслить, используя логические элементы, двоичные или недвоичные.
    Этот метод вполне заслуженно был оценен как слишком упрощенный для точного моделирования человеческого мышления.
    На первой крупной конференции ученых, работающих в этой области, которая состоялась еще в 1956 году, многие ее участники высказались за принятие термина "искусственный разум", чтобы хоть как-то определить предмет своих исследований. При этом не обошлось без бурных дебатов. Хотя все присутствующие верили в возможность передачи кое-чего, что пока находится лишь в компетенции человека, своим еще примитивным вычислительным машинам, они были далеки от того, чтобы прийти к единому мнению относительно средств достижения этой возможности. Одни полагали, что необходимо начать с постановки машинам простых задач, другие считали, что прежде всего следует разработать теорию и построить модель человеческого мозга...
    Два никому не известных исследователя, А. Невелл и Г. Саймон, выдвинули совсем необычную идею. Они изучали, каким образом два человека могут общаться друг с другом с помощью системы сигнализаторов и кнопок. Эта система должна была раскладывать их поведение на серию простых и логических операций. Поскольку большая вычислительная машина была установлена в том же помещении, где работали оба исследователя, они развлекались тем, что ставили свой эксперимент с ног на голову: вводили в машину простые логические правила, чтобы заставить ее выработать в себе способность к более сложным рассуждениям. Это была гениальная мысль; программа не только работала, но с ее помощью было открыто новое доказательство одной теоремы: оно было совершенно неожиданным и намного более элегантным, чем до этого существующее.
    А. Невелл и Г. Саймон открыли основополагающий принцип: нет необходимости в том, чтобы понять человеческий мозг для передачи разума машине. Необходимо изучать не то, как работает наш мозг, а то, что он делает. Нужно проанализировать человеческое поведение и исследовать процесс приобретения им знаний, а не разрабатывать теорию относительно сети нейронов.
    Короче говоря, предпочтение отдается психологии, а не физиологии.
    Начиная с этого времени исследователи пошли по пути, открытому А. Невеллом и Г. Саймоном, что, однако, не мешает им постоянно спорить по поводу различных способов заставить "думать" вычислительную машину.
    Последователи одной школы - она основана на логике - пытаются расчленить процесс рассуждения на серию логических предложений. Машина "продвигается" от одного предложения к другому, делая последовательные выводы, сравнимые с известным силлогизмом:
    "Все люди смертны; Сократ - человек, следовательно, Сократ смертен".
    Машина еще далека от того, чтобы приобрести те общие знания, которыми обладает даже малолетний ребенок. И достигнут ли вообще когда-нибудь машины уровня развития ребенка? Этот вопрос уже давно разделил ученых на два лагеря. В Беркли преподаватель философии X. Дрейфус стал во главе радикальной оппозиции приверженцам идеи "искусственного разума". Он поставил их науку в один ряд с алхимией. "Никогда не удастся запрограммировать нашу мысль, - заявляет он, - хотя бы по той простой причине, что мы растем в реальном мире, в обществе, мы познаем мир вместе с нашим телом, мы не состоим из одного только разума!
    Машина может знать, что такое "ресторан", - продолжает он, - но она не в состоянии знать, ест ли посетитель ногами. Или как приближается к столу официантка: в полете или ползком? Никогда машина не будет иметь столько знаний, чтобы охватить мир во всем его многообразии!"
    Но сотрудник Массачусетского технологического института М. Минский отказывается верить в то, что разум машин ограничен. Когда его спрашивают, что же он понимает под термином "искусственный разум", он, таинственно улыбаясь, отвечает:
    "Это наука, которая заставляет делать машины то, что человек считает интеллектуальным, когда делает то же самое". Этот ученый объединил вокруг себя еще нескольких исследователей, также работающих над созданием искусственного разума. Будучи физиком и математиком, он изучил психологию, неврологию и социологию. Когда-то своими руками он сконструировал машину на базе электронных ламп, участвовал в разработке "Персептрона", некоего подобия искусственного ученика. Совместно с математиком С. Пейпертом он был также автором обучающей системы для детей.
    Сейчас М. Минский уже не заводит разговор о машинах. Тема его бесед человек; когда он говорит, взгляд его кажется отсутствующим, он как бы прослеживает внутри себя весь ход своих собственных рассуждений. "Искусственный разум - это новый вид психологии", - замечает М. Минский. Она представляется ему платформой экспериментальной науки, которая использует вычислительную машину как средство моделирования с целью постижения природы человеческого мышления.
    "Наши основные знания нигде не записаны, - утверждает М. Минский. - Все знают, что для того, чтобы взять книгу, нужно протянуть руку. Но этого не найдешь ни в одной энциклопедии. А вычислительная машина не может этого знать".
    М. Минский и его студенты пытались, например, определить такое простое на первый взгляд понятие, как "вода". Это оказалось настоящей головоломкой. Необходимо знать, что вода - это жидкость, что ее уровень горизонтален, что ее количество не изменится, если ее перелить из одного сосуда в другой, но она вытечет из дырявого сосуда, может замочить одежду и т. д.
    И вот вычислительная машина, получившая самую общую информацию о воде, "постаралась" дать ответ на один очень важный вопрос: "Что случится, если наклонить стакан, заполненный водой?" Машина очень хорошо изображала на своем экране стакан, опрокинутый до горизонтального положения, и, несмотря на "известный" ей закон тяготения, упорно показывала на экране опрокинутый стакан, жидкость из которого никак не выливалась. И она никогда не сможет познать на горьком, но таком поучительном опыте то неприятное ощущение, какое испытывает человек, когда вода заливает одежду. Вычислительная машина более охотно воспринимает чисто книжные знания.
    Именно такие исследования проводит группа ученых под руководством психолога Р. Шэнка. Здесь машина учится читать и обобщать текст, разумеется, при постановке вопросов в письменном виде. Она делает переводы как с английского языка на другие, так и наоборот; упражняется в ведении беседы, в искусстве аргументирования и даже начинает заучивать слова.
    КИБЕРНЕТИЧЕСКИЙ ДИАЛОГ
    - Почему ты вчера вернулся так поздно? - недовольно спрашивает Мэгпай.
    - Я ходил в кегельбан, - отвечает Скотт Робертсон, ее муж, не обращая внимания на вызывающий тон.
    - А я думала, что ты испытываешь отвращение к этой игре, - коварно замечает Мэгпай.
    - Когда я в компании, то не испытываю.
    - А я к этой компании не отношусь?
    Скотт слабо протестует:
    - Это ведь не одно и то же.
    - Разумеется, потому что ты не можешь найти себе женщин у себя дома!
    Происшедшая семейная сцена была бы самой обычной, если бы эта ревнивая американка не оказалась... ЭВМ.
    Мэгпай - Сорока - это программа для вычислительной машины, которой отведена роль сварливой супруги, озабоченной тем, чтобы "приструнить" своего подставного мужа, молодого психолога Йельского университета, который ведет с "ней" диалог посредством клавиатуры.
    Эта машина не хранит в своем запоминающем устройстве заготовленные и стереотипные фразы. Она сама формирует ответы. Она аргументирует, "размышляет", и в этом она в какой-то степени уподобляется человеческому существу. Машина "мыслит" своим особым способом. Опираясь на психологию и информатику, ученые поставили перед собой по меньшей мере честолюбивую задачу: изучить образ мышления человека и его поведение, чтобы затем воспроизвести их искусственно.
    Когда мы говорим слова "искусственный интеллект", то немедленно возникает аналогия с чем-то ненастоящим. Вспомним, с каким оттенком мы произносим слова "искусственная пища" или "искусственная трава".
    Термин же "искусственный интеллект" затрагивает нас до глубины души, ибо единственный интеллект, который нам известен, - это наш собственный, естественный. Может быть, поэтому проблема создания искусственного интеллекта вызвала столько споров и публикаций. Число публикаций, посвященных проблеме "возможен ли искусственный интеллект", приближается к числу публикаций, посвященных конкретным научным результатам в этой области. Человек яростно защищает один из последних бастионов своего человеческого от нашествия машинного. Дело осложняется еще и тем, что термин "искусственный интеллект" чисто условный. Это понятие до сих пор не определено. Остроумное определение типа "наука, которая заставляет делать машину то, что человек считает интеллектуальным, когда делает это сам", к сожалению, малоконструктивно, а иногда и прямо заводит исследователей в болото практического формализма.
    Известно, сколько шума и научной суеты породил знаменитый тест Тюринга "Если я не догадаюсь, что со мной беседует машина, то эта машина уже достигла интеллектуального уровня человека". Чтобы исключить проблему машинной речи, такой диалог лучше вести с помощью телетайпа. Для многих кибернетиков, как казалось, недосягаемый тюринговский уровень открыл блестящую перспективу. Как из рога изобилия посыпались различные электронные собеседники. В конце 60-х годов американский кибернетик, преподаватель Массачусетского технологического института Дж. Вейценбаум изготовил несколько программ, основная цель которых в условиях теста Тюринга - сбить с толку придирчивого эксперта. В основе этой работы лежит идея псевдореального диалога. При таком диалоге имеется только видимость беседы. "Собеседник" фактически не вникает в смысл сообщаемого, а строит свой ответ на основе несложного формального преобразования услышанного.
    - Прийти к вам мне посоветовал приятель; он говорит, что это несколько развлечет меня, - говорит исследователь.
    - Прийти сюда посоветовал ваш приятель? - удивляется машина.
    - Он говорит, что у меня вечно депрессия.
    - Мне очень жаль, что у вас депрессия.
    Дж. Вейценбаум придумал свою обворожительную "Элизу" после того, как досконально изучил скучные салонные беседы. Он заметил, что некоторые из его соотечественников обладают способностью отвечать собеседнику, не проявляя при этом к нему никакого интереса, но они все же очень хорошо умеют поддерживать диалог. "Элиза", унаследовавшая эту способность, отыскивает в вопросах ключевые слова, формируя после этого стереотипные ответы, которые кажутся вполне уместными. "Дама", таким образом, наделена некоторым интеллектом, но на самом деле это лишь ограниченная притворщица. "Элиза" очень проста: определенные ключевые слова во фразе человека заставляют ее реагировать, подставляя определенные речевые обороты.
    Например, если машина читает предложение: "Ты неизвестно что", она отвечает: "Почему вы думаете, что я неизвестно что?" Велеречивая "Элиза" просто салонная болтунья.
    В отличие от нее "Пэрри" - программа, созданная К. Колби в Стенфордском университете, призвана помочь начинающим психиатрам приобрести некоторый опыт в беседе с тяжело больными пациентами. Программа моделирует человека, страдающего манией преследования. В программу заложена определенная биография. Пэрри 28 лет, он холост, работает на почте. Он легко раним, чувствителен ко всему, что касается его внешности, образования, убеждений. Его любимые занятия - кино и скачки. Как-то он набросился на букмекера, заведующего ставками на ипподроме, из-за того, что тот не выплатил ему выигрыша, и с тех пор страшится мести преступного мира. Во время разговора эмоциональное состояние Пэрри часто меняется. Если ведущий беседу человек слишком часто затрагивает "больные места", Пэрри начинает волноваться, у него появляются симптомы паранойи.
    - Вы боитесь преступного мира?
    - Мафия - самые страшные гангстеры.
    - Вы связаны с мафией?
    - Видите ли, они меня знают.
    - Откуда они вас знают?
    - Они следят за мной.
    - Почему?
    - Хотят сочинить что-то обо мне, чтобы меня посадили.
    - Что они имеют против вас?
    - Они хотят со мной покончить.
    - Почему?
    - У меня есть против мафии кое-какие улики.
    Когда группе психиатров была предоставлена возможность побеседовать посредством телетайпа с настоящим больным и с программой Пэрри одновременно, то они, хотя и знали, что один из собеседников - машина, не могли отгадать, кто именно. Таким образом, тест Тюринга начал действовать.
    Интересное событие произошло позже, когда уже упомянутый нами Дж. Вейценбаум создал модель врача-психиатра для лечения некоторых больных с признаками расстройства типа неврозов. Возникла идея "вылечить" Пэрри с помощью программы врача. Вот пример происходящего между ними диалога:
    В. Здравствуйте. Расскажите, на что вы жалуетесь.
    П. Люди иногда действуют мне на нервы.
    В. Я не уверен, что полностью вас понимаю.
    П. Вам следует быть повнимательнее.
    В. Пожалуйста, продолжайте.
    П. Как-то я пошел на ипподром в Бэй-Медоус.
    В. И с чем вы это связываете?
    П. Я пошел на скачки.
    В. Что еще вы хотели бы обсудить?
    П. Я интересуюсь скачками.
    В. Почему вы это говорите?
    П. Там жульничают в игре.
    В. Я не уверен, что полностью вас понимаю.
    П. Вы настоящий зануда.
    В. Вам нравится считать меня настоящим занудой?
    П. Я сыт по горло.
    В. И с чем вы это связываете?
    П. До свидания.
    В. Мне было очень приятно с вами познакомиться.
    С вас 399 долларов 25 центов.
    Неплохой диалог, хотя доктор немного "плавает".
    Программисты надеются со временем настолько усовершенствовать программу "Пэрри", чтобы молодые врачи в процессе диалога могли "вылечить" искусственного больного, и тогда студенты смогут практиковаться в разговоре с машиной, не подвергая действительно больных людей риску пострадать от неумелого лечения.
    Еще важнее научить машину улавливать суть того или иного сообщения. Различают два типа общения с компьютером: ограниченная беседа и ограниченное понимание. При ограниченной беседе машина "понимает" все, что ей говорят, но лишь в случае, если затрагивается определенная тема скажем, шахматные ходы или построение конструкций из кубиков. При ограниченном понимании можно разговаривать с машиной о чем угодно, но она далеко не всегда вас полностью поймет. Именно такова программа "Элиза", разработанная Дж. Вейценбаумом. "Элиза" способна лишь на поверхностное понимание предметов и явлений.
    Однако по мере развития теории и практики кибернетического диалога речь машины становится все более и более осмысленной. Вспомним ревнивую Мэгпай, которой начинался этот параграф. Тест Тюринга начал срабатывать все чаще и чаще.
    Вице-президент одной американской компании, занимающейся производством ЭВМ, сам того не подозревая, оказался подвергнут тестированию по критерию Тюринга. Вот какой диалог по телетайпной связи произошел у вице-президента с системным программистом Д. Бобровым, сотрудником той же компании:
    В-пр. Нельзя ли мне сейчас воспользоваться ЭВМ?
    Бобров. Почему вы спрашиваете?
    В-пр. Может быть, мне удастся заключить сделку.
    Бобров. Почему вы в этом уверены?
    В-пр. Мои предполагаемые покупатели никогда не видели нашу систему в действии.
    Бобров. Это имеет для вас большое значение?
    В-пр. Конечно.
    Бобров. Вы как будто сомневаетесь в этом?
    В-пр. Что за нелепое замечание?
    Бобров. Что вы имеете в виду, говоря о нелепом замечании?
    В-пр. Возражаете ли вы против того, чтобы я сейчас воспользовался ЭВМ?
    Бобров. Расскажите мне побольше о ваших предполагаемых покупателях.
    В-пр. Позвоните мне 491-18-50.
    Когда звонка от Д. Боброва не последовало, разгневанный вице-президент начал отчитывать своего секретаря, и тут выяснилось, что телетайпный коммутатор соединил его не с самим Д. Бобровым, а с той самой системой, которую вице-президент и хотел предложить заказчикам. Таким образом, критерий Тюринга быстро девальвировал в глазах кибернетиков, так и не поведя нас к границам подлинной интеллектуальности компьютеров.
    ЗА СОВЕТОМ К РОБОТУ
    Пока одни ученые разрабатывали принципы кибернетического диалога, другие практики и прагматики стремились запрячь эту новую способность машины в телегу научно-технического прогресса. Они решили предложить машине некоторый объем знаний из очень конкретной области.
    Все полученные машиной элементы информации связаны между собой сложной системой взаимозависимых отношений. Прибегая чаще к аналогиям и заключениям, чем к логическим выводам, машина сортирует, объединяет и синтезирует эти элементы, постепенно развивая свою способность "мыслить".
    Первые такие машины появились в конце 50-х годов.
    Они доказали около сорока теорем и решали простые задачки типа "постройка детской пирамиды".
    Уже в 60-х годах можно было побеседовать о погоде с машиной, имеющей понятие о метеорологии и обладающей знаниями синтаксиса, которые ей необходимы для правильного построения фраз. Когда, например, ей говорили: "Я не люблю дождь летом", она очень вежливо отвечала: "Да, но дождь летом бывает не так часто".
    Другая программа, получившая название "Бейсбол", отвечает на все вопросы, связанные с матчами года: место встречи, счет, состав команд. Что касается программы "Сэд Сэм", то она уже стала интересоваться семейными отношениями своих собеседников, правда, не имея о том никакого понятия. И только в 1965 году машина "Сэр" стала больше внимания уделять значению слов, а не их расстановке во фразе. А машина такого же типа "Стьюдент", как хорошо успевающий учащийся, решала уравнения первого порядка, формулируя последовательность их решения на беглом английском языке.
    Чем в большей степени вводимые в машину знания относятся к специальной области, тем больше шансов существует за то, чтобы машины их освоили. В настоящее время некоторые из них являются самыми настоящими "экспертами". Они уже помогают специалистам определять, например, насколько богат рудой тот или иной геологический пласт, или ставить диагноз при инфекционном заболевании.
    Для создания таких искусственных "специалистов" необходимо передать им знания специалистов-людей.
    Но, как это ни парадоксально, главная трудность как раз заключается в том, чтобы "изъять" эти знания из мозга человека. Врач, например, ставит свой диагноз, исходя из опыта, следуя при этом правилам, которыми он пользуется почти бессознательно, автоматически.
    И вот исследователи проводят долгие часы, интервьюируя врачей и других специалистов, чтобы затем уяснить для себя основные закономерности, свойственные процессу их мышления. Как только удастся восстановить весь ход их рассуждений, будет относительно несложно воспроизвести его в программе вычислительной машины.
    Начиная с 1965 года машина "Дендрал" - первый искусственный "специалист", созданный в Стенфордском университете Э. Файгенбаумом, помогает химикам определять молекулярную структуру веществ. Другой эксперт, "Проспектор" ("Старатель"), тщательно исследует геологические карты и пробы грунта для определения возможных месторождений. В штате Вашингтон им было открыто богатое месторождение молибдена.
    Что касается машины "Медцин", ее программа была составлена в 70-х годах, то она ставит диагнозы при инфекционных заболеваниях, если ей сообщат результаты анализов и основные симптомы заболевания. И что самое важное, она в любой момент объяснит причину, по которой ставит именно такой диагноз, а не другой, если таких объяснений потребует от нее пользователь.
    В университете Питтсбурга специалист по компьютерам Г. Поупл и специалист по внутренним болезням Дж. Майерс создали программу "Кадуцей", которая содержит в своей памяти больше симптомов болезней, чем смог бы в любом случае запомнить врач. Программа позволяет ЭВМ комбинировать факты, оценки и суждения и ставить сложные диагнозы. Машина ставит диагноз?
    Да! И вот тому пример. В этот компьютер были однажды введены детальные сведения о пожилом человеке, доставленном ночью машиной "скорой помощи" в университетскую клинику. У него был плохой вид и одышка. Сердечный приступ? "Это было мое первое предположение", - рассказывал доктор Майерс.
    Принимая во внимание картину состояния больного - отсутствие болей в области грудной клетки, перенесенный ранее сердечный приступ, нормальное давление крови, запись в истории болезни о диабете, - компьютер отверг более десятка предположенных заболеваний, предварительно оценив их проявления, а затем на экране появилось сообщение о главном подозрении: "предварительный диагноз - диабет сахарный".
    Компьютер запросил об уровне сахара в крови у больного. Довольно высокий. Он задал другие вопросы, чтобы вынести завершающее решение по диабету, а затем объявил: "отвергнуть диагноз - диабет -сахарный".
    Далее последовали новые диагностические вопросы о шумах в сердце, о результатах прослушивания дыхания (дыхательных шумов) и рентгеновского просвечивания грудной клетки... Через несколько минут компьютер вынес заключение, что больной является жертвой сердечного приступа. Врачу потребовалось бы несколько дней, чтобы прийти к такому же решению.
    В сложных или в необычных случаях "Кадуцей" ставил более правильный диагноз и тщательнее, чем это делали практикующие врачи. По словам доктора Дж. Майерса, компьютер почти всегда соглашался с врачом-специалистом, у которого было достаточно времени, чтобы изучить каждый симптом у пациента.
    После проведения дополнительных испытаний "Кадуцей" смог бы стать обычным советчиком докторов, и он, возможно, даже уменьшит стоимость медицинского обслуживания, поскольку врачам придется назначать больным меньшее число анализов, руководствуясь вопросами компьютера. Ведь не секрет, что лечение в США, включая анализы, стоит очень дорого.
    Уже существует около 50 таких новоиспеченных "специалистов". Предсказывают, что у них будет многочисленное потомство. В Японии, например, работают над созданием ЭВМ, которая будет автоматически переводить и отпечатывать документы, совершая для этого распознавание живой и письменной речи. Все, чго придется делать пользователю, - это произносить команды. Если машина не поймет, она заговорит, будет задавать вопросы. Она будет делать выводы на основе собственных "суждений". Кроме того, она будет учиться, запоминая свои ошибки.
    Возможно, что "экспертные системы" будущего станут давать советы не только инженерам, врачам и химикам, но даже любителям-цветоводам, ухаживающим за прихотливыми комнатными растениями. Они обретут роль обычных, будничных консультантов.
    РОБОТЫ
    ВОКРУГ НАС
    ТАМ, ГДЕ ТРУДНО, ВРЕДНО, ОПАСНО
    Ежегодно шахтерами выдается на-гора более 70 миллионов тонн угля, количество, конечно, впечатляющее.
    Однако средний прирост добычи из года в год снижается, и есть тому объективные причины. Главная - в том, что добывать уголь из-под земли становится все трудней. Поэтому в постановлении ЦК КПСС и Совета Министров СССР (1981 г.) "О мерах по ускорению технического перевооружения шахт Министерства угольной промышленности СССР" сказано, что надо уделить самое серьезное внимание созданию и внедрению автоматизированных средств добычи угля без постоянного присутствия людей в забоях.
    В чем же состоит техническая сторона вопроса?
    В 30-е годы шахтерский мир всколыхнул рекорд А. Стаханова. Тогда же появились тысячи его последователей, верно уловивших суть: если раньше забойщик сначала отбивал уголь, а затем сам же укреплял кровлю забоя деревянными стойками, то А. Стаханов рубил и рубил уголь, молотка из рук не выпуская, кровлей же занимались шедшие за ним крепильщики.
    Так пришло в шахты разделение труда - первая предпосылка автоматизации.
    Вскоре мощные угольные комбайны вытеснили отбойные молотки, а деревянные стойки заменила гидравлическая механизированная крепь. Комбайн ходил вдоль штрека, слой за слоем снимая уголь.
    Изобретатели, оценив этот процесс с точки зрения его комплексной автоматизации, отметили главные недостатки. Первый: добыча угля в каждый момент времени сосредоточена около единственной точки пласта, где в него "вгрызается" бешено вращающаяся головка комбайна. И второй: крепежные секции перемещаются независимо друг от друга. Отсюда вывод: чтобы полностью автоматизировать такой процесс, необходимо связать комбайн и крепь в единый комплекс системой датчиков, управляющих и исполнительных узлов.
    И вот появился первый проект робота-шахтера. Его двенадцать резцов движутся по забою, снимая уголь уже по всей кромке пласта. Непрерывную подачу агрегата в забой осуществляют части секций крепи, которые в данный момент подпирают кровлю. Оставшиеся ни во что не упираются, а подтягиваются вслед за комбайном.
    Догнав его, крепи занимают рабочее положение и теперь сами толкают систему. Затем наступает черед шагать другим опорам, домкраты которых раньше были основным держателем. И так далее. Получается, что крепь движется в забое, как червяк в грунте, непрерывно продвигаясь вперед.
    Таким агрегатом, высвободившим труд многих горняков, управляет всего один человек, да и тот переместился в штрек, куда вынесен пульт управления.
    Это в общих чертах идея робота-шахтера. Однако прежде, чем она стала реальностью, предстояло рассчитать ее конкретные узлы, "привязать" их параметры к условиям забоя. Ведь пласт имеет сложную, порой весьма искривленную конфигурацию, в которую должен вписаться умный агрегат. Кроме того, ему необходимо двигаться в пласте с заданной скоростью по определённой траектории.
    Но вот появились и первые успехи: "Мировой рекорд добычи из крутых пластов! С помощью робота-шахтера АК-3 выдано на-гора 2595 тонн в сутки".
    Агрегат зарекомендовал себя отлично. Он может заменить работу восьми участков шахты численностью 450 человек.
    Его изобретатель А. Долинский стал победителем Всесоюзного конкурса Минуглепрома СССР, создав лучший проект безлюдной выемки. Появился приказ о серийном изготовлении АК-3 на Киселевском машиностроительном заводе. В 1980 году право на изготовление агрегата приобрела одна из западногерманских фирм.
    Агрегат А. Долинского - первое поколение роботизации подземных работ. Пока еще при АК-3 должен, правда, в штреке находиться человек. Но конструктивные особенности агрегата таковы, что он близок к тому, чтобы стать истинным роботом. Прежде всего ему необходимо очувствление для определения границы "порода - уголь". Здесь самым перспективным считается изотопный метод, позволяющий вести анализ границы с помощью радиоактивного излучения.
    Очувствление роботу-шахтеру необходимо еще и потому, что обстановка в забое меняется практически каждую минуту: может измениться угол наклона пласта, прорваться вода или обрушиться свод. Чтобы робот мог ориентироваться в любой ситуации, следить за тонкостями процесса, ему нужен телеглаз. Но электроаппаратура, в том числе и телевизионная в традиционном исполнении, для шахт неприемлема: она взрывоопасна.
    Здесь вполне подойдут гибкие световоды. Обрабатывать информацию от датчиков и управлять всем процессом работы станет микро-ЭВМ, вынесенная из опасной зоны в штрек. А свяжут компьютер с агрегатом те же световоды.
    Разработка всех этих средств управления намечена программой Минуглепрома СССР по созданию и внедрению автоматических манипуляторов (промышленных роботов). Естественно, агрегат А. Долинского только часть этой обширной программы. В ней также предусмотрено освоение в 1990 году серийного производства многих видов добычного и проходческого оборудования с автоматическим управлением. Кроме того, будут выпущены манипуляторы и для вспомогательных операций: транспортировки, погрузки и разгрузки угля.
    И наконец, две шахты к 1990 году станут шахтами будущего: управление здесь полностью передадут автоматике.
    Существуют и другие роботы-шахтеры, добывающие, например, руду. Но здесь есть масса специфических проблем. Уголь - порода сравнительно мягкая. Комбайн рубит его непрерывно. В рудниках же основным добывающим "инструментом" пока является взрыв. Без него, увы, не обойтись. Технологическая схема добычи давно устоялась, хотя отрицательных моментов хватает.
    Скажем, на проветривание штрека после взрыва уходит не меньше смены. В это время все замирает, ведь работать в пыли людям невозможно. Раньше все происходило так: рабочий нес на плече перфоратор - сверлильное устройство, напоминающее отбойный молоток; высверливал в стене штрека несколько отверстий. Следом приходил взрывник, закладывал в отверстия взрывчатку, подсоединял проводку, уходил в безопасное место. Взрыв! Густое облако пыли заволакивало все вокруг. Когда штрек проветривался, приезжал экскаватор и грузил отколотую взрывом породу.
    Первая волна механизации и автоматизации началась лет пятнадцать назад. Перфоратор стал самоходным, повышенной мощности, а значит, и производительности. Рабочий толкал впереди себя тележку, жало перфоратора вгрызалось в породу. Все-таки это лучше, чем таскать железную махину на плечах и держать на весу при сверлении. Появились скреперные лебедки, диспетчерские системы связи и многое другое.
    Но вот появился и робот-рудокоп, уже не просто перфоратор, а целая система, которая автоматически "прицеливается" в стену штрека, предварительно датчиками нащупав его верхнюю кромку. Разводит буры на нужные расстояния друг от друга. Процесс бурения контролирует мини-компьютер "Электроника-60". Он реагирует на крепость породы, ведь она часто меняется по мере углубления бура, регулирует число оборотов, усилие подачи бура, дает команды на переход от вращательного к ударно-вращательному способу сверления.
    Программой предусмотрены специальные меры против заклинивания и поломки бура. Производительность повышается в три-четыре раза, условия труда, естественно, улучшены, человеку остаются лишь функции наблюдателя.
    Рабочий макет такого робота создан и испытан. Это первый представитель первого поколения шахтных роботов-рудокопов. Он наделен гибкой программой, действует в забое сообразно обстановке. Человеку остается контролировать его труд на расстоянии, ремонтировать и, наконец, совершенствовать.
    Сейчас этот робот проходит полупромышленные испытания, после чего будут изготовлены промышленные образцы. Организаторы проекта с самого начала расчленили технологическую цепочку на отдельные звенья.
    Каждое звено разрабатывается самостоятельно. Для бурения - свой робот, для погрузки руды - свой, для учета и контроля рудодобычи - свой. Целая бригада роботов. Они должны зарекомендовать себя на деле.
    После очередного взрыва требуется погрузить и вывезти куски отломанной породы. Наибольшая опасность подстерегает человека в забое именно в этот период.
    Задача: с помощью робота полностью автоматизировать погрузку и вывозку руды. Разработчики уже демонстрируют лабораторный макет такого робота второго поколения. Это колесная тележка с ковшом, снабженная телекамерой. Граница груды камней на экране отображается сплошной линией. Она дает иной отсвет, чем окружающие пол и стены. Информация обрабатывается бортовым компьютером. Определяется расположение взорванной массы в забое, ее конфигурация. Тележка сама подъезжает к камням и начинает погрузку в бункер. Загрузившись, уезжает из забоя. Вместо телекамеры разработчики попробовали установить инфраприемник, выяснилось, что температура взорванной массы выше пола и стен штрека, значит, стоит попробовать ориентироваться по тепловому излучению. Выигрыш несомненный, телекамера, как и человек, не видит в пыли, которая поднимается после взрыва. Приходится ждать. А инфраглазу эта пыль не помеха.
    У шахтного робота давно не стало противников.
    А у директора института Ш. Болгожина новые заботы.
    Найден полигон - давняя мечта директора. До сих пор все испытания проводили в действующей шахте. У шахтеров план, а тут ученые со своими поделками мешают.
    Теперь будет иначе. В сотне километров от Алма-Аты, возле Копчегайской плотины, ученым дали несколько гектаров каменистой местности. Испытания и доводки роботов будут проводиться там. Только потом готовый робот придет в шахту.
    Добыча полезных ископаемых ведется не только под землей, но и под водой, их запасы там огромны и нетронуты. Вот характерный пример: по прогнозам геологов, под дном океана между побережьем Южной Африки и Бразилии находится алмазная жила, превосходящая все мировые запасы во много тысяч раз.
    Мировой океан. Он занимает большую часть нашей планеты, так что с чисто формальной точки зрения ее нужно было бы назвать не Земля, а Вода. Человек уже давно вступил в сношения с этой частью своего космического дома, черпая из нее прежде всего пищу и другие продукты обихода. Сравнительно недавно добыча полезных ископаемых сначала робко, а затем все более уверенно переместилась в океан. Вспомним целый город Нефтяные Камни, отвоевавший у Каспия не одну тысячу квадратных метров.
    Хронологически непромышленная подводная роботология даже опережает промышленную. Взять хотя бы первые манипуляторы, предназначенные для подводных работ на глубине, где пребывание человека обходится во много раз дороже, чем любая хитроумная автоматизация. Сейчас потомки этих роботов-первопроходцев активно осваивают "голубой космос".
    Робот для подводной добычи нефти с глубин до 600 метров испытан французской компанией "Эльф-Аквитэн". Хотя основные машины и агрегаты при разработке нефти в море находятся над водой, на платформе для бурения, и под водой хватает работы. Между тем водолазы с трудом справляются со сложными монтажными и ремонтными работами на глубинах более трехсот метров. Заменить их и должен робот, который будет действовать на месторождении нефти у берегов Габона. Масса робота, который получил название ТИМ, 12 тонн, он снабжен двумя руками с усилием по сто килограммов и подъемной стрелой с грузоподъемностью полторы тонны.
    В США сконструирован робот-водолаз, очищающий днища судов. Повинуясь программе, робот, снабженный воздушными двигателями и магнитными гусеницами, ползает по днищу судна и скребет его вращающейся щеткой. Экономия явная. Не нужно ставить судно в док, не потребуется бригада водолазов.
    Сейчас более двадцати разновидностей роботов-подводников ведут научные исследования дна морей и океанов.
    Из недр космоса "голубого" роботы "нырнули" в космос межпланетный, ведь условия там поистине космические: космический холод, космический вакуум, космическое излучение.
    Есть ли жизнь на других планетах? Одиноки ли мы во вселенной? Ответ на эти вопросы предстоит впервые получить не человеку, а роботу. Великая честь представлять нашу планету на космической встрече "в верхах" принадлежит потомкам автоматических промышленных манипуляторов космическим киберам. Жители других планет впервые увидят роботов как наших полномочных посланников. И по их образу и подобию будут судить о нас. Представляете, какая ответственность!
    Самым ярким примером прорыва робототехники в космические сферы является выдающаяся победа в освоении межпланетного пространства советскими станциями "Венера-13" и "Венера-14". Эти межпланетные роботы проникли туда, куда прежде проникало лишь воображение человека. И это не прогнозы и не фантастика, а впечатляющая реальность сегодняшнего дня.
    Путь "Венеры-13" был долгим и сложным - дорогу длиной в триста с лишним миллионов километров станция преодолела за четыре земных месяца, дважды по командам с Земли корректировалась ее орбита, чтобы обеспечить встречу станции с планетой.
    Задача осложнялась тем, что спускаемый аппарат решено было посадить именно на освещенной стороне планеты, так, чтобы высота Солнца над местным горизонтом была не меньше 70-80 градусов. Этим обеспечивались наилучшие условия для телефотометра - "глаза" спускаемого аппарата. Но при соблюдении таких жестких условий посадки наземные пункты не могли вести прямое управление полетом спускаемого аппарата. Надежда была на автоматику, и она "нашла выход из положения" - за двое суток до подлета к планете спускаемый аппарат автоматически отделился от орбитального отсека и продолжал двигаться по траектории, которая привела его прямо в атмосферу Венеры в заданном районе. Орбитальный же отсек был автоматически переведен на такую орбиту, что, пролетая мимо планеты, он одновременно "видел" и Землю, и спускаемый аппарат, выполняя роль ретранслятора-"связника" между ними.
    Раскаленный шар спускаемого аппарата, приближаясь к поверхности Венеры, постепенно усмиряет свой бег. Вот сброшена сферическая теплозащитная оболочка, посадочный аппарат повисает на парашюте, вот сброшен и он... На экранах Центра управления полетом вспыхивают первые результаты измерений: температура, давление, высота... И вот в зале раздаются дружные аплодисменты - на экране появляются уже чем-то знакомые, но все-таки новые камни Венеры.
    Не скоро еще человек сам полетит на Венеру - очень уж негостеприимна эта небесная красавица. Но он поставил себе на службу верных помощников в освоении вселенной - автоматических космических роботов.
    И сейчас ученые ждут от посланцев Земли новых успех~"в. Вращаются вокруг Венеры новые роботы - "Венера-15" и "Венера-16". Счастливой работы вам, космические коллеги.
    Да, слово "Земля" недаром вызывает у нас, современников космической эры, ассоциации с голубым шаР"ком, так прекрасно выглядящим из космоса. Однако эта ассоциация свойственна лишь последним десятилетиям, до начала космической эры "Земля" означала всего лишь землю, то есть почву и грунт, поле, пашню и ниву. Роботология наших дней, несмотря на всю "занятость" высокими проблемами космоса, нет-нет да и посмотрит "себе под ноги" на землю.
    Вот несколько фактов. На Украине уже прошел испытания автоматический свеклоуборочный комбайн.
    Агрегат уверенно двигается вдоль грядок, хотя его ведет не человек, а робот - специальная следящая система. Аналогичная машина создана для уборки хлопчатника. Уже работают полностью автоматизированные теплицы и системы орошения, включающие климатроны - установки искусственного климата в зависимости от погодных условий.
    Появился и робот-колхозник, хотя телосложением он совершенно непохож на человека и с виду кажется неказистым и неуклюжим, но впечатление это обманчиво.
    В отделе робототехники Московского института инженеров сельскохозяйственного производства по инициативе члена-корреспондента ВАСХНИЛ, заместителя министра сельского хозяйства СССР Б. Рунова для него выбрали профессию животновода. А чтобы ею овладеть, нужны мобильному автономному роботу немалая сноровка и ловкость.
    Именно на эти качества первенца животноводческой робототехники особенно обращал внимание начальник отдела В. Васянин. Трудно представить, как, например, станет какой-то металлический шкаф ухаживать за живой коровой. Все-таки ферма не цех, где роботу достаточно выполнять заданный набор механических движений. Тут будут рядом с ним беспокойные животные со своим нравом, привычками, капризами. Чтобы к ним приноровиться, нужна еще и элементарная сообразительность, а у созданного первенца-робота даже головы нет. На месте ее в верхней части "шкафа" поблескивают линзы телеобъективов.
    Переключены клавиши на пульте управления - робот оживает. Сигнал "действовать" он получает от мини-компьютера, скрытого в его механическом корпусе.
    Вот он бойко покатился по комнате. Хоть всех присутствующих при демонстрации и предупредили, что он никогда не заденет живое существо, человек невольно отступает в сторону, когда мимо проезжает металлический корпус 185-сантиметрового роста. Робот быстро и аккуратно объехал столы, стулья. Целенаправленно устремился в угол комнаты, где стояло ведро. Резиновые пальцы подцепили ведро за край, другая рука опустилась на дно, к тряпке. Взаправду должен бы он вымыть стены каустиком - ведь именно им дезинфицируют фермы. Пока же обходится он обычной водой. Похожие на щупальца руки плавно, быстро, круговыми движениями моют стены. Скованности в действиях машины не чувствуется. У каждой руки восемь степеней свободы. А проще - поворачиваются и сгибаются в любую сторону. Двигается вокруг своей оси и верхняя часть "тела".
    Такая мобильность позволяет роботу выполнять все обязанности скотника. Он умеет накормить животное, проверить, все ли животные здоровы, может следить за температурой и влажностью воздуха на ферме, взвешивать, маркировать свиней или коров, переводить их в другое помещение.
    Чтобы робот смог это сделать, для него пришлось разработать подсистемы распознавания образов, множество сенсорных органов, гибкую память и многое другое. Кстати, конструкторы применили впервые для памяти видеомагнитофонную ленту, благодаря чему робот научился сличать образы разных животных и даже одних и тех же, но в разные периоды роста.
    Конструкторам пришлось немало сил отдать сельскохозяйственной подготовке, изучить нрав животных, их физиологию и биомеханику. Они с секундомером следили за скоростью передвижения свиньи и коровы, узнавали, как далеко они могут отставлять ногу вперед и в сторону, определяли, с какой силой нужно брать в руки поросенка или теленка, чтобы не повредить ему.
    Но вот он появился на свет. И начались новые проблемы: оказалось, все предусмотреть заранее просто невозможно. В первый же "выход в свет" на объектив телекамеры - глаз робота - села муха, и он ослеп.
    Пришлось делать устройство, имитирующее действие человеческого века.
    Когда робота впервые ввели в загон к свиньям, они отъели у него резиновые части кистей рук. Видимо, животных чем-то привлек их запах. Значит, следовало придумать что-то, что заменило бы роботу железы, выделяющие защитный аромат.
    А как должен вести себя робот в конфликтной ситуации, например, когда дерутся быки?
    "Что вы делаете в это время?" - спрашивали инженеры у опытных животноводов.
    "Убегаем", - полушутя отвечали те.
    Робот не должен знать страха. И его создатели стали искать аналог поведения человека в сходной ситуации. Кто-то вспомнил, как в деревне задир-собак разливают холодной водой. Роботу вручили в руки брандспойт. Ледяная струя успокоит разгоряченных животных.
    Разработаны принципы построения роботов и робототехнических комплексов для разных отраслей сельского хозяйства: растениеводства, хлопководства, овощеводства в закрытом и открытом грунте и других. Есть проекты роботов для технического обслуживания и малого ремонта автотракторной техники, например проект робота-заправщика. Двадцать четыре модификации спроектированной в отделе техники позволили бы заменить весь парк машин и механизмов, который сейчас занят в сельском хозяйстве страны.
    Однако, чтобы робот-животновод стал реальностью, необходимо не только изготовителям, но и потребителям быть заинтересованными в его внедрении. Готовы ли колхозы дать такому роботу посильную работу? Где его следует применить в первую очередь?
    Вот что думает по этому поводу председатель одного из передовых в Волынской области колхоза "Имени XXVI съезда КПСС" Е. Вощук. "Внедряя роботов, следует прежде всего думать о людях. В сельскохозяйственном производстве еще много не только тяжелой, но и вредной и даже опасной работы. Это - уборка навоза, работа с химическими удобрениями и гербицидами.
    Вот куда бы в первую очередь направить такую технику. Примем ее с распростертыми объятиями".
    Ведутся разработки сельскохозяйственных роботов и компьютеризованных киберов и за рубежом.
    Одна английская фирма начала производить пугалароботы. Они не только непрерывно издают различные пронзительные звуки, но и излучают ночью разноцветный свет. Однако самое главное их достоинство в том, что они умеют ходить - перемещаются по полю или огороду согласно определенному маршруту. Будем надеяться, что такая борьба с пернатыми вредителями эффективнее, чем традиционные пугала, к которым птицы быстро привыкают и перестают их бояться.
    Австралийские инженеры заняты в настоящее время проблемой создания автоматических устройств - роботов для стрижки овец. Управление роботами производится ЭВМ. Уже созданы первые приспособления этого типа.
    Специалисты стремятся выявить наиболее эффективные положения овцы по отношению к роботу-стригалю, способствующие сокращению времени стрижки до минимума. Пока скорость стрижки овец с помощью автоматов не превышает тридцати сантиметров в секунду, но ученые надеются довести эту скорость до одного метра в секунду, что позволит состригать девятнадцать килограммов шерсти в минуту. При такой скорости робот должен "видеть", что находится на пути движения его режущего инструмента. Поэтому инженеры Аделаидского университета сейчас исследуют методы ультразвукового обнаружения сосков и рогов животного, прежде чем к ним приблизится рабочий инструмент. Необходимо также создание системы точных датчиков для предотвращения порезов овец, которая обеспечила бы перемещение инструмента на расстоянии нескольких миллиметров над поверхностью кожи.
    Одна австралийская фирма создает сейчас экспериментальную модель робота-стригаля на основе известного автоматического манипулятора ПУМА. Иммобилизацию овец, то есть сохранение их неподвижного состояния во время стрижки, специалисты этой фирмы предлагают производить электрическим током. Однако при этом требуется специальное оборудование для постоянного контроля за состоянием животных, так как применяемый для этой цели пульсирующий ток может вызвать остановку дыхания.
    РОБОТЫ У НАС ДОМА
    Робот промышленный и робот непромышленный призваны заменить человека там, где ему трудно, вредно, опасно. Тогда какое отношение имеют роботы к нашему дому? Разве дома вредно? Разве опасно? Разве трудно? Мы возвращаемся домой после работы, приходим туда отдохнуть, заняться любимым делом, пообщаться со своими близкими. Зачем нам тут робот? Рассуждающий так никогда, вероятно, не сталкивался с домашним хозяйством, скорее всего это мужчина или юноша, живущий по весьма удобному принципу разделения труда. Мужские занятия - привык думать он - ходить на работу (на охоту, за добычей), женские - сидеть дома (хранить домашний уют, поддерживать огонь в очаге).
    Однако стоит вспомнить, что большинство современных женщин тоже работают, как эти "вековые" аргументы рассыпаются как карточный домик. Чисто женские занятия - это и "ходить на работу", и "поддерживать огонь в очаге", и "воспитывать детей", и, самое важное, "оставаться женщиной" привлекательной и нежной.
    Заглянем в глубь домашней технологии. Сейчас в быту используется масса всевозможных приборов, упрощающих домашний труд: стиральная машина (полуавтомат или автомат), электромясорубка или кухонный комбайн, соковыжималка, кофемолка, кофеварка, картофелечистка, хлеборезка, тостер, печь "Электроника", холодильник, электрокамин, пылесос, посудомоечная машина и многое другое. Облегчают ли эти устройства труд женщины? Безусловно, облегчают! Легко ли сейчас женщине в домашнем хозяйстве? Нет! Может быть, даже еще труднее.
    Ситуация у нас дома в некотором смысле моделирует ситуацию в промышленности. Действительно, имеются довольно совершенные автоматы, кухонные комбайны (своеобразные обрабатывающие центры), но загружать и выгружать, ставить, вынимать и вставлять, расставлять и развешивать должна женщина.
    Если теперь ответ на вопрос, зачем нужен домашний робот, еще не созрел в мозгу читателя, то мы напрасно вели наш рассказ о поколениях роботов.
    Президент компании "Юнимейшн", ведущей производство промышленных роботов, Дж. Энгельбергер обещает, что уже в 1985 году специалисты его фирмы выпустят на рынок робота-слугу. Его уже окрестили Айзеком в честь А. Азимова, писателя - фантаста и популяризатора науки. Что будет делать этот робот?
    Например, повинуясь устным командам, подойдет к буфетной стойке, возьмет своими длинными механическими пальцами кофейник и поставит его на плиту.
    Достанет с полки и поставит на стол тонкую фарфоровую посуду, поставит молоко и сахар, после чего, заварив кофе, голосом или специальным музыкальным сигналом возвестит о начале ужина. Это, конечно, будет впечатляющее зрелище, и ваши гости будут иметь тему для разговора за едой. Такой робот-слуга будет способен не только накрыть на стол и убрать с него, но и помыть посуду, приготовить постель, открыть окно, произвести в квартире уборку (от стирания пыли до чистки ванны и раковины), может стирать, сушить, гладить белье, чистить овощи.
    А вот и воплощенные замыслы. На фотографии, помещенной в колумбийском журнале "Кромос", робот "Эро" выгуливает собаку. Внешне этот робот выглядит как невысокий пуфик на маленьких колесиках, сбоку которого манипулирует небольшая, около полуметра, рука. Собака, по-видимому, совершенно безразлична к своему кибернетическому "двойнику", который крепко держит поводок в руке. Еще этот небольшой помощник может убирать постель, вызывать полицию, накрывать на стол, мыть стены, содержать в порядке библиотеку.
    Причем память робота настолько совершенна, что он выполняет все это с безукоризненной точностью. Программа всех необходимых операций и детальный план комнат закладывается в компьютер, установленный в- корпусе робота.
    Выпущенный в США домашний робот "Комро-1" - еще один довод в пользу того, что мечты фантастов начинают сбываться. Он может открывать и закрывать двери, подавать гостям напитки, выносить мусор, прогуливать собаку, развлекать своих хозяев радио- и телевизионными программами.
    Конструкторы утверждают, что, хотя многим новое изделие кажется игрушкой, на самом деле оно открывает новый этап на пути полной автоматизации домашнего хозяйства. Единственная рука механического слуги обладает несколькими степенями свободы и легко манипулирует даже мелкими предметами. На случай непредвиденного столкновения с мебелью и стенами имеется специальная система защиты. Управляется робот дистанционно, а при надобности программируется.
    Но, как бы то ни было, факт остается фактом: первый серийно выпускаемый робот стучится в дверь в прямом и переносном смысле.
    Нельзя не отметить, что собратья этих механических домработников уже освоили несколько чисто человеческих профессий. Японские инженеры, например, сконструировали робота для изготовления национального японского блюда "суси" - специально обработанных рисовых колобков с кусочком рыбы, осьминога, морскими водорослями. Ресторан-робот открылся жв японском городе Мацудо, чьи повара славятся искусством приготовления традиционного "суси". Посетителям предлагают отметить электронным "карандашом" название понравившегося блюда на экране специального телевизора, вделаннного в столик. Через некоторое время манипуляторы механического официанта ставят перед клиентом заказанное "суси". Одновременно на экране появляется его цена. Все операции в таком ресторане контролирует мини-ЭВМ.
    Издавна музыканты, играющие в оркестре, сталкиваются, казалось бы, с простой, но трудноразрешимой проблемой: как переворачивать страницы нот, не прекращая игры. Своеобразное решение этой каверзной проблемы на самом современном уровне предложила группа швейцарских изобретателей. Они создали для этой цели маленький робот, который выполняет роль третьей руки музыканта и по его приказу переворачивает страницу - необходимо лишь нажать ногой педаль.
    Японская фирма "Токио кэки" сконструировала робот, играющий на пианино. В отличие от магнитофонной звукозаписи робот-пианист создает музыкальный эффект присутствия играющего мастера. Достигается это с помощью мини-ЭВМ, которая управляет электрогидравлической приводной системой робота, воздействующей на клавиши и педали пианино.
    Впрочем, совсем не обязательно роботу нажимать клавиши, можно сделать это изнутри, "из пианино".
    "Самые лучшие пианисты мира готовы прийти к вам домой и играть только для вас! После 15-летних экспериментов нам удалось преобразовать механическое пианино, изобретенное в 1904 году, в электронное!" Так разрекламировала свои поиски фирма "Марантц" (ФРГ).
    Механическое пианино сейчас можно увидеть, пожалуй, только в музее. Управлялось оно с помощью бумажной перфоленты. Каждое отверстие служило приказом для нажатия той или иной клавиши. Хотя исполнение было несколько жестковатым и ему порой недоставало эмоциональной окраски и душевности, тем не менее механические пианино пользовались большой популярностью - до 1903 года их было выпущено пять миллионов.
    Фирма "Марантц" утверждает, что ее электронное устройство можно поставить на пианино любого типа, причем это не помешает обычной ручной игре. В чем же суть новшества? Кассета с магнитной записью исполнения какого-либо произведения музыкантом устанавливается в воспроизводящий аппарат, внешне напоминающий обычный магнитофон. Благодаря тому что сама запись (в цифровом виде) делалась на подобном инструменте, она содержит подробные данные о всех параметрах игры - скорости, силе удара, отрезках времени вплоть до тысячных долей секунды, работе педалей и так далее. Компактная вычислительная система переводит эту информацию в сигналы для точно действующих реле, связанных с механизмом инструмента, и они в нужное время нажимают на нужную клавишу. Несколько выдающихся музыкантов уже подтвердили, что компьютерная репродукция неотличима от реального "живого" исполнения.
    Уже выпущено в продажу свыше десяти тысяч кассет всех музыкальных жанров, начиная от концертов знаменитых пианистов и кончая легкой музыкой "под настроение". Особенно широкие возможности открываются перед "электронным" пианино в музыкальных и театральных школах и балетных студиях.
    Японские инженеры фирмы "Ямаха Ко" пошли дальше. Они сконструировали робот в помощь композиторам. Это автоматический нотописец. Он фиксирует на нотной бумаге все, что проиграл музыкант на инструменте. Микрокомпьютер преобразует звуки инструмента в электроимпульсы, подаваемые на специальную пишущую машинку, которая печатает нужный ключ, тактовые черточки, диезы, бемоли, указывает ритм и запечатлевает аккорды и мелодии. Автоматика позволяет переходить на запись с различных инструментов, от пианино до гитары и виолончели.
    Раз уж роботы освоили сферу искусства музыки, то почему бы им не попробовать себя и в изобразительном искусстве?
    Известно, что существуют роботы, "умеющие" рисовать. В Англии, пишет газета "Санди тайме", сейчас идет подготовка программ для кибернетического роботаскульптора, работающего по мрамору.
    Американские инженеры сконструировали робота, который по снимкам "вылепливает" скульптуры. Лицо человека фотографируют восемь аппаратов, затем его "объемное" изображение переводится в сигналы, по которым машина делает скульптурный портрет - сначала из мягкого, потом из твердого материала.
    Эти роботы-творцы перешагнули уже известную грань между первым и вторым поколением. Их интеллект и чувствительный аппарат достигли высокого совершенства. Еще более интеллектуален домашний робот-шахматист. Он не только легко обыгрывает среднего шахматиста-любителя, но и сам передвигает фигуры на доске миниатюрной механической рукой - манипулятором.
    Какие только функции не выполняет сегодня многочисленная команда бытовых роботов! Но вот эта конструкция фирмы "Дайнити Кико" (Япония), пожалуй, одна из самых необычных. Дело в том, что новое устройство призвано восполнить дефицит... больничных сиделок. Сегодня мало кто соглашается за небольшую плату ухаживать за лежачими больными. "Железная нянька" умеет распознавать приказания, отданные голосом, подает воду и точно по расписанию - лекарства Управление роботом осуществляется с помощью ЭВМ. Пока еще цена его великовата - опытный экземпляр обошелся в девятнадцать тысяч долларов, - но фирма надеется, что в будущем затраты на производство таких механизмов удастся свести к минимуму.
    В Бостонской больнице робот ведет прием больных, выясняет их недуги и составляет подробную историю болезни, более подробную и систематизированную, чем это делают врачи, обычно сокращающие записи из-за недостатка времени.
    В штате пожарного департамента города Иокогама в Японии числится робот, который может самостоятельно передвигаться в пламени и ядовитом дыму и, орудуя руками-захватами, тушить огонь. В случае пожара он устремляется в самые опасные места и, не щадя себя, борется с огнем.
    В западногерманской полиции "служит" робот. Он умеет подниматься на гусеничном ходу по лестнице, отпирать двери, вскрывать упаковки. Благодаря дистанционному управлению, телекамере и "водяному ружью" успешно обезвреживает установленные взрывные устройства.
    225-килограммовый курьер-робот питается от батарей и бесшумно катит на резиновых колесах по коридорам громадного здания почтамта вдоль проложенных под линолеумом пола проводов низкочастотного излучения. Робот останавливается по световому сигналу ила же в заданном месте, получая и сдавая корреспонденцию. Если на его пути встречается препятствие, он ждет, потом сигналит и начинает двигаться только после того, как освободится дорога.
    У бытовых роботов блестящие перспективы. Весьма перспективно их использование в плане автоматизации и механизации сферы торговли: можно предполагать применение роботов для доставки товаров, а также доставки на рабочие места горячего чая, питьевой воды и т. д.
    В отелях целесообразно использование роботов в качестве барменов, кельнеров, посыльных и другого обслуживающего персонала. Перспективно также обслуживание в парках и других местах массового отдыха.
    Возможно использование роботов по проверке билетов, по уборке территории, при размене денег и т. д. и т. п.
    Каждый из нас, просматривая периодическую прессу, сможет пополнить коллекцию таких, пока еще курьезных, сообщений. Вот один из таких курьезов: роботконь. Наездник, как обычно, седлает коня, но, вместо того чтобы пришпорить его, нажимает кнопки. Копь легко "встряхивается" и пускается по дорожке ипподрома. Речь идет о тренажере, созданном группой японских инженеров. Они сконструировали электрическую лошадь, которая способна развивать скорость до 20 километров в час. Управляется робот с помощью кнопок, вмонтированных в его "шею". Нажимая их, спортсмен может моделировать самые сложные ситуации, которые могут произойти, если он оседлает уже настоящего коня.
    РОБОТ: ЧИТАЮ И МОГУ ИЗЪЯСНЯТЬСЯ
    Постоянно "общаясь" с человеком, робот вынужден научиться понимать человеческий язык, реагировать на команды, задаваемые не только нажатием кнопок, но и команды, отдаваемые голосом. Это куда более "привычное" для человека средство общения и верный путь для расширения популярности роботов. Однако проблема "взаимопонимания" человека и машины куда сложнее, чем трудности общения даже двух людей, говорящих на разных языках. История сохранила немало курьезов подобного "понимания". Так, английский капитан Дж. Кук, вторично "открывший" Австралию, писал в своем дневнике о "странном существе, которое скачет на задних лапах, как прыгающая мышь". Когда Дж. Кук справлялся о нем у местных жителей, туземцы отвечали одним словом "кенгуру". Современные языковеды установили, что на языке туземцев "кенгуру" означает всего лишь "я тебя не понимаю"! А ведь язык человека и язык компьютера разнятся буквально как "лед и пламень".
    Надо сказать, что человеческий язык уже давно "волновал" умы машин. Приборы, читающие печатный текст и являющиеся, как правило, частями других, более сложных устройств, уже перестали быть технической новинкой. Достаточно вспомнить почтовые автоматы, сортирующие корреспонденцию в зависимости от шестизначного почтового индекса. Однако такие примитивные устройства способны "понимать" лишь сильно стилизованный текст, написанный по заданному трафарету. А как же простой печатный шрифт? Неужели нужно специально переписывать для робота миллионы человеческих книг?
    Вот последнее достижение в этой области - читающий компьютер третьего поколения. Он "умнее" своих предшественников - читает тексты, отпечатанные шрифтами двадцати пяти различных видов. "Тренировочная фаза" в течение 15-20 минут позволяет прибору переходить на другой вид шрифта. Машина работает по принципу "оптического ощупывания" со скоростью 20-30 печатных знаков в секунду. Существуют и разработки, нацеленные на распознавание рукописного текста.
    Однако проблема восприятия информации "с голоса" гораздо сложнее. Печатный текст формируется из четких знаков - букв, живая речь из атомов речи - звуков или, как их называют специалисты, - фонем (отсюда "фонетика" - наука о правильном произношении). Как объект физического анализа каждый звук речи отличается от другого и частотой, и продолжительностью, и интенсивностью. Кроме того, в речи нет четких границ между звуками, как между буквами в тексте, и это сильно затрудняет распознавание по сравнению с любым печатным текстом. Одни специалисты пытаются распознавать речь по частотным характеристикам, присущим звучанию каждой буквы (заметим, что в некоторых буквах несколько фонем). Другие - по группе фонем, составляющих слог, так как распознавание многих фонем вне контекста очень трудно.
    Для того чтобы понять, сколь сложна проблема звукового распознавания человеческой речи, уместно привести такой почти анекдотический пример. В одном научно-исследовательском институте, расположенном на Кавказе, была построена кибернетическая черепаха, которая выполняла фиксированный набор команд, подаваемых голосом. На торжественную демонстрацию съехались гости. Черепаха была послушна своим создателям, но "принципиально" отказалась слушаться гостей. Как выяснилось в результате пристрастного разбирательства, гостям она не повиновалась по одной простой причине... команды нужно было произносить с "кавказским акцентом". То, что мы называем кавказским акцентом, всего лишь связано с повышенным участием в произношении некоторых звуков гортани.
    Проблема машинного слуха настолько сложна, что не имеет имитационных аналогов механического моделирования в глубинах истории. Анналы техники не сохранили нам достоверных сведений о слушающих андроидах. То ли слуховой аппарат человека оказался слишком замысловатым для чисто механического подражания, то ли роль мозга оказалась слишком велика в слуховом процессе, по крайней мере, проблема машинного слуха так же, как и зрения, стала актуальной лишь на электронном уровне. К сожалению, известный нам микрофон еще меньше напоминает человеческое ухо, чем телекамера человеческий глаз.
    Имевшиеся в распоряжении ученых ЭВМ поначалу с трудом справлялись с предлагаемым им объемом "распознавательных" работ. Они реагировали далеко не на каждый голос, а лишь на тот, на который они настроены заранее. К тому же у них был ограниченный словарный запас.
    Загвоздка состоит в следующем: число возможных вариантов спектра фонем, учитывая словарное богатство каждого языка, выражается астрономической величиной, и это не считая того, что спектры даже одинаковых слов разнятся в зависимости от индивидуума, их произносящего. Более того, даже один и тот же человек в течение одной недели, даже нескольких часов будет произносить одни и те же слова совершенно по-разному.
    Первые акустические системы безошибочно распознавали лишь отдельно сказанные буквы алфавита, следующие - отдельные слова команд, четко произнесенные в микрофон. Однако понимающий робот "слушался" лишь голоса своего "хозяина" и делал это очень хорошо. Во время работы он самостоятельно приспосабливался к "постоянно меняющейся языковой манере человека". Другим людям, которые вступали в контакт с роботом и произносили в микрофон буквы или цифры, удавалось его "обмануть". Но это бывало лишь тогда, когда голос говорящего напоминал голос "хозяина". Конечно, "привыкание" машины к другим голосам не связано с какими-то непреодолимыми трудностями, просто компьютер вырабатывает "модель голоса данного индивидуума". Для этого необходимо ввести в память ряд звуковых проб со словами, которые машина должна понимать.
    Можно не сомневаться, что в будущем понимающие наш язык аппараты, если мы хотим, чтобы они утвердились в производстве и быту, должны обладать такой степенью приспособляемости, чтобы узнавать голоса любых людей и выполнять любые команды.
    В настоящее время уже нашли применение около пятисот систем распознавания речи. Они используются при контроле качества продукции на конвейерах, при управлении станками, сортировке товаров и багажа в аэропортах, с целью включения электроприборов, вызова врача или медсестры, в системах программированного обучения, опознавания личности и т. д. и т. п.
    Имеются практические примеры применения понимающих речь роботов и в непромышленной сфере.
    Системы, распознающие печатный текст, уже не новость. Но вот эта особенная. Сконструированы роботы, которые работают в паре - один переворачивает страницы текста, а другой... читает слова приятным женским голосом. Точность распознавания 99,5 процента. Эти роботы могут излагать последние известия по радио и отвечать на вопросы по телефону. Конструкторы создали механического чтеца вовсе не для рекламы, ему уже уготовано рабочее место - он будет служить в автоматизированной телефонной справочной службе.
    Конечно, можно и специально ввести в компьютер всю необходимую справочную информацию; но зачем делать еще раз то, что уже однажды сделано, ведь телефонные книги и справочники уже отпечатаны, они и в будущем будут переиздаваться и корректироваться, ими будут пользоваться люди... а теперь еще и роботы.
    Да! Общение с человеком пошло роботу на пользу, он получил еще одну чисто человеческую привилегию - заговорил. Таким образом, к привычным механическим эффекторам робота добавилось еще одно немаловажное устройство - синтезатор речи.
    Машина, которая "говорит", не такая уж новинка, к примеру обыкновенный магнитофон. Однако он, к сожалению, "говорит" только то, что записано на пленку, то, что заранее "наговорил" ему человек. С подобной говорящей машиной можно легко "побеседовать", достаточно лишь набрать номер московских "говорящих часов" 100.
    А что, если наговорить кучу самых разных слов и поручить компьютеру находить и воспроизводить нужные слова в нужной последовательности в процессе разговора? Получится ли правильная человеческая речь?
    Вряд ли. Ведь одно и то же слово участвует в предложениях разного типа с десятком интонаций, сотнями вариантов произношения. Чтобы такая речь мало-мальски "ласкала слух", потребуется сли
    Стр. 1 : Стр. 2 : Страница 3 : Стр. 4 : Стр. 5 : Стр. 6 : Стр. 7 : Стр. 8 : Стр. 9 :

    Ключевые слова:
    роботы
    управления
    поколения
    человек
    производства
    системы движения
    работы
    детали
    компьютер
    устройства
    машина
    система
    ВДНХ робот
    Книги о роботах
    робот


    Вернуться в рубрику:

    Книги и рассказы про роботов


    Хотите видеть на нашем сайте больше статей? Кликните Поделиться в социальных сетях! Спасибо!

    Смотрите также:

    Обратите внимание полезная информация.

    Робототехника для каждого. 2024г.